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The octopus arm is a muscular hydrostat and due to its deformable and highly flexible

structure it is capable of a rich repertoire of motor behaviors. Its motor control system uses
planning principles and control strategies unique to muscular hydrostats. We previously

reconstructed a data set of octopus arm movements from records of natural movements

using a sequence of 3D curves describing the virtual backbone of arm configurations. Here
we describe a novel representation of octopus arm movements in which a movement is

characterized by a pair of surfaces that represent the curvature and torsion values of points
along the arm as a function of time. This representation allowed us to explore whether the

movements are built up of elementary kinematic units by decomposing each surface into a

weighted combination of 2D Gaussian functions. The resulting Gaussian functions can be
considered as motion primitives at the kinematic level of octopus arm movements. These

can be used to examine underlying principles of movement generation. Here we used

combination of such kinematic primitives to decompose different octopus arm movements
and characterize several movement prototypes according to their composition. The

representation and methodology can be applied to the movement of any organ which
can be modeled by means of a continuous 3D curve.
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INTRODUCTION

Octopuses are considered to be among the most developed and

intelligent animals in the invertebrate kingdom, where at least

part of their skills can be attributed to the high maneuverability

of their arms and the capacity of the peripheral nervous system

to process sensory information and control arm movements. The

octopus uses its arms for various tasks such as locomotion, food

gathering, hunting, and sophisticated object manipulation (Wells

and Wells, 1957; Fiorito et al., 1990; Mather, 1998). The versa-

tile and adaptive nature of octopus movements is mainly due

to the flexible nature of the octopus arms which do not con-

tain any rigid skeleton. The octopus arm is a muscular hydrostat

built of closely packed arrays of muscle fibers organized in three

main muscle groups: parallel, perpendicular, and helical that runs

obliquely to the long axis (Matzner et al., 2000). A constant vol-

ume constraint that holds for muscular hydrostats allows forces to

be transferred between the longitudinal and the transverse mus-

cle groups. The movements of a muscular hydrostat are based on

combinations of four elementary movements that can occur at

any location: elongation, shortening, torsion, and bending (Kier

and Smith, 1985). Therefore, both structural support and force

transmission are achieved through the arm’s musculature, such

that the biomechanical principles governing octopus arm move-

ments differ from those operating in arms with a rigid skeletal

support.

The octopus nervous system is divided into a central and

peripheral nervous systems. Axial nerve cords are projecting from

the brain along the center of each arm, and the peripheral neurons

located in the axial nerve cords are organized into an exten-

sive nervous system comprising both sensory and motor circuits

(Young, 1971). Behavioral studies suggest that the nerve cord

circuitry and the peripheral components play a major role in

the control of the complex actions performed by octopus arms

(Altman, 1971; Wells, 1978).

Analyses of octopus reaching (Gutfreund et al., 1996, 1998;

Sumbre et al., 2001; Yekutieli et al., 2005a,b) and fetching

movements (Sumbre et al., 2001, 2005, 2006) have revealed

some control principles that underlie movement generation.

During reaching a bend point propagates along the arm fol-

lowing an invariant velocity profile. Fetching movements use a

vertebrate-like strategy, reconfiguring the arm into a stiffened

quasi-articulated structure. These movements were studied by

analyzing the kinematics of the movements of specific points

along the arm which display several stereotypical characteristics.

Electromyographic recordings and detailed biomechanical simu-

lations assisted in revealing common principles which reduce the

complexity associated with the control of these movements. The

travelling bend, used in arm extension movements, was found to

be associated with a propagating wave of muscular activations,

where simple adjustments of the excitation levels at the initial
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stages of the movement can set the velocity profile of the whole

movement. Recently, a soft robotic arm inspired by the octopus

arm has been designed in order to reproduce the octopus tentacle

motor performance and to examine the possibility for the imple-

mentation of motor control principles identified in the octopus

as part of its control (Laschi et al., 2009; Calisti et al., 2011).

However, describing the movements of specific points along

the arm is insufficient for analyzing the full complexity of octo-

pus arm movements. To determine whether the kinematics of

octopus arm movements can be described by a reduced set of

motion primitives requires analysis of different types of arm

movements and of the shape of the entire arm as it moves through

space. Motion primitives can be regarded as a minimal set of

movements, which can be combined in many different ways

giving rise to the richness of vertebrate and invertebrate move-

ment repertoires and allowing motor learning of new skills (Flash

and Hochner, 2005; Bizzi et al., 2008). Motor primitives have

been inferred at various levels of the motor control system. Sub-

movements were shown to be combined at the kinematic level

(Krebs et al., 1999; Rohrer et al., 2002), a reduced set of static

force field underlie controlling arm posture (Mussa-Ivaldi and

Bizzi, 2000; d’Avella et al., 2003, 2006), while movement dynamics

can be learned through a flexible combination of dynamic prim-

itives (Thoroughman and Shadmehr, 2000). Dynamical move-

ment primitives were also used to model attractor behaviors of

autonomous non-linear dynamical systems and rhythmic move-

ments (Ijspeert et al., 2002, 2013), and discrete and rhythmic

movement elements were used to investigate single-joint and

multi-joint motor behaviors (Sternad et al., 2000; Sternad and

Dean, 2003). Inferring motion primitives from octopus arm

movements may help understand underlying principles and kine-

matic optimal measures, and provide new understanding of how

the nervous system in muscle hydrostats handles the complexi-

ties associated with the control of hyper-redundant arms. This

may also facilitate designing control systems for hyper-redundant

robotic manipulators.

Here we refer to the behavioral level and aim at describing

octopus arm behaviors as being composed of elementary kine-

matic units to which we also refer to as motion primitives (Flash

and Hochner, 2005). We believe that identifying basic kinematic

patterns is the first step in further investigating the existence of

primitives also at the control, movement dynamics, and muscle

activation levels as well as the neural control levels as was demon-

strated in earlier studies of the octopus motor system (Gutfreund

et al., 1996, 1998; Sumbre et al., 2001, 2005, 2006; Yekutieli et al.,

2005a,b). As was discussed in Flash and Hochner (2005) elemen-

tary building blocks may exist at all the above levels of motor

representation but the most immediate and direct way is to search

for elementary units at the kinematic level. Movement strokes

with specific spatial and temporal features and submovements

were shown to successfully describe both periodic and discrete

motions and were indicated as plausible building blocks of human

and monkey movements (Sosnik et al., 2004; Polyakov et al.,

2009). Furthermore, in robotics research locomotion trajecto-

ries for a humanoid robot were constructed based on kinematic

motion primitives derived from humans’ locomotion trajecto-

ries (Moro et al., 2011, 2012). Relations between behavioral

and control levels were suggested in different earlier studies, for

example: hand trajectories of stroke patients were shown to be

composed of submovements with velocity primitives obeying the

minimum jerk model (Flash and Hogan, 1985) whose number

was found to decrease as the patients gained better control of their

limb (Rohrer et al., 2004), simple curved two-dimensional trajec-

tories that follow the two-third power law (Lacquaniti et al., 1983)

were described by means of parabolic units and corresponded to

neural activation states identified using a hidden Markov Model

(Polyakov et al., 2009). Another example consists of grasping and

object manipulation movements described as arising from well-

coordinated combinations of basic motor actions-arm transfer

and hand shaping (Jeannerod, 1994).

An algorithm for 3D tracking and analysis of octopus arm

movements (Yekutieli et al., 2007; Zelman et al., 2009) enabled

us to create a large database of many types of modeled octopus

arm movements. Here we describe a new framework allowing

the extraction of kinematic units from these reconstructions.

The octopus arm movements were represented by a pair of sur-

faces describing the curvature and torsion values of the arm. 2D

Gaussians for each surface were extracted such that each Gaussian

represented the characteristic shape of the curvature or torsion

along a section of the octopus arm during some time interval. We

found that Gaussian functions generally fit quite well the contin-

uous form of the configurations that the octopus arm can take

with respect to both the time and the arm index dimensions: the

curvature and torsion values were observed to change smoothly

along the arm length for any quasi-static arm configuration, and

the magnitude of curvature or of torsion at any specific point was

gradually changing with time during the movement. Gaussian-

like functions were previously used in composing hand velocity

(Thoroughman and Shadmehr, 2000) and limb position profile

(Hwang et al., 2003).

The resulting Gaussians were divided into clusters whose cen-

troids defined kinematic units, and each movement was repre-

sented as a weighted combination of such units. These kinematic

units can be used to form a language of motion primitives, allow-

ing characterization and representation of a large repertoire of

octopus arm movements. We show how these kinematic units

can be used to classify octopus arm movements into meaningful

groups. Understanding how kinematic primitives can be utilized

and combined can greatly contribute not only to studies of motor

control in octopus arms and other hyper-redundant appendages

but can also provide a deeper understanding of motor control

systems in general.

METHODS

The analyzed octopus arm movements in our study were per-

formed by four specimens of Octopus vulgaris, weighing 200

(female), 200 (male), 450 (male), and 470 (female) g. The animals

were maintained in 50 × 40 × 40 cm tanks containing artificial

seawater. The water was circulated continuously in a closed sys-

tem through a biological filter of Orlon, gravel and coral dust.

Water temperature was held at 16◦C in a 12 h light/dark cycle.

Prior to the video recording sessions, the animals were moved to

a bigger glass tank (80 × 80 × 60 cm) with a water temperature

of 18◦C.
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SPATIO-TEMPORAL REPRESENTATION OF MOVEMENT AS A PAIR OF

CURVATURE AND TORSION SURFACES

Since the octopus arm displays no well-defined landmarks, a

skeletal representation can be naturally used to model the octopus

arm using curves which prescribe its virtual backbone. The back-

bone was found using a “grass fire” algorithm that extracts the

middle line of the arm: first the contour of the arm is separated

into two sides, dorsal and ventral, from base to tip. Then two dis-

tinct waves are initiated from the two sides of the contour and are

propagated at an equal speed inward. The set of points where the

wave fronts collide is the midline (Yekutieli et al., 2007).

The reconstructions of octopus arm movements result in a

sequence of 3D curves prescribing the virtual backbone of the

octopus arm as its configuration changes during the movement.

Figure 1 presents an extension movement as a sequence of 60 3D

curves that prescribe the virtual backbone during the move-

ment. For each curve, green, and red points mark the base of

the arm (that was aligned between sequential images using tex-

tural cues) and the tip, respectively. Given a sequence of m

3D curves as an input, we wished to construct a pair of sur-

faces describing the values of the curvature and torsion along

these curves. Since arm configurations were reconstructed from

video records whose sample rate was 50 frames/s, the smoothness

of the motion between consecutive configurations of a move-

ment was guaranteed, and a spline function was used to smooth

noisy points as necessary (Yekutieli et al., 2007; Zelman et al.,

2009).

Each 3D curve was first represented by (n = 100) sample

points uniformly distributed along the curve. This 3D curve was

then approximated by a cubic smoothing spline constructed of

FIGURE 1 | A spatio-temporal profile of an extension movement

shown as a sequence of the virtual backbone of quasi-static arm

configurations. The presented 3D curves are the result of the

reconstruction process in which the virtual backbone prescribing the

octopus arm is detected (see section spatio-temporal representation of

movement as a pair of curvature and torsion surfaces). The virtual backbone

was found by a “grass-fire” algorithm, green and red points mark the base

of the arm (that was aligned between sequential images using textural

cues) and the tip respectively (Yekutieli et al., 2007).

piecewise third-order polynomials passing through the n sample

points. Approximation was achieved, by considering both the

smoothness of the spline and the distance between the spline and

the sample points. Formally, given the data site x(j) and the cor-

responding data values y(j) for j = 1, . . . , n, the cubic smoothing

spline f minimizes:

p

n
∑

j = 1

∣

∣y(j) − f (x(j))
∣

∣

2 + (1 − p)

∫

∣

∣D2f (t)
∣

∣

2
dt,

where the integral over the second derivative of f is over the small-

est interval containing all the entries of x. The smoothing param-

eter p defines the tradeoff between the success in approximating

the data points and the smoothness terms.

We then calculated the curvature (κ) and torsion (τ) values for

the n sample points along each of the 3D curves. The curvature

was calculated using the circle passing through three successive

points as an approximation of the osculating circle to the curve

at the middle point. This is formally described by Calabi et al.

(1998): Let A,B,C be three successive points on the curve C such

that the Euclidean distances are a = d(A,B), b = d(B,C), c =
d(A,C). Let � denote the area of the triangle whose vertices are

A,B,C, and let s = 1
2 (a + b + c) denote its semi-perimeter, so that

� = √
s(s − a)(s − b)(s − c). Then the radius of the circle pass-

ing through the points A,B,C is computed leading to the formula

for its curvature:

κ(A, B, C) = 4

√
s(s − a)(s − b)(s − c)

abc
.

In this study we will use the word curvature as the inverse of the

radius of curvature.

The torsion along a 3D curve, defined as τ = dθ
dt , was cal-

culated for a pair of successive points as the angle between the

normals to the planes defined by the successive triangles corre-

sponding to these points, divided by the distance between the

points (Boutin, 2000). Let A,B,C,D,E be five successive points on

the curve such that n̂ABC and n̂CDE are the normals to the planes

defined by A,B,C and C,D,E respectively, and the Euclidean dis-

tance between points B and D is d(B,D). Then the torsion at point

C is calculated as:

τ (C) = cos−1(n̂ABC · n̂CDE)

d(B, D)
.

Finally, the curvature and torsion values calculated for a sequence

of 3D curves were represented on two surfaces that separately

described the curvature and torsion as a function of time and arm

index. The result was a pair of smooth and normalized curvature

and torsion surfaces, such that a single arm movement was com-

pactly represented by a pair of n by n matrices. This representation

was invariant to rotation and translation in a Cartesian coordinate

system, as curvature and torsion measures are intrinsic (i.e., they

do not depend on the orientation and position of the arm in 3D

space).

Figure 2 presents the curvature and torsion surfaces for the

extension movement presented in Figure 1. The relatively high
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FIGURE 2 | Curvature and torsion surfaces extracted for the movement shown in Figure 1. The values are given as a function of the arm index and time.

values of the curvature surface generally describe propagation of

a bending section from the middle of the arm toward the tip. The

decrease in the torsion values as the movement proceeded means

that the arm configuration became relatively planar.

SURFACE DECOMPOSITION USING GMM

Gaussian Mixture Model (GMM) is a statistical method for

density estimation and data clustering (McLachlan and Peel,

2000). In this model a Gaussian fitting method can be used

to approximate a function of one variable by a weighted

sum of 1-dimensional Gaussians. As GMM is a generalized

framework, it can approximate any multidimensional data by

a set of multivariate Gaussians. The model uses an itera-

tive process which optimizes the Gaussians’ parameters by

the Expectation Maximization (EM) algorithm (Xuan et al.,

2001).

A function of one variable (y = f (x)) can usually be approx-

imated by a mixture of 1D Gaussians, where each Gaussian is

defined by its mean and standard deviation. In our case, we refer

to a surface as a function of two variables z = f (s,t), where z

stands for either the curvature or torsion values, and s,t refer to

the arm index and time dimensions, respectively. We therefore use

2D GMM to approximate a surface by a weighted combination of

2D Gaussians. Specifically, a surface is approximated as:

z(s, t) =
∑

i

wi · g[µi,�i](s, t),

where g is a Gaussian defined by a 2 × 1 mean vector µ and 2 × 2

covariance matrix �, and w is the Gaussian weight. The Gaussian

g is defined as:

g[µ,�](�x) = 1

2π |�|1/2
exp

(

− (�x − µ)T�−1(�x − µ)

2

)

,

where �x =
∣

∣

s
t

∣

∣. The mean vector µ corresponds to the position

of the Gaussian center on the surface, and the two eigenvalues of

the covariance matrix � correspond to the standard deviation

of the 2D Gaussian. Its two eigenvectors correspond to the axes

of the Gaussian with respect to a fixed coordinate system, such

that the covariance matrix defines the shape and orientation of

the Gaussian.

We also added a criterion to choose the right number of

Gaussians into which each surface should be optimally decom-

posed, based on the Minimum Description Length (MDL) prin-

ciple. The MDL descriptor to be minimized here is the Bayesian

Information Criterion (BIC), as developed by Andrews and Lu

(2001):

BIC = −2 · L + d · log(n)

where L is the log likelihood of the mixture of Gaussians, d is

the number of parameters in the model (number of degrees of

freedom) and n is the number of observations in the sample.

The BIC criterion allows choosing the most parsimonious model,

i.e., the model which best describes the data with respect to the

number of Gaussians it uses for the decomposition. [See also

Bhat and Kumar (2010) for a more detailed derivation of the BIC

formula].

Figure 3 shows the approximation of a curvature surface

by a weighted combination of four Gaussians. Intuitively, each

Gaussian can be illustrated as a hill, whose center, shape, orien-

tation, and height are defined by the Gaussian parameters. The

decomposition into 2D Gaussians allows us not only to explore

Gaussians as possible units enabling to define the kinematics

of octopus arm movements, but also to compactly represent a

surface as a weighted sum of 2D Gaussians.

CLUSTERING ALGORITHM

The GMM allows us to decompose octopus arm movements

into curvature and torsion 2D Gaussians which describe their

kinematics. We refer to each of the resulting Gaussians as a

data point, whose dimension corresponds to the number of

parameters defining a Gaussian (section surface decomposition

using GMM). To cluster these points (i.e., the 2D Gaussians)
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FIGURE 3 | Gaussian Mixture Model of the curvature surface of an extension movement. (A) The input surface. (B) The resulting mixture of Gaussians.

into meaningful groups we used the kmeans clustering algo-

rithm which is an unsupervised clustering method. The output

of the kmeans algorithm is k disjoint clusters, where each cluster

includes a different number of points and is represented by a cen-

troid that can be regarded as the average of all the points assigned

to the cluster. kmeans uses a two-phase iterative algorithm to

yield a clustering result which minimizes the point-to-centroid

distances summed over all k clusters.

The distance usually employed for kmeans is the Euclidean

distance (Hastie et al., 2009), but here we want to improve

the clustering from two points of view. First, we designed a

Weighted Euclidean Distance, i.e., for each of the parameters of

the Gaussians—center, shape, area, and orientation, we separately

computed the Euclidean distance among the different elements

of the sample. We then got four distances, each being related to

one of the four parameters. The quantity to be minimized in the

kmeans algorithm at each step is then an average of these four dis-

tances. Second, we used the Gap-Statistics (Tibshirani et al., 2001)

as a criterion of the optimal number of clusters to be used. Gap-

Statistics compares the within-clusters distance of the distribution

(given by kmeans) to the within-distance W∗
kb of a Monte–Carlo

sample drawn within the range of the reference distribution. This

criterion was used for example by Ben-Hur et al. (2002) and

Pedersen and Kulkarni (2006). The idea of this approach is thus to

compare the graph of log(Wk) (log of the within-cluster distance)

with its expectation under an appropriate null distribution. The

mathematical rationale of this approach is explained in greater

detail by Tibshirani et al. (2001). Defining B as the number of

generated data sets, the Gap-Statistics is expressed as:

Gap (k) = 1/B

B
∑

b = 1

log
(

W∗
kb

)

− log(Wk)

The optimal number of clusters is the minimal k which gives a

local maximum of the Gap.

RESULTS

Our data set consisted of 60 reconstructions of octopus arm

movements that included extension movements. Extension in the

octopus arm is generally characterized by a bend propagating

along the arm (Figure 11). Some of these extension movements

were preceded by initialization movements, referred to as pre-

extension movements, in which the octopus arm moved from an

initial random position to a configuration that seemed to be ideal

for the extension (Figure 12).

Careful examination of the video sequences allowed us to

define start- and end-points of the extension phase as charac-

terized in earlier studies (Gutfreund et al., 1996, 1998). In an

extension movement, a bend is created usually near the base of

the arm and is propagated along the arm toward the tip where

it vanishes, while the base of the arm points in the direction of

propagation. A pre-extension movement is generally defined as

a movement in which an arbitrary configuration of the arm is

reconfigured to an initial extension configuration. Based on these

observations we initially divided our data into 25 pre-extension

and 60 extension movements. In order to characterize sets of

kinematic units and determine synthetic rules allowing recon-

struction of the observed movements, we next decomposed the

movements into curvature and torsion Gaussian units (as defined

in section surface decomposition using GMM) and analyzed these

units as described below. Since each movement was defined by

a specific combination of kinematic units, we could classify the

movements into sub-groups, such that all the movements in a

sub-group were defined by a combination of similar kinematic

units. In order to explain the different phases of the movement

analysis as clearly as possible we focus here mainly on the group

of extension movements.

DECOMPOSITION AND CLUSTERING OF KINEMATIC UNITS

Curvature and torsion surfaces were extracted for all the octo-

pus arm movements in our database (see section spatio-temporal

representation of movement as a pair of curvature and torsion
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surfaces). The curvature and torsion values at the tip of the

arm could be very high (and sometimes noisy) relative to the

values along the proximal and middle parts of the arm and

were, therefore, analyzed separately. The resulting surfaces were

approximated using the GMM, yielding decompositions of each

curvature/torsion surface into 2D Gaussians units (see section

surface decomposition using GMM). These units were found to

naturally describe the surfaces, as each unit essentially described

bending or torsion along a defined section of the arm and its

movement along the arm as function of time.

A set of 2D Gaussians was assembled as a set of kinematic units

separately for the pre-extension and extension movement groups.

A set of Gaussians can be variously clustered by referring only

to a subset of the parameters defining the 2D Gaussians, namely

the center location, size, shape and orientation (see section clus-

tering algorithm). These parameters were easily extracted from

the mean and covariance matrix of a 2D Gaussian; the coordi-

nates of the Gaussian center on the surface (i.e., the time point

and the arm index at which the Gaussian reached its maximum)

were directly defined by the Gaussian mean. The orientation of

the Gaussian (the angle between the Gaussian axes and the axes

of the fixed coordinate system) was defined by the eigenvectors of

the Gaussian covariance matrix. The projection of the Gaussian

on the plane was an ellipse whose size and eccentricity were

defined by the eigenvalues of the covariance matrix and the ratio

between them. Finally, the relative influence of the Gaussian in the

decomposition in which it participated was defined by its weight.

The clustering results presented here were obtained by referring

to the Gaussian’s center location (Gaussian mean), Gaussian’s

shape (ratio between the eigenvalues of the Gaussian’s covariance

matrix), and Gaussian’s weight.

Figure 4 presents the clustering results obtained for the cur-

vature and torsion Gaussians of the 60 extension movements.

Gaussians marked by the same color belong to a single cluster.

Executing kmeans with the Gap-Statistics method (section clus-

tering algorithm) resulted in three clusters both for the curvature

and torsion Gaussians. Coordinates of the centroids of the various

clusters are presented in Table 1.

These results essentially suggest that all the Gaussians com-

posing the curvature and torsion surfaces of the extension move-

ments can be classified into three types according to the values

of the Gaussian’s center location and shape. Explicitly, the blue

curvature cluster (Figure 4 left) represents curvature Gaussians

defining curvature along the proximal section of the arm during

the movement. Examining the orientation of these Gaussians as

defined by the eigenvectors of their covariance matrices shows that

there was a relatively small angle between each of the Gaussian

axes and the axes of the arm-index—time coordinate system

(Table 2), that is, the internal Gaussian axes almost aligned with

the direction of the arm-index and time axes. This characteristic

means that the section of the arm to which these Gaussians relate

did not change during the movement; we therefore term them

“fixed” Gaussians. We suggest that these Gaussians correspond to

movements used to aim the base of the arm toward a target point

during the extension movement (see discussion below).

The green and magenta clusters represent curvature Gaussians

that travel toward the tip of the arm during the extension and

are probably associated with the main characteristics of the bend

FIGURE 4 | Clustering results for the curvature (left) and torsion (right) Gaussians that were extracted from a group of 60 extension movements by

GMM. The arm index and time coordinates of each cluster centroid are given in Table 1.
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Table 1 | The arm index and time coordinates of the cluster centroids shown in Figure 4.

Centroids of curvature Gaussians Centroids of torsion Gaussians

Cluster no. Arm index coordinate Time coordinate Cluster no. Arm index coordinate Time coordinate

1 (green) 0.4627 0.1574 1 (green) 0.2687 0.2463

2 (magenta) 0.6647 0.4502 2 (magenta) 0.6245 0.3288

3 (blue) 0.1355 0.4543 3 (blue) 0.4061 0.7207

Table 2 | The mean (µ), median (µ1/2) and standard deviation (σ) for the orientation values (in degree) of the resulting curvature and torsion

clusters shown in Figure 4.

Orientation of curvature Gaussians Orientation of torsion Gaussians

Cluster no. µ µ1/2 σ Cluster no. µ µ1/2 σ

1 (green) 45.8 28.8 42.6 1 (green) 21.4 8.3 31.1

2 (magenta) 40.4 31 35.9 2 (magenta) 32.2 22.3 30.5

3 (blue) 19.9 11.2 24.2 3 (blue) 39.4 29.2 35.7

propagation in extension movements. The mean orientation of

each of these clusters is significantly larger compare with the blue

cluster that refers to the base of the arm (Table 2). A similar

interpretation is valid for the resulting clusters of the torsion

Gaussians, where the green and magenta clusters refer to torsion

Gaussians in the early stage of a movement, and the blue clus-

ter refers to torsion Gaussians at the end of movement. Table 2

presents the median, mean and standard deviation of the orienta-

tion values of the resulting clusters. These findings are supported

by earlier analyses and simulations of the stereotypical character-

istics of an extension movement (Gutfreund et al., 1998; Yekutieli

et al., 2005b).

SYNTHESIZING ARM BEHAVIORS FROM KINEMATIC UNITS

The 2D Gaussians were clustered by the kmeans algorithm based

on their mean vector and covariance matrix values. The centroid

point of each cluster represented the center of the cluster, i.e.,

the point giving the minimum sum of distances from it to all the

data points in that cluster. Since the mean vector and covariance

matrix which define a Gaussian as a data point also apply to the

centroid point, a centroid point essentially defines a representa-

tive Gaussian for its cluster. Each of these Gaussians has a unique

position, size and orientation, thus uniquely defining the octopus

arm movement in 3D space.

We therefore consider the curvature and torsion Gaussians

defined by the resulting centroid points as kinematic units that

can be used to generate a set of behaviors of the octopus arm.

These are local time-dependent behaviors, since they refer to a

specific section of the arm at a specific time during the move-

ment. Figure 5 presents the three curvature Gaussians (left) and

the three torsion Gaussians (right) defined by the centroid points

of the clusters found for the extension movements (Figure 4). A

curvature unit alone defines a planar arm behavior, as it defines a

change in the curvature level along a section of the arm as a func-

tion of time, with a zero value for the torsion associated with the

arm. Coupling a curvature and a torsion unit, such that both of

them refer to a common section of the arm, defines a 3D behavior.

However, a torsion unit on its own is meaningless since apply-

ing torsion on a straight line representing the backbone of the

arm has no effect on its configuration. A torsion unit has no

significant effect also when it is coupled with a curvature unit

that refers to a different section of the arm. In general, nC curva-

ture units and nT torsion units can define nC · nT 3D behaviors,

and since the nC curvature units define nC planar behaviors where

they are not coupled with any torsion unit, they can overall define

nC · (nT + 1) behaviors. Figure 6 presents some of the behaviors

that can be defined by the curvature and torsion kinematic units

extracted for the extension group (Figure 5). They are shown as

sequences of quasi-static configurations in 3D space, where the

red, black and blue curves represent the initial, intermediate and

final configurations in the sequence, respectively.

CLASSIFYING OCTOPUS ARM MOVEMENTS

The kinematic units (curvature/torsion Gaussians) extracted for

the extension and pre-extension movement groups can be used

further to classify movements in a given group into different

sub-groups according to the mixture of Gaussians composing

their curvature and torsion surfaces. Intuitively, movements that

were decomposed into weighted combinations of similar kine-

matic units were classified into the same sub-group, as they were

assumed to be characterized by a similar 3D behavior.

We represented each of the movements in our data set by a

weighted combination of the curvature and torsion kinematic

units defined for the group of movements to which the movement

belonged. That is, a movement m which was approximated by a

pair of curvature (C) and torsion (T) surfaces C = ∑

i wC
i · gC

i

and T = ∑

j wT
j · gT

j , was represented by a row vector of the

weights: �w = [
{

wC
i

}

,
{

wT
j

}

]. We applied the kmeans algorithm

(section clustering algorithm) to the set of vectors of weights

corresponding to a group of movements, such that the input to

the algorithm is a matrix of weights, where the rows correspond

to the analyzed movements and the columns to the Gaussians

that were previously identified as curvature and torsion units.
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FIGURE 5 | The curvature (left) and torsion (right) centroid Gaussians of the extension group of movements. Each Gaussian is essentially the centroid of

one of the clusters in Figure 4.

FIGURE 6 | Simulations of octopus arm behaviors in 3D space

defined by the curvature and torsion kinematic units which

were extracted for the extension movement group. These

behaviors show the characteristics of extension movements—directing

the base toward a target, initialization, and propagation of the

bend.

Each row practically defines a movement as a weighted sum of

the elementary Gaussian units (Figure 7). The kmeans algorithm

separated the movements into clusters, such that movements

belonging to the same cluster shared a similar pattern of weights.

That is, a cluster consists of movements that can be spanned by

a similar weighted sum of the available curvature and torsion

units. We therefore refer to each of the resulting clusters as a sub-

group of movements that share similar characteristics of their 3D

behavior. The centroid point of each of the resulting clusters was

considered a representative pattern of a weighted combination of

kinematic units, which defined the behavior of the sub-group of

movements in 3D space. We refer to these different behaviors as

movement prototypes.

Each of the three pairs of curvature and torsion surfaces

presented in Figure 8 is defined by a weighted combination of

kinematic units, corresponding to one of the extension sub-

groups we found by the process just described. A pair of curvature

and torsion surfaces defined a prototype which characterized

one of the sub-groups by simulating a sequence of 3D curves

whose curvature and torsion values corresponded to the values
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FIGURE 7 | The kinematic units can span the 60 extension movements.

Each movement is expressed as a weighed sum of curvature (left) and

torsion (right) units. Clustering these weights results with patterns of

weights, such that each one defines a movement prototype in this group.

given by the curvature and torsion surfaces (Figure 9). Although

the curvature surface of the first and third prototypes (Figure 8

top, bottom) share a similar topographic structure, the differ-

ence between their curvature surfaces defines prototypes with

different characteristics. Relative to the first prototype, the third

prototype (Figure 9 right) describes an extension movement in

which a higher level of torsion is observed along with the prop-

agating bend, causing the 3D configuration to deviate from the

movement plane. Furthermore, the higher weight of the proximal

curvature Gaussian results in a higher level of curvature along the

base of the arm. The values presented by the torsion surface for

the first prototype decrease during the second half of the move-

ment, meaning that the configuration of the arm tends to become

more planar as the movement progresses. For the first proto-

type (Figure 9 left) the arm section around the propagating bend,

which takes higher curvature values, creates a loop during the ini-

tial phase of the extension movement. Compared to the first and

third prototypes, in the second prototype (Figure 9 middle) the

propagating bend starts with a higher curvature value and lower

curvature values for the proximal section of the arm.

PRE-EXTENSION RESULTS

The analysis described above was also applied to the pre-extension

movement group. The movements in this group refer to the

actions that the octopus arm was observed to perform just before

the extension phase has started. The well-defined time point in

which the bend starts to propagate along the arm has been used

to define the time at which a pre-extension movement ends. The

kinematic units extracted for this group and the arm behaviors

showed some similarities but also some unique characteristics.

Figure 10 presents the single prototype that was found for pre-

extension movements. It appears to represent the initializing

phase of the arm, in which the base is directed toward a target

and the bend (which is propagated during the extension) is gen-

erated. The initialization of the bend is achieved by generating

movements corresponding to the curvature and torsion kine-

matic units on the same mid-arm section. Such dynamics may

be associated with a minimal loss of energy due to interactions

with drag forces. Computer simulations of the movements using

the dynamic model of the octopus arm (Yekutieli et al., 2005a,b)

will help to further explore and characterize this prototype with

respect to muscle activation and energy expenditure.

DISCUSSION

By carefully watching the octopus arm movements in video

sequences and identifying the time points bounding the extension

phase, we were able to divide our data set of reconstructed arm

movements into two main groups, pre-extension and extension

movements. The analysis described here was applied separately to

each of these groups but we have presented results mainly related

to the extension group. Equivalent results for the pre-extension

group are also available.

Instead of the common representation of octopus arm move-

ments in 3D Euclidean space, we modeled each arm movement

using pairs of curvature and torsion surfaces. These surfaces

essentially describe the curvature and torsion values at the sam-

pled points along the virtual backbone of the octopus arm as

a function of time and arm index. Such pairs of curvature and

torsion surfaces provide a compact description of arm configura-

tion which is independent of the arm location in 3D space and

is invariant to rotation and translation. Most importantly, this

approach can be used to demonstrate the existence of kinematic

units or motor primitives in octopus arm movements.

The characteristics of the surfaces led us to examine whether

they can be meaningfully decomposed. We applied the GMM,

suggesting the use of 2D Gaussians as building blocks approx-

imating the curvature and torsion surfaces of a movement.

These 2D Gaussians provided a mathematically quantified rep-

resentation whose hilly shapes fitted well to the topographic

characteristic of the surface. We thus have demonstrated a mean-

ingful representation for octopus arm movements and a method

GMM for decomposing the movements into well-defined build-

ing blocks (2D Gaussians) allowing us to further examine them

as possible kinematic units. We have also applied an alternative

method which decomposes a surface to its fundamental surfaces

by analyzing the principal curvature values at each point on the

surface. These parameters allow defining eight fundamental sur-

faces (e.g., peak, pit, ridge) that correspond to the topography

of a surface (Yilmaz and Shah, 2005). Interestingly, we found

the results extracted by this method to be very similar to those

achieved using the GMM—the positions of the peak fundamen-

tal surfaces were highly correlated with the mean values of the

positions derived using the 2D Gaussians.

Intuitively, being able to represent the arm by a 2D curvature

Gaussian corresponds to the propagation of a bend point along

a defined section of the arm and during a defined time inter-

val. All the kinematic properties—the affected section of the arm,

the time interval, the maximal curvature value and the velocity

of propagation—are simply defined by the center location of the

Gaussian, by its covariance matrix and by the weight assigned
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FIGURE 8 | Each pair of curvature and torsion surfaces defines one of the three prototypes of movements into which the extension movements were

classified. Each surface is essentially a weighted combination of the curvature/torsion Gaussians extracted earlier.

to this Gaussian. By clustering Gaussians with similar character-

istics, we were able to characterize each cluster by its centroid

and use the Gaussian representing the entire cluster as a stereo-

typical kinematic unit. We obtained a set of such curvature and

torsion units for each of the pre-extension and extension move-

ment groups. Curvature and torsion units were then combined

to simulate new movements in 3D space and to examine whether

the entire observed repertoire of complex 3D octopus arm behav-

iors can be spanned using the derived basic set of kinematic units.

We found that patterns of weighted combinations of the kine-

matic units can be clustered into prototypes of movements in the

pre-extension and extension phases, allowing classification of the

movements into sub-groups.

The combinations of kinematic units which define the proto-

types needs further investigation to reveal the principles underly-

ing the execution of the different arm movements. Sumbre et al.

(2001) have suggested that a relation between kinematic features

and basic motor programs (embedded within the neural circuitry

of the arm itself) greatly simplify the motor control of the octo-

pus arm. In addition, a simple command producing a wave of

muscle activation in a dynamic model was sufficient to repli-

cate the kinematic characteristics of natural reaching movements
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FIGURE 9 | Three prototypes represent the sub-groups into which the 60 extension movements were classified. These prototypes, defined by three

pairs of curvature and torsion surfaces (Figure 8) show the differences in the various extension movements. See text for further explanation.

FIGURE 10 | One prototype was found to represent the pre-extension

movements. Pre-extension movements are intuitively understood as an

initialization phase, during which the bend propagating during the extension

phase is generated and the base of the arm is directed toward the target.

The form of this prototype suggests that the movement is initialized by

generating a new bend at the appropriate position by propelling the

mid-section of the arm.

(Yekutieli et al., 2005a). Specifically, it was found that natural

extension movements can be generated by a dynamic model, in

which a simple propagating neural activation signal is sent to con-

tract muscles along the arm. In the model, the control of only two

parameters fully specified the extension movement: the amplitude

of the activation signal and the activation travelling time, such

that different levels of activations can result in desired kinematics

(Yekutieli et al., 2005b). We suggest that values of these two con-

trol parameters can be associated with the characteristics of the

kinematic units extracted here. That is, the weight, shape, orien-

tation, and size of a Gaussians can be related to the amplitude of

the activation signal and the activation travelling time.

The relation between the kinematic units to the biomechanics

of the octopus arm has to be examined (Feinstein et al., 2011).

The arm morphology points to the dorsal group of the longitudi-

nal muscles being much thicker than the ventral group, and both

groups differ from the lateral groups. This anisotropy suggests

that while bending movements to the left and right directions

might be similar, this is not the case when comparing between

upward, downward and sideward directions. The oblique mus-

cles are composed of three pairs of helical bands, such that the

handedness of the helix of one member of the pair is opposite to

that of the other member of the same pair (Kier and Stella, 2007).

This isotropy with respect to the arm axis supports that torsion

toward the two different directions is applied in a similar manner.

The results from our analysis agree with our data on octopus

arm movements. The extension movement shown in Figure 11A

matched with prototype no. 2 of the extension group (Figure 9

middle), as a movement in which a highly curved bend along

a relative short section of the arm propagated rapidly toward a

target. The lower movement Figure 11B matched with prototype

no. 1 of the extension group (Figure 9 left), as a movement in

which the arm moved relatively slowly toward the target with

relatively low curvature values for the propagating bend. The

Gaussians referring to the main characteristic of extension move-

ments strengthen the previous findings of Gutfreund et al. (1996)

of a stereotypic profile of the position and velocity of the bend

point. They suggested that the position of the bend in space and

time is a controlled variable, which simplifies motor control. The

travelling bend, associated with a propagating wave of muscle

activation (Gutfreund et al., 1998), was simulated as a biome-

chanical mechanism in a dynamic model of the octopus arm

(Yekutieli et al., 2005a).

Two pre-extension movements shown in Figure 12 matched

with the prototype of the pre-extension group (Figure 10). A

substantial manipulation of the initial arm configuration was

involved by creating a bend in the arm and directing it toward

the target. In this movement, curvature and torsion kinematic

units are both applied on the mid-section of the arm during the

pre-extension phase. These results demonstrate that the Gaussian

description of movement primitives allows us to describe a com-

plex motor behavior. Clearly, additional types of octopus arm

movements other than the pre-extension and extension move-

ments analyzed here are part of the motor repertoire of octo-

pus behavior. While reconstruction and analysis of these other

movements will probably reveal additional kinematic building

blocks, we can expect that the general characteristics of octopus
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FIGURE 11 | Two extension movements. The upper movement (A)

was classified as prototype no. 2 of the extension group (Figure 9

middle), as a movement in which a highly curved bend was rapidly

propagated toward a target, while the base of the arm stayed

oriented with a fixed direction. The lower movement (B) was

classified as prototype no. 1 of the extension group (Figure 9 left),

as a movement in which the bend showed lower curvature values

and moved relatively slowly toward the target while the direction of

the base of the arm was not preserved. The movements progress

from left to right in each panel.

FIGURE 12 | A pre-extension movement as a sequence progressing from

the upper left (A) to the lower right (F) frames. A substantial manipulation,

creating a bend and directing it toward a target, was applied to the initial

configuration (upper left). This movement is matched with the prototype of

the pre-extension group (Figure 10). Frame (F) presents a temporal

configuration that matches the beginning of an extension movement.

Frontiers in Computational Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 60 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zelman et al. Octopus arm movement kinematics

FIGURE 13 | A curvature surface which also refers to the elongation during an extension movement (left). The values of the ratio between the lengths of

the proximal section of the arm (from base to bend point) and the length of the entire arm as a function of time (right).

arm movements, mainly the smoothness in which curvature and

torsion values vary along both the arm and the time dimen-

sions will hold for other types of movements. Therefore, we

believe that Gaussian functions could be efficiently used also in

the decomposition and description of those movements.

Our results fit with Yekutieli et al.’s (2007) observations on

the kinematic characteristics of the initiation of a reaching move-

ment. The kinematic description is sufficiently rich for describing

complex arm movements, although factors such as the biome-

chanics of the octopus arm (e.g., the different type of muscles

and the constant volume constraint), water drag forces and energy

expenditure also strongly influence the arm movement charac-

teristics. For example, the perpendicular drag coefficient for an

octopus arm is nearly 50 times larger than the tangential drag

force coefficient. This most likely affects the preferred arm config-

uration during extension movements; only a small part of the arm

is oriented perpendicularly to the direction of movement, mini-

mizing drag (Yekutieli et al., 2005a). Yekutieli et al. (2005b) also

found that the control of extension movements can be specified

by the amplitude of the muscle activation signals and the activa-

tion travelling time. The primitives we suggest here can be used to

further investigate the relation between the kinematic and muscle

activation levels.

In our analysis the curvature and torsion surfaces were

extracted for arm configurations whose length has been normal-

ized. Replotting the curvature and torsion surfaces while showing

the actual arm length values as analyzed from live data (Figure 13

left) shows that the proximal section of the arm elongates dur-

ing an extension (i.e., the section between the base and the bend

point). This is demonstrated clearly in Figure 13 (right) which

shows the ratio between the length of the proximal section to the

length of the entire arm during an extension movement. Arm

elongation has recently been shown to play a key role in the

biomechanics and control of octopus arm movements (Hanassy,

2008). Modeling the travelling bend along extension movements

based on the propagation of muscle activation and stiffening

wave (Gutfreund et al., 1998), where co-contraction of both the

longitudinal and transverse muscles pushes the bends forward

(Yekutieli et al., 2005b). Therefore, different ratios between the

activation levels of longitudinal to transverse muscle can be used

to control the elongation of the arm along the proximal section

between the base and bending point. Gaussian units, which were

found in this study to describe the travelling bend during exten-

sion movements, will be further examined in order to support

recent findings related to the biomechanics and control of the

octopus arm.

Our analysis presents a possible language of kinematic

primitives—2D Gaussians of either curvature or torsion which

define and classify octopus arm behaviors by their different com-

binations. Constructing a taxonomy of possible movements for

a species is one approach to the study of its behavior. To con-

struct a taxonomy of octopus arm movements and to reveal

how combinations of components result in a variety of behav-

iors Mather (1998) used components which consist of movements

of the arm itself, the ventral suckers and their stalks, as well

as the relative position of the arms and the skin web between

them. Comparing similar movement taxonomies and ethograms

(catalog of body patterns and associated behaviors) in the squid

and various octopus species (Hanlon et al., 1999; Huffard, 2007;

Mather et al., 2010) suggests that behaviors may be conserved

throughout the evolution of these species. Our results identify a

number of kinematic units, possible time-dependent units and

sub-groups (Table 3). As more reconstructed octopus arm move-

ments become available (Yekutieli et al., 2007; Zelman et al.,

2009), we will better be able to use our analytical tools to define

a comprehensive language of motor primitives that incorporates

the underlying kinematic principles, thus enriching the ethogram

and taxonomy of octopus arm behavior.

Our analysis provides a new framework for research on the

kinematics and control of any natural or mechanical flexible

manipulator. Possible arm behaviors can be simulated by syn-

thesizing new combinations of the extracted Gaussians. New

primitives can be hypothesized and tested on dynamic mod-

els of the octopus arm and the resulting movements can
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Table 3 | The analysis applied to each movement group yielded a number of kinematic units defining possible local-temporal 3D behaviors of

the arm.

Group Number of kinematic units Number of possible behaviors Number of sub-group prototypes

Curvature Torsion

Pre-extension 1 3 3 1

Extension 3 3 6 3

Each group was divided into a number of sub-groups which were represented by different movement prototypes.

be compared with live movements. This, in turn, may allow

future studies of activation commands at the neural control level,

which may then enable operation of a real flexible manipulator

to perform specified goal-oriented tasks (Laschi et al., 2009, 2012;

Calisti et al., 2011).

ACKNOWLEDGMENTS

We thank Dr. Jenny Kien for suggestions and editorial assis-

tance. This work was supported by the European Commission

in the ICT-FET OCTOPUS Integrating Project under contract

#231608, and by Israel Science Foundation #1270/06 to Hochner

and Flash. Tamar Flash is an incumbent of the Dr. Hymie Morros

professorial chair.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online

at http://www.frontiersin.org/Computational_Neuroscience/

10.3389/fncom.2013.00060/abstract

REFERENCES
Altman, J. S. (1971). Control of accept

and reject reflexes in the octopus.

Nature 229, 204–206.

Andrews, D., and Lu, B. (2001).

Consistent model and moment

selection procedures for GMM esti-

mation with application to dynamic

panel data models. J. Econom. 101,

123–164.

Ben-Hur, A., Elisseeff, A., and Guyon,

I. (2002). “A stability based method

for discovering structure in clus-

tered data,” in Pacific Symposium

on Biocomputing, Vol. 7, (Lihue,

Hawaii), 6–17.

Bhat, H., and Kumar, N. (2010). On

the Derivation of the Bayesian

Information Criterion School of

Natural Sciences. Merced, CA:

University of California.

Bizzi, E., Cheung, V. C., d’Avella, A.,

Saltiel, P., and Tresch, M. (2008).

Combining modules for movement.

Brain Res. Rev. 57, 125–133.

Boutin, M. (2000). Numerically invari-

ant signature curves. Int. J. Comput.

Vis. 40, 235–248.

Calabi, E., Olver, P., Shakiban, C.,

Tannenbaum, A., and Haker, S.

(1998). Differential and numerically

invariant signature curves applied to

object recognition. Int. J. Comput.

Vis. 26, 107–135.

Calisti, M., Giorelli, M., Levy, G.,

Mazzolai, B., Hochner, B., Laschi,

C., et al. (2011). An octopus-

bioinspired solution to movement

and manipulation for soft robots.

Bioinspir. Biomim. 6:036002. doi:

10.1088/1748-3182/6/3/036002

d’Avella, A., Portone, A., Fernandez, L.,

and Lacquaniti, F. (2006). Control

of fast-reaching movements by

muscle synergy combinations.

J. Neurosci. 26, 7791–7810.

d’Avella, A., Saltiel, P., and Bizzi,

E. (2003). Combinations of mus-

cle synergies in the construction

of a natural motor behavior. Nat.

Neurosci. 6, 300–308.

Fiorito, G., Planta, C. V., and Scotto,

P. (1990). Problem solving abil-

ity of Octopus vulgaris Lamarck

(Mollusca, Cephalopoda). Behav.

Neural Biol. 53, 217–230.

Flash, T., and Hochner, B. (2005).

Motor primitives in vertebrates and

invertebrates. Curr. Opin. Neurobiol.

15, 660–666.

Flash, T., and Hogan, N. (1985). The

coordination of arm movements –

an experimentally confirmed math-

ematical model. J. Neurosci. 5,

1688–1703.

Feinstein, N., Nesher, N., and Hochner,

B. (2011). Functional morphology

of the neuromuscular system of the

octopus vulgaris arm. Vie Milieu 61,

219–229.

Gutfreund, Y., Flash, T., Fiorito, G.,

and Hochner, B. (1998). Patterns

of arm muscle activation involved

in octopus reaching movements.

J. Neurosci. 18, 5976–5987.

Gutfreund, Y., Flash, T., Yarom, Y.,

Fiorito, G., Segev, I., and Hochner,

B. (1996). Organization of octopus

arm movements: a model system

for studying the control of flexible

arms. J. Neurosci. 16, 7297–7307.

Hanassy, S. (2008). Reaching

Movements of the Octopus

Involve both Bend Propagation

and Arm Elongation. M.Sc. Thesis,

Medical Neurobiology Department,

(Jerusalem, Israel: The Hebrew

University).

Hanlon, R. T., Maxwell, M. R., Shashar,

N., Loew, E. R., and Boyle, K.

L. (1999). An ethogram of body

patterning behavior in the biomed-

ically and commercially valuable

squid Loligo pealei off Cape Cod,

Massachusetts. Biol. Bull. 197,

49–62.

Hastie, T., Tibshirani, R., and

Friedman, J. (2009). The Elements

of Statistical Learning: Data Mining,

Inference, and Prediction. New York,

NY: Springer.

Huffard, C. L. (2007). Ethogram

of Abdopus aculeatus (d’Orbigny,

1834) (Cephalopods: Octopodidae):

can behavioural characters inform

octopodid taxomony and sys-

tematics? J. Molluscan Stud. 73,

185–193.

Hwang, E. J., Donchin, O., Smith, M.

A., and Shadmehr, R. (2003). A

gain-field encoding of limb position

and velocity in the internal model of

arm dynamics. PLoS Biol. 1:e25. doi:

10.1371/journal.pbio.0000025

Ijspeert, A., Nakanishi, J., Pastor,

P., Hoffmann, H., and Schaal,

S. (2013). Dynamical movement

primitives: learning attractor mod-

els for motor behaviors. Neural

Comput. 25, 328–373.

Ijspeert, A., Nakanishi, J., and Schaal,

S. (2002). “Learning rhythmic

movements by demonstration

using nonlinear oscillators,” in

IEEE International Conference on

Intelligent Robots and Systems,

(Laussane, Switzerland), 958–963.

Jeannerod, M. (1994). “Object ori-

ented action,” in Insights into the

Reach to Grasp Movement. ed K.

M. B. Bennett, U. Castiello (North-

Holland: Elsevier), 3–15.

Kier, W. M., and Smith, K. K. (1985).

Tongues, tentacles and trunks: the

biomechanics of movement in

muscular-hydrostats. Zool. J. Linn.

Soc. 83, 307–324.

Kier, W. M., and Stella, M. P. (2007).

The arrangement and function of

octopus arm musculature and con-

nective tissue. J. Morphol. 268,

831–843.

Krebs, H. I., Aisen, M. L., Volpe,

B. T., and Hogan, N. (1999).

Quantization of continuous arm

movements in humans with brain

injury. Proc. Natl. Acad. Sci. U.S.A.

96, 4645–4649.

Lacquaniti, F., Terzuolo, C., and

Viviani, P. (1983). The law relating

the kinematic and figural aspects of

drawing movements. Acta Psychol.

(Amst.) 54, 115–130.

Laschi, C., Cianchetti, M., Mazzolai,

B., Margheri, L., Follador, M., and

Dario, P. (2012). Soft robot arm

inspired by the octopus. Adv. Rob.

26, 709–727.

Laschi, C., Mazzolai, B., Mattoli, V.,

Cianchetti, M., and Dario, P. (2009).

Design of a biomimetic robotic

octopus arm. Bioinspir. Biomim.

4, 015006.

McLachlan, G., and Peel, D. (2000).

Finite Mixture Models. New York,

NY: John Wiley and Sons.

Mather, J. A. (1998). How do octopuses

use their arms? J. Comp. Psychol.

112, 306–316.

Mather, J. A., Griebel, U., and Byrne,

R. A. (2010). Squid dances: an

ethogram of postures and actions

Frontiers in Computational Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 60 | 14

http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2013.00060/abstract
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2013.00060/abstract
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zelman et al. Octopus arm movement kinematics

of Sepioteuthis sepioidea squid

with a muscular hydrostatic system.

Mar. Freshwater Behav. Physiol. 43,

45–61.

Matzner, H., Gutfreund, Y., and

Hochner, B. (2000). Neuromuscular

system of the flexible arm of the

octopus: physiological charac-

terization. J. Neurophysiol. 83,

1315–1328.

Moro, F. L., Tsagarakis, N. G., and

Caldwell, D. G. (2011). “A human-

like walking for the Compliant

huMANoid COMAN based on

CoM trajectory reconstruction

from kinematic motion primi-

tives,” in IEEE-RAS International

Conference on Humanoid Robots.

(Bled, Slovenia), 364–370.

Moro, F. L., Tsagarakis, N. G., and

Caldwell, D. G. (2012). On the

Kinematic Motion Primitives

(kMPs) – Theory and Application.

Front. Neurorobot. 6:10. doi:

10.3389/fnbot.2012.00010

Mussa-Ivaldi, F. A., and Bizzi, E. (2000).

Motor learning through the combi-

nation of primitives. Philos. Trans.

R. Soc. Lond. Ser. B Biol. Sci. 335,

1755–1769.

Pedersen, T., and Kulkarni, A. (2006).

“Automatic cluster stopping with

criterion functions and the gap

statistic,” in Proceedings of the

2006 Conference of the North

American Chapter of the Association

for Computational Linguistics on

Human Language Technology, (New

York, NY), 276–279.

Polyakov, F., Stark, E., and Drori,

R. (2009). Parabolic movement

primitives and cortical states:

merging optimality with geomet-

ric invariance. Biol. Cybern. 100,

159–184.

Rohrer, B., Fasoli, S., Krebs, H. I.,

Hughes, R., Volpe, B., Frontera, W.

R., et al. (2002). Movement smooth-

ness changes during stroke recovery.

J. Neurosci. 22, 8297–8304.

Rohrer, B., Fasoli, S., Krebs, H. I.,

Volpe, B., Frontera, W. R., Stein, J.,

et al. (2004). Submovements grow

larger, fewer, and more blended dur-

ing stroke recovery. Motor Control 8,

472–483.

Sosnik, R., Hauptmann, B., Karni, A.,

and Flash, T. (2004). When practice

leads to co-articulation: the evolu-

tion of geometrically defined move-

ment primitives. Exp. Brain Res.

156, 422–438.

Sumbre, G., Fiorito, G., Flash, T., and

Hochner, B. (2005). Motor control

of the octopus flexible arm. Nature

433, 595–596.

Sumbre, G., Fiorito, G., Flash, T., and

Hochner, B. (2006). Octopuses

use a human-like strategy to

control precise point-to-point

arm movements. Curr. Biol. 16,

767–772.

Sumbre, G., Gutfreund, Y., Fiorito, G.,

Flash, T., and Hochner, B. (2001).

Control of octopus arm extension

by a peripheral motor program.

Science 293, 1845–1848.

Sternad, D., and Dean, W. J. (2003).

Rhythmic and discrete elements in

multi-joint coordination. Brain Res.

989, 152–171.

Sternad, D., Dean, W. J., and Schaal,

S. (2000). Interaction of rhythmic

and discrete pattern generators in

single joint movements. Hum. Mov.

Sci. 19, 627–665.

Thoroughman, K. A., and Shadmehr,

R. (2000). Learning of action

through adaptive combination

of motor primitives. Nature 407,

742–747.

Tibshirani, R., Walther, G., and

Hastie, T. (2001). Estimating the

number of clusters in a data set

via the gap statistic. J. R. Stat.

Soc. Ser. B Stat. Methodol. 63,

411–423.

Wells, M. J. (1978). Octopus. London:

Chapman and Hall.

Wells, M. J., and Wells, J. (1957). The

function of the brain of octopus in

tactile discrimination. J. Exp. Biol.

34, 131–142.

Xuan, G., Zhang, W., and Chai,

P. (2001). EM algorithms of

Gaussian mixture model and hid-

den Markov model. Image Process. 1,

145–148.

Yekutieli, Y., Mitelman, R., Hochner,

B., and Flash, T. (2007). Analysis

octopus movements using three-

dimensional reconstruction.

J. Neurophysiol. 98, 1775–1790.

Yekutieli, Y., Sagiv-Zohar, R.,

Aharonov, R., Engel, Y., Hochner,

B., and Flash, T. (2005a). Dynamic

model of the octopus arm. I. biome-

chanics of the octopus reaching

movement. J. Neurophysiol. 94,

1443–1458.

Yekutieli, Y., Sagiv-Zohar, R., Hochner,

B., and Flash, T. (2005b).

Dynamic model of the octo-

pus Arm. II. control of reaching

movements. J. Neurophysiol. 94,

1459–1468.

Yilmaz, A., and Shah, M. (2005).

Actions sketch: A novel action rep-

resentation. CVPR 1, 984–989.

Young, J. Z. (1971). The Anatomy of the

Nervous System of Octopus vulgaris.

Oxford: Clarendon Press.

Zelman, I., Galun, M., Akselrod-Ballin,

A., Yekutieli, Y., Hochner, B., and

Flash, T. (2009). Nearly automatic

motion capture system for tracking

octopus arm movements in 3D

space. J. Neurosci. Methods 182,

97–109.

Conflict of Interest Statement: The

authors declare that the research

was conducted in the absence of any

commercial or financial relationships

that could be construed as a potential

conflict of interest.

Received: 16 December 2012; accepted:

27 April 2013; published online: 244 May

2013.

Citation: Zelman I, Titon M, Yekutieli

Y, Hanassy S, Hochner B and Flash

T (2013) Kinematic decomposition and

classification of octopus arm movements.

Front. Comput. Neurosci. 7:60. doi:

10.3389/fncom.2013.00060

Copyright © 2013 Zelman, Titon,

Yekutieli, Hanassy, Hochner and Flash.

This is an open-access article dis-

tributed under the terms of the Creative

Commons Attribution License, which

permits use, distribution and reproduc-

tion in other forums, provided the origi-

nal authors and source are credited and

subject to any copyright notices concern-

ing any third-party graphics etc.

Frontiers in Computational Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 60 | 15

4

http://dx.doi.org/10.3389/fncom.2013.00060
http://dx.doi.org/10.3389/fncom.2013.00060
http://dx.doi.org/10.3389/fncom.2013.00060
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Kinematic decomposition and classification of octopus arm movements
	Introduction
	Methods
	Spatio-Temporal Representation of Movement as a Pair of Curvature and Torsion Surfaces
	Surface Decomposition Using GMM
	Clustering Algorithm

	Results
	Decomposition and Clustering of Kinematic Units
	Synthesizing Arm Behaviors From Kinematic Units
	Classifying Octopus Arm Movements
	Pre-Extension Results

	Discussion
	Acknowledgments
	Supplementary Material
	References


