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Abstract 

Parallel Kinematic Machines (PKMs) are being widely used for precise applications to achieve complex motions and 

variable poses for the end effector tool. PKMs are found in medical, assembly and manufacturing industries where 

accuracy is necessary. It is often desired to have a compact and simple architecture for the robotic mechanism. In this 

paper, the kinematic and dynamic analysis of a novel 3-PRUS (P: prismatic joint, R: revolute joint, U: universal joint, S: 

spherical joint) parallel manipulator with a mobile platform having 6 Degree of Freedom (DoF) is explained. The kin-

ematic equations for the proposed spatial parallel mechanism are formulated using the Modified Denavit-Hartenberg 

(DH) technique considering both active and passive joints. The kinematic equations are used to derive the Jacobian 

matrix of the mechanism to identify the singular points within the workspace. A Jacobian based stiffness analysis 

is done to understand the variations in stiffness for different poses of the mobile platform and further, it is used to 

decide trajectories for the end effector within the singularity free region. The analytical model of the robot dynamics 

is presented using the Euler-Lagrangian approach with Lagrangian multipliers to include the system constraints. The 

gravity and inertial forces of all links are considered in the mathematical model. The analytical results of the dynamic 

model are compared with ADAMS simulation results for a pre-defined trajectory of the end effector.

Keywords: Parallel manipulator, Kinematic modelling, Workspace analysis, Euler-Lagrangian modelling, Singularity 

analysis, Stiffness analysis
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1 Introduction
Robot manipulators can be broadly classified into open 

or closed depending upon the connections between 

each link and the end effector. Due to the open structure 

of serial manipulators, the errors and inertial effects in 

each link gets added up at the end effector which results 

in reduced accuracy and rigidity. A Parallel Manipulator 

(PM) has the end effector connected by several independ-

ent kinematic chains that enable superior rigidity and 

precision over serial manipulators [1, 2]. �ese mecha-

nisms have wide applications in manufacturing and ser-

vice industries, health care, space, etc. PMs also have a 

higher payload to weight ratio since the load carried by 

the end effector is distributed along the legs within the 

mechanism. However, most parallel manipulators have 

lower workspace compared to serial manipulators due 

to the constraint motion of the end effector. Various 

researchers have proposed different designs of PMs hav-

ing multiple Degrees of Freedom (DoF) depending upon 

the applications. Among these, the six DoF symmetric 

PMs are the most promising architecture because of its 

relatively larger workspace and lower singularities [3, 4]. 

�e Stewart-Gough platform, one of the early proposed 

six DoF PM, has two platforms connected via six limbs [5, 

6]. Merlet [7] and Domagoj et al. [8] analysed the forward 

and inverse kinematic equations for the Stewart-Gough 

mechanism using interval analysis method and geo-

metrical approach respectively. David et al. [9] have pro-

posed another six DoF parallel mechanism for accurate 

measurement applications. �e direct kinematics for the 

mechanism is obtained using the geometrical approach, 

and the design parameter optimization is based on the 

study of the condition number of the Jacobian. Nicho-

las et  al. [10] introduced a six DoF PM having six legs. 
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It consists of three prismatic actuators each aligned par-

allel to one axis of the cartesian plane. Each leg consists 

of two passive revolute joints whose axis is parallel to 

the direction of the prismatic joint. Each leg is attached 

to the mobile platform via a spherical joint. �e direct 

kinematics for the mechanism is solved by considering 

the orientation and the position separately in the math-

ematical model. However, the orientations of the mobile 

platform is limited due to the interferences between the 

legs during motion making it difficult for applications 

needing higher mobility. Byun et al. [11] have developed 

the 3-PPSP parallel manipulator also having six DoF. 

�e solutions for the inverse and forward kinematics are 

obtained from the geometrical model, and the workspace 

is computed by applying suitable displacements to each 

active prismatic joint. Bruno et al. [12] proposed an opti-

mal design for a six DoF parallel mechanism having three 

legs. �e mechanism consists of a mobile platform con-

nected to the base by three identical five-bar linkages. 

�e workspace analysis is done using the geometrical 

kinematic model, and its optimisation is done to ensure 

maximum singularity free constant orientation work-

space. Ketankumar et al. [13] developed the loop closure 

equations for the planar 3-RRR PM and analyzed the sin-

gularity using Instantaneous Centre of Rotation (ICR) 

method. �is methodology is however applicable to sim-

ple architectures and difficult for spatial mechanisms. 

Singularity is an inherent property of closed chain mech-

anisms which occurs when the motion of the end effec-

tor does not produce any motion of the end effector or 

when the end effector cannot resist any forces or torques 

even if all actuators are locked. Gabardi et  al. [14] have 

presented the complete kinematics of a 4-UPU parallel 

manipulator by Screw �eory, and further, the Jacobian 

Singularities have been determined. A numerical proce-

dure for optimizing the geometrical parameters to get a 

singularity-free workspace is also presented in the paper. 

Refs. [15] and [16] are other examples of analytical par-

allel kinematics solution via Screw theory whose design 

has been optimized by considering the singularity-free 

workspace. One common solution to avoiding singu-

larities within the workspace is by replacing one or more 

passive joints with actuated joints. Sreenivasan et  al. 

[17], Hunt and Primrose [18] and Bruyninckx [19] pro-

posed parallel mechanisms having six joints each on the 

base and the mobile platform. �ese mechanisms possess 

higher stiffness, lower inertia effects and larger payload 

carrying capacities. However, these mechanisms have 

relatively lower work volumes with complex architecture. 

Obtaining the direct kinematics for these mechanisms 

from the conventional geometrical approach or Screw 

theory is a difficult task. Serder [20] has demonstrated 

the application of modified DH modelling technique to 

obtain the kinematic relations for the planar 3 DoF RRR 

mechanism. �e author has incorporated the constraints 

into the model by assuming appropriate constraint equa-

tions. �e constant distance between any two consecu-

tive joints on the mobile platform is considered as the 

constraint equation for the RRR mechanism. By this 

methodology, both the passive and active joint variables 

are incorporated into the mathematical model. In context 

to real-time control, dynamics of a parallel manipulator 

is analysed to determine the input force to be exerted 

by actuators to produce a desired trajectory for the end 

effector. Several methods such as Euler-Lagrangian for-

mulation [21], Principle of Virtual Work [22], Newton-

Euler formulation [23] are used to obtain the dynamic 

equations of robotic systems. Inverse dynamic analysis 

of a parallel mechanism is done for a pre-defined path of 

the end effector. Leroy et al. [24] developed the dynamic 

model of a three DoF parallel mechanism by incorporat-

ing the holonomic constraints using Lagrangian multipli-

ers into the Euler-Lagrangian equation.

Despite extensive researches happening in the field of 

parallel mechanisms, most mechanisms have limited 

workspace, complicated architecture, difficulties in solv-

ing inverse kinematics, etc. To overcome these short-

comings, the development of parallel manipulators with 

simpler architectures has been accelerated. Neverthe-

less, manipulators having decoupled motion of the end 

effector is quite limited and remains a challenging task 

especially in cases of six DoF manipulators. Geomet-

ric modelling or Screw theory are the usual approaches 

employed to obtain the kinematic model of parallel 

mechanisms. In Geometric modelling approach, the loop 

closure equations are formulated for the mechanism in 

terms of all joint variables and dimensional parameters. 

However, the formulation of loop closure equations is a 

very cumbersome task, especially for complex geom-

etries. In addition, the procedures used in this approach 

cannot be generalised for all manipulator designs [25]. 

Also, obtaining the loop closure equations for mecha-

nisms having more number of legs is very difficult. Screw 

�eory [14, 16, 26] is another well-established methodol-

ogy which is found in many literatures to obtain the kin-

ematic model for parallel mechanisms. According to this 

method, it has only two coordinate frames of which one 

is located at the base and the other is at the end-effec-

tor. However, in the DH modelling approach, frames are 

assigned to all joints up to the end effector. �erefore, the 

Kinematic model formulated using the DH approach will 

include all joint variables inclusive of both active and pas-

sive joints. Even though the computation involved with 

the DH model is slightly higher, the singularity analysis 

performed with the DH model will be more effective 

than that obtained from the Screw theory model. �is 
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is because the analysis considers the singularity induced 

due to both active and passive joints. In this paper, the 

authors’ have showcased a methodology to use modified 

DH modelling technique to reduce the computational dif-

ficulties by breaking down the closed parallel mechanism 

into individual serial manipulators. �e conventional 

DH modelling is applied on each leg and finally coupled 

together using suitable constraint equations. Denavit-

Hartenberg (DH) modelling technique is a widely used 

method to obtain kinematics of serial manipulators. 

�is method is a direct and easy to learn approach for 

obtaining forward and inverse kinematics of open-chain 

mechanisms. In this paper, a novel 3-PRUS manipulator 

is proposed. �is mechanism has only three legs unlike 

the case of other 6 DoF mechanisms having six legs. �is 

helps in reducing the inertia effects especially during fast 

motions. �e DH modelling approach is used to inves-

tigate the kinematics of the 3-PRUS mechanism by con-

sidering each leg as an open-chain separately. �e three 

legs modelled separately are coupled finally using suitable 

constraints to account for the closed configuration of the 

manipulator. �e conceptual design and analysis of the 

proposed 3-PRUS parallel mechanism having decoupled 

non-redundant motions of the end effector are explained 

in the following sections. �e conceptual design and 

mobility analysis of the 3-PRUS mechanism is described 

in Section  2. �e forward and inverse kinematics mod-

elling is addressed in Section  3. Jacobian matrix for the 

manipulator is derived analytically and further used to 

analyse performances including singularity and stiffness 

indices for the manipulator. An algorithm is explained 

to obtain the maximum singularity free work volume for 

the robotic system. In Section 4, the closed form dynamic 

model is developed analytically using the Euler-Lagran-

gian formulation and compared with ADAMS results 

for a pre-defined trajectory path of the end effector. �e 

results obtained are explained in Section 5. In Section 6, 

the details regarding the prototype manufactured is 

explained and analysed.

2  Geometrical Design of the 3-PRUS Manipulator
Parallel robots generally possess complicated kinemat-

ics and dynamics which further complicates the control 

of the robot [27]. Such complications of parallel robots 

can be avoided by proposing simpler designs with lesser 

number of legs and joints to the mechanism. Achieving 

kinematically decoupled motions of the mobile platform 

is yet another challenging task to be solved. Keeping in 

mind the above problems, certain considerations have 

been made to propose the 3-PRUS mechanism. Figures 1 

and 2 shows the CAD model and schematic model of 

the 3-PRUS mechanism. �e parallel manipulator com-

poses of a base and mobile platform connected by three 

legs. Each leg consists of a one DoF Prismatic (P) joint, 

a one DoF Revolute (R) joint, a two DoF Universal (U) 

joint and a three DoF Spherical (S) joint. Among this, 

the prismatic and revolute joints are active, universal 

and spherical joints are passive. Decoupled motions of 

the mobile platform are possible since each leg consists 

of two active joints aligned normal to each other. �e 

three sliders move parallel to each other as shown in Fig-

ure 2. �e mobile platform is connected to the individual 

sliders through the S joint. �e U joint can be assumed 

as two R joints, and the S joint as a three intersecting R 

joints normal to each other. �e proposed mechanism 

has six DoF that exhibits simpler kinematics, consider-

able stiffness and higher load carrying capacity. A fully 

parallel manipulator can have only one solution to the 

inverse kinematic problem. Levenberg-Marquardt Algo-

rithm is used in this paper to obtain the exact solution 

to the inverse kinematics problem which is explained in 

the following section. �e number of DoF for the 3-PRUS 

mechanism is theoretically calculated using the modified 

Chebyshev–Grübler–Kutzbach formula [28] expressed in 

Eq. (1):

(1)DoF = d
(

e − g − 1
)

+

g
∑

i=1

fi + ϑ − ǫ,

Figure 1 CAD model of the 3-PRUS manipulator

Figure 2 Schematic model of the 3-PRUS manipulator
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where ‘d’ is the number of DoF in three-dimensional 

space, ‘e’ is the number of elements, ‘g’ is the number of 

joints, ‘fi’ is the number of DoF for the ith joint, ‘ϑ’ is the 

number of excessive non-common constraints and ‘ϵ’ is 

the degrees of partial freedom of links that affects the 

motion to one side of links. Substituting the above values 

for the 3-PRUS mechanism into Eq. (1),

Eq. (2) indicates that independent control of the six 

active joints (3-P and 3-R) can enable complete mobility 

to the mobile platform. �is makes the 3-PRUS manipu-

lator suitable for health care applications like scanning 

or massaging, assembly operations, painting, pick/place 

operations, and light machining tasks.

3  Kinematic Modelling
Kinematic modelling is done to find analytical relations 

between the input and output variables of the mecha-

nism. Input variables correspond to the values of actu-

ated joints. Output variables refer to the position and 

orientation of the mobile platform. �ese kinematic 

equations are necessary to analyse the workspace, deter-

mine singular points and further develop the dynamic 

model of the parallel robot. �is section explains DH 

modelling concepts to obtain the inverse kinematic equa-

tions for the parallel spatial mechanism. DH method is 

a well-established method to model serial mechanisms 

for the pose of the end effector. Most parallel mecha-

nisms can be assumed as multiple serial linkages coupled 

together at the end effector.

3.1  Forward Kinematics

Forward kinematics is done to obtain the pose of the end 

effector in terms of the joint variables. Initially, the closed 

mechanism is split into individual open chains. �e indi-

vidual open chains are assumed as separate three serial 

manipulators with its zeroth frame located at {O1}, {O2}, 

and {O3} respectively, as shown in Figure 2. �e DH algo-

rithm is applied to each leg to get its own end-effector 

pose from {O1}, {O2}, and {O3}. �e three individual legs 

are coupled together at the three corners of the plat-

form by taking the distance between them a constant. 

�e frames assigned to each joint according to the DH 

convention is shown in Figure 3, which is common to all 

three legs. Let {O2} be the global frame about which the 

pose of the mobile platform is to be determined. �e DH 

parameters assigned between two consecutive frames 

are listed in Table 1 and is substituted into the standard 

transformation matrix [29] to obtain relations between 

each frame. �e pose of the seventh frame with respect 

to the zeroth frame for each leg is derived from Eq. (3),

(2)
DoF = 6(11 − 12 − 1) + (3 + 3 + 6 + 9) + 0 − 3 = 6.

Frame {7} corresponds to the last frame of the spherical 

joint on the mobile platform. To obtain the pose of the 

end effector tip from {O2}, another frame {8} is assigned 

at the tip of the end effector as shown in Figure  4. �e 

pose of the end effector tip from global frame {O2} for the 

middle leg is obtained from Eq. (4),

Similarly, the poses of the end effector tip from the 

global frame {O2} along the left and right legs are given in 

Eqs. (5) and (6) respectively:

(3)

T
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∗ T
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,

Figure 3 DH frame assignment for one leg of the 3-PRUS 

manipulator

Table 1 DH parameters for the �rst leg

θ d a α (°)

0 x1 0 90

x2 + 90 0 0 90

x3 + 90 0 0 90

x4 0 − a − 90

x5 − 90 0 0 − 90

x6 − 90 0 0 − 90

x7 0 0 0
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3.2  Inverse Kinematics

Inverse kinematics deals with the determination of the 

joint variables corresponding to the known pose of the 

mobile platform. In the previous section, the pose of 

the end effector tip is determined separately from the 

global frame {O2} by assuming each leg to be individual 

serial chains. �is implies that Eqs. (4), (5) and (6) can be 

equated to the desired pose matrix to couple the three 

legs and obtain the closed-form inverse kinematic solu-

tion for the 3-PRUS manipulator.

Considering the linear dependency property of the 

orientation matrix [29], the column vectors of the ori-

entation matrix and the position vectors in Eq. (7) are 

equated with forming eighteen sets of equations. How-

ever, according to the DH model of the 3-PRUS mecha-

nism, there are 21 joint variables considering both active 

and passive joints. �erefore, the holonomic constraints 

given in Eq. (8) are used for the additional three equa-

tions which couple the three legs to get an exact solution 

to the inverse kinematics.

(6)
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�
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(SX )i,j , (SY )i,j and (SZ)i,j corresponds to the position vec-

tor of the seventh frame for the ith leg expressed with 

respect to the global frame {O2}. An iterative Leven-

berg–Marquardt Algorithm (LMA) is used to solve the 

set of 21 non-linear equations. �e LMA is a curve fit-

ting method that adaptively varies the parameter updates 

between Gradient descent method and the Gauss–New-

ton method [30]. �is is a heuristic method used to com-

pute the solution for the set of equations. In this method, 

the set of equations are expressed as ‘f(x) = 0’ where x 

represents all the joint variables, x = [x1 x2 x3 … x21]T. 

LMA uses a damping factor (λ) to control the incre-

mental step size after every iteration. As the value of λ 

is increased, the step size gets reduced which accordingly 

varies the time taken to find the solution. �e algorithm 

begins by initiating the set of values for x. Residues are 

the values of each function obtained on substituting the 

joint variables in each iteration. �e objective of this algo-

rithm is to minimise this residue and finally approach to 

zero. If the residue approaches zero, the step size should 

be increased and therefore λ is to be decreased and vice 

versa. �e flowchart of the algorithm used to solve the 

set of equations is shown in Figure 5. �e increments are 

given to the variables after each iteration that is calcu-

lated using Eq. (9),

where

 

I is the identity matrix, δ is the increment matrix, 

R is the residue matrix and K is the iteration number. 

The algorithm designed in MATLAB stops running 

when the solution reaches within a tolerance of 0.01 

or when the iteration number reaches the maximum 

(Kmax) assigned. The algorithm will return the val-

ues of x during the last iteration as the solution when 

either of the above conditions comes first. The average 

time taken to solve a set of equations by the LMA algo-

rithm is 42 s using an Intel Core i7 processor.

(8)

{

[

(SX )i − (SX )j
]2

+
[

(SY )i − (SY )j
]2

+
[

(SZ)i − (SZ)j
]2

}

= k2; i, j = 1, 2, 3; i �= j.

(9)(J́
T
J́ + �I)δ = j́

T
R,

J́ =
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Figure 4 Frame assignment for the end effector and previous frame
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3.3  Jacobian Matrix for the 3-PRUS Mechanism

�e previous sections have introduced the pre-requi-

sites needed to define and calculate the Jacobian matrix. 

Jacobian matrix relates the velocity between joint vari-

ables and the end effector variables. A similar approach 

explained in the previous section is used to derive the 

Jacobian matrix. Each leg is assumed as a serial robot 

which is coupled together using suitable kinematic con-

straints. Let x = [Px Py Pz α β γ]T denotes the generalized 

vector of the end effector pose representing the six DoF. 

�e joint variables describing the geometry is expressed 

in general as, θ = [x1 x2 x3…x21]T which comprises of both 

active and passive joints. Input and output vectors for the 

closed-loop mechanism can be expressed generally as,

where γ ,β and α are the Euler angles defining the angu-

lar rotation of the end effector platform and Px,Py and Pz 

represents the position coordinates of the end effector 

tip. �e distance between any two consecutive corners of 

the mobile platform expressed in terms of joint variables 

and Euler angles are equated together to form Eq. (10). 

Equations in terms of joint variables are obtained from 

the DH model explained in Section  3.1. �e position 

(10)F(θ , x) = 0,

coordinates of each corner of the mobile platform Kj, in 

terms of joint variables are given in Eq. (11),

�e next step is to obtain the position coordinates of Kj 

in terms of the Euler angles. Two frames {B} and {P} are 

located at the global frame and the end effector tip respec-

tively as shown in Figure 6. �e frames are assigned simi-

lar to that used for the DH model. �e rotation matrix in 

Eq. (12) is used to transform between frames {B} and {P} in 

terms of zyx Euler angles [31]:

where s = sin(·) and c = cos(·). �e position coordinates 

for Kj from global frame in terms of Euler angles is as 

follows: 

after substitution,

(11)

[K1] = a cos x2 cos x2 + a sin x2 sin x3 sin x4;

a cos x3 sin x4 − c;

a cos x2 sin x3 sin x4 − a cos x4 sin x2 − x1;

[K2] = a cos x9 cos x11 + a sin x9 + sin x10 sin x11;

a cos x10 sin x11;

a cos x9 sin x10 sin x11 − a cos x11 sin x9 − x8;

[K3] = a cos x16 cos x18 + a sin x16 sin x17 sin x18;

a cos x17 sin x18 + c;

a cos x16 sin x17 sin x18 − a cos x18 sin x16 − x15.

(12)

B
PR = Rz(α) · Ry(β) · RX (γ )

=





cβcα cγ sαsβ − cαsγ sαsγ + cαcγ sβ

cβsα cαcγ + sαsβsγ cαsβsγ − cγ sα

−sβ cβsγ cγ cβ



,

(13)
BKj = [Px Py Pz]

T
+

B
pR · [Kxi Kyj Kzj]

T
,

Figure 5 Flowchart for Levenberg–Marquardt Algorithm

Figure 6 Line diagram representation of a leg in the 3-PRUS 

mechanism
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As mentioned earlier, the distance between any two 

consecutive corners of the mobile platform is written 

separately using Eqs. (11) and (14) and equated together 

to form Eq. (10). Partially differentiating Eq. (10),

In most cases, however, a simplified Jacobian matrix (J) 

can be obtained by considering the active joints only [31]. 

By this assumption, matrices A and B are both (3 × 6) 

matrix obtained by partially differentiating Eq. (10) with 

active joints and end effector pose variables. �e simpli-

fied Jacobian matrix is derived from Eq. (16). �e Jaco-

bian model for the 3-PRUS mechanism is a square matrix 

of order six.

4  Dynamic Modelling of the 3-PRUS Manipulator
�e dynamic model is used to study the force and torque 

variations of the active joints as a function of time for a 

desired trajectory of the mobile platform. �ere are three 

important methods to obtain a dynamic model for par-

allel robots, namely, the Newton–Euler procedure; the 

Euler Lagrangian formulation with Lagrangian multipli-

ers and the Principle of Virtual Work. In this section, the 

dynamic model of the 3-PRUS manipulator is developed 

using the Euler Lagrangian technique with Lagrangian 

multipliers [32]. According to this method,

(14)

[K1] = Px + bs(δ)cβcγ + bc(δ)(sαsγ + cαcγ sβ);

Py + bs(δ)cβsγ + bc(δ)(cαsβsγ − cγ sα);

PZ − sβbs(30) + bc(δ)cαcβ;

[K2] = PX − bcβcγ ;

Py − bcβsγ ;

Pz + bsβ;

[K3] = Px + bs(δ)cβcγ − bc(δ)(sαsγ + cαcγ sβ);

Py + bs(δ)cβsγ − bc(δ)(cαsβsγ − cγ sα);

PZ − sβbs(δ) − bc(δ)cαcβ;

(15)
∂F

∂θ
θ̇ +

∂F

∂x
ẋ = Aθ̇ + Bẋ = 0.

(16)θ̇ = A−1Bẋ = J ẋ.

(17)
d

dt

(

∂L

∂ q̇i

)

−
∂L

∂q
= τi −

m
∑

j=1

ϑj
∂ηj(q)

∂qi
.

Expressing the above equation in state-space form, we 

get,

where ϑ is the Lagrangian multiplier matrix, and ψ(q) is 

the partial derivative of the constraint equation for the 

closed mechanism. �e 3-PRUS manipulator is dynami-

cally modelled for each leg individually. One leg is further 

divided into three parts, namely, the slider, connecting 

link and the mobile platform. �e kinetic and poten-

tial energies for each subpart are written separately and 

finally coupled together to form the Lagrangian (L). Let 

m1, m2, and m3 be the masses of the slider, connecting 

link and mobile platform with end effector as indicated 

in Figure 6.

For the first leg, Kinetic energy of the slider,

Kinetic energy of the connecting link,

where v2
2

= vẋ2
2

+ vẏ2
2
+ vż2

2
 (refer Appendix). I2xx, I2yy 

and I2zz are the moment of inertia terms and a is the 

length of the rigid link. Kinetic energy of the moving 

platform,

where v2
3

= vẋ2
3

+ vẏ2
3
+ vż2

3
 , (refer Appendix).

Potential Energy of slider,

Potential energy of connecting link,

Potential energy of moving platform,

�e same procedure is applied to the other two legs of 

the 3-PRUS mechanism. �e Lagrangian (L) is equal to 

the total kinetic energy minus the total potential energy 

of the system. �e three legs are finally coupled together 

using the Lagrangian multipliers. �e equation of motion 

for one leg is expressed in general as follows:

(18)[M(q)]q̈ + [C(q, q̇)]q̇ + G(q) = τ − [ψ(q)]
Tϑ ,

(19)K1 =
1

2
m1(ẋ1)

2
.

(20)K2 =
1

2
m2v

2
2 +

1

2
I2xxẋ

2
2 +

1

2
I2yyẋ

2
3 +

1

2
I2zz ẋ

2
4 ,

(21)K3 =
1

2
m3v

2
3 +

1

2
I3xxẋx

2
5 +

1

2
I3yyẋ

2
6 +

1

2
I3zz ẋ

2
7 ,

(22)P1 = 0,

(23)P2 = m2g
(

vy2
)

,

(24)P3 = m3g(vy3).
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�e overall mass, Coriolis, gravity and force matri-

ces of the complete system in the state-space form are 

expressed in the following order,

�e Lagrangian multipliers included in the Lagran-

gian formulation takes into account the constraint forces 

imparted from the geometrical arrangement of the mecha-

nism. �e constraints defined in Eq. (8) are used to obtain 

the constraint matrix (ψ(q)). �e matrix is derived on par-

tial differentiation of the constraint equations with respect 

to each variable. Hence, the order of ψ(q) tensor for this 

mechanism is (3 × 21). Let ϑ be the Lagrangian multiplier 

matrix of the system. Murray et al. [33] have stated that the 

work done by the constraint force is zero. �erefore,

or ψ(q)q̇ = 0.

Differentiating above equation with time gives,

Re-arranging Eqs. (18) and (28), the Lagrangian multi-

plier ([ϑ]) for the system is determined as follows,

(25)



















F
τ1

τ2

τ3

τ4

τ5

τ6



















=

�

Mass
Matrix

�

7×7





















L̈i
θ̈1

θ̈2

θ̈3

θ̈4

θ̈5

θ̈6





















+

�

Corriolis
Matrix

�

7×7





















L̇i
θ̇1

θ̇2

θ̇3

θ̇4

θ̇5

θ̇6





















+

�

Gravity
Matrix

�

7×1

.

(26)

[M]21×21 =





(M1)7×7 0 0

0 (M2)7×7 0

0 0 (M3)7×7



;

[C]21×21 =





(C1)7×7 0 0

0 (C2)7×7 0

0 0 (C3)7×7



;

[G]21×1 =





(G1)7×1

(G2)7×1

(G3)7×1



;
�

τ ′
�

21×1
=





(τ1)7×1

(τ2)7×1

(τ3)7×1





(27)

Work done by constraint force =

(

[ψ(q)]Tϑ

)T
q̇ = 0

(28)[ψ(q)]q̈ + [ψ(q̇)]q̇ = 0.

(29)
ϑ = −

(

[ψ][M]
−1

[ψ]
T
)−1

{[

ψ̇
]

q

+
[

ψ̇
]

[M]
−1(τ − [C]q̇ − G)

}

.

Eq. (29) is substituted back into Eq. (18), to get the final 

expression for the torque variations,

�e above equation is used to study the torque vari-

ations at every joint. Based on this analysis suitable 

actuators are chosen at every active joint. A numerical 

simulation for the dynamic analytical model is demon-

strated in the next section, and its results are compared 

with ADAMS for a pre-defined trajectory of the end 

effector.

5  Results and Discussion
Dimensional synthesis, workspace analysis, singular-

ity, stiffness analysis and dynamic simulation study 

are discussed in detail in this section. �e workspace 

analysis is carried out based on the kinematic relations 

derived in Sections 3.1 and 3.2. �e dimensions of the 

various links within the manipulator are determined 

from the workspace analysis. �e Jacobian matrix 

is used to analyse the singularity and stiffness for the 

3-PRUS mechanism. �e singularity analysis is carried 

out to determine the singular poses of the mechanism. 

A numerical simulation example is also included in this 

section to validate the dynamic analytical model with 

ADAMS results.

5.1  Workspace Analysis and Dimensional Synthesis

�e forward kinematic relations developed from the 

DH model is used to plot the workspace for the 3-PRUS 

manipulator. �e workspace is plotted based on the flow 

chart shown in Figure 7. Based on this flowchart, a point 

is marked in the three-dimensional cartesian space after 

every iteration if it satisfies the constraint Eq. (8) for an 

instantaneous pose of the end effector. �erefore, this 

(30)τ = [M(q)]q̈ + [C(q, q̇)]q̇ + G(q) + [ψ(q)]
Tϑ .

Figure 7 Flow chart for the workspace plot
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algorithm will identify and plot the points that lie within 

the reachable region of the manipulator.

�e algorithm is used to plot a cluster of points in 

three-dimensional space that satisfies Eq. (8) using 

MATLAB. �e individual points are marked using 

the position coordinates derived from the forward 

kinematic equations defined in Eq. (7). Each point 

is obtained by assigning different values to the joint 

variables within the specified limit. �e magnitude of 

the linear joint variables ranges from 0 to 1.2  m, and 

that of the revolute joint varies from − 45° to 45° during 

the iteration. �e flow chart for dimensional synthesis 

based on the workspace analysis is shown in Figure  8. 

According to this algorithm, the work volumes for all 

combinations of link dimensions are quantified using 

the ‘Convhull’ function in MATLAB. �e volumes com-

puted are then further analysed to choose that combi-

nation of link dimensions corresponding to maximum 

volume. �e results of dimensional synthesis based on 

this algorithm is listed in Table 2.

�e reachable volume for the 3-PRUS manipulator is 

shown in Figure 9. �e reachable space for the manipu-

lator is approximately ellipsoid in shape and its volume 

corresponding to the geometric parameters listed in 

Table 2 is 2.86 × 10−2 m3. Khaled et al. [34] proposed the 

3-SPS parallel mechanism which consists of one active 

prismatic joint and two passive spherical joints in each 

leg. �e approximate work volume for that mechanism is 

1.32 × 10−5 m3. Li et al. [35] proposed the 3-PRS mecha-

nism for surgical applications and its estimated work vol-

ume is 3.2 × 10−4 m3. Xu et al. [36] proposed the 6-PSS 

parallel mechanism and its work volume is conical and 

approximately 6.29 × 10−3  m3. �is study shows that 

the workspace for the 3-PRUS manipulator is relatively 

larger compared to other parallel manipulators of similar 

dimensions mentioned above.

5.2  Singularity Analysis

�e Jacobian matrix is used to analyse the singular position 

and enable position control for the end effector. Determi-

nation of singular points is necessary during path planning 

since these points may cause loss of DoF for the end effec-

tor when reached. �is analysis is an extension of the 

Figure 8 Flow diagram for dimensional synthesis based on the 

workspace

Table 2 Link dimensions after optimisation

Joint parameters Value (m)

c (normal distance b/w two sliders) 0.25

a (length of connecting link) 0.5

l (sliding distance-horizontal) 0.9

b (tip to centroid distance-mobile platform) 0.2

Figure 9 Reachable points for the 3-PRUS Parallel manipulator

Figure 10 Singularity analysis flow diagram
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workspace analysis to decide the workable volume of the 

end effector free from singular positions. �e positioning 

of the end effector should be restricted within the singular 

free region during the working. Nawratil [37] has stated a 

theorem for non-redundant six DoF mechanisms that the 

manipulator reaches a singular position if and only if the 

determinant of the Jacobian matrix vanishes. A numeri-

cal based algorithm is used to determine the singular 

points within the workspace of the 3-PRUS mechanism by 

determining points where the determinant of the Jacobian 

becomes zero. Singularity-free workspace is plotted based 

on the flowchart shown in Figure 10 and the singular free 

workspace for the 3-PRUS manipulator is shown in Fig-

ure 11. �e algorithm developed in MATLAB is used for 

the singularity analysis which identifies the locations where 

the determinant of the Jacobian matrix does not become 

zero. �e singularity free region of the manipulator shown 

in Figure 11 is a subset of the reachable workspace shown 

in Figure 9. Smooth and un-interrupted motions of the end 

effector are possible within this region.

5.3  Sti�ness Analysis

�is section explains the Jacobian based stiffness analysis 

from the DH model that is effectively applicable to paral-

lel manipulators having non-redundant DoF. �e stiffness 

model is simplified by assuming every link in the manip-

ulator rigid and isotropic. Also, the active and passive 

joints are assumed finite stiffness values whose magnitude 

depends upon the joint. Higher stiffness values of manipu-

lators can improve its dynamic performance during fast 

motions. Compared to serial manipulators, parallel manip-

ulators offer higher stiffness and accuracy to the mobile 

platform [38]. �e stiffness properties for the 3-PRUS 

mechanism is defined by a (6 × 6) stiffness matrix (K). In 

this analysis, the manipulator is assumed to be in static 

equilibrium and every actuator is modelled as springs. �e 

stiffness of the PM is evaluated by considering an elastic 

model for every joint variable. �e change in joint variable 

δθ when a joint force f is applied is obtained from Eq. (31):

where k = diag[k1…k6] is the actuated joint stiffness 

matrix, whose elements ki are the stiffness of each 

actuator.

According to the principle of Virtual work, the end 

effector force F in terms of the joint force f is given 

using the following equation,

Rewriting Eq. (16) for infinitesimal displacements, we 

get,

Substituting Eqs. (31) and (33) into Eq. (32):

Hence, the stiffness matrix (K) for the mechanism is 

given by the following expression assuming constant 

stiffness to all actuators.

�e above model is used to obtain the stiffness maps 

for the 3-PRUS parallel manipulator. In this analysis, 

the active prismatic and revolute joints are assumed 

stiffness magnitudes of 1000  N/m and 500  N/m [21] 

respectively. �e stiffness of the mobile platform largely 

depends upon the stiffness of the actuators according 

to this methodology. �e (6 × 6) Jacobian matrix of the 

3-PRUS mechanism derived in Section 2 is substituted 

into Eq. (34), to study the stiffness variations. �e stiff-

ness matrix characterises the stiffness at a given point 

of its workspace. �e static stiffness maps for differ-

ent poses of the mobile platform within the singular 

free region is shown in Figure  12. �e stiffness mesh 

graphs in Figure 12a–f shows that the stiffness along x, 

y, z, α, β, and γ does not have significant changes for 

different positions of the end effector having the same 

orientation. �is property of the manipulator improves 

the kinematic accuracy of the end effector. Also, it is 

clear from Figure  12g–i that magnitude of stiffness 

reduces as the angle made by the platform increases. 

�is is because the loads acting on the end effector 

when it makes an angle with the global frame will cre-

ate a moment reaction on the platform accounting for 

its reduced stiffness for larger angles. A similar trend is 

observed even when the mobile platform rotates about 

the y and z axis. Stiffness of the manipulator is maxi-

mum when the platform is aligned to the global axis, 

that is when α = 0, β = 0 and γ = 0. Figure  12j–l show 

a slight decrease in the magnitude of stiffness along 

x, y, and z for larger heights. �e magnitude of the 

(31)f = k · δθ ,

(32)F = JTf .

(33)δθ = J · δx.

(34)F = (JTkJ ) · δx = K · δx.

(35)K = JTkJ .

Figure 11 Singularity-free workspace
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Figure 12 Stiffness plots for different poses of the mobile platform
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stiffness plot can be changed by adjusting the values of 

joint stiffness. �erefore, this analysis guides the choice 

of joints depending upon its applications and judge 

whether the manipulator can withstand the workloads 

acting on the platform when put to work.

5.4  Analytical and ADAMS Based Simulation—A 

Comparative Study

In this section, a simulation study of the dynamic model 

is demonstrated by considering the same geometrical 

parameters listed in Table  2. �e comparative study of 

the analytical and ADAM based simulation is performed 

as per the flow diagram shown in Figure 13.

�e dynamic model of the mechanism is analysed for a 

pre-defined trajectory of the end effector. �e end effec-

tor tip is assumed to follow a smooth cubic trajectory 

expressed as

where the constants n1, n2  and n3 control the frequency 

of trajectory and Td is the total time duration for the 

simulation. �e constants in the above equation are 

determined based on the boundary conditions applied 

to the end effector. �e initial and final positions of the 

end effector are P(0) = (40, 580, 360) and P(10) = (− 60, 

480, 640) respectively. �e initial and final velocities of 

the end effector are assumed to be zero. Similarly, the 

(36)Px = a0x + a1xt + a2xt
2
+ a3xt

3
,

(37)Py = a0y + a1yt + a2yt
2
+ a3yt

3
,

(38)Pz = a0z + a1zt + a2zt
2
+ a3zt

3
,

(39)

α = a1 sin

(

n1π t

Td

)

; β = a2 sin

(

n2π t

Td

)

; γ = a3 sin

(

n3π t

Td

)

,

angular positions of the mobile platform during the first 

and fourth seconds are (0.5, 0.4236, 0.747) and (− 0.5, 

− 0.3078, 0.747) radians respectively. �e coefficients 

computed for the above-mentioned boundary conditions 

are listed in Table 3. �e path followed by the end effec-

tor is shown in Figure 14. 

During the simulation study, the positional coordi-

nates and the corresponding Euler angles are computed 

using Eqs. (36), (37), (38) and (39) for every time interval 

of 0.1  s. �e inverse kinematics is then solved for every 

instantaneous pose of the end effector using the Leven-

berg Marquardt Algorithm explained in Section 3.2. On 

solving the inverse kinematics, the values for every joint 

variable is computed for every time interval of 0.1 s. Tak-

ing the time derivative of the joint variables for every 

instant give the theoretical linear and angular velocity 

variations of the prismatic and revolute joints, respec-

tively, as is shown in Figure 15.

To simplify the analysis, every slider and the connect-

ing links are assumed as slender bars and the mobile 

platform as a triangular plate. �e results of the dynamic 

model are compared with the corresponding results 

of the 3-PRUS model in ADAMS. Figure  16 shows the 

imported model of the 3-PRUS manipulator in ADAMS. 

�e analysis is done for a payload of 0.5 kg. �is load is 

Figure 13 Flow diagram for the comparative study of the dynamics 

simulation

Table 3 List of coe�cients for the cubic trajectory

Coe�cient Magnitude Coe�cient Magnitude

aox − 550 a1z 0

a1x 0 a2z 171/10

a2x − 21/10 a3z −57/50

a3x 7/50 a1 π/6

aoy − 100 n1 4

a1y 0 a2 π/6

a2y 9/2 n2 3

a3y − 3/10 a3 π/4

aoz 180 n3 6

Figure 14 End effector cubic trajectory from initial to final positions
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added to the mass of the mobile platform in the simula-

tion study.

�e actuation force and torque variations with time for 

every active joint obtained by the two methods are illus-

trated in Figure 17. �e slight variations in the dynamic 

Force and Torque values obtained by the two approaches 

are observed as a part of simplifying the analytical model. 

To lower the complexities involved in formulating the 

dynamic equations, the effect of friction has not been 

considered in this paper. However, in the ADAMS sim-

ulation model, a dynamic coefficient of friction value of 

0.3 has been assigned at every joint. �is accounts for 

the slight increase in the Force and Torque values in the 

ADAMS simulation model compared to the analytical 

model.

�e maximum force required by each slider according 

to the analysis is 5.2 N, 4.4 N and 3.4 N, respectively. �e 

dynamic model is used to choose the appropriate actua-

tors depending upon the forces computed for different 

applications. �e maximum force for each slider in the 

force plot is taken as the theoretical force required to 

calculate the actuator torques considering the lead screw 

parameters.

Assuming reasonable safety factors (say 1.5), the actual 

torque is calculated using Eq. (40):

where η is the safety factor. �e dynamic model devel-

oped can be used to design controllers and study the total 

power consumptions for different applications.

6  Prototype of the Dual 3-PRUS Manipulator
�e 3-PRUS manipulator mainly comprises of slid-

ers, revolute joints, universal joints and spherical joints 

interconnected by rigid links. �e slider slides straight 

along the guide rod by the aid of a lead screw attached 

to the motor. �e prototype is manufactured using sim-

pler parts mainly to display the motion of the mobile 

(40)τactual = ητtheoretical ,

Figure 15 a Slider velocity vs time, b Angular velocity vs time

Figure 16 a Imported 3-PRUS mechanism in ADAMS, b Spherical 

joints assigned on the mobile platform in ADAMS
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platform. Two similar 3-PRUS manipulators are fabri-

cated to demonstrate coordinative assembly operation. 

�e physical prototype of the dual 3-PRUS manipulator 

is shown in Figure 18 in which one arm is at the top of 

the fixed frame and the other is at the lower portion. Two 

additional actuators are used at each end of the arm to 

rotate and open/close the end effector attached to the 

platform. �ere are eight motors in total to be controlled 

for an individual 3-PRUS mechanism. �e user defines 

the path followed by the end effector for each mechanism 

via the MATLAB interface using the laptop connected to 

the system. �e end effector tracks the trajectory based 

on the inverse kinematics. �e angular rotations of each 

motor connected to the slider via lead screw is calculated 

using Eq. (41):

where p is the pitch of the lead screw and ∆Li is the slider 

displacement for each leg. �e angular rotations calcu-

lated is then given as input to the controller to enable 

rotations to the motor.

7  Conclusions and Outlook
In this paper, the kinematic and dynamic model of a novel 

six DoF 3-PRUS parallel manipulator is developed. �e 

proposed design has a simple architecture with six active 

and six passive joints each. �e mechanism is modelled 

using the DH convention, and the closed-form inverse 

kinematics solution is obtained by considering suitable 

(41)θ =

2π(�Li)

p
,

Figure 17 Numerical simulation results: a Sliding force plot (L-E), b Sliding force plot (ADAMS), c Torque plot (L-E), d Torque plot (ADAMS)
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constraint equations. �e forward kinematic equations 

are further used to plot the reachable volume of the end 

effector. A numerical based Levenberg–Marquardt Algo-

rithm (LMA) is explained to solve the inverse kinematics 

equations. �e optimized link dimensions are computed 

from the workspace analysis to determine the maximum 

volume the end effector can move. �e Jacobian matrix 

for the 3-PRUS is derived using an analytical approach 

by incorporating the holonomic constraints within the 

mechanism. �e Jacobian matrix which is a (6 × 6) ten-

sor for the 3-PRUS parallel manipulator is used to ana-

lyze the singularity and stiffness of the mechanism. Based 

on this analysis, the maximum singular free workspace 

for the defined geometric parameters is determined. �e 

methodology explained in this paper is easy to under-

stand and applicable to any parallel manipulators having 

complex geometries by defining suitable constraint equa-

tions. �e closed-form dynamic model of the manipula-

tor is developed using the Euler–Lagrangian formulation. 

�e results of the dynamic model for a pre-defined trajec-

tory is compared with ADAMS. �e mathematical model 

developed in this paper can be used to choose suitable 

actuators and design appropriate controllers for automa-

tion. Finally, the prototype of a dual 3-PRUS manipulator 

is manufactured to study the motion of the mobile plat-

form. �e two manipulators can be made to coordinate 

with each other to do a specific task. �is mechanism 

can be effectively used for health care applications, such 

as scanning, physiotherapy, surgical applications, etc., by 

changing the upper and lower bounds of the link dimen-

sions and using suitable end effector. Kinematic calibra-

tion and error analysis may also be done on the prototype 

to evaluate the accuracy and precision of the mechanism. 

Machine learning algorithms can be incorporated to 

decide intelligent trajectory for different applications.
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Appendix
Position coordinates of the centre of the connecting link 

derived from the DH model is,

Position coordinates of the centre of mobile platform 

obtained from the DH model is,

vx2 =
a

2
[sinx2sinx3sinx4 − cosx2cosx4];

vy2 =
a

2
cosx3sinx4;

vz2 =

[

x1 +
a

2
(cosx4sinx2 + cosx2sinx3sinx4)

]

;

Figure 18 Experimental setup of 3-PRUS dual PKM prototype
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