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Kinematic control of redundant manipulators:

generalizing the task priority framework to

inequality tasks*
Oussama Kanoun, Florent Lamiraux and Pierre-Brice Wieber

Abstract—The redundant mechanical systems like humanoid
robots are designed to fulfill multiple tasks at a time. A task,
in velocity-resolved inverse kinematics, is a desired value for a
function of the robot configuration that can be regulated with
an Ordinary Differential Equation. When facing simultaneous
tasks, the corresponding equations can be grouped in a single
system, or better, sorted in priority and solved each in the
solutions set of higher priority tasks. This elegant framework for
hierarchical task regulation has been implemented as a sequence
of Least Squares problems. Its limitation lies in the handling of
inequality constraints, which are usually transformed into more
restrictive equality constraints through potential fields. In this
paper, we propose a new prioritized task regulation framework
based on a sequence of quadratic programs (QP) that removes
the limitation. At the basis of the proposed algorithm is a study
of the optimal sets resulting from the sequence of QPs. The
algorithm is implemented and illustrated in simulation on the
humanoid robot HRP-2.

Index Terms—Inverse kinematics, inequality constraints, task
priority, hierarchy, redundancy, control, humanoid robot

I. INTRODUCTION

A task, in the context of robot motion control, can be a

kinematic or a dynamic goal. For a robotic arm, a kinematic

goal is for example a position for its end effector and a

dynamic goal is a force it should apply on an object. Whether

a robot is able or not to complete a goal depends on its own

physical limitations (shape, power of actuators, etc) and on

additional difficulties imposed by the environment (terrain,

obstacles, etc). We take interest in generic, optimization-based

control frameworks that account for such constraints.

In early frameworks, it was proposed to place artificial

repulsive force fields around obstacles and place attraction

fields over goals. The control was computed along the gra-

dient of the resulting potential field [1]. This method proved

especially efficient for mobile robots with lateral range sensors

to navigate without colliding.

However, imposing a repulsive force in the vicinity of an

obstacle can be inadequate and have adverse effects for robots
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who are expected to enter this vicinity, such as oscillations

or impossibility to cross narrow passages [2]. For this reason,

it has been proposed in [3] to introduce instead a nonlinear

damping which limits the velocity of the robot in the direction

of obstacles, what appears to be much more adequate. A

quadratic cost function is formed according to the goal and

optimized under the velocity constraints using a numerical

Quadratic Program (QP) solver. This QP formulation is less

restrictive on the motion of the robot and expresses an exact

hierarchy between constraints and tasks, what is not the

case with the potential field approach. But this formulation

considers only a single cost function to account for all the

potentially desired goals.

The need to specify several goals has appeared with redun-

dant manipulators and humanoid robots. Most of the time, the

primary task of these systems is a manipulation task but their

highly-articulated structure allows them to fulfill other goals

simultaneously, such as keeping a reference posture, orienting

a vision system, etc. Tasks that are simultaneously feasible in

a given configuration may become conflicting with motion. In

this case, considering a single cost function to represent all

tasks would invariably lead to trade-off configurations that do

not satisfy any of the tasks.

The task priority framework addresses this problem. Much

like the QP formulation separates the tasks and the constraints

in two distinct levels, this framework affects the tasks them-

selves with a strict priority order. The case involving two

priority levels was formulated in [4] and generalized to any

number of priority levels in [5], in what appears to be a

sequence of equality-constrained Least Squares problems [6],

defining a sequence of linear systems that need to be solved.

This framework has been successfully implemented on many

robotic platforms, for instance in kinematic-based control [7]

and torque-based control [8]. But it only considers equality

tasks, and is not designed to take into account inequality

constraints such as the velocity damping introduced in [3] for

obstacle avoidance and joint limits.

To observe joint limits in this framework, it was pro-

posed [9] to compute the solution to the unbounded problem

then shrink the contributions level by level back within bound-

aries. This is a restrictive method that can produce sub-optimal

solutions, which could be avoided with a classical active set

algorithm [10].

Other implementations recurred to adding repulsive fields

to the highest-priority task level [8]. This solution has the

aforementioned drawbacks, linked to the systematic conver-
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sion of an inequality constraint into an equality task. A similar

approach, proposed by [11] in the context of avatar animation

combines the task priority framework with repulsive fields to

avoid obstacles for reaching motions. Their solution appears

at first to be equivalent to placing a finite repulsive field

in lowest priority level [12] as long as the corresponding

inequality constraint is satisfied. When it is no longer the case,

the inequality constraint is converted into a regular equality

constraint, moved to highest priority and the whole problem

is solved again until a posture update satisfying all constraints

is reached. The problem that we see in this approach resides in

the priority inversion that is likely to produce a discontinuity,

what should be avoided for robotic systems.

The approach by [13] solves this issue. Given k prioritized

tasks and m inequality constraints, they first solve the 2m

task priority problems corresponding to every combination of

inequality constraints taken as highest equality constraints.

From these 2m controls they produce a weighted solution.

The weights are chosen proportionally to the distances left

before saturation of the inequality constraints. The output of

this method has nice regularity properties but the involved cost

is unfortunately exponential in the number of inequalities.

What we propose is a new task regulation framework based

on a hierarchy of Quadratic Programs that generalizes the

constrained QP approach of [3] to any number of priority

levels. Within this framework it becomes possible to forward

the constraint-task separation across priority levels, eliminating

the need for converting inequality constraints into equalities.

Moreover, an inequality constraint is generalized to the notion

of inequality task and becomes an element that can be given

a priority rank as well.

To reach this result, we start in Section II by recalling the se-

quential Least Squares formulation of the classical task priority

framework. Section III introduces the inequality tasks that we

propose as a new prioritized element. We spend Section IV

studying the solutions sets of the Quadratic Programs that

we associate to equality and inequality tasks. The properties

that we establish are the basis of the algorithm described in

Section V. The purpose of the last section is to show examples

of implementation with this framework, applied in simulation

on the humanoid robot HRP-2.

II. CLASSICAL PRIORITIZED INVERSE KINEMATICS

A. Definitions

Let us consider a kinematic structure with n degrees of

freedom, a configuration vector q ∈ R
n, and a sequence for

k ∈ {1, . . . p} of vector functions fk(q) specifying kinematic

properties that need to be controlled to some desired values,

which can be defined without loss of generality as

fk(q) = 0 (1)

Calling these equations constraints or tasks is just a question

of context. Now, these vector functions are often nonlinear

and without trivial inverses, so we have to rely on numerical

methods to solve them.

B. Solving one task

Let us consider the following Ordinary Differential Equation

(ODE),
∂f1(q)

∂q
q̇ = −λf1(q) (2)

with a positive real constant λ. When following this ODE,

the configuration vector converges exponentially to a limit q∗

verifying f1(q
∗) = 0. In the case of kinematic structures with a

high number of degrees of freedom, this ODE often appears to

be under-determined. Of particular interest then is the solution

with minimum norm,

q̇1 = argmin
x

1

2
‖x‖2 (3)

s.t. A1x = b1 (4)

with A1 = ∂f1(q)/∂q, b1 = −λf1(q) (the ODE is only refor-

mulated here in the constraint (4) without any modification).

Sometimes, equation (4) is over-constrained or rank-deficient,

so the solution is more generally formulated as

q̇1 = arg min
x∈S1

1

2
‖x‖2, (5)

where

S1 = {argmin
x

1

2
‖A1x− b1‖

2} (6)

This corresponds in fact to the result of the action of the

pseudo-inverse of the matrix A1:

q̇1 = A+
1 b1. (7)

The set S1 is an affine subspace with the following closed-

form expression,

S1 = {q̇1 + P1z1, z1 ∈ R
n} (8)

where z1 is an arbitrary vector projected orthogonally on the

null-space of the matrix A1 by the operator

P1 = I −A+
1 A1. (9)

A fundamental observation then is that this vector z1 gives

some freedom to the control of the robot [12], which can be

used to consider secondary objectives within the set S1 of

solutions which already satisfy the constraint (2) (in the Least

Squares sense). This observation is at the heart of the algorithm

described in the next section, which considers a sequence of

kinematic tasks of decreasing priority.

C. Solving a hierarchy of tasks

Let us consider now a second ODE,

A2q̇ =
∂f2(q)

∂q
q̇ = −λf2(q) = b2. (10)

Proceeding as in the previous section, we can consider the set

S2 = {arg min
x∈S1

1

2
‖A2x− b2‖

2} (11)

of solutions to this ODE in the Least Squares sense, but within

the set S1 where the first ODE was satisfied first of all. This

gives a priority to the first ODE, which appears to be satisfied

without taking into account the second ODE, whereas potential
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solutions to this second ODE are considered only once the first

ODE has been satisfied. Note that this second set is a subset

of the first one, by definition.

Once again, we are interested in the solution with minimum

norm,

q̇2 = arg min
x∈S2

1

2
‖x‖2, (12)

which can be obtained very easily as before with the help of

the pseudo-inverse of the matrix A2, but projected beforehand

by the operator P1 on the null-space of the matrix A1 [4]:

q̇2 = q̇1 + (A2P1)
+(b2 −A2q̇1). (13)

Going from the solution (7) to the solution (13), a recursive

formulation becomes apparent, which can be iterated to take

into account as many kinematic tasks as desired with a priority

decreasing at each iteration [5].

This classical algorithm, based on a sequence of pseudo-

inverses of projected constraints, appears therefore to compute

the solution to a sequence of Quadratic Programs (6), (11)...

which define a shrinking sequence of subsets S1, S2... within

which the solution with minimum norm is selected. This is

the basis of our generalization to the case of inequality tasks.

D. Cases of ill-conditioning

When the linear equations (2) and (10) are ill conditioned

the pseudo-inverse solutions (7) and (13) grow unbounded.

This situation occurs mostly when some task becomes unfea-

sible with respect to higher priority ones. The regularization

of the Least-Squares problems

q̇1 = argmin
x

1

2
‖A1x− b1‖

2 +
1

2
ρ21‖x‖

2, ρ1 ∈ R
∗ (14)

and

q̇2 = arg min
x∈S1

1

2
‖A2x− b2‖

2 +
1

2
ρ22‖x‖

2, ρ2 ∈ R
∗ (15)

induces a controlled error in the regulation of the task but

is important for the numerical stability of the process[14].

The closed form (8) of the set S1 is kept unchanged. These

adjusted solutions are usually obtained seamlessly with simple

modifications of the algorithm computing the pseudo-inverses

of the matrices A1 and A2P1.

III. INTRODUCING INEQUALITY TASKS

A. Attractive aspects of inequality tasks

Suppose that because of an obstacle, a humanoid robot

must keep its hands at a height less than 1 meter above

the ground. The algorithm presented in the previous section

allows controlling this height to any given value. But here,

no precise value is required, this height just needs to be

below a certain value. Fixing a precise value would constrain

the motions of the robot more than necessary, which could

interfere with other goals given to the robot in ways that could

and should be avoided. There lies a need for considering not

only tasks introduced through equalities as in (1), but also

tasks introduced through inequalities of the same form:

gk(q) ≤ 0. (16)

I
1

I
2

I

x
2

x
1

Fig. 1. The linear inequalities y ≥ x and y ≥ −x determine the filled
convex polytope.

Instead of the ODE (2), we introduce here an Ordinary

Differential Inequality (ODI)

∂gk(q)

∂q
q̇ ≤ −λgk(q). (17)

Gronwall’s lemma gives us

gk(q) ≤ gk(q0)e
−λ(t−t0) (18)

where t > t0 and q0 = q(t0). We have at least an exponential

convergence to the desired inequality (16). The alternative

to potential fields proposed by [3] is based on this ODI

formulation. Defining d the distance between a robot and an

obstacle, they wrote a collision avoidance constraint as

d ≥ dmin (19)

and derived the ODI

−ḋ ≤ −λ(dmin − d) (20)

which did not impose a value on ḋ, but only a lower bound

depending on the distance to the obstacle and the convergence

rate factor λ.

Apart from being less restrictive on the controls, the ODI is

straightforwardly derived from the expression of the inequality

task which is an attractive aspect for implementations. Equal-

ities f(q) = 0 can even be seen as special cases of such

ranges, as 0 ≤ f(q) ≤ 0. For an equality task f(q) = 0,

one can monitor the convergence to the solution by evaluating

the norm ‖f(q)‖. For an inequality task g(q) ≤ 0, we may

use instead the convex function ‖max{0, g(q)}‖, which is one

example of an exterior penalty function, as it appears in non-

linear constrained optimization [15].

B. Priority and inequality tasks

We have seen in Section II that the classical algorithm for

prioritized inverse kinematics computes a shrinking sequence

of affine sub-spaces Sk which are solutions in the Least

Squares sense to a sequence of systems of linear equalities.

We can try to follow the same approach with inequalities, but

solutions to systems of linear inequalities are not affine sub-

spaces of Rn as in the case of equalities, but convex polytopes,

volumes of Rn which may be finite or infinite (Figure 1). The

algorithm needs to be modified accordingly.

For example, the sequence of affine sub-spaces Sk is com-

puted in Section II with a recursive formula involving pseudo-

inverses and projection matrices. In the general case, problems
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Fig. 2. The square represents a level set of the L∞ norm in R
2. It touches

the lines L and L′ at the points P1 and P2 with minimal L∞ norm. A
jump from P1 to P2 occurs even if the line L rotates in a continuous and
differentiable way towards L′.

with inequalities cannot be solved efficiently with pseudo-

inverses: they usually require full-fledged QP solvers. We need

therefore to devise a new iterative process for computing a

shrinking sequence of convex polytopes, directly involving a

QP solver at each iteration.

IV. PROPERTIES OF LEAST SQUARES SOLUTIONS TO

SYSTEMS OF LINEAR EQUALITIES AND INEQUALITIES

We propose here to follow closely the approach of the

classical algorithm, and consider solutions to the systems of

linear inequalities in a Least Squares sense.

Let A and C be matrices in R
m×n and b and d vectors

in R
m with (m,n) ∈ N

2. We will consider in the following

either a system of linear equalities

Ax = b (21)

or a system of linear inequalities

Cx ≤ d (22)

or both. When m = 1, (21) is reduced to one linear equation

and (22) to one linear inequality.

A. Choice of the norm L2

We take no particular hypothesis on the linear systems

(21) and (22), which might be rank-deficient or even without

solutions. In the pure equality case, we saw that the problem is

solved in a generic manner by the Least Squares formulation

in the sense of norm L2. This particular norm has an advantage

for the problem of control. In [16], it is suggested that norms

L1 or L∞ could be used as alternatives for the optimal

resolution of inequality constraints in a control problem. Here,

we give an intuition as to why these norms could be less

adapted than L2 for a control problem.

Consider in Figure 2 the square representing a level set of

the norm L∞ and the lines representing the solution sets of

an equality system (Ax = b) at different instants. The point of

junction between the square and a line is the point realizing

the minimal L∞ norm in the set {x ∈ R
2 : Ax = b}. Even

with a differentiable motion of this set, the point of minimal

norm is bound to jump from a corner of the square to an

adjacent one, which could cause an unwanted irregularity in

the control. The same geometrical reasoning can be applied

for the L1 norm whose level sets are diamonds in R
2. The

norm L2 which we inherit from the previous framework has

the advantage of defining strictly convex level sets (circles)

that prevent this problem from occurring.

In what follows, we show that the solutions to systems of

linear equalities or inequalities in the Least Squares sense are

polytopes of R
n and can be fully determined given a single

solution point.

B. System of linear inequalities

When trying to satisfy a system (22) of linear inequalities

while constrained to a non-empty convex set Ω ⊂ R
n, let us

consider the set

Si = arg min
x∈Ω

1

2
‖w‖2 (23)

with

w ≥ Cx− d, w ∈ R
m
+ (24)

where w plays now the role of a vector in R
m
+ of slack

variables. Since the minimized function is coercive, this set is

non-empty.

Proposition 4.1: Given a point x∗ ∈ Si and considering

each inequality cjx ≤ dj of the system (22) separately, we

have:

Si = Ω ∩

{

cjx ≤ dj if cjx∗ ≤ dj

cjx = cjx∗ if cjx∗ > dj
(25)

In other words, all optimal solutions satisfy a same set of

inequalities and violate the others by a same amount.

Proof: Let us consider an optimal solution x∗, w∗ to the

minimization problem (23)-(24). If x∗ is on the boundary of

Ω, the Karush-Kuhn-Tucker optimality conditions give that for

every vector v not pointing outside Ω from x∗,

w∗TCv ≥ 0 (26)

and

w∗ = max {0, Cx∗ − d}. (27)

If x∗ is in the interior of Ω, v can be any vector in R
n and

the above conditions hold. The last condition indicates that if

an inequality in the system (22) is satisfied, the corresponding

element of w∗ is zero, and when an inequality is violated,

the corresponding element of w∗ is equal to the value of the

violation.

First we establish that the optimal slack variables w∗ are

unique. Suppose that we have two optimal solutions, x∗
1, w∗

1

and x∗
2, w∗

2 . Since the set Ω is convex, the direction x∗
2 − x∗

1

points towards its inside from x∗
1, so we have

w∗T
1 C(x∗

2 − x∗
1) ≥ 0 (28)

which is equivalent to

w∗T
1 (Cx∗

2 − d)− w∗T
1 (Cx∗

1 − d) ≥ 0. (29)

The optimality condition (27) gives

w∗T
1 w∗

2 ≥ w∗T
1 (Cx∗

2 − d) (30)

and

w∗T
1 w∗

1 = w∗T
1 (Cx∗

1 − d), (31)
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so we obtain

w∗T
1 w∗

2 − ‖w
∗
1‖

2 ≥ 0. (32)

The same can be written from x∗
2,

w∗T
2 w∗

1 − ‖w
∗
2‖

2 ≥ 0, (33)

so that we obtain

‖w∗
2 − w∗

1‖
2 = ‖w∗

2‖
2 + ‖w∗

1‖
2 − 2w∗T

2 w∗
1 ≤ 0, (34)

but this squared norm cannot be negative, so it must be zero

and w∗ is unique.

Let I denote the subset of indices j verifying w∗
j ≤ 0 and

let J be the complementing set. From the condition (27) we

deduce that ∀x ∈ Si, if j ∈ I then cjx ≤ dj and if j ∈ J
then cjx = dj +w∗

j = cjx∗. This establishes the inclusion of

Si in the set of interest (25). Now let x ∈ Ω such that ∀j ∈ I ,

cjx ≤ dj and ∀j ∈ J , cjx = cjx∗. Relaxing the second

equality into an inequality, we see that ∀j, cjx − dj ≤ w∗
j

which establishes the opposite inclusion and concludes the

proof.

C. System of linear equalities

We are interested in the solution set of the problem (6) while

further constraining the solutions in a non-empty convex set

Ω:

Se = argmin
x∈Ω

1

2
‖Ax− b‖2. (35)

Proposition 4.2: The set (35) is non-empty, and given x∗ ∈
Se we have:

Se = {x ∈ Ω : Ax = Ax∗}. (36)

The proof is very similar to the case of the inequality systems

seen above.

D. Mixed system of linear equalities and inequalities

We can observe that the optimization problems (35) and

(23)-(24) have similar lay-outs and similar properties. The

generalization of these results to mixed systems of linear

equalities and inequalities is straightforward through the fol-

lowing minimization problem:

min
x∈Ω

1

2
‖Ax− b‖2 +

1

2
‖w‖2 (37)

with

Cx− w ≤ d, w ∈ R
m
+ (38)

The optimal set is obtained by direct application of proposi-

tions (4.2) and (4.1).

V. PRIORITIZING LINEAR SYSTEMS OF EQUALITIES AND

INEQUALITIES

A. Formulation

Let us consider now the problem of trying to satisfy a set of

systems of linear equalities and inequalities with a strict order

of priority between these systems. At each level of priority

k ∈ {1, . . . p}, both a system of linear equalities (21) and a

system of linear inequalities (22) are considered, with matrices

P
1

P
2

M

P

Fig. 3. The primary linear equality P1 and the secondary system of three
linear inequalities P2 are without common solutions. M and P are solutions
of P1 minimizing the euclidean distance to P2’s set, however, P should be
preferred since it satisfies two inequalities out of three while M satisfies only
one. This is readily obtained by the objective function in (40).

and vectors Ak, bk, Ck, dk indexed by their priority level

k. At each level of priority, we try to satisfy these systems

while strictly enforcing the solutions found for the levels of

higher priority. We propose to do so by solving at each level

of priority a minimization problem such as (37)-(38). With

levels of priority decreasing with k, that gives:

S0 = R
n, (39)

Sk+1 = arg min
x∈Sk

1

2
‖Akx− bk‖

2 +
1

2
‖w‖2 (40)

with Ckx− w ≤ dk, w ∈ R
m
+ . (41)

B. Properties

A first direct implication of propositions (4.2) and (4.1) is

that throughout the process (39)-(41),

Sk+1 ⊆ Sk. (42)

This means that the set of solutions found at a level of priority

k is always strictly enforced at lower levels of priority, which

is the main objective of all this prioritization scheme.

A second direct implication of these propositions is that if

Sk is a non-empty convex polytope, Sk+1 is also a non-empty

convex polytope. Furthermore, the polytopes can be described

using systems of equality and inequality constraints

∀k, ∃Āk, b̄k, C̄k, d̄k such that x ∈ Sk ⇔

{

Ākx = b̄k
C̄kx ≤ d̄k

(43)

With this representation, the step (40)-(41) in the prioritization

process appears to be a simple Quadratic Program with linear

constraints that can be solved efficiently. When only systems

of linear equalities are considered, with the additional final

requirement of choosing x∗ with a minimal norm, the prioriti-

zation process (39)-(41) boils down to the classical algorithm

described in Section II.

An important property on the solutions can be seen in

Figure 3: the points M and P lie on the constraint P1, and are

at an equal Euclidean distance to the set P2, but the point P
satisfies two of the inequalities defining P2 when M satisfies

only one of them. Obviously, the point P should be preferred,

and this is exactly what the minimization in (40) expresses:

looking for the minimal amount of violation of constraints, the

point P will be favored over the point M . Figure 4 further

illustrates the optimal set for different priority orderings.
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P
1

P
2

Optimal set

(a) The linear systems have com-
mon solutions so the priority does
not matter.

P
1

P
2

Optimal set

(b) Equality has priority over in-
equality. The error is minimized
with respect to inequalities that
could not be satisfied.

P
1

Optimal setP
2

(c) Inequality has priority over
equality. The optimal set minimizes
the distance to the equality set.

Fig. 4. Illustration of the optimal sets for prioritization problems involving both linear equality and inequality systems.

C. Algorithm

We showed how the optimal prioritization of linear systems

of equalities and inequalities can be formulated as a sequence

of linearly-constrained Least Squares problems. As we go

down the priority levels, the admissible set Sk in which the

k-th Least Squares problem is solved keeps the optimality of

upper stages. The propositions (4.2) and (4.1) showed that

the admissible set Sk+1 differs from the set Sk by linear

constraints that can be determined from the optimal point x∗
k.

We have all we need to build an algorithm that solves a stack

of prioritized linear systems.

Knowing that the algorithm repeats the same steps for every

stage, we illustrate a single stage depending on the type of task

at hand. Let the initial admissible set be defined by the linear

constraints

S1 =

{

Ā0x = b̄0
C̄0x ≤ d̄0

(44)

Take the case A) where the first system to solve is a system

of equalities A1x = b1. We solve the QP

min
x∈Rn

1

2
‖A1x− b1‖

2 (45)

s.t
Ā0x = b̄0
C̄0x ≤ d̄0

(46)

and obtain an optimal point x∗
1. Suppose that we have another

linear system with lower priority, A2x = b2. Then we need to

determine the new admissible set S2 where ‖A1x−b1‖ remains

minimal. For this, proposition (4.2) indicates that the equality

constraint Ā0x = b̄0 is to be augmented with A1x = A1x
∗.

If we are in case B) where the first system to solve is

a system of m inequalities C1x ≤ d1 then, based on the

formulation (23)-(24), we solve the QP

min
x∈Rn

1

2
‖w‖2 (47)

s.t

Ā0x = b̄0
C̄0x ≤ d̄0
C1x− w ≤ d1, w ∈ R

m
+

(48)

for the point x∗
1. Now to find the linear constraints defining the

next admissible set S2, we use proposition (4.1): in the set of

m task inequalities {cj1x ≤ dj1}, we identify the subset I1 of

inequalities enforced at point x∗
1 and the complement subset J1

of inequalities that were not satisfied. S2 is nothing more than

S1 further constrained with the inequalities {cj1x ≤ dj1}j∈I1

and the equalities {cj1x = cj1x
∗
1}j∈J1

.

As for the general case C) where the target linear system is a

mixture of both types, the solution x∗
1 and the next admissible

set S2 are obtained by a straightforward combination of cases

A) and B). The steps are summarized in Algorithm 1.

The output of the proposed algorithm is the last stage’s

optimal set and a point in it. One might be interested in a more

particular control realizing a minimal norm or maximizing the

distance to the boundaries of the optimal set. This can easily be

expressed as an additional optimization over the last optimal

set.

The cost of every stage is polynomial in the number of

inequality constraints, which makes this framework viable for

real time implementations.

Algorithm 1 Solve prioritized linear systems

1: Set the system of equality constraints: Ā0, b̄0.

2: Set the system of inequality constraints: C̄0, d̄0.

3:

4: for k = 0 to p− 1 do

5:

6: Solve the Quadratic Program (40)-(41) to obtain Sk+1.

7:

8: Āk+1 ←

[

Āk

Ak

]

, b̄k+1 ←

[

b̄k
Akx

∗
k

]

.

9:

10: C̄k+1 ← C̄k, d̄k+1 ← d̄k.

11:

12: for all cjk in Ck do

13: if cjkx
∗
k ≤ djk then

14:

15: C̄k+1 ←

[

C̄k+1

cjk

]

, d̄k+1 ←

[

d̄k+1

djk

]

.

16:

17: else

18:

19: Āk+1 ←

[

Āk+1

cjk

]

, b̄k+1 ←

[

b̄k+1

cjkx
∗
k

]

.

20:

21: end if

22: end for

23: end for
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(a) (b) (c)

Fig. 5. Scenario 1: reaching an object behind obstacles

D. Cases of ill-conditioning

This algorithm shares with the classical algorithm de-

scribed in Section II the same problems with respect to

ill-conditioning, that have been discussed in Section II-D.

The same solution can be adopted here, balancing the Least

Squares problem (40)-(41) with the norm of the resulting

solution, solving instead the QP

Sk+1 = arg min
x∈Sk

1

2
‖Akx− bk‖

2 +
1

2
‖w‖2 +

1

2
ρ2‖x‖2 (49)

with Ckx− w ≤ dk w ∈ R
m
+ . (50)

VI. SIMULATIONS

A. Setting

The purpose of this section is to show how the values

of equality and inequality tasks evolve using the proposed

algorithm. We propose two scenarios in velocity-based control

for the system HRP-2. In each scenario, the parameters that we

solve for are all the joint velocities q̇. They are at the number

of 28: 6 in each limb, 2 in the trunk and 2 in the neck.

The algorithm uses a Quadratic Program to solve the

required optimization at every priority stage. This optimization

can be done using any off-the-shelf numerical QP solver. We

are currently developing a solver specialized for the case where

all inequalities are hard constraints, and we use it here to solve

scenario 1. For the general case where inequality tasks are

placed anywhere in the priority stack, we temporarily recur to

all-purpose QP solvers like [17].

B. Scenario 1

In this scenario, the robot must reach for an object while

standing behind horizontal bars.

The robot is subject to permanent equality and inequality

constraints. The constraints are for enforcing the joint limits,

preventing collision and maintaining the pose of the feet and

the position of the projection of the center of mass on the

ground. The shape of the robot is simplified to a set of

cylinders so that only a small number of pairs of segments

are constrained against collision. The simplification is specific

to HRP-2 and out of the scope of this work. We implement

the inequality constraints as shown in section III and choose

all the gains λ in the differential inequalities equal to 0.5s−1.

In a first priority stage S1, we place an equality task to

position the right hand at a fixed target point behind the bars.

We call this task reaching and write it −→ph(q)−
−→pt = 0 where

−→ph is the position of the center of the right hand and −→pt the

target position. The corresponding ODE has the form Jhq̇ =

Fig. 6. Effect of prioritization in Scenario 1. Upper window: a single priority
stage is used to solve the reaching and gaze under constraints: neither of the
tasks is completed. Lower window: the gaze task placed in priority 2 diverges
to the benefit of reaching for the target point (priority 1).

−λ1(
−→ph−

−→pt ) where Jh is the jacobian of −→ph(q) with respect

to q. The gain λ1 is taken such as ‖λ1(
−→ph −

−→pt )‖ is bounded

above by the maximum velocity of 0.2m.s−1.

In a second priority stage S2, an equality task keeps the

vision target focused on the target. We call this task gaze and

define it as:

−→ov ×−→opt = ~0 for −→ov.−→opt ≥ 0 (51)

where o is a point on the optical axis, −→ov is a vector lying on

the optical axis ahead of o. The ODE is

[−→opt × (−→ov × Jw)−
−→ov × Jo]q̇ = −λ2(

−→ov ×−→opt) (52)

where Jw and Jo respectively stand for the head orientation

jacobian and position jacobian at point o. The scaling factor

λ2 is chosen to bound ‖λ2(
−→ov×−→opt)‖ above by 4.10−4m2.s−1.

For each of the tasks, we had to set the regularization param-

eter ρ2 to the order of magnitude of 0.01 in order to prevent

instabilities when the tasks become conflicting.

Figure 6 is divided in two windows: the upper window

shows how this scenario is poorly solved if the gaze and

reaching tasks were to share the same priority level. The

obstacle stops the head too soon for the hand to reach its target

and because both tasks have the same priority, the trade-off

posture in Figure 5(b) is the final result. The lower window

shows that lowering the priority of the gaze task makes it

possible for the reaching task to be solved. We see that the

moment the head cannot move any closer to the upper bar, the

direction of the gaze starts deviating from its acquired target so

that the hand may continue to move, ending in the posture of

Figure 5(c). The computation time using the implementation

prototype is reported in Figure 7, it should be improved in the

future.

C. Scenario 2

This scenario is also a reaching scenario, the difference

consists in adding a last stage inequality task in order to
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Fig. 7. Scenario 1. Upper window: cost of preparing and solving the sequence
of prioritized linear systems per time step. Lower window: number Nc of
saturated inequality constraints per time step. Every iteration counted 33
inequality constraints for collision avoidance and 56 for lower and upper
bounds. The program was run in a single thread using the notebook processor
Intel Core i5-540M at 2.52 GHz.

prevent the moving hand from entering the vision field as long

as possible.

The permanent constraints are those of the first scenario, if

we exclude the external collision avoidance constraints.

A first stage S1 has an attractor field designed to move a

point ph in the right hand of the robot to a target point pt,

Pa(q) =
1

2
K‖−−→ptph‖

2 = 0 (53)

with the positive gain K = 2.10−2. For this task we solve the

ODE

〈−−→ptph|Jh〉q̇ = −λ1Pa(q) (54)

λ1 is chosen such as λ1Pa(q) is bounded above and below

respectively by 10−3m2.s−1 and 2.5×10−5m2.s−1. The lower

bound forces a minimum attraction towards the target point,

which is useful near convergence. The above equation allows

the free translation of the point ph on the plane orthogonal to

the direction −−→phpt.
A second stage S2 is occupied by the same gaze task seen

in scenario 1.

A third priority stage S3 holds an inequality task that forbids

a point ph on the moving hand from entering the vision field.

The vision field is modeled as a finite cylinder (see Figure 8).

This inequality d > r, where d is the distance of the point

to the core of the vision field and r the radius of the field

(14cm), leads to the ODI [3]

−〈Jh|~n〉q̇ ≤ λ3(d− r) (55)

with ~n being the unitary radial vector of the cylinder pointing

out to ph. When the inequality is not satisfied, the effect of

this task is to pull the hand out of the vision field. Like any

other task in a priority stack, the amplitude of the feedback

λ3(d− r) should be bounded to avoid numerical instabilities.

(a)

p
h

p
t

np
h

d

r

(b) (c) (d)

Fig. 8. Scenario 2: reach for an object and avoid the vision field if possible

Fig. 9. Effect of prioritization in Scenario 2. The inequality task responsible
for keeping the center of the hand (point ph) out of the vision field holds
until becoming conflicting with the higher-priority reaching task.

We replace the above ODI by the following,

−〈Jh|~n〉q̇ ≤ max(−ε, λ3(d− r)) (56)

where ε = 5× 10−5m.s−1 and λ3 = 0.5s−1.

Finally, the regularization parameters ρ2 were chosen with

an order of magnitude of 0.01 for the three task stages.

Figure 9 shows the evolution of task residual errors along

the iterations. The vision field is protected until the attractor

field and the inequality task become conflicting. From there,

the point ph is drawn inside the field.

It must be mentioned that the choices of gains at every

priority stage were intricate: ε had to be large enough not to

make the last inequality task fail too early, and small enough

to prevent stability issues when conflicting with the upper

reaching task given the regularization parameters. We think

that an automated optimization of these parameters would be

a good addition to the framework.

VII. CONCLUSION

In the context of kinematic control, we proposed a new

theoretical framework based on a hierarchy of Quadratic

Programs that generalizes the constrained QP approach of [3]

to any number of priority levels. Within this framework it

becomes possible to forward the constraint-task separation
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across priority levels, eliminating the need for converting

inequality constraints into equalities through potential fields.

The proposed framework is general enough to permit the

prioritization of the inequality constraints themselves, which

become defined as prioritized inequality tasks.

The proposed framework was illustrated for regulating

configuration-dependant functions on a redundant manipulator

by controlling the joint velocities, but it could have been

illustrated for regulating torque-dependant or acceleration-

dependant functions. Similarly to a basic, non prioritized

regulation control, it is not well adapted to time-dependant

functions, for instance when trying to track a reference tra-

jectory. The proposed algorithm for prioritizing inequality-

constrained Least Squares problems remains nonetheless a

general tool that may serve in contexts other than kinematic

control.

This generalized framework comes at the cost of replacing

an equality-constrained Least Squares optimization at every

priority stage with an inequality-constrained one. The com-

plexity of the algorithm remains polynomial but the perfor-

mance will be subject to how well the inequality constraints

are handled by the Quadratic Program solver. A control

problem is a time-continuous one, therefore keeping track of

the saturated inequalities after a control iteration is a valuable

information for predicting the saturated set of the following

iteration and saving time. This is one of the principles of the

algorithm proposed by [18]. We plan to investigate in this

direction to further lower the computational costs.
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de Paris, France, in 2005. He obtained a Master
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