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Abstract: In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in 
which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the 
orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z 
Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the 
manipulator may be suitable for applications requiring high speed and accuracy. Using a 
geometric method and the practical assumption that three revolute joint axes in each limb are 
parallel to one another, a simple forward kinematics for an actual model is derived, which is 
expressed in terms of a set of linear equations. Based on the error model, two calibration 
methods using full position and length measurements are developed. It is shown that for a full 
position measurement, the solution for the calibration can be obtained analytically. However, 
since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic 
calibration experiment on the prototype machine is performed by using a ball-bar. The 
effectiveness of the kinematic calibration method with a ball-bar is verified through the well-
known circular test. 
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1. INTRODUCTION 
 
Parallel manipulators have been studied extensively 

for applications that require high speed, accuracy, and 
stiffness. Among various types of parallel manipulators, 
the Gough-Stewart platform has attracted the most 
attention because it has six degrees of freedom (DOF) 
and all the linear actuators are under pure forces. 
However, the manipulator does have some disad-
vantages, such as complex forward kinematics, small 
workspace, and complicated universal and spherical 
joints. 

To overcome these shortcomings, parallel mani-
pulators with fewer than six DOF have been 
investigated. For example, a 3-DOF parallel mani-
pulator with 3-RPS (revolute-prismatic-spherical) 
chains was analyzed and developed in [1,2]. Many 
other novel 3-DOF parallel manipulators have also 
been developed. For example, the DELTA robot is a 
simple and fast 3-DOF parallel manipulator [3]. 
However, most of these manipulators have coupled 
motion between the position and orientation of the 
end-effector. Recent research on 3-DOF parallel 

manipulators has been leaning toward the decoupling 
of the position and orientation of the end-effector and 
the elimination of complicated multi-DOF joints. 
Since the positioning task is essential in many areas, 
several 3-DOF translational parallel manipulators 
(TPMs) have been developed. For example, Tsai et al. 
[4,5] designed a 3-DOF TPM that employs only 
revolute joints and planar parallelograms. Tsai [6] 
presented the 3-DOF TPM using 3-UPU (universal-
prismatic-universal) serial chains. Zhao and Huang [7] 
studied the kinematics of an over-constrained 3-RRC 
(revolute-revolute-cylindrical) translational mani-
pulator. Kim and Tsai [8,9] conceived a 3-PRRR 
(prismatic-revolute-revolute-revolute) parallel mani-
pulator, which employs only revolute and prismatic 
joints to achieve pure translational motion of the 
moving platform and behaves like a traditional X-Y-Z 
Cartesian machine. Wenger and Chablat [10] 
suggested the use of a 3-DOF TPM as a machine tool, 
called the Orthoglide. However, the majority of works 
on TPMs have focused on the kinematic and design 
problems. 

Various kinematic calibration methods for parallel 
manipulators have been reported and good summary 
on the previous works can be found in [11]. Most of 
the works deal with the problems of kinematic 
calibration of 6-DOF parallel manipulators. However, 
the accuracy improvement of a 3-DOF TPM by the 
development of an error model and the kinematic 
calibration has been little investigated. Iurascu and 
Park [12] classify the kinematic calibration methods 
into three categories; task space calibration, joint 
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space calibration, and combined task-joint space 
calibration. Since among the measurement methods, a 
ball-bar is less expensive and sufficiently accurate for 
precise calibration, it is used for the kinematic 
calibration of 6-DOF parallel manipulators [13-15]. 
However, it requires task space calibration, i.e., the 
use of numerical forward kinematics calculation, 
which may cause some problems in the optimization 
iterative scheme. In this work, the forward kinematics 
for an actual model is obtained as a set of linear 
equations, based on the practical assumption and 
geometrical approach. 

In this paper, a prototype CPM is demonstrated. 
Due to the orthogonal arrangement of the three linear 
actuators, there exists a one-to-one correspondence 
between the input and output displacements, velocities, 
and forces and the Jacobian matrix is always isotropic 
over the entire workspace. Under the assumption that 
three revolute joint axes in each limb are parallel to 
one another, a simple forward kinematics for an actual 
model is derived, which is expressed in terms of a set 
of linear equations. It is shown that when a full 
position measurement is used, the kinematic 
calibration can be solved analytically. For a length 
measurement, i.e., using a ball-bar [13-15], the 
kinematic calibration is reduced to a nonlinear least 
squares method minimizing the calculated and 
measured lengths of a ball-bar. It is shown that by 
properly choosing a base coordinate system, the 
number of kinematic parameters can be reduced from 
twelve to six. Finally, using the QC10 ball-bar, the 
calibration experiment on the prototype CPM is 
performed. In order to show the effectiveness of the 
developed calibration method using a ball-bar, the 
results of the well-known circular tests before and 
after calibration are presented.  

 
2. KINEMATICS OF A NOMINAL MODEL 
 
The kinematic structure of a CPM is shown in Fig. 

1 where a moving platform is connected to a fixed 
base by three PRRR limbs. The moving platform is 
symbolically represented by a circle defined by 1B , 

2B , and 3B  and the fixed base is defined by three 
guide rods passing through 1A , 2A , and 3A , 
respectively. The three revolute joint axes in each limb 
are located at points iA , iM , and iB , respectively, 
and are parallel to the ground-connected prismatic 
joint axis. Furthermore, the three prismatic joint axes, 
passing through point iA  for 3 and 2, 1,=i , are 
parallel to the X, Y, and Z axes, respectively. 
Specifically, the first prismatic joint axis lies on the X 
axis; the second prismatic joint axis is parallel to the Y 
axis with an offset ze  in the Z direction; and the 
third prismatic joint axis is parallel to the Z axis with 

an offset xe  in the X direction and ye  in the Y 
direction. Point P  represents the center of the 
moving platform. The link lengths are denoted by 1i , 

2i , and 3 , respectively. The offset of a prismatic 
joint is defined by id0  and the sliding distance from 
the offset is defined by id . Note that each PRRR limb 
is equivalent to a CRR limb. In this regard, the 3-
PRRR parallel manipulator is a kinematic inversion of 
the 3-RRC manipulator. Note that the third prismatic 
joint axis is purposely located far away from the Z 
axis to avoid interference among the three limbs.  

Due to the three parallel revolute joints located at 
points iA , iM , and iB , the X, Y, and Z limbs 
constrain the moving platform from rotating about the 
Y and Z, Z and X, and X and Y axes, respectively. 
Since each limb provides two rotational constraints to 
the moving platform, the combined effects result in 
three redundant constraints on the rotation of the 
moving platform and, therefore, completely constrain 
the moving platform from rotation. This leaves the 
moving platform with three translational degrees of 
freedom. 

The forward and inverse kinematic analyses are 
trivial since there is a one-to-one correspondence 
between the end-effector position and the input joint 
displacements. Referring to Fig. 1, each limb 
constrains point P to lie on a plane that passes through 
point iA  and is perpendicular to the axis of the linear 
actuator. 

Consequently, the location of P  is determined by 
the intersection of the three planes. A simple 
kinematic relation can be written as 
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Fig. 1. Geometry of a CPM. 
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Table 1. Optimized design parameters. 
Design Variables Optimum Values [mm] 

0201 dd =  

03d  

xe  

ye  

ze  

2111 ll =  

2212 ll =  

31l  

32l  

3l  

225.0 
226.8 
914.4 
223.9 

 0.0 
400.0 
373.0 
406.0 
384.0 
105.0 

 

 
Fig. 2. Prototype CPM. 

 
From the design optimization method to maximize 

the stiffness of the manipulator for a given box-shape 
workspace, the optimized design parameters are 
obtained in Table 1 [8]. The workspace volume is 
equal to the product of the stroke lengths of linear 
actuators given by 

40021 == dd ∆∆ , and [mm] 3003 =d∆ . 
Fig. 2 shows a prototype CPM designed with the 
optimized design parameters. 

 
3. KINEMATIC ERROR MODEL 

 
In deriving the kinematic error model, the important 

assumption that three revolute joint axes in each limb 
are parallel to one another is employed. Otherwise, 
the third links of the three limbs may have different 
orientations to one another. So, the manipulator may 
not move at all or cannot work well due to internal 
torques if compliance and backlash in joints and links 
are very small.  

Let us consider one simple case when there exist no 
errors in the Y and Z limbs but the three revolute joint 
axes in the X limb are a little twisted, which means 
that the RRR serial chain becomes a spatial one. If the 

linear actuators of the Y and Z limbs are locked, five 
parameters at the end-effector except Px are fixed. In 
general, the five fixed parameters at the end-effector 
cannot be satisfied with only the three joint angles of 
the RRR spatial serial chain in the X limb. However, 
in the case of the RRR planar serial chain, the three 
end-effector parameters (two positions and one angle) 
can always be satisfied with three joint angles. In 
short, when a serial chain with three revolute joints 
becomes a spatial one, the forward kinematics 
solution does not always exist. Furthermore, this 
assumption is practical, since machining two holes in 
a link almost perfectly parallel to each other is not so 
difficult. Even if a twist angle is present between two 
adjacent revolute joint axes, it may be smaller than the 
incident angles between a prismatic joint axis and the 
corresponding axis of the base frame and between the 
axes of the prismatic and revolute joints. This 
assumption makes the forward kinematic analysis for 
an actual model and the kinematic calibration much 
simpler. With this regard, this work will focus on 
reducing the position error due to the other main error 
sources. 

The unit direction vector of a revolute joint axis is 
defined as 2iu , for 3 and 2, 1,=i , as shown in Fig. 3. 
For each limb, a plane passing through the end-
effector, P , can be defined, whose normal vector is 
the direction of a revolute joint, 2iu . In practice, it 
may be difficult to fabricate and assemble a perfect 
orthogonal frame. It is assumed that the X, Y, and Z 
prismatic joint axes are slightly misaligned with the X, 
Y, and Z axes, respectively, whose unit direction 
vectors are defined as 1iu , for 3 and 2, 1,=i . 

Furthermore, there may exist an offset error, 
iii ddd 000 −=δ , where id0  and id0  denote the 

actual and nominal values of an offset, respectively. ri 
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Fig. 3. Kinematic error model of the ith limb. 
 



456   Han Sung Kim 

is defined as the vector from an actual linear actuator 
position, 100 )( iiii ddd uδ++ , to the intersection 
point of the first revolute joint axis and the plane. 

For a given actuator length, the shortest distance 
from the origin to the plane is obtained by 

iiiii nddp ++= γcos)( 00 ,   (2) 

where iγ  is the incident angle between 1iu  and 

2iu , and in  is the total offset error projected onto the 

2iu  given by 

20 cos i
T
iiii dn ur+= γδ .   (3) 

It is noted that the offset error, id0δ , and the vector, 

ir  cannot be determined, respectively, from the 
following calibration, because these are projected onto 
the revolute joint axis. 

For each limb, a plane passing through the end-
effector, P, with the normal vector, 2iu , and the 
shortest distance, 0ip , can be given by 

02 i
T
i p=pu ,    (4) 

where T
zyx ppp ],,[=p . Writing (4) three times 

each for 3 and 2, 1,=i , the end-effector position is 
determined by the intersection point of the three 
planes, which yields the forward kinematics for an 
actual model given by 
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It should be noted that the link lengths in each limb 
have no effect on position accuracy and that the 
direction of a prismatic joint with respect to the base 
coordinate system is unimportant whereas the incident 
angle, ri, is significant for determining the end-
effector position. In short, the normal vector, 2iu , and 
the shortest distance, 0ip  to the plane are essential to 
establishing the end-effector position. 

Therefore, the total kinematic parameters to be 
determined become 

TTTT nnn ],,,,,,,,[ 323322221211 uuuβ γγγ= . (6) 

For a given end-effector position, the linear actuator 
length can be obtained by 

i
i

i
T
i

i dnd 0
2
cos

−
−

=
γ
pu .   (7) 

4. KINEAMTIC CALIBRATION METHOD 
 
In this work, the calibration method is developed 

for full position and length measurements. In the full 
position measurement, the end-effector position is 
fully measured by a 3 dimensional position measure-
ment device, such as an XYZ laser tracking system or 
a ball-bar system using the trilateration method [11]. 
On the other hand, a single ball-bar can be used in the 
kinematic calibration of a robotic manipulator as a 
length measurement [13-15]. In the following 
derivation, the superscripts, “c” and “m” are used to 
denote the calculated and measured values, 
respectively, and the first and second subscripts, “i” 
and “j” are employed to indicate the limb and 
measurement numbers. As illustrated in Fig. 4, the 
calibration methods using full position and length 
measurements are used to find the set of kinematic 
parameters satisfying the following equations, 
respectively: 

m
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where )(⋅p  denotes the forward kinematics function, 
Tm

j
m

j
m

j
m
j ddd ],,[ ,3,2,1=d , Tddd ],,[ 0302010 =d  and ⋅  

denotes the Euclidean norm. 
 

4.1. Analytical solution for a full position measure-
ment 

If an accurate position measurement device is 
provided, and there is also no measurement error in 
reading linear actuator positions, the kinematic 
calibration problem for the manipulator can be solved 
analytically. Multiplying both sides of (8) by T

i2u  
yields the uncoupled equation per limb, 
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Fig. 4. Outline of the calibration methods using full
position and length measurements. 
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In order to eliminate the kinematic parameter, ni, one 
subtracts (10) for j = j from (10) for j = n. This results in 

i
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Writing (12) for 3 and,2,1=j  gives the following 
linear simultaneous equations: 
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(13) 
If the 33×  matrix depending on the set of measured 
positions is not singular, the kinematic parameters can 
be obtained analytically. Once ui2 and ri are solved 

from (13), the kinematic parameter, ni, can be obtained 
from (10) for j = n. It can be seen that the minimum 
required number of measured positions is four. 
 
4.2. Solution for a length measurement 

When a ball-bar is used as a measurement device, 
the origin of the world coordinate system can be 
defined, for example, at the center of a ball fixed at 
the frame. However, the orientation of the world 
coordinate system cannot be defined only from the 
length information of a ball-bar. Hence, in the length 
measurement such as using a ball-bar, the orientation 
of a base coordinate system may be arbitrarily 
selectable. By properly choosing a base coordinate 
system, the number of kinematic parameters required 
to express the end-effector position can be reduced. 

The new base coordinate system O′{X′, Y′, Z′} 
expressed in Fig. 5 is defined as follows. The first 
revolute joint axis of the X limb is parallel to the X′ 
axis, and the Z′ axis is determined as the normal 
vector of the plane made by the revolute joint axes of 
the X and Y limbs, which can eliminate two 
parameters in u12 and one in u22. Specifically, 

T]0,0,1[12 =u , and =22u  T
zz ]0,cos,sin[ θθ− . The 

Y′ axis is determined by the right-hand rule, and the Z 
limb’s axis is defined as 32 [cos sin ,x yθ θ=u  

sin , cos cos ]Tx x yθ θ θ− , where xθ , yθ , and zθ  

are the rotational angles about the fixed X′, Y′, and Z′ 
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Fig. 5. Definition of a new base coordinate system for a length measurement. 
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axes. Furthermore, the origin of the base coordinate 
system is determined by the intersection point of the 
three new planes, which have the same normal vectors, 

2iu , and the distances, ii
m
i dd γcos)( 0+ , with the 

previously defined three planes passing through P. 
From the definition, the total offset error, ni, can be 
eliminated. The resulting kinematic parameters of the 
manipulator become six as 

T
yxz ],,,,,[ 321 θθγθγγ=′β .  (14) 

Generally, the errors associated with the ball-bar are 
the position error of the ball center fixed at the frame, 
qδ , and the length offset, lδ . It is noted that the 

total offset errors are included in qδ . With these 
errors, (9) can be rewritten as 

)()(),( 0 llm
j

m
j

c δδ +=+−′+ qqβddp , (15) 

where q  is the nominal position vector of the ball 
center with respect to the base coordinate system. It is 
noted that the position error of the other ball center 
attached at the moving platform is not considered, 
since the point is chosen as the end-effector, P. 

If the vector h  is defined as 
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the kinematic calibration using a ball-bar can be 
reduced to a nonlinear least squares minimization 
problem given by 

)()(min ηhηh
η

T ,    (17) 

where TTT l],,[ δδ qβη ′= . For solving (17), the 
“lsqnonlin” function in the Matlab optimization toolbox 
is used. 

 
5. CALIBRATION EXPERIMENT 

 
The calibration experiment on the prototype 

machine using a ball-bar has been performed. In this 
experiment, the QC10 ball-bar of Renishaw having an 
accuracy of ]µm[5.0±  is used, as shown in Fig. 6. 
For the collection of measurement data, one center of 
the ball-bar is fixed at ]mm[]530,430,430[ T−=q  
expressed in the base coordinate system. The 32=n  
measurement points are selected on the two 
hemisphere surfaces with 100 and 150 mm radii. The 
n sets of three linear actuators’ positions and the 
corresponding n ball-bar lengths are measured at the 

same time. In (16), lδ  is assumed to be zero because 
the ball-bar is already calibrated with respect to a 
length standard. Using (16) and the “lsqnonlin” 
function of Matlab, the kinematic parameters and the 
position error of the ball center are updated so as to 
minimize the error between the calculated and 
measured lengths of the ball-bar as 

1 2 3[ , , , , , ]
  [0.000, 0.001,0.113, 0.006, 0.061,0.133] [deg],

T
z x y

T
γ γ θ γ θ θ′ =

= − − −
β

]mm[]030.1,017.0,018.0[ T−=qδ . 

From the updated kinematic parameters, it is seen that 
the incident angle errors between the revolute and 
prismatic joints are very small; however, the angle 
errors in the orthogonal arrangement of the three 
linear actuators are relatively large.  

In order to demonstrate the effectiveness of the 
suggested calibration method, two circular tests on the 

 

Fig. 6. Calibration experiment using a ball-bar.  
 

 
Fig. 7. Circular test before calibration. 
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XY plane with the radius of 150 mm are performed. 
Fig. 7 shows the circular test of the prototype CPM 
with nominal kinematic parameters. Conversely, in 
Fig. 8, the circular test of the machine with updated 
kinematic parameters is shown. In both tests, the 
machine was controlled to draw the circle in CCW 
and CW directions. From the kinematic calibration 
and error compensation, the maximum absolute 
kinematic error has been reduced from 534[µm]  to 
128[µm] . 

 
6. CONCLUSIONS 

 
A prototype of a new 3-DOF translational parallel 

manipulator, behaving like a conventional X-Y-Z 
Cartesian machine, is developed. Instead of using the 
traditional D-H method, the geometry method is used 
and it is shown that based on the practical assumption, 
the forward kinematics for the actual model is still 
determined by the intersection point of the three 
planes. Based on the kinematic error model, two 
kinematic calibration methods using full position and 
length measurements are developed. For a full 
position measurement, it is derived that the calibration 
problem can be solved analytically. For the length 
measurement such as a ball-bar, a nonlinear least 
squares method is required. The calibration 
experiment on the prototype CPM using the QC10 
ball-bar is performed and from the suggested 
calibration method, it is shown that the maximum 
kinematic error is reduced from 534 [µm]  to 128 
[µm] . 

In order to further increase the accuracy, future 
research will focus on the development of a general 
error model including a small twist angle between two 

adjacent revolute joint axes and its calibration. In that 
case, the internal torques due to the twist angles will 
occur and elastic deformations due to the internal 
torques should be considered in the error model.  
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