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Kinematic α-effect in isotropic turbulence simulations
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ABSTRACT

Using numerical simulations at moderate magnetic Reynolds numbers up to 220, it is shown

that in the kinematic regime, isotropic helical turbulence leads to an α-effect and a turbulent

diffusivity whose values are independent of the magnetic Reynolds number, Rm, provided

Rm exceeds unity. These turbulent coefficients are also consistent with expectations from the

first-order smoothing approximation. For small values of Rm, α and turbulent diffusivity are

proportional to Rm. Over finite time-intervals, meaningful values of α and turbulent diffusivity

can be obtained even when there is small-scale dynamo action that produces strong magnetic

fluctuations. This suggests that the fields generated by the small-scale dynamo do not make a

correlated contribution to the mean electromotive force.
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1 I N T RO D U C T I O N

The generation and maintenance of large-scale magnetic fields in

stars and galaxies is often studied within the framework of the mean-

field dynamo (MFD) (see e.g. Moffatt 1978; Parker 1979; Krause

& Rädler 1980). A particularly important driver of MFDs is the α-

effect. For isotropic turbulence and weak magnetic fields, that is, in

the kinematic regime, the α-effect can be expressed purely in terms

of the kinetic helicity. Research in recent years has mostly been

concerned with clarifying the effects of non-linearity, but there are

serious uncertainties even in the linear (kinematic) regime. In partic-

ular, whether or not α can then be expressed in terms of the kinetic

helicity depends on the applicability of the first-order smoothing

approximation (FOSA) or other closures used to calculate α. Such

approaches become questionable when the magnetic Reynolds num-

ber, Rm, is large, that is, when the magnetic diffusion time is long

compared with the turnover time which, in turn, is comparable with

the correlation time of the turbulence. In the high conductivity limit,

FOSA can only be applied if the correlation time for the velocity

field is much smaller than the eddy turnover time. This is not the

case for high Reynolds number turbulence, where the two time-

scales are equal, that is, the Strouhal number is unity (Brandenburg

& Subramanian 2005b, 2007), so FOSA should, in principle, break

down. In this case, all higher order terms need to be taken into ac-

count (Knobloch 1976). Furthermore, high-Rm random flows typi-

cally lead to a fluctuation dynamo which leads to rapidly growing

small-scale magnetic fields independent of the mean field. This also

breaks the assumption made by FOSA that fluctuating fields are

much smaller than the mean field.
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The existence of α-effect and turbulent diffusion has been wor-

rying dynamo researchers over several decades. Assuming steady

flow patterns, Childress (1979) found that motions that concentrate

magnetic fields into thin flux sheets lead to an α-effect whose value

diminishes with Rm like R−1/2
m . However, for an analogous heli-

cal motion which concentrates the field into an axial flux rope, α

tends to a finite limit as Rm → ∞. He conjectured that the latter

estimate may be typical of steady three-dimensional motion. The

validity of turbulent diffusion has been questioned by Piddington

(1981). Calculations by Kraichnan (1976) suggest that α and tur-

bulent diffusion converge to finite values for statistically isotropic

velocity fields with Gaussian statistics. However, numerical simu-

lations (Drummond & Horgan 1986) using a frozen velocity field

suggest that in the limit of large magnetic Reynolds numbers α tends

to zero. Based on specific imposed (kinematic) flow patterns, it has

been suggested that there is no simple relation between α and helic-

ity of the flow (see Courvoisier et al. 2006). In fact, their results may

suggest that in the kinematic regime, α exhibits a strong Rm depen-

dence (for large Rm up to 2 × 105) and could change sign for Rm ≈

20 and long correlation times. It is important to emphasize that in

the non-linear regime, that is, for finite magnetic field strength and

including the Lorentz force, a strong Rm dependence is now indeed

well established (Cattaneo & Hughes 1996; Brandenburg 2001; see

Brandenburg & Subramanian 2005a for a review). However, in the

following we will be concerned with the purely linear regime.

In order to clarify the Rm dependence in the kinematic regime, we

perform numerical turbulence experiments where we adopt an exter-

nally imposed body force to drive the flow. This is a common tech-

nique applied in simulations and helps develop homogeneous and

isotropic turbulence which is easier to handle analytically. While the

calculation of α from a turbulence simulation is relatively straight-

forward by imposing a uniform magnetic field, the calculation of

turbulent diffusion is more uncertain. One possibility is to determine
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the decay rate of an initial large-scale magnetic field (Yousef,

Brandenburg & Rüdiger 2003). Another more reliable method is

to calculate both α and turbulent diffusion tensors simultaneously

by computing the mean electromotive force (emf) using a number

of different non-uniform test fields in different directions and of

different spatial structure (Schrinner et al. 2005, 2007). This is also

the approach used in this Letter.

2 T E S T- F I E L D P RO C E D U R E

In MFD theory, one averages the induction equation to obtain the

standard dynamo equation for the mean field B:

∂B

∂t
= ∇ × (U × B + E − η∇ × B), ∇ · B = 0. (1)

This averaged equation now has a new term, the mean emf E =

u × b, which crucially depends on the statistical properties of the

small-scale velocity and magnetic fields, u and b, respectively. A

central closure problem in MFD theories is to compute the mean

emf E and express it in terms of the mean field itself. Assuming

that the mean field is spatially smooth, the mean emf E can then be

expressed in terms of the mean magnetic field and its first derivative

in a manner

E i = αi j B j + ηi jk B j,k, (2)

where αij and ηijk are turbulent transport coefficients written in ten-

sorial form, and a comma denotes partial differentiation.

In numerical simulations, the full αij and ηijk tensors are deter-

mined by first computing the mean emf using test fields in different

directions and of different spatial structures (Schrinner et al. 2005,

2007). In what follows, we employ xy averages such that the result-

ing mean fields are expressible only as functions of z and t. Some

details of the test-field method applied to this case have already

been described by Brandenburg (2005). Note that the solenoidality

condition then gives, Bz = constant = 0. Hence, one only needs to

compute the four components of αij and ηij3 with i, j = 1, 2. Here,

the numbers 1, 2 and 3 refer to Cartesian coordinate directions x,

y and z, respectively. In order to obtain the 4 + 4 = 8 unknown

coefficients, we need the x- and y-components of four different test

fields, B
pq

i , where i, p and q take values 1 and 2.

In order to compute the components α11 and η123, for example, it

suffices to consider the following two test fields:

B
11

=

⎛

⎝

cos k1z

0

0

⎞

⎠ , B
21

=

⎛

⎝

sin k1z

0

0

⎞

⎠ . (3)

Here k1 is the smallest non-vanishing wavenumber in the domain,

and p = 1 or 2 denotes whether we take a cosine or sine behaviour

for the test field, and q = 1 or 2 depending on whether the non-zero

component of B
pq

i is the x-component or y-component, respectively.

We insert these test fields into the relation

E
pq

i = αi j B
pq

j + ηi j3 B
pq

j,3. (4)

Since q = 1, only the j = 1 (x-) component contributes to the sum

over j above. For the two values of p and with index i unspecified,

we have

E
11

i = αi1 cos k1z − ηi13k1 sin k1z, (5)

E
21

i = αi1 sin k1z + ηi13k1 cos k1z. (6)

Similarly, for test fields which only have non-zero y-components,

that is, with q = 2, one obtains a similar pair of equations with the

same arrangement of cosine and sine functions, but with αi2 and ηi23

in place of αi1 and ηi13, respectively. Thus, for each value of i one

obtains independent matrix equations for the unknown coefficients

αij and ηij3 as

(

αi j

ηi j3k1

)

= M
−1

(

E
1 j

i

E
2 j

i

)

, (7)

where

M =

(

cos k1z − sin k1z

sin k1z cos k1z

)

(8)

is the same matrix for each value of q and each of the two components

i = 1, 2 of E
pq

i . Note that det M = 1, so the inversion procedure is

well behaved and trivial.

Given the form of the test fields, we can compute the mean emf

E
pq

= u × bpq for a given test field B
pq

. The mean emf E
pq

is

computed by solving the equations

∂bpq

∂t
= ∇ × (U × bpq + u × B

pq
) + G pq + η∇2bpq (9)

for each test field B
pq

along with the momentum equation for the

fluctuating velocity field (see further below).1 Here

G pq = ∇ ×
(

u × bpq − u × bpq
)

(10)

is a non-linear term that would normally be neglected under FOSA,

but will be retained in the numerical simulations. For sufficiently

large values of Rm, the small-scale field bpq can grow exponentially

due to small-scale dynamo action. An important question to ask is

whether the predictions of FOSA work even in the presence of such

a small-scale dynamo.

We adopt an isothermal equation of state with constant speed of

sound, cs, so the momentum and continuity equations are

∂u

∂t
= −u · ∇u − c2

s ∇ ln ρ + f + ρ−1∇ · 2ρνS (11)

and

∂ ln ρ

∂t
= −u · ∇ ln ρ − ∇ · u, (12)

respectively, where f is a random forcing function consisting of

circularly polarized plane waves with positive helicity and random

direction, and S is the traceless rate of strain tensor. The length of

the wavevector of the forcing function, |kf|, is chosen to be between

4.5 and 5.5, so the average is around kf = |kf| ≈ 5. The ratio kf/k1

is referred to as the scale separation ratio. It must be large enough

to ensure that higher derivatives in equation (2) can be ignored and

that a large-scale field could grow, if it was allowed to do so. For

fully helical turbulence, a ratio of 5 is already sufficient, but 2.3 is

not (see fig. 23 of Haugen et al. 2004). We adjust the strength of

the forcing such that the flow remains clearly subsonic (mean Mach

number is below 0.2), so for all practical purposes the flow can be

considered nearly incompressible. The details of the forcing func-

tion used in this Letter can be found in appendix A of Brandenburg

& Subramanian (2005b).

We do not include the Lorentz force in the momentum equa-

tion since we want to study the mean emf in the purely kinematic

limit. We ignore here the possibility of a mean flow; such flows have

not been seen to emerge under the simple conditions considered

1 Note that in the corresponding expression (27) of Brandenburg (2005) the

U term is incorrect. This did not affect his results because U = 0.
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Figure 1. Parameter space covered by the simulations presented in this

Letter.

here. In the following, we use the PENCIL CODE,2 where the test-

field algorithm has already been implemented. We employ periodic

boundary conditions and use a resolution of up to 5123 meshpoints

for the run with the largest fluid Reynolds number. We use a domain

of size (2π)3, so the smallest wavenumber is k1 = 1.

3 R E S U LT S

We are particularly interested in the dependence of αij and ηij3 on Rm

and have considered cases where either the fluid Reynolds number

was fixed, Re = urms/(νkf) = 2.2, or where Re = 10Rm, correspond-

ing to a magnetic Prandtl number of Pm = ν/η = 0.1 (see Fig. 1).

The flow is isotropic and, not surprisingly, we find that, to a good

approximation, the α and ηt tensors are isotropic with

α11 = α22 ≡ α, η123 = −η213 ≡ ηt, (13)

and α12 = α21 = η113 = η223 = 0. The quantity ηt is simply referred

to as turbulent magnetic diffusivity. Although the code is capable

of solving for the full αij and ηij3 tensors, we simplify matters by

solving only for αi1 and ηi13 using just two test fields.

We present the results for α and ηt normalized to the respec-

tive expressions obtained using FOSA for large magnetic Reynolds

numbers (Moffatt 1978; Krause & Rädler 1980):

α0 = −
1

3
τω · u, ηt0 =

1

3
τu2, (14)

where τ denotes the correlation time of the turbulence. Using the

definitions of the Strouhal number,

St = τurmskf (15)

and the fact that St ≈ 1 for large enough magnetic Reynolds numbers

(Brandenburg & Subramanian 2005b, 2007), we expect

α0 = −
1

3
urms, ηt0 =

1

3
urmsk

−1
f (16)

for a flow that is maximally helical and has positive helicity. For

Rm < 1, the relevant value of τ is no longer the dynamical time-

scale, (urmskf)
−1, but the resistive one, (ηtk

2
f )−1. Therefore, both α/α0

and ηt/ηt0 have to be scaled by Rm for Rm < 1.

The test-field procedure yields α and ηt as functions of z and t.

Since the turbulence is homogeneous, we average these data first

2 http://www.nordita.org/software/pencil-code

Figure 2. Time-series of the z-averaged values α and ηt for Rm = 220 and

Re = 2.2. Time is expressed in turnover times, τ = (urmskf)
−1. The dash–

dotted lines give the time-average and the dotted lines mark error margins

obtained by averaging over subsections of the full time-series (see the text).

In this run, there is small-scale dynamo action leading to strong fluctuations

for t/τ > 25, making the determinations of reliable averages harder at late

times.

Figure 3. Dependencies of αrms (normalized by ηt0k1, solid line), and ηt,rms

(normalized by ηt0, dashed line), on the magnetic Reynolds number for

Re = 2.2. The vertical bars denote the error estimated by averaging over

subsections of the full time-series.

over z and then calculate time-averages over the full time-series. An

example of such a time-series is shown in Fig. 2 for Re = 2.2 and

Rm = 220. Note that even for Rm ≫ 1 the time-averages of α/α0 and

ηt/ηt0 are close to unity, that is, the predictions from FOSA appear to

be reasonably accurate. We use such time-series to calculate error

bars as the maximum departure between these averages and the

averages obtained from one of three equally long subsections of the

full time-series.

The degree of fluctuations in the time-series of α and ηt is quite

moderate and not at all as strong as in the non-linear regime where

fluctuations of α can even dominate over the mean value (Cattaneo

& Hughes 1996). The latter is likely to be a consequence of a

very small (catastrophically quenched) mean value in the non-linear

regime. On the other hand, in the kinematic regime the level of fluc-

tuations is found not to vary significantly with Rm (see Fig. 3). A

weak Rm dependence has also been found in the presence of shear

(Brandenburg et al. 2008), where such fluctuations can contribute to

dynamo action by an incoherent α effect (Vishniac & Brandenburg

1997). However, at late times, that is, towards the end of the sim-

ulation, the degree of fluctuations increases (Fig. 2). This has to

do with the emergence of small-scale dynamo action that leads to
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Figure 4. Evolution of the rms value of the small-scale magnetic fields b11

for Re = 2.2 and Rm = 220. (The result for b21 is overplotted as a dashed

line, but it is almost indistinguishable from the solid line for b11.) Note the

nearly exponential growth for t/τ > 10, as illustrated by the straight line with

a slope corresponding to a growth rate of 1.55τ−1.

Figure 5. Colour-coded (or grey-scale) representation of b11
x on the periph-

ery of the box for a run with Re = 2.2 and Rm = 220 at t/τ = 28. The

colour/grey-scale has been clipped at ±100, even though the extrema are

at ±200. Note the extreme intermittency as evidenced by the presence of

extended nearly field-free regions.

the production of strong small-scale magnetic fields, bpq, although

this does not affect the resulting time-averaged emf for a reasonably

long stretch of time.

In our simulations with Re = 2.2, small-scale dynamo action

with exponential growth of the rms value of bpq is found when Rm is

larger than a certain critical value Rm,cr that seems to be somewhere

between 28 and 44 (see Fig. 4 which shows the growth of the rms

value of bpq for Rm = 220 and Pm = Rm/Re = 100).

On the other hand, for Rm < Rm,cr the rms value of the small-

scale field settles to a constant value. In the supercritical case, the

magnetic field is highly intermittent in the sense that only in a few

places the magnetic field reaches large positive and negative values

(see Fig. 5). Such intermittency is typical of large-Pm small-scale

dynamo action in the kinematic stage (Zeldovich, Ruzmaikin &

Sokoloff 1990; Brandenburg & Subramanian 2005a).

The corresponding normalized values of α and ηt as a function of

Rm are shown in Fig. 6, for the case when Re = 2.2. Fig. 7 shows the

results for simulations with Pm = 0.1. It turns out that in all cases

with Rm > 1, α/α0 ≈ ηt/ηt0 ≈ 1, while for Rm < 1 these ratios are

equal to Rm.

Figure 6. Dependence of the normalized values of α and ηt on Rm for

Re = 2. 2. The vertical bars denote twice the error estimated by averaging

over subsections of the full time-series (see the text). The run with Rm =

220 (Re = 2.2) was done at a resolution of 5123 meshpoints.

Figure 7. The same as Fig. 6, but for Pm = 0.1. The run with Rm ≈ 22 (Re ≈

220) required a resolution of 5123 meshpoints.

Also in the case with Pm = 0.1, where we explore larger values

of Re up to 300, α/α0 and ηt/ηt0 reach values close to unity.

We may conclude that for isotropic homogeneous turbulence

the high conductivity results obtained under FOSA are reasonably

accurate up to the moderate values of Rm that we have tested. In-

terestingly, this conclusion is obtained even in the presence of a

small-scale dynamo, where b is growing exponentially. Conversely,

when different values of α and ηt are found under specific circum-

stances, then this must be related to the nature of these circumstances

and does not indicate the break-down of FOSA in general.

How is it then possible that the high conductivity limit of FOSA

works even though the correlation time of the velocity field is com-

parable to the eddy turnover time? A possible reason for this could

be that in the kinematic regime the high conductivity limit of FOSA

gives similar predictions than the minimal τ approximation (MTA)

where the triple correlations are not neglected, but replaced by the
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quadratic correlations divided by a turnover time. This closure as-

sumption is not well justified, although numerical simulations (for

Rm � 300) support some aspects of this closure (Brandenburg &

Subramanian 2005b, 2007). Let us also emphasize that in this work

we have not probed two particular aspects where FOSA and MTA

depart from each other: feedback from helical mean fields (see Bran-

denburg & Subramanian 2005a for a review), and strong time depen-

dence. In the latter case, a time-derivative of E would be important

in giving the mean field equation the character of a wave equa-

tion (Blackman & Field 2002; Brandenburg, Käpylä & Mohammed

2004).

4 C O N C L U S I O N S

This work has shown that for isotropic turbulence the first-order

smoothing results give quite accurate expressions for the α effect

and the turbulent magnetic diffusivity in the kinematic regime. This

result comes almost as a surprise, given that in recent years mean

field theory has been seriously challenged based on numerical simu-

lations. However, we can now clearly say that for moderate Reynolds

numbers up to about 220 and under the conditions stated (scale sep-

aration, isotropy, etc.) there is no evidence that the kinematic results

obtained using FOSA are flawed, even though its applicability can

then no longer be guaranteed and we know of its shortcomings

in the non-linear regime (Brandenburg & Subramanian 2005a). As

explained above, a possible reason for this might be that the predic-

tions of FOSA and MTA are rather similar, even though FOSA loses

its justification whilst MTA hinges on a not-well-justified closure

hypothesis.

The emergence of small-scale dynamo action for supercritical

values of Rm of about 30 does not seem to affect the average val-

ues of α and ηt. This suggests that the exponentially growing part

of the small-scale field does not make a contribution to the mean

emf E , correlated with the imposed test fields. However, small-

scale dynamo action makes the calculation of reliable average val-

ues of α and ηt more difficult. Of course, in the supercritical case

the long-time limit of any kinematic problem becomes unphysi-

cal. Nevertheless, within a certain time-interval the averaged val-

ues of α and ηt match reasonably with theoretical expectations of

FOSA.
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