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Abstract

In this paper, we applied the matrix method to kine-
matic analysis of our translational 3-DOF (Degrees Of
Freedom) micro parallel mechanism for an instance
of general flexure mechanisms. The matrix method
has been well developed in architecture to analyze a
frame structure. We found that this method is well
applicable to such a flexure mechanism with circular
notched hinges as our micro parallel mechanism be-
cause it is approximate to a Rahmen structure. Our
matrix method can calculate a compliance matrix with
less nodes of matrix than conventional FEM (Finite
Element Method). Firstly, the compliance matrices of
a circular notched hinge and some other beams are
defined and the coordinate transformations of compli-
ance matrix are introduced. Secondly, an analysis of
our micro parallel mechanism is demonstrated.

1 Introduction

A flexure mechanism that has some notched hinges
has been widely used for micro-precision machinery,
like a micropositioning stage, accelerometer, and mi-
cromanipulator. The notched hinge is made a circular
or rectangular notch and is totally thick but partially
thin beam (See Fig. 2(c)). So it is compliant in bend-
ing around one axis along notch but rigid around the
other axes. So it works approximately as an angular
axis. The merits of this hinge are vacuum compat-
ibility, no backlash property, no non-linear friction,
simple structure and easy manufacture. However, in-
sufficient flexibility around rotation axis and/or insuf-
ficient stiffness around other axes cause non-intended

motion of the output. An analysis of the hinge and
total mechanism is necessary for accurate motion and
optimal design.

The analysis of flexure hinge mechanism has a long
history. The analytic formulations of circular notched
hinge were firstly given by Paros [1]. Yoshimura cor-
rected the mistake in Paros’ approximation 4x/Fx

and analyzed other types of hinge [2]. Rong analyzed
and tested the error effect of their micro-motion stage
[3]. Her also analyzed closed-loop micro-positioning
stage while treating each hinge as torsion spring [4].
Hara proposed micro-parallel mechanism with flexure
pivot and hinge [5]. Hara’s mechanism is different
from the others in the respect that it is not a plane
but a spatial mechanism.

In previous works, the full set of deformation of
hinge was analyzed but they were neglected or only
deformation around one axis was considered in the
analysis of total mechanism. Furthermore, the other
members than hinge are assumed as rigid and their
deformations were neglected.

The matrix method has been well developed in ar-
chitecture to analyze such a frame structure as bridges
(E.g. [6, 7]). This method is applicable to the flexure
mechanisms because they can be treated as a Rah-
men structure. The matrix method is advantageous
because it can deal with full set of deformation of
all mechanical members. In addition, different from
FEM (FEM is also a kind of matrix method), our
method needs much less nodes of matrix. That means
less computer power and rapid calculation. In this
method, the linear relationship between force and de-
formation is established (Hook’s law). The transla-
tional and rotational displacements are also linearized
because they are small.

786



IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), W-AIV-7-1, pp. 786-792, 2000

As mentioned above, this method has already been
well developed, so we would just demonstrate this
method by applying to our translational 3-DOF mi-
cro parallel mechanism [8], which need spatial error
analysis of hinges and other members.

2 Compliance & Stiffness Matrix Method

Here, it is assumed that the linear relation is estab-
lished between force and deformation. When forces
and moments in/around certain axes are exerted on a
certain point, the infinitesimal translational and rota-
tional displacements of that point are formulated as
Eq. (1) and Eq. (2). Note that the set of forces and
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Figure 1: Compliance/Stiffness Matrix

moments, the set of translational and rotational dis-
placements are expressed as F and X, respectively.
Hereafter, the force and moment, translational and
rotational displacement will not be distinguished.

X = C F (1)
F = K X (2)

The matrix C is called as compliance matrix or flex-
ibility matrix, and the matrix K is called as stiffness
matrix. C and K are inverse matrices of each other,
and both are regular and symmetric.

2.1 Compliance Matrix of Beams

Eq. (3) shows the displacement of the tip of gen-
eral beam when external forces are exerted on it. fn

and δn are the force and translational displacement
in n-axis, respectively and Mn and θn are the mo-
ment and rotational displacement around n-axis, re-
spectively. The ci (i = 1 . . . 8) are shown in Table 1
in case of a cylinder, prismatic beam, right circular
notched hinge. They are frequently used in flexure

mechanisms. The E and G are modulus of longi-
tudinal elasticity (Young’s modulus) and modulus of
transverse elasticity, respectively and other notations
are shown in Fig. 2.



δx
δy
δz
θx
θy
θz


 =




c1 0 0 0 c3 0
0 c2 0 −c4 0 0
0 0 c5 0 0 0
0 −c4 0 c6 0 0
c3 0 0 0 c7 0
0 0 0 0 0 c8







fx
fy
fz
Mx
My
Mz


 (3)

Table 1: Compliance Matrices of beams

Cylinder Prismatic Circular Notched
Beam Hinge

c1
4l3

3πE(r4
2 − r4

1)
4l3

Ea3b

9πr
5
2

2Ebt
5
2

+
3πr

3
2

2Ebt
3
2

c2 c1
4l3

Eab3

12πr2

Eb3

{(r

t

) 1
2

−1
4

}

c3
2l2

πE(r4
2 − r4

1)
6l2

Ea3b

9πr
3
2

2Ebt
5
2

c4 c3
6l2

Eab3

12r

Eb3

{
π

(r

t

) 1
2

−2 + π

2

}

c5
l

πE(r2
2 − r2

1)
l

Eab

1
Eb

{
π

(r

t

) 1
2

−π

2

}

c6
4l

πE(r4
2 − r4

1)
12l

Eab3

12
Eb3

{
π

(r

t

) 1
2

−2 + π

2

}

c7 c6
12l

Ea3b

9πr
1
2

2Ebt
5
2

c8
2l

πG(r4
2 − r4

1)
l

Gk2a3b

9πr
1
2

4Gbt
5
2

As for the twisting (rotational displacement around
z-axis) of prismatic beam, b > a is hold and the k2 is
decided by b/a (See Table 2).

As for the right circular notched hinge, almost fac-
tors are formulated by Paros [1]. But c5 is corrected
by Yoshimura [2]. In addition, our c1 is different from
Paros’. The approximation error causes a singularity
among c1, c3, and c7. To avoid it, the second approx-

imation of
3πr

3
2

2Ebt
3
2

is taken into consideration.

787



IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), W-AIV-7-1, pp. 786-792, 2000

t


r


b


z


x


y


r

r


l


2


1
 z


x


y

b


z


x


y


a


l


(a) Cylinder
 (b) Prismatic beam

(c) Circular Notched

                      Hinge


Figure 2: Types of Beam (Cylinder, Prismatic Beam,
Circular Notched Hinge)

Table 2: k2 in Prismatic Beam Twisting

b/a 1.00 2.00 10.00 ∞
k2(b/a) 0.141 0.229 0.312 0.333

The twisting factor of circular notched hinge was
analyzed by Rong [3]. The specific angle of twist is
Eq. (4), while a = 2r + t−√r2 − z2 and b > a.

δθz =
Mz δz

k2 Ga3 b
(4)

The twisting factor is obtained by integrating Eq. (4).

1
0.333

Mz δz

Ga3 b
≤ δθz ≤ 1

0.141
Mz δz

Ga3 b
(5)

1
0.333

∫ r

−r

Mz δz

Ga3 b
<

∫ r

−r

δθz <
1

0.141

∫ r

−r

Mz δz

Ga3 b
(6)

This calculation is so difficult that the twisting factor
is roughly estimated as the following because hinge is
usually wide (b > 2 r + t).

θz =
9πr

1
2

4Gbt
5
2

Mz (7)

2.2 Coordinate Transformation of Com-
pliance Matrix

Firstly, the translational coordinate transformation
of compliance matrix is described. When force F is
exerted on an object at the point p = (px, py, pz) as
shown in Fig. 3, the transformed force to the origin F ′

is obtained as Eq. (8).
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(a) Translation
 (b) Rotation


Figure 3: Translation of Compliance Matrix

F ′ =
(

I 0
P I

)
F (8)

Note that P expresses the outer product with the vec-
tor p. I is an identity matrix.

P =

(
0 −pz py
pz 0 −px−py px 0

)
I =

(
1 0 0
0 1 0
0 0 1

)

When the object is deformed and its origin moves δX,
the point p = (px, py, pz), which belongs to the coor-
dinate of the object moves δp. The displacement is
linearized because it is infinitesimal.

δp =
(

I PT

0 I

)
δX (9)

Eq. (8), (9) lead new compliance matrix when the ori-
gin of the object move to p.

C
′
=

(
I PT

0 I

)
C

(
I 0
P I

)
(10)

In the same manner, the rotational coordinate trans-
formation shown in Fig. 3(b) is obtained in Eq. (10).
The R is a rotational matrix. The force is rotated by
RT (= R−1) and the displacement under the force is
rotated by R.

C
′
=

(
R 0
0 R

)
C

(
RT 0
0 RT

)
(11)

For both coordinate transformations, the compliance
matrix is multiplied by transformation matrix and its
transposed matrix from the left and right sides. The
following operation is defined.

A⊗ C = A C A
T

(12)

The following matrix functions are also defined. The
Rx(θ), Ry(θ), and Rz(θ) means the θ rotation around
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x-, y-, and z-axes, respectively. P and I are same as
mentioned previously.

Rx,y,z(θ) =
(

Rx,y,z(θ) 0
0 Rx,y,z(θ)

)
(13)

P (px, py, pz) =
(

I PT

0 I

)
(14)

3 Kinematic Analysis of Translational
3-DOF Micro Parallel Mechanism

3.1 Translational 3-DOF Micro Parallel Mech-
anism

This subsection briefly introduces our translational
3-DOF micro parallel mechanism. As shown in Fig. 4,
the end-plate is supported by 3 chains of links, and
each chain has 3 parallelepiped mechanisms (See Fig. 5).
These parallelepiped mechanisms keep the end-plate
in parallel to the base. All angular joints of paral-
lelepiped mechanism are right circular notched hinges.
The piezo actuator pushes the middle plate of the
chain indicated by an arrow in Fig. 4 and generates
a micro-motion of the end-plate.

Endplate

Base

Piezo Actuator

Figure 4: Translational 3-DOF Micro-Parallel Mecha-
nism

If all hinges were ideal angular joints and other me-
chanical members are ideally rigid, the motion would
be ideally translational. In fact, rotational motions are
generated by stiffness of hinges and elasticity of links.
This fact motivates us to analyze the error effect of
hinges and links to the end-plate.
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Figure 5: 1 Chain of Micro-Parallel Mechanism

Here, the smaller matrix is built step by step. This
method can be easily understood.

3.2 Compliance Matrix of Translational
3-DOF Micro Parallel Mechanism

This mechanism consists of 3 chains. The struc-
ture of a chain and notations of its nodes are shown in
Fig. 5. It is assumed that the members of ABCDEFG,
HIJK, LMNO, and PQR are rigid enough to be treated
as rigid body. Unless ABCDEFG is rigid body, this
structure cannot be treated as frame structure. This
is approximation to Rahmen structure. In case that
ABCDEFG is elasticity member, the analysis is pos-
sible but difficult.

Hereafter, CABCD means the compliance matrix of
ABCD. Cprism(a, b, l) and Chinge(r, t, b) are compli-
ance matrices of prismatic beam shown in Fig. 2(b)
and circular notched hinge shown in Fig. 2(c), respec-
tively. FA and XA are the forces on A and displace-
ment of A, PEF is coordinate transformation matrix
from E to F.

The compliance matrices of CLink1 and CLink2,
which are shown in Fig. 6, are obtained in Eq. (15) and
Eq. (16). CLink3 is omitted here because it’s nearly
similar to CLink1.

CLink1 = P (0, 0, n1 + 2r1 + l1 + 2r1)⊗ Cprism(a1, b1, n1)
+ P (0, 0, n1 + 2r1 + l1)⊗ Chinge(r1, t1, b1)
+ P (0, 0, n1 + 2r1)⊗ Cprism(a1, b1, l1)
+ P (0, 0, n1)⊗ Chinge(r1, t1, b1)
+ Cprism(a1, b1, n1) (15)
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Figure 6: Elements of chain

CLink2 = Chinge(r2, t2, b2) (16)

CABCD is statically determinate because the struc-
ture ABCD has no closed loop.

CABCD =




C ′Link1 0 0 0
0 C ′Link1 0 0
0 0 C ′Link1 0
0 0 0 C ′Link1


 (17)

Nothing that C ′Link1 = Ry(π/4)⊗ CLink1

Because ABCDEFG is rigid body, relative displace-
ments don’t occur among A, B, C, D, E, F, G. The
equilibriums of displacements lead Eq. (18) and (19).



PEA

PEB

PEC

PED


 XE =




XA
XB
XC
XD


 = CABCD




FA
FB
FC
FD


 (18)

(
XE
XF
XG

)
=




I
PEF

PEG


 XE (19)

The equilibriums of forces lead Eq. (20).

(
P

T

EA P
T

EB P
T

EC P
T

ED

)



FA
FB
FC
FD




=
(

I P
T

EF P
T

EG

) (
FE
FF
FG

)
(20)

Then the new compliance matrix of EFG can be ob-
tained.

CEFG =




I
PEF

PEG


⊗

((
P

T

EA P
T

EB P
T

EC P
T

ED

)
⊗ (CABCD)−1

)−1

(21)

Then the compliance matrix of one chain, CER, can be
obtained through Eq. (22)-(27). In the same manner,
the compliance matrix of parallel mechanism can be
obtained through Eq. (28)-(31). These calculations
are routine jobs.

CEHI =




I 0 0
0 PFH 0
0 0 PGI


⊗ CEFG

+

( 0 0 0
0 C ′Link2 0
0 0 C ′Link2

)
(22)

CEJK =




I 0
0 I
0 P JK


⊗

((
I 0 0
0 P

T

JH P
T

JI

)
⊗ (CEHI)−1

)−1

(23)

CELM =




I 0 0
0 P JL 0
0 0 PKM


⊗ CEJK

+

( 0 0 0
0 C ′Link3 0
0 0 C ′Link3

)
(24)

CENO =




I 0
0 I
0 PNO


⊗

((
I 0 0
0 P

T

NL P
T

NM

)
⊗ (CELM )−1

)−1

(25)

CEPQ =




I 0 0
0 PNP 0
0 0 POQ


⊗ CENO

+

( 0 0 0
0 C ′Link2 0
0 0 C ′Link2

)
(26)

CER =
((

I 0 0
0 P

T

RP P
T

RQ

)
⊗ (CEPQ)−1

)−1

(27)

Noting that C ′Link3 = Ry(−π/4)⊗ CLink3

C ′Link2 = Rz(π/2)⊗ CLink2

CE1R1 = CER (28)
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CE2R2 =
(

Rz(2π/3) 0
0 Rz(2π/3)

)
⊗ CER (29)

CE3R3 =
(

Rz(−2π/3) 0
0 Rz(−2π/3)

)
⊗ CER (30)

CE1E2E3R =

(


I 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 I 0
0 I 0 I 0 I


⊗




CE1R1 0 0
0 CE2R2 0
0 0 CE3R3



−1)−1

(31)

4 Analysis Results and Discussions

The minimum thickness t of circular notched hinge,
(See Fig. 2(c)), is the dominant factor of its flexibility.
If t was infinitesimal, the hinges worked as ideal angu-
lar joint and the end-plate moves translationally. As
reported in [8], however, the rotational displacements
of end-plate are generated by the counter moment of
the hinge.

Fig. 7 explains that Mhinge, which is necessary to
bend the hinge, causes the counter force Flink on the
other link and that the end-plate is lifted by Flink. The
rotational motion can be observed by the displacement
of the tip of needle, whose length is lneedle. This needle
is the end-effector of this manipulator. If rotational
motion θy occurs, the tip of needle moves θy lneedle +
δx. Actually, this error is profitable because it extends
the workspace.

Eq. (32) shows the theoretical forward kinematics,
the relationship between the inputs and translational
displacements of the tip of needle. lE1, lE2, and lE3

Mhinge

Flink

θy

lneedle

θy lneedle

t small

smallMhinge

Flink small

θy small

t

Figure 7: Rotational Displacements of Endplate
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Figure 8: Elements of chain

are the elongations of piezo actuators, namely the dis-
placements of middle plate in z-axis. The dimensions
of this micro parallel mechanism are omitted here,
but simply l1 = l3 = 2.0[mm], b1 = 1.1[mm], b3 =
3.6[mm], r1 = r2 = r3 = 0.5[mm], lneedle = 80.0[mm].
Theoretically, the rotational displacement doesn’t oc-
cur, so the displacement of needle is same as that of
end-plate.

(
δx
δy
δz

)
=

( −1.33 0.67 0.67
0 −1.15 1.15

0.67 0.67 0.67

) (
lE1
lE2
lE3

)
(32)

Eq. (33) shows the forward kinematics calculated by
our matrix method while t is infinitesimal, namely t =
0.005. The calculation is verified to be correct because
the matrix is almost similar to Eq. (32).

(
δx
δy
δz

)
=

( −1.32 0.66 0.66
0.0 −1.14 1.14
0.68 0.68 0.68

) (
lE1
lE2
lE3

)
(33)

Fig. 8 shows the ratio of rotational displacement θy to
input length lE1 while t is increased from 0.005[mm]
to 0.5[mm]. As t increased, the error motion of the
end-plate is increased. 100 calculations of our matrix
method are performed in 4.8[sec.] (48[msec.] for 1
calculation) with Intel Pentium II 450MHz Xeon. This
fact proves that our matrix method is so fast that
it can be applicable to qualitative analysis of flexure
mechanism. (Suppose that in case of FEM, modeling,
meshing, and calculation take much longer time.)

Eq. (34) shows the actual forward kinematics mea-
sured in the calibration experiment. And Eq. (35)
shows the forward kinematics calculated by our matrix
methods while t is set to the designed value, 0.5[mm].
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The difference between designed and actual parame-
ters, and approximation to Rahmen structure might
affect on the calculation. In this simulation, only fz

effects on the middle plate of the chain and the mo-
tion in other axes is allowed. However, the friction
between the middle plate and piezo actuator prevents
these motions. These might cause error of simulation.

(
δx
δy
δz

)
=

( −4.39 2.27 2.13
−0.10 −3.38 3.41
0.74 0.70 0.57

) (
lE1
lE2
lE3

)
(34)

(
δx
δy
δz

)
=

( −6.82 3.41 3.41
0.0 −5.90 5.90
0.44 0.44 0.44

) (
lE1
lE2
lE3

)
(35)

5 Summary and Conclusions

We applied the matrix method to the analysis of
our translational 3-DOF micro parallel mechanism for
an instance of general flexure mechanisms. While this
analysis, we assumed that

1. Linearization between force and deformation
(Hook’s law)

2. Linearization of translational and rotational dis-
placements

3. Approximation to Rahmen structure

Firstly, the compliance matrices of a right circular
notched hinge and other members are defined. Sec-
ondly the coordinate transformations are described.
Thirdly, the compliance matrix of translational 3-DOF
micro parallel mechanism is obtained. Fourthly, the
affection of rigidity of the right circular notched hinge
to the rotational displacement is analyzed and it was
proved that this method is very rapid.

We expect this method is applicable to some other
micro flexure mechanism.
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