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Abstract—The purpose of this study is to investigate data clus-
tering to determine representative patterns in three-dimensional
(3D) knee kinematic data measurements. Kinematic data are
high-dimensional vectors to describe the temporal variations of
the three fundamental angles of knee rotation during a walking
cycle, namely the abduction/adduction angle, with respect to
the frontal plane, the flexion/extension angle, with respect to
the sagittal plane, and internal/external angle, with respect to
the transverse plane. To offset the curse of dimensionality,
inherent to high dimensional data pattern analysis, the method
reduces dimensionality by isometric mapping without affecting
information content. The data thus simplified is then clustered
by the DBSCAN algorithm. The method has been tested on a
large database of 165 healthy knee kinematic data measurements.
Clusters are validated in terms of the silhouette index, the
Dunn index, and connectivity. Results show that a two-cluster
characterization of the kinematic knee data in each plane is quite
effective. A further clinical investigation shows that the men and
women knee patterns are balanced between the two clusters and,
for 80% of participants, the right and left knees are in the same
cluster.

I. INTRODUCTION

The interpretation of knee kinematic during locomotion is

a subject of increasing interest in biomechanics research. The

purpose is to evaluate e knee function objectively [1] so as to

understand pathological knee alterations [2]. A characteriza-

tion of knee kinematic data by a few representative patterns

can inform on an individual’s locomotion function [3] and thus

assist in the diagnosis of normal gait, also called asymptomatic

gait. The kinematic data of the knee describe the three angles

between the tibia and femur in 3D space corresponding to

flexion/extension in the sagittal plane, abduction/adduction in

the frontal plane and internal/external rotation in the transverse

plane. These data suffer from significant variability and also

from the curse of dimensionality [4] due to their high dimen-

sionality (Fig. 1). Most studies have used simple descriptions

of the pathological classes, such as the mean of available gait

data, or locally determined information, and have followed

with clustering, including hierarchical [5], c-means [6], and

fuzzy clustering [7]. In general, summarizing data by local

information and average values, has led to poor interpretations.

Some studies [8] have sought better interpretations by using

global information in the form of kinematic curves.
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Fig. 1. 3D knee kinematic curves. Each curve represents a subject from
the database : (a) Flexion/Extension, (b) Adduction/Abduction and (c) Inter-
nal/external rotation.

In this paper, we investigate density-based spatial clustering,

namely the BDSCAN algorithm, of knee kinematic measure-

ments curves to extract representative kinematic data curve that

characterizes healthy gait of locomotion. Prior to clustering,

and to offset the curse of dimensionality [4], the dimension

of the data space is significantly reduced, while preserving

the data descriptive content, by a nonlinear isometric mapping

which preserves geodesic distances between clustered data.

The method has been tested for each of the three measurement

planes separately, namely the sagittal, frontal, and transverse
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Fig. 2. Bloc diagram of the proposed knee kinematic clustering method.

planes. Cluster divisions of the data are evaluated using the

silhouette index, the Dunn index, and connectivity. Results

show that a two-cluster characterization of the kinematic

knee data in each plane is quite effective. A further clinical

investigation shows that the men and women knee patterns are

balanced between the two clusters and for 80% of participants,

the right and left knees are in the same cluster.

The remainder of this paper is organized as follows: Section

II describes the method in its main functional steps, including

dimensionality reduction, clustering, and cluster validation.

The experimental results and a discussion are provided in

Section III. Section IV contains a conclusion.

II. METHOD

The functional diagram of the knee kinematic data cluster-

ing method in this study is illustrated in Fig. 2. Following

data collection and preprocessing (Section II-A), the proposed

framework consists of three main steps: the first consists of

nonlinear dimensionality reduction using an isometric map-

ping (Section II-B). This is followed by clustering of the

kinematic data of reduced dimension, which includes the

estimation of the number of clusters (Section II-C), clustering

proper (Section II-D) and cluster validation (Section II-E). The

resulting clusters are described based on clinical interpretation

(Section III).

A. Data collection and preprocessing

3D knee kinematic data measurements consist of vectors

that describe the temporal variation, during a full gait cycle of

locomotion, of the three fundamental angles of knee rotation,

i.e., the knee angles with respect to the sagittal, frontal, and

transverse planes (Fig. 1). The data collection was performed

using a state-of-the-art KneeKG acquisition system [9]. For

each participant, the positional angles are recorded during

about 45 sec on a treadmill. A total of 90 subjects (49

females and 41 males) were recruited: 83 from The Hospital

Maisonneuve-Rosemont (HMR) and 7 from the Laboratoire

de recherche en imagerie et orthopdie (LIO). Kinematics was

analyzed on both knees of the 83 HMR subjects, and on

one knee of the 7 LIO subjects. 8 of the HMR analyses

(6 right knees and 2 left knees of different subjects) were

excluded because of calibration errors or instability of the

KneeKG giving measurements from a total of 165 knees. A

mean kinematic pattern per subject was obtained by averaging

the 15 most repeatable gait cycles. The knee rotation curves,

defining the motion of the tibia relative to the femur, were

then normalized from 1 to 100% of the average gait cycle.

Data normalization was followed by outliers removal.

B. Dimensionality reduction

Dimensionality reduction has been performed using isomet-

ric mapping (IsoMap), a nonlinear dimensionality reduction

method based on spectral theory. The main idea of IsoMap

consists of performing a multidimensional scaling in the

geodesic space in order to find the low-dimensional mapping

that preserves the pairwise distances. The geodesic distance,

which is the shortest path along the curved surface of the

manifold, is approximately based on the nearest neighborhood

graph [10].

C. Estimation of the number of clusters

The number of clusters is determined based on two criteria:

the Bayesian information criterion and the intra-cluster varia-

tion using the Elbow method.

1) Bayesien information criterion (BIC): The Bayesian

information criterion (BIC) is given by the general expression

Kass and Wasserman [11]:

BIC = L(θ)−
1

2
m log n (1)

where L(θ) is the log-likelihood function of data θ according

to each model, m is the number of clusters and n is the size

of the dataset? In our case θ corresponds, in each plane, to the

knee kinematic data. The knee point in the BIC curve, which

corresponds to the local maximum with highest probability is

used to approximate the number k of clusters.

2) The Elbow method: This method searches the optimal

number of clusters by minimizing the total intra-cluster vari-

ation (or the total within-cluster sum of the square) [12]:

min(
K∑

k=1

W (Ck)) (2)

where Ck is the k th cluster and W (Ck) is the within-cluster

variation.
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D. Clustering using DBSCAN algorithm

DBSCAN (density-based spatial clustering of applications

with noise) is the pioneer of the density-based clustering

family [13], which considers clusters as dense regions sep-

arated by low-density regions. DBSCAN is able to detect

clusters of arbitrary shapes in the presence of noise and does

not need the number of clusters as a prior knowledge. The

DBSCAN algorithm basically requires two parameters: the ǫ-

neighborhood which is the minimum distance between two

points and the MinPts which is the minimum number of

points to form a dense region. The choice of these parameters

can be guided by the estimation of the number of clusters.

E. Cluster Validation

The cluster validation has been performed in terms of

connectivity, Dunn index, and silhouette index.

1) Connectivity : Given a particular clustering partition

{C = C1, ..., CK} of the N observations into K disjoint

clusters, the connectivity verifies the existence of the nearest

neighbors elements in the same cluster CK . This measure is

also considered as the degree of clusters connectedness [14].

The connectivity takes its values between 0 and infinity, the

minimum values are privileged.

2) Dunn Index: The Dunn index is described by [14]:

Dunn =
min1≤i≤j≤K d(Ci, Cj)

max1≤i≤K |Ci|
(3)

where d(Ci, Cj) is the distance between clusters Ci and Cj

and |Ci| is the size of the cluster Ci. Dunn index evaluates

the partitions while taking into account the distribution of

objects inside classes as it is the ratio of minimum inter-cluster

distance and the maximum cluster size. Larger Dunn index

values are explained by a better clusters separation (high inter-

cluster distances) and a compact cluster (small cluster sizes).

3) Silhouette index: The silhouette value for the ith object

xi, is defined as:

S(xi) =
b(xi)− a(xi)

max a(xi), b(xi)
(4)

where a(xi) represents the average distance between the object

xi and all objects belonging to the same cluster of xi , b(xi)
is the smallest average distance of xi to all points in the

other cluster. The silhouette value ranges from -1 to +1. A

high silhouette value indicates that the sample has been well

clustered, if most points have a high silhouette value, then

the clustering solution is appropriate. If s(xi) is negative, the

sample has been misclassified, then the clustering solution

may have either too many or too few clusters. The silhouette

clustering evaluation criterion can be used with any distance

metric.

F. Statistical analysis

We performed a statistical analysis to examine the dif-

ferences between the identified patterns using a t-test. The

implementation of this statistical processing was done via

SPSS 20.0 (Statistical Package for Social Sciences)1. A P-

value of 0.05 was set as the criterion for statistical significance.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We implemented all aspects of knee kinematic data clus-

tering including the non-linear dimensionality reduction using

Isometric mapping, the number of clusters, the clustering using

DBSCAN and cluster validation. The determined clusters are

analyzed based on a clinical interpretation (Section III).

A. Estimation of the number of clusters

Fig 3 illustrates the curve of BIC and Elbow for flex-

ion/extension (Fig 3 (a)), abduction/adduction (Fig 3 (b)), and

internal/external rotation (Fig 3 (c)). In all cases, the optimal

value of k is situated in the interval [2, 4]. Indeed, from k = 2,

the BIC tends to change slowly and remain less changing as

compared to other k’s. Therefore, we limited the number of

clusters to k = 2 for knee kinematics pattern identification.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Flexion/Extension

Elbow

Bic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) Adduction/Abduction

Elbow

Bic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of cluster

(c) Internal/external Rotation

Elbow

Bic

Fig. 3. Estimation of clusters number

B. Dimensionality reduction and clustering

Table I summarizes the DBSCAN parameters tuning and

the cluster validation criteria, i.e., the silhouette, Dunn index,

and cluster connectivity. These values show the effectiveness

of the dimensionality reduction and clustering methods.

C. Knee kinematic pattern description

Once the clusters are formed, knee kinematic patterns are

obtained by averaging the elements of each cluster. Fig. 4

shows the mean of each cluster describing the knee gait

pattern. The analyses of the flexion/extension patterns of the

Fig. 4 (a) show that the extremum amplitudes of the two

clusters are observed at the same times: the maximum of the

stance phase (14% of the GC), minimum of the stance phase
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TABLE I
EFFECTIVENESS OF THE METHOD USING DIMENSIONALITY REDUCTION

AND CLUSTERING

Parameters
tuning

Cluster validation criteria

Planes ǫ MinPts Connectivity Dunn index Silhouette

Sagittal 13 5 0 1,1e+16 1

Frontal 1 5 0 1,3e+16 1

Transverse 12 5 0 1.4e+16 1

(50% of the GC), and the maximum the swing phase (80%
of the GC). However, a shift of about 10◦ is observed at the

initial contact (1% of the gait cycle) and during the stance

phase (1% − 60% of the GC). The offset decrease during

the swing phase. Statistical analysis shows that there is a

significant difference between these two patterns except during

the initial swing and mid swing phase (66% to 86% of the

GC). Figure 4 (b) shows that the two identified patterns of the

sagittal plan are different. This is confirmed by the statistical

analysis which shows a significant difference during all the

gait cycle. The two patterns of internal/external rotations (Fig.

4 (c)) are much more offset during the swing phase : The first

pattern (Pattern 1) describes individuals a more rotated knee

during the swing phase than the second pattern (Pattern 2).
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Fig. 4. Knee kinematic pattern

Moreover, we performed a gender-based analysis which

shows that the men and women knee patterns are balanced

between the two clusters in all of the three planes. Also,

for 80% of participants, the right and left knees have been

regrouped in the same cluster. This result could be of a very

important clinical usefulness because, usually, in a surgical

situation, the pathological knee is treated based the counter

lateral knee.

IV. CONCLUSION

This study investigated nonlinear data dimensionality re-

duction and density-based clustering to determine knee kine-

matic data representative patterns of healthy knee gait. The

analysis identified two representation patterns for each of the

flexion/extension (sagital plane), Adduction/abduction (frontal

plane) and the tibial internal/external rotation (transverse

plane). Clustering quality is evaluated via general criteria,

namely the silhouette width, Dunn index, and connectivity. For

further understanding, the study can be extended to bi-plan and

tri-plan analysis, i.e., the analysis of the combination of the

abduction/adduction, flexion/extension, and internal/external

kinematic data simultaneously.
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