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In recent years, optical interferometry has been applied to the whole-field, noncontact measurement of
vibrating or continuously deforming objects. In many cases, a high resolution measurement of kinematic
(displacement, velocity, and acceleration, etc.) and deformation parameters (strain, curvature, and twist,
etc.) can give useful information on the dynamic response of the objects concerned. Different signal
processing algorithms are applied to two types of interferogram sequences, which were captured by a
high-speed camera using different interferometric setups: (1) a speckle or fringe pattern sequence with
a temporal carrier and (2) a wrapped phase map sequence. These algorithms include Fourier transform,
windowed Fourier transform, wavelet transform, and even a combination of two of these techniques. We
will compare these algorithms using the example of a 1D temporal evaluation of interferogram sequences
and extend these algorithms to 2D and 3D processing, so that accurate kinematic and deformation
parameters of moving objects can be evaluated with different types of optical interferometry. © 2007

Optical Society of America
OCIS codes:

1. Introduction

Optical interferometric techniques such as geome-
tric moiré, holography, moiré interferometry, and
shearography have been developed for the measure-
ment of a wide range of physical parameters, such as
displacement, strain, surface profile, and refractive
index. They have advantages over other techniques
as they are noncontacting and they provide whole-
field information. Due to the rapid development of
computer and imaging sensor technology, most opti-
cal interferometric techniques have their digital ver-
sion, for example, electronic speckle interferometry
(ESPI), digital speckle shearing interferometry
(DSSI), and digital holography. The results obtained
by the aforesaid methods are usually in the form of
speckle or fringe patterns. For accurate mapping of
the interference phase, various image processing
algorithms, notably carrier-based spatial Fourier
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transform (F'T) [1] and phase shifting [2], have been
used.

Since the 1960s, optical interferometry has been
applied to the whole-field, noncontact dynamic mea-
surement [3]. For high-frequency vibration, optical
interferometry is normally applied to determine vi-
bration modes of objects [4]. Time-average methods,
based on holography, ESPI, DSSI, or moiré, possess
many advantages over the other techniques. They
directly acquire a spatially dense, full-field, real-time
image of the mode shape, while other techniques re-
quire the reconstruction of the mode shape from sin-
gle point measurements. In addition, there is no
physical contact between the sensor and the struc-
ture in optical techniques, thus eliminating the
disturbing influences of mass loading and local stiff-
ening changes associated with contact sensors. How-
ever, the time-average method is not suitable for
measuring the transient deformation of a continu-
ously deforming object or a vibrating object. The use
of a twin-cavity double-pulsed laser in the inter-
ferometry [5-7] has been reported as an alternative
to obtain these transient deformations. Unfortu-
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nately, this technique has an important limitation.
To obtain the evolution of the transient deformation,
an experiment must be repeated many times with a
different interval of two pulses. This means nonre-
peatable events cannot be studied in detail.

With the availability of high-speed digital record-
ing and powerful lasers, it is now possible to record
interferograms with rates exceeding 100,000 frames
per second (fps) [8]. Sometimes these interferograms
are preprocessed to a sequence of wrapped 2D phase
maps by different techniques, such as a carrier-based
2D Fourier analysis [1] or a reconstruction of a digital
hologram sequence [9]. Normally these wrapped
phase maps are noisy and are not suitable for spatial
phase unwrapping. In the 1990s, a new phase eval-
uation method based on temporal analysis [10,11]
was introduced. It analyzes the phase point by point
along the time axis, so that the speckle noise in ad-
jacent pixels does not affect the measurement. In
addition, it expands the displacement measurement
range to more than 500 pm [12]. A FT [13] is usually
applied to extract the phase in the temporal domain.
In recent years, wavelet analysis [14,15] has also
been introduced for temporal phase extraction. It can
eliminate the influence of various noise sources and
improve the measurement result. Furthermore, it
can also extract the instantaneous frequency of the
temporal intensity variation from which the velocity
of the deformation can be evaluated. However, a
systematic error is found in phase extraction by con-
tinuous wavelet transform (WT) when the signal fre-
quency is varying [16].

The temporal phase analysis technique has its own
disadvantage. When the intensity variations of pixels
are analyzed, it cannot extract the phase from a part
of an object that is not moving with the rest or from
objects that deform in different directions at different
parts. Without a temporal carrier [13,17] neither
Fourier analysis nor wavelet analysis allows the de-
termination of the absolute sign of the phase. This
limits the technique to the measurement of deforma-
tion in one known direction. Similar to a spatial car-
rier, a temporal carrier can also be introduced in the
image acquisition process to overcome these prob-
lems, at the cost of a reduced measurement range of
phase variation.

In a dynamic measurement, the instantaneous dis-
placement is not the only key parameter of interest.
Other instantaneous kinematic and deformation pa-
rameters are sometimes more important in studying
the mechanical behavior of a continuously deforming
or vibrating object. For example, the curvature and
twist, the second-order derivatives of out-of-plane
displacement along the spatial axis, are directly re-
lated to the flexural and torsional movements, re-
spectively [18,19].

The definitions of parameters included in this pa-
per are: (1) displacement Z is the distance moved
since the first frame of the measurement process.
Different optical techniques and configurations will
yield interferograms representing the displacement
in different directions. However, in this investigation,
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only the out-of-plane displacement is studied, and all
the examples illustrated in this paper are as such. (2)
Velocity v, = dZ/dt is the first-order derivative of
displacement along the time axis. (3) Acceleration
a, = d’Z/d¢® is the second-order derivative of dis-
placement along the time axis. (4) w is a relative
out-of-plane displacement, referenced to a fixed point
on the object surface. It is possible to evaluate this
displacement through spatial phase analysis. (5) Sur-
face strains (dw/ox and dw/dy) are the first-order
derivatives of the deformation along the spatial
axis. (6) Curvature (0*w/dox* and 9*w/dy*) and twist
(0*w/0xdy) are the second-order derivatives of defor-
mation along the spatial axis.

The purpose of this investigation is to evaluate the
above-mentioned parameters from an interferogram
sequence captured by a high-speed camera of contin-
uously deforming and vibrating objects. Our investi-
gation will start with a 1D temporal analysis using
three different signal processing techniques: FT, win-
dowed Fourier transform (WFT) [19-21], and com-
plex Morlet WT [22-24]. A simulated 1D temporal
signal will be processed by different techniques, and
the advantages and disadvantages of each technique
will be illustrated. A new method based on the com-
bination of FT and WFT will be proposed for the
temporal analysis, in order to eliminate the noise
effect and to evaluate the kinematic parameters more
accurately. An example of a displacement, a velocity,
and an acceleration evaluation on a vibrating ear-
phone membrane by digital holography will be pre-
sented. Then the process will be extended to the 2D
spatial [25] and 3D spatiotemporal [26] cases, so that
the deformation parameters can also be evaluated.
Simulation results in the 2D case will be given in
order to illustrate the accuracy for deformation pa-
rameter measurement, and an ESPI experiment re-
sult on a continuously deforming plate will also show
the performance of the proposed method on the kine-
matic and deformation parameter evaluation from an
interferogram sequence.

2. Principles

In high-speed optical dynamic measurement, a se-
quence of interferograms is captured by a high-speed
camera. These interferograms could be a sequence of
original speckle or fringe patterns, or a sequence of
wrapped phase map after preprocessing. The prepro-
cessing could be a reconstruction of a digital holo-
gram, a high-speed phase-stepping processing, or a
carrier-based Fourier analysis. Processing of these
3D intensity or wrapped phase matrices enables the
measurement of kinematic and deformation param-
eters of the object. A 1D temporal process on each
pixel is usually the first step of the analysis.

In this paper, the temporal signals on each pixel
are classified into two types: (I) intensity variation
with a known uniform direction of phase change, and
(II) exponential phase signal. The first type of signal
on point P(x, y) can be written as

fi(x, y; £y =I(x, y; t) + A(x, y; t)cos(o(x, y; t)), (1)



where I,(x, y; t) and A(x, y; t) are the intensity bias
and the modulation factor, respectively. These two
items are both slowly varying functions along the
time axis. o(x, y;t) = @ct) + @olx, y; t) is a single-
directional phase variation of the signal of each pixel.
In ESPI, it can be obtained for a continuously deform-
ing object, where all points are deforming in a known
direction or on a vibrating object with a temporal
carrier. ¢c(t) is the phase change due to the temporal
carrier; it is normally uniform for each pixel.
©olx, y; t) is the phase variation due to a vibration or
displacement with an unknown direction. The tem-
poral carrier frequency should be high enough that
the phase change at each pixel is only in one direc-
tion. In addition, the signal frequency component
should be separable from the zero-frequency compo-
nents, but should be able to be sampled according to
the Nyquist theorem. In general, the introduction of
a temporal carrier will reduce the measurement
range of deformation velocity.

The second type of temporal signal is the exponen-
tial phase signal,

where j = |—1 and &(x, y; ¢) is the phase value on
point P(x, y) at instant ¢. It is worth noting that the
phase ambiguity problem mentioned above does not
exist in the exponential phase signal. The phase vari-
ation could be in both directions, and no temporal
carrier is needed. However, a carrier is still necessary
for obtaining the phase signal itself, either by stan-
dard FT or dynamic phase shifting [27,28]. This car-
rier also exists in digital holography, arising from the
small angle between object and reference beams. In
this investigation, these two types of signals are pro-
cessed by following different signal processing tech-
niques.

A. Fourier Transform

FT and inverse FT are widely used in signal process-
ing and phase extraction. The FT of a 1D temporal
signal f(¢) and its inverse FT can be expressed, re-
spectively, as

f(&) = ff(t)exp(—jgt)dt, 3)

1 R
fity =5 f f (€)expiet)de, (4)

—o

where f(g) is the FT of f(t). When f{(¢) is the first type
of temporal signal given by Eq. (1), the Fourier spec-
trum of f(¢) will be

f(&) =DC(§) + C(§) + C*(§), (5)

where the asterisk denotes the complex conjugate.
DC(§) represents the contribution to the spectra from
low-frequency background illumination and it is cen-
tered around the zero-order term & = O, é(g) and
é*(g) are centered around & = & and £ = —&;, where
0 1s the temporal carrier frequency. DC(§) and C*(®)
can be eliminated by bandpass filtering. The inverse
FT of C(¥) yields an exponential signal C(¢) from
which the phase can be calculated by

Im(C(?))

Re(C())’ ©

@(t) = arctan

where Im and Re denote the imaginary and real parts
of C(¢), respectively. The phase obtained is wrapped
between —m to +m. A 1D temporal unwrapping pro-
cedure is needed to reconstruct the continuous phase
function ¢(¢). A similar process can be applied when
f(¢) is an exponential signal, as shown in Eq. (2). The
spectrum of an exponential signal could be in both
positive and negative frequency areas, but with the
DC(§) and the conjugate terms absent.

It is well known that the accuracy of a FT analysis
increases with the decrease of the width of the spec-
trum. However, when the phase change of the signal
is highly nonlinear, the width of the sideband in the
spectrum increases. This occurs quite often in dy-
namic measurements as the velocity of the object
normally varies. In addition, different pixels have
different spectra. The selection of a proper window for
bandpass filtering for all pixels becomes difficult.
Normally the maximum and minimum frequencies of
all pixels are evaluated before processing, and a rel-
atively large filtering window size is determined ac-
cordingly. This means that noise whose frequency is
within the filtering windows cannot be removed by
FT. This problem can be overcome by using a WF'T.

B. Windowed Fourier Transform

A 1D WFT of a temporal signal f(¢) and its inverse
windowed Fourier transform (IWFT) can be written
as [29]:

+oo

Sf(u, &)= f f(t)g.:(t)de, (7)

—
+oo +o

1
flty= 21'rf JSf(u, £)8.¢(t)dEdu, (8)

— —o

where Sf(u, £§) denotes the spectrum of WFT and
8.:() is the WFT kernel, which can be expressed as

8ue(t) =8(t — u)exp(jét). 9)

The window g(¢) is usually chosen as the Gaussian
function:
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Fig. 1. (a) Real part of a windowed Fourier kernel at different
frequencies: 0.1m, 0.2w, and 0.3w. The window size is set as o
= 20. (b) Spectrum of windowed Fourier kernels in (a). (c) Real part
of a complex Morlet wavelet at different frequencies: 0.1w, 0.2,
and 0.3w (@ = 20, 10, and 6.67). (d) Spectrum of complex Morlet
wavelets in (c).

g(t) = exp(—¢*/20%), (10)

which permits the best time-frequency localization in
analysis. ¢ is a parameter to control the expansion of
the window size. Figure 1(a) shows the real part of a
windowed Fourier kernel at different frequencies:
0.17, 0.2, and 0.3w when o = 20. Their spectra are
shown in Fig. 1(b). It can be observed that the window
size remains the same at different frequencies.

When the signal processed by WFT is an expo-
nential phase signal fi;, the WFT can be expressed
as [29],

Stu(u, &) = %SA(U)GXPUW(U) —E&u])(GG[E—¢'W)])
+e(u, £)), (11)
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where u and & represent the time and frequency,
respectively and s is a scaling factor. For a fixed s,
g.(t) = s 2g(t/s) has a support size of s. A(u) is the
modulus of fj; [in this case, A(x) = 1] and (i, §) is a
corrective term, which can be neglected if A(z) and
¢'(z) have small relative variations over the support
of window g. g(w) denotes the FT of g(¢). The trajec-
tory of the maximum |Sf;(u, £)|* on the plane is
called a windowed Fourier “ridge.” Since |g(w)| is a
maximum at o = 0, and if & is negligible, |Sfy(u, &) |*
reaches a maximum when

Eu)=¢'(u), (12)
where ¢’ (1) is defined as the instantaneous frequency
of the signal, which is proportional to the velocity of
the point P(x, y). A filtered signal phase can be ob-
tained by integration. For an intensity varying signal
f1, the direct use of a WFT may generate a large error,
due to the effect of the DC term and even the negative
frequency. This problem will be illustrated with a
simulated signal in Subsection 3.

A WFT maps a 1D temporal signal to a 2D time-
frequency plane and extracts the signal’s instanta-
neous frequency. Thus it is more effective to remove
the noise within the frequency band of the signal.
This is the advantage of the WFT over FT. However,
the time-frequency uncertainty principle affects the
resolution, which leads to a trade-off between time
and frequency localization. The narrower the time
window, the better the temporal resolution at the cost
of a poorer resolution in frequency and vice versa.
However, once the window size is determined, WFT
has a uniform resolution at different frequencies. In
many cases, a high-frequency resolution is needed
when the signal frequency is low, and a low-
frequency resolution can be accepted when the signal
frequency is high. This leads to another signal pro-
cessing algorithm, the WT.

C. Wavelet Transform

WT is similar to WFT, but with a varying window size
according to the signal frequency. A WT of an inten-
sity varying signal f; can be expressed as

L7 t—b
Wi, )= f f(t)\P*( -

—o0

1

)dt == f ()W (t)dt,
Ja

- (13)

where V(¢) is known as the mother wavelet and ¥, (¢)
are the basis functions of the transform, known as
daughter wavelets. a is the scaling factor related to
the frequency, and b is the time shift. While similar
to the WFT mentioned above, it is more appropriate
to use a complex function as the mother wavelet, in
order to properly separate the phase and amplitude
information of the signal. The most commonly used
mother wavelet for such an application is the complex
Morlet wavelet, which is the product of a real Gauss-



ian window and a complex oscillating exponential
function,

W(t) = g(t)exp(imgt), (14)

where g(t) = exp(—(t*/2)). w, is the “mother” fre-
quency or central frequency, and this is the only
parameter that has to be selected. The different
wavelets used during time-frequency analysis are de-
rived from the mother wavelet by scaling @ and time
shift b. Hence, a wavelet derived from the mother
wavelet takes the form:

Wout) = qf(’f;”) - p< <t2—a§>2>exp(i 0 b)).
(15)

To satisfy the admissibility condition, w, must be
larger than 5 [23]. A proper selection of the central
frequency o, determines the overall “balance” be-
tween time and frequency resolution. In this study,
wy is selected as 2 to satisfy the admissibility con-
dition and to keep the flexibility of the wavelet anal-
ysis. The relationship between frequency & and the
scaling factor a is given by

Wy, 2w

E=— . (16)

(d)

Figure 1(c) shows the real part of a complex Morlet
wavelet at different frequencies: 0.1, 0.2, and 0.3
(a = 20, 10, and 6.67). Their spectra are shown in Fig.
1(d). It can be observed that the extent of the analysis
window in the WT varies according to the analysis
frequency &. The wavelet coefficient can be written as
[29],

Wi(a, b) = gA(b){é[a(i ¢ (b)) + (b, §)lexplie(d)],
7

where £(b, £) is a corrective term which is negligible
if the conditions [w,?/ | ¢'(b) |21 [|A"(B) |/ |A(B)|] < 1
and o?[|¢"()|/]|¢'(b)|] << 1 are satisfied. As for
the WFT, the instantaneous frequency of the signal
can also be extracted from the wavelet ridge,

w
o' (b) =&y = 07‘; (18)

where a,, denotes the value of a at the instant b on
the ridge.

3. One-Dimensional Temporal Analysis of an
Interferogram Sequence

After a brief illustration of the above-mentioned
three signal processing techniques, their perfor-

(h)

Fig. 2. (Color online) (a) Simulated intensity variation on a vibrating object with a temporal carrier; (b) theoretical phase value of signal
in (a); (c) first-order derivative of the phase value; (d) Fourier spectrum of the signal; (e) first-order derivative of the phase obtained by
Fourier bandpass filtering and a numerical differentiation; (f) modulus of the WFT when o = 20 and the corresponding ridge; (g) modulus
of the WT and the corresponding ridge; and (h) ridge obtained by a combination of FFT and WT processing.
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mance for the extraction of phase and phase deriva-
tives from signals fi(¢) and fi;(¢) will be presented,
based on simulation and experimental results.

A. Speckle or Fringe Pattern Sequence with Temporal
Carrier

In the processing of a real signal where the three
terms in Eq. (5) are separable, it is worth noting that:

(1) A FT always gives a reasonable result when a
proper filtering window is selected. However, the FT
cannot remove the noise whose frequency is super-
imposed on the signal frequency. Therefore, the ac-
curacy is not very high when the signal frequency
band is broad.

(2) In the WFT, the window size o, is determined
by several factors. (a) In the WFT, the signal phase is
assumed to be linear in the area covered by the
Gaussian window. However, in temporal analysis it
is normal that the frequency varies dramatically.
Hence the window size should be small in order to
reduce the linear phase approximation error. (b) A
larger window size performs better in noise elimina-
tion. However, in temporal analysis, the signal is not
very noisy even in speckle interferometry as the in-
tensity variation is analyzed pixel by pixel. Normally
selecting a large window size is not necessary. (c) A
windowed Fourier kernel with a small window size in
time will have a large window size in the spectrum.
When the low frequency part of the signal is pro-
cessed, the result will be seriously affected by the DC
term. Accordingly to our experience, for a certain sig-
nal frequency &, the window size in time should sat-

fﬂ%’a

B ) 50 100 150
frame number (306 frame/s)

(b)

(c)
Fig. 3.

AradMramal

Instantangous requiscy

isfy o, = 2.0/£ to avoid the influence of the DC term.
(d) A compromise between (a) and (b) is not difficult in
temporal analysis. However, the conflict between (a)
and (c) is inevitable in many cases and will usually
cause a large system error. One of the solutions is to
remove the DC term before the WFT.

(3) Inthe WT, the influence of the DC term can be
ignored when w, > 5. However, the WT performs very
poorly when the signal frequency is low, as it will
automatically adjust the window size o, to be very
large, sometimes even larger than the signal length.
This will generate large errors in the phase extrac-
tion. Normally a WT only performs well when the
signal frequency is high and has small variation.

Figure 2(a) shows a simulated temporal intensity
variation of a vibrating object with a temporal car-
rier. Some random noise is added to the signal. The
noise is set as 5% of the signal amplitude. Figures
2(b) and 2(c) show the theoretical phase value ¢(¢)
and its first-order derivative ¢'(¢). Figure 2(d) is the
Fourier spectrum of the signal. The dotted line
roughly indicates the signal frequency band, which is
quite broad. Figure 2(e) shows the first-order deriv-
ative of the phase obtained by a Fourier bandpass
filtering and a numerical differentiation. The noise
effect is still quite obvious in the FT result. Figure 2(f)
shows the modulus of the WFT. The dashed curve
shows the ridge where the maximum moduli are
found. o = 20 is selected as a window size to avoid the
influence of the DC term. However, it is obviously not
sensitive enough to the frequency variation. This is

il &

] 100 i [ T
feame nuniber (S04 feamers)

(d)

- 4
] 100 150 a0
frume mumber (300 frome; i)

()

0 -0 & B 100 e 148 8o 18 200
s pumber (500 framss)

()

(a) Some typical wrapped phase maps at different instants obtained by image-plane digital holography; (b) phase variation at point

A; (c) spectrum of the exponential phase signal; (d) first-order derivatives of the phase after FT filtering; (e) modulus of the WFT and
corresponding ridge; and (f) WFT ridge proportional to the acceleration.
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due to the conflict of points (a) and (c) in the WFT
process mentioned above. Figure 2(g) shows the
wavelet ridge of the signal. The WT performs well in
a high-frequency range, but gives incorrect results in
the low frequency range. The main problem involved
is that the window size o, selected automatically by
WT is not small enough, so the linear phase approx-
imation error seriously affects the result.

So far FT performs the best in the first-order phase
derivative extraction. A new processing technique
based on the combination of FT and WFT is sug-
gested here to improve the results. An signal varying
in intensity is processed by F'T and bandpass filtering
so that the negative frequency and DC term are re-
moved. The wrapped phase obtained by FT is con-
verted to an exponential phase signal fi; and then
processed again by a WFT with a small o,. Figure 2(h)
shows the results from a FT + WFT processing.
o, = 4 is selected for the WFT window size. A perfect
WFT ridge is obtained this time. From the simulation
results shown above, it can be concluded that for a
real signal of temporal intensity variation fi, it is
better to convert it to an exponential phase signal fi;
first by a Fourier analysis, and then to process it by
WEFT.

B. Wrapped Phase Sequence

In the temporal analysis of an exponential phase sig-
nal fi;, a temporal carrier is not necessary as the
phase ambiguity problem does not exist. For a vibrat-
ing object, the spectrum of this exponential signal fj;
will contain values around the zero frequency, with a
certain bandwidth from negative to positive frequen-
cies. The width of the spectrum depends on the value
of the second-order derivative of the phase, in this
case the acceleration. The purpose of the processing is
the filtering of the noise and the extraction of the
derivatives of the phase, which lead to the measure-
ment of some other useful physical properties. In a
windowed Fourier analysis, the conflict of conditions
(a) and (c) mentioned above does not exist. Therefore
applying a FT analysis before the WFT is not neces-
sary. Due to the poor performance of the WT at low
frequency, it is not practical to process the signal
when the frequency is approximately zero. Results
from the FT and WFT are presented below, based on
an experimental result of image-plane digital holog-
raphy [30,31].

The object measured is the membrane of a Pana-
sonic earphone (Model RP-HV103). A low-frequency
signal (~12 Hz) is applied by a function generator.
Figure 3(a) shows some typical wrapped phase maps
reconstructed from the digital hologram sequence at
different instants. Two hundred frames are captured,
at an imaging rate of 500 fps, by a Basler A504k
camera with a pixel size of 12 pm X 12 pm. Figure
3(b) shows the phase variation of point A [shown in
Fig. 3(a)] after temporal unwrapping. The phase has
been converted to an exponential signal and its spec-
trum is shown in Fig. 3(c). Figure 3(d) shows the
first-order derivative of the phase after FT filtering. A
noise effect is still very obvious due to the broad

frequency band of the signal. The modulus of the
WEFT is shown in Fig. 3(e). The dashed curve shows
the ridge where the maximum moduli are found. The
window size is selected as o, = 3 due to the large
variation of the frequency. Then another exponential
signal is calculated by

= exp(Jje(x, ¥; t,))exp(—Je (X, ¥; tp-1)), (19)
where the phase values are proportional to the nu-
merical differentiation of the displacement. Process-
ing of this signal leads to the evaluation of the
acceleration of the object. Figure 3(f) is the WFT
ridge, which is proportional to the acceleration. The
window size selected this time is o, = 5. The results
of the kinematic parameter evaluation on the vibrat-
ing membrane are shown in Fig. 4. Figure 4(a) shows
a 3D plot of the instantaneous displacement of the
membrane at frame 100 (¢ = 0.198 s). It is obtained
from 1D temporal windowed Fourier analysis fol-
lowed by a 5 X 5 median filter to remove some badly

[pmiz)

(c)

Fig. 4. Three-dimensional plot of the instantaneous (a) displace-
ment, (b) velocity, and (c) acceleration at frame number 100.
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behaved pixels. Figures 4(b) and 4(c) are 3D plots of
the instantaneous velocity and acceleration at frame
100. A smooth spatial distribution of the displace-
ment, velocity, and acceleration can be obtained at
any instant, which presents a good evaluation of the
kinematic parameters by the proposed windowed
Fourier analysis.

4. Two-Dimensional Analysis

After a temporal analysis on each pixel, the spatial
distribution of the phase at any instant can be ob-
tained. If the spatial phase variation is still within
the Nyquist frequency, which implies at least two
pixels within 27 phase change, the above-mentioned
signal processing techniques, especially the WF'T can
be extended to the 2D case and used to extract the
deformation parameters at any instant of a continu-
ously deforming or a vibrating object. It is worth not-
ing that the WT is still not suitable for the 2D
exponential phase signal fj; due to the poor perfor-
mance at low frequency.

From the 1D case, we know that a WFT is usually
more efficient in noise elimination for exponential
phase signal. This conclusion can be extended to the
2D and 3D cases. Some other filtering algorithms,
such as the sine—cosine average filter (SCAF) [32],
are also available for wrapped phase filtering. SCAF
is often used due to its simplicity. However, it is not
adaptive to the fringe patterns with spatially varying
frequency and can only process the wrapped phase

(radipixel)

400 450 500

0 50 100 150 200 250 300 350
(pixel)

(b)
Fig. 5.

maps with small slopes [33]. Therefore, only a WFT is
illustrated here to demonstrate its capability in de-
formation parameter evaluation.

Figure 5(a) shows a simulated phase map of a fully
clamped circular plate under uniform pressure load-
ing. A Gaussian noise with power of 0.1 dB W (deci-
bels with reference to a watt) is added to the phase
map. The theoretical first-order phase derivative in
the x direction and the numerical differentiation of
the simulated noisy signal in cross section B-B [indi-
cated in Fig. 5(a)] are given in Fig. 5(b). The wrapped
phase maps are then converted to a 2D exponential
phase matrix and processed by a 2D WFT to extract
the phase derivatives in the x and y directions. The
window size o, and o, of the WFT kernel in the x and
y directions are set to be equal in this study and
different window sizes are applied. Figure 5(c) shows
a comparison of absolute errors in a dw/dx evaluation
of different window sizes. A small ¢ is more sensitive
to the phase variation but performs poorly in the
noise elimination. On the contrary, a larger o will
generate a large error in an area where the phase has
a sudden change. However, a proper selection of o
yields an accurate extraction of the surface strains
dw/ox and dw/dy. Similarly ridge extraction from the
phase map exp(je(x, y; t))exp(—je((x — 1), y; ¢)) yields
the second-order derivatives 9°w/dx® and 0°w/oxdy,
which are much more important in stress analysis.
Figure 5(d) shows the theoretical value of 9%w/ox*
and the results obtained by the WFT with different
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250 300 350 400
{pixel)

(c)

(md.l'pi:elzl

L S RS R SR N

50 100 150 200 250 300 350 400 450 500
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(d)

=)

(a) Simulated wrapped phase map with noise on a fully clamped circular plate, loaded by uniform pressure; (b) theoretical value

of dw/dx and simulated noise signal; (c) absolute errors of dw/dx measurement by WFT with different window sizes; and (d) comparison
of theoretical curvature value with WFT results using different window sizes.
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window sizes. WFT performs well at the center of the
plate but poorly at the edge where a discontinuity is
observed. However, in a real structure, the errors will
not be so large as the curvature and twist are still
continuous in many cases. Although it is quite diffi-
cult to quantify the error at each pixel in real mea-
surement, the average relative error should be less
than 5% for the strain measurement and 10% for the
curvature and twist measurements.

Figure 6 shows the deformation parameter evalu-
ation by a WFT on a speckle sequence captured by a
high-speed camera in an ESPI setup. The specimen is
a fully clamped square plate with several artificial
defects (circular blind holes with different depths).
The width and thickness of the plate are 80 and
5 mm, respectively. The plate is loaded by a uni-
formly distributed pressure, applied with compressed
air and is continuously deformed by increments of

(d)

(e) (f)

Fig. 6. (a) Typical ESPI fringes at frame 300; (b) wrapped phase
map obtained by temporal Fourier analysis at frame 300; (c) gray-
scale map indicating the instantaneous spatial distribution of
dw/dx; (d) grayscale map indicating the instantaneous spatial dis-
tribution of dw/dy; (e) grayscale map indicating the instanta-
neous spatial distribution of curvature d*w/dx? and (f) grayscale
map indicating the instantaneous spatial distribution of twist
d*w/dxdy.

pressure. During the deformation of the object, a se-
ries of speckle patterns is captured by a high-speed
CCD camera (Kodak motion corder analyzer, SR-
Ultra) with an image rate of 250 fps. Three hundred
speckle patterns are captured during a 1.2 s period.
Figure 6(a) shows a typical ESPI fringe pattern by
subtraction of frame 300 from frame 1. Figure 6(b) is
a wrapped phase map at instant ¢ = 1.2 s obtained by
temporal Fourier analysis. Converting it to an expo-
nential phase signal and extracting the WFT ridge
yields the evaluation of the surface strains ow/dx
[shown in Fig. 6(c)] and ow/dy [shown in Fig. 6(d)].
The grayscale map of curvature 9°w/dx* and twist
0*w/oxdy are shown in Figs. 6(e) and 6(f).

The above example shows 2D WF'T processing in
the spatial domain after a 1D temporal Fourier
analysis. It is worth noting that the WFT can also
be applied to the spatiotemporal planes of x— and
y—t. These kinematic and deformation parameters
can be obtained from one 2D WFT process. It is
more suitable for a measurement on a beam where
a 2D spatial distribution of the parameters is not
necessary.

7

(a) Wrapped phase obtained by 3D Fourier filtering and
(b) wrapped phase obtained by 3D windowed Fourier filtering.

(b)
Fig. 7.
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5. Three-Dimensional Spatiotemporal Analysis

The above-mentioned Fourier analysis and windowed
Fourier analysis can also be extended to a 3D case.
This means a 3D kernel will be used to process a
matrix in x—y—¢ space. A 3D process is only practica-
ble when the Nyquist sampling theorem is satisfied
along all three directions. A 3D WFT is not recom-
mended as it normally takes a long processing time
and evaluates some parameters that sometimes is
not very useful, such as 0*w/oxdt. However, it is more
efficient in noise elimination as more sampling points
are covered in a 3D kernel, and it also allows more
flexibility in selecting the window sizes o,, 0,, and o,
in order to achieve the compromise between reducing
the linear phase approximation error and noise elim-
ination. Figures 7(a) and 7(b) show the wrapped
phase map at instant ¢ = 1.2 s after the 3D FT and
after the 3D WFT. The 3D WFT gives a perfect fil-
tering result on the phase distribution. 0, = 0, = 5
and o, = 10 are selected in this study as the nonlin-
earity of phase is more serious in the x and y direc-
tions than in the time axis.

6. Conclusion

In this paper we have presented different processing
algorithms for evaluating kinematic and deformation
parameters from an interferogram sequence. Tempo-
ral analysis is normally the first step in a dynamic
optical measurement. For an intensity varying sig-
nal, a Fourier analysis is necessary to remove the
influence of the DC term and to convert the real
signal to an exponential phase signal. However, a
Fourier analysis cannot remove noise whose frequen-
cies are superimposed with signal frequencies. Win-
dowed Fourier analysis then becomes a typical
processing technique to filter the noise and to extract
the derivatives of the phase. Instantaneous kine-
matic parameters, such as displacement, velocity,
and acceleration, can be obtained by temporal anal-
ysis. The criteria for the selection of window size in
WEFT were also discussed. A large window size per-
forms better in noise elimination, but generates more
error when the signal phase variation is nonlinear.
The processing results in the simulations and the
experiments show the capability of the WFT in
phase and phase derivatives extraction. Compared to
the WF'T, the application of the WT is limited due to
the poor performance in the low-frequency part. Sim-
ilar situations are found in 2D spatial and 3D spa-
tiotemporal analysis for deformation parameters
evaluation when the Nyquist sampling theorem is
satisfied along all axes. The proposed algorithms
show that it is now possible to have a whole-field,
noncontact optical measurement of different useful
parameters.
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