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Kinematic Design and Commutation
of a Spherical Stepper Motor

Gregory S. Chirikjian,Member, IEEE, and David Stein,Student Member, IEEE

Abstract—This paper addresses the design and commutation of
a novel kind of spherical stepper motor in which the poles of the
stator are electromagnets and the poles of the rotor (rotating ball)
are permanent magnets. Due to the fact that points on a sphere
can only be arranged with equal spacing in a limited number of
cases (corresponding to the Platonic solids), design of spherical
stepper motors with fine rotational increments is fundamentally
geometrical in nature. We address this problem and the related
problem of how rotor and stator poles should be arranged in
order to interact to cause motion. The resulting design has a much
wider range of unhindered motion than other spherical stepper
motor designs in the literature. We also address the problem of
commutation, i.e., we determine the sequence of stator polarities
in time that approximate a desired spherical motion.

Index Terms—Circle packing, rotation group, spherical motor.

I. INTRODUCTION

T HIS paper addresses the design and coordination of spher-
ical motors with a large range of motion. Applications of

spherical motors are numerous. They include the following: 1)
camera actuators for computer vision [1], as in Fig. 1(a); 2)
robotic wrist, elbow, and shoulder actuators, as in Fig. 1(b)
(allowing six or nine degrees of freedom to be designed
compactly into a small space); 3) omnidirectional wheels for
mobile robots, as in Fig. 1(c); and 4) actuator arrays capable
of transporting objects in any direction [2], [3], as in Fig. 1(d).

Of course, the concept of a spherical motor is not new. Our
work builds on the accomplishments of a number of notable
works. The basic operating principles of spherical dc induction
motors have been known for quite some time, see, e.g., [4]
and [5]. Kanekoet al. [6] developed a spherical dc servo
motor. The design and implementation of spherical variable-
reluctance motors has been studied by Leeet al. for a number
of years [7]–[10]. Toyamaet al. have developed spherical
ultrasonic motors [11], [12]. In the literature, one even finds
actuators with a full six degrees of freedom, e.g., [13]. A good
introduction to the principles behind traditional permanent-
magnet motors can be found in [14]. These principles are very
much the same for the spherical case, although the geometrical
aspects in the design are quite different.

In the following sections, we address kinematic issues in
the design and commutation of a new spherical stepper motor.
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In our design, the rotor poles are permanent magnets, and
the stator poles are electromagnets. The key issues addressed
here are how to arrange the stator and rotor poles so as to
achieve relatively finely discretized motion. In contrast to the
other spherical motor designs referenced above, we seek to
place more poles than the numbers dictated by the regular
(Platonic) solids. To this end, Section II examines how rotor
and stator poles can be placed “semiregularly” in a recursive
fashion with a high degree of symmetry. Section III then
examines how to commutate any of a variety of possible
motor designs generated using the techniques of Section II.
Section IV discusses the design and implementation of a
particular stepper motor and provides a detailed example of
a commutation sequence.

II. THE KINEMATIC DESIGN PROBLEM: ROTOR

AND STATOR POLE PLACEMENT

Central to the design of spherical motors is the selection of
compatible rotor and stator geometries. In the same way that
standard cylindrical motors must not have the same number of
rotor and stator poles in order to operate, the symmetries of
spherical rotors and stators must not be the same. The question
then becomes one of finding which combination of stator and
rotor arrangements is the most appropriate. Since there is a
very limited number of regular arrangements of points on
the sphere (there are only five corresponding to the Platonic
solids), and since these are far too coarsely distributed for
use in a discrete-state motor capable of the applications dis-
cussed earlier, the question becomes one of finding compatible
“semiregular” rotor and stator arrangements.

It has been known for thousands of years that only five
convex three-dimensional polyhedra exist which have polygo-
nal faces that are both congruent and regular. These so-called
perfect solids are the tetrahedron (4 triangular faces), cube (6
square faces), octahedron (8 triangular faces), dodecahedron
(12 pentagonal faces), and icosahedron (20 triangular faces).
By projecting faces of any of these polyhedra onto a sphere
from the common center of the sphere and polyhedron, the
sphere is divided into regions of equal area and shape. Regular
circle packings on the sphere are generated by inscribing
circles in each of these regions (which is the same as first
inscribing circles in each polygonal face of a perfect solid and
then projecting onto the sphere).

The focus of this section is the generation of “semiregular”
circle packings on the sphere. These are generated by observ-
ing the duality of the perfect solids (i.e., connecting the centers
of all adjacent faces of any perfect solid results in another
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Fig. 1. Applications of spherical motors.

perfect solid). In particular, the tetrahedron is dual to itself,
the cube is dual to the octahedron, the dodecahedron is dual to
the icosahedron. A finite group of rotational symmetries exists
for each pair of dual perfect solids. By subdividing the sphere
into units formed by overlaying the projections of dual perfect
solids on the sphere, and observing the symmetries of these
units, it is shown below how 16 packings of congruent circles
on the sphere are generated in addition to the regular packings.
It is then shown how one can pack an arbitrary number
of “almost congruent” circles on the sphere by recursively
subdividing these units and inscribing circles in each resulting
subdivision. In either case, these semiregular packings of
congruent circles inherit the symmetry group of their dual
parent polyhedra.

Of the 21 regular and semiregular circle packings, two
are redundant. The remaining 19 circle packings possess
three desirable properties: 1) all circles “kiss” their nearest
neighbors; 2) uncovered areas of the sphere surrounded by

congruent circles posses discrete rotational symmetry; and 3)
uncovered areas surrounded by circles of different size are
always enclosed by exactly three circles. These properties form
the starting point for a recursion that allows one to pack an
arbitrarily large number of incongruent circles on the sphere,
the centers of each circle corresponding to the center of a
rotor pole. These packings allow one to achieve very high
packing ratios, and retain the tetrahedral, cubo–octahedral, or
icosa–dodecahedral rotational symmetries of the base semireg-
ular packings of congruent circles.

A. Mathematical Preliminaries

Positions on the unit sphere are parametrized using
spherical coordinates
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and are called the polar and azimuthal angles, respec-
tively.1

The distance between two points as measured
along the shorter segment of the great arc connecting the points
is calculated as

(1)

where, in the context of the current discussion, takes
values in the range In this way, the length of the shorter
of the two great arcs connecting and is automatically
chosen.

For example, the distance between the north pole
and any arbitrary point is

A regular placement of points on the unit sphere is one
for which the distance between each point and its nearest
neighbors is the same for all points considered. It has been
well known since the time of the ancient Greeks that the
only regular placements of points correspond to the vertices
of the so-called Platonic solids: tetrahedron, octahedron, cube,
icosahedron, and dodecahedron with 4, 6, 8, 12, and
20, respectively. Fig. 2 shows the icosahedral and octahedral
tessellations of the sphere.

As an interesting aside, we note that the simplest spherically
shaped viruses encode just enough genetic information to
express a single kind of protein unit. A number of these
units then self-assemble to form a protein shell. These shells
have icosahedral symmetry because this is the regular packing
which best approximates a sphere [16], [17]. More sophisti-
cated viruses encode more than one kind of protein which self
assemble to form semiregular polyhedral shells. We also note
that a number of spherical circle packings in nature can be
found in other contexts [18].

Since it is desirable to place rotor and stator poles at finer
increments than the vertices of the Platonic solids to achieve
finer discretization of rotation, one must consider alternatives
to these regular placements.

One approach is to consider the desirable number of stator
and rotor poles and pack this number of same-sized circles
on the sphere. The centers of these circles then indicate
the placement of the centers of the poles. In fact, a wide
variety of packings have already been studied in the literature
in the context of several different applications (see, e.g.,
[19]–[21]) An extensive list of spherical circle packings, with
up to thousands of circles, is available on the Internet at
http://www.research.att.com/˜njas.

However, as a rule, such packings do not posses the degree
of symmetry that the regular packings do. This is quite
important in the context of a spherical stepper, where the
rotor and stator poles must have some compatibility in order
to be able commutate. Our approach is, therefore, to use
recursive semiregularpackings of almost-equal-sized circles
on the sphere. Our search will begin with the vertices of the
Platonic solids, and recursively place new points until the
desired number is approximated. Then, evaluations of how
well disbursed the points are, and how compatible the choice

1Often in the engineering literature, the meanings of the symbols� and
� are reversed from our notation (see, e.g., [15]), whereas our notation is
consistent with the mathematics and physics literature.

(a)

(b)

Fig. 2. (a) Octahedral and (b) icosahedral discretization of the sphere.

for rotor and stator is, will be performed. In order to do this, we
must first develop some mathematical tools to do geometrical
constructions on the sphere. Fig. 3 is helpful in this regard.

The plane which intersects the sphere resulting in the great
circle containing points and has a unit normal

The plane containing the great circle which, in turn, contains
and is described by

where is the vector of Cartesian coordinates of an
arbitrary point.

Given a point on the sphere, one can determine the
shortest distance measured on the sphere betweenand the
great circle defined by by first constructing a plane passing
through the origin and the point which is orthogonal to the
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Fig. 3. Distance between a point and great arc.

plane defined by Since and must lie in this new plane,
it is defined by the normal

The great arc defined by contains and intersects at a right
angle the great arc containingand This means the shortest
distance between and the great arc defined byis measured
along the great arc defined by

The intersection of the two planes, written as the simulta-
neous equations

define a line that intersects the sphere at the points

Thus, the distance betweenand the arc defined by is

where simply means minimization with respect to the
choice of

Observing that, for

and

one obtains the simple answer

We will use this simple result in the next section to inscribe
a spherical cap inside an arbitrary spherical triangle.

Fig. 4. Inscribing circles within existing geometric structures.

B. Recursive Generation of Circle Packings

To begin, the coordinates of the vertices of the Platonic
solids are required. These are calculated as follows, where
each solid is centered at the origin, and the vertices all lie on
the surface of the unit sphere

Tetrahedron:The spherical coordinates of the first vertex
can be taken as (the north pole). The
remaining three vertices have spherical coordinates

and The polar angle is determined
by the equality

Octahedron: The vertices lie at

Cube: The vertices lie at

Icosahedron: It is clear from its symmetry that
Then, there are two sets

of five points with coordinates as follows. The first set
has coordinates and

The second set is rotated about theaxis by
relative to the first, and is as distant from the south

pole as the other set is from the north pole:
and

The angle is determined by

or

Dodecahedron:The vertices are determined by taking all
sets of three most proximal vertices of the icosahedron,
adding them, and normalizing so that the result is a unit
vector.

1) Inscribing Circles in Triangular Regions on the Sphere:
Any three points define the vertices of a spherical
triangle. Therefore, they define the spherical triangle. In this
section, we solve the following: given these points, find a
fourth point that is simultaneously equidistant from the three
edges of the spherical triangle and, hence, defines the center
of an inscribed circular cap (see Fig. 4).

This can be stated as the solution of the set of
equations

where and
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This problem can be restated as the three equations

Clearly, satisfies the first two equations when it is a scalar
multiple of the cross product of and The last
equation is satisfied by normalizing this result. Hence,

The two choices correspond to the same circle in but
different circular caps with antipodal centers and radiiand

That is, for every spherical circular cap, there is another
which is its complement in the sphere. We choose the value of

for which the radius as measured on the sphere is smaller.
Using this general result, one can inscribe circles in the
spherical triangles that result from subdividing the spherical
polygons generated by connecting the vertices listed in the
previous section.

2) Inscribing Spherical Circles in the Space Between Ex-
isting Spherical Circles:Suppose one is given three kissing
circles on the surface of the sphere, with centers and
radii and as measured on the surface of the sphere.
Then, to find the center of a circle inscribed in the space
between the three circles, one solves the system of equations

(2)

for where is the unknown position of the center of
the desired circle, and is its radius. This system of equations
is solvable in closed form as follows.

First, take the cosine of (2) for each value ofand expand
the right side using trigonometric rules. The result is written
in matrix form as

(3)

where

and

Hence, once is known, can be found by a simple matrix
inversion. is found by isolating in (3), and writing the dot
product

Making the standard substitutions

Fig. 5. Enumeration of semiregular circle packings.

and

the equation reduces to a quadratic equation in
with two roots for The smallest positive real root is then
chosen, and backsubstitution yields

The problem of finding the inscribed circle within four
touching circles, the problem of inscribing a circle in a spher-
ical quadrilateral with symmetry, and the problem of finding
the circle inscribed in the space between a spherical triangle
and an already-existing inscribed circle follow similarly.

3) Enumeration of Semiregular Spherical Circle Packings:
Once the sphere is tessellated into congruent regular spherical
triangles, there are seven ways to inscribe circles within and
between these triangles. These are depicted in Fig. 5. Using the
techniques outlined previously, and knowing the coordinates
of all the vertices, the positions of the centers of these circles
(which we refer to asprimary circles) and their radii are easily
calculated.

Doing the enumeration explicitly, one finds that two sets
of semiregular circle packings are shared between those with
octahedral and tetrahedral symmetry. Hence, the number of
distinct semiregular packings is 19 (5 Platonic14 others).

These semiregular packings form the starting point for a
recursive procedure in which circles can be inscribed within
collections of kissing circles to fill the remaining empty
spaces. Particularly promising semiregular packings are: 1)
the one with icosahedral symmetry with six half circles per
triangle, and two other sized circles inscribed in the center
and at the vertices and 2) the one with octahedral symmetry
and six primary circles inscribed per triangle, with smaller
ones inscribed around them. In this way, the primary circles
from both packings are almost the same size and, since the
symmetry groups of the packings are not the same, there will
never be a state from which the motor is unable to escape. It
would seem that choosing any two of the 19 distinct packings
from different symmetry categories is a prerequisite for rotor
and stator compatibility. It is also important that a sufficient
number of rotor and stator poles line up to generate narrow
potential wells corresponding to stepper states. Our choice
satisfies this requirement as well.
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III. M ATHEMATICAL FORMULATIONS

OF THE COMMUTATION PROBLEM

In this section, the commutation problem is addressed.
In the two subsequent sections, the problem is addressed

using two different perspectives. In Section III-A, a purely
geometrical approach based on spherical distances between the
centers of rotor and stator poles is examined. In Section III-
B, a functional-analytic approach in which a simplified model
of the interference between rotor and stator magnetic fields is
used to determine the best matching to implement a desired
motion.

A. Geometric Approach

We discretize any given rotational trajectory into
segments corresponding to points The values

can be taken as the even discretization of time or
as the solution generated from a motion interpolation proce-
dure imposing the requirement that the “rotational distance”
between adjacent rotations be equal for some measure of
distance between rotations

Such interpolation procedures are described in [23]–[25] and
[27] for a variety of different distance (metric) functions.

The distance function for rotations introduced to the me-
chanical design community by Park [24] is particularly phys-
ically meaningful and easy to calculate, as explained below.

A general rotation is written as

ROT

ROT

where is the skew symmetric matrix satisfying
for all vect is the unit vector specifying the
axis of rotation, and is the angle of rotation. is the 3 3
identity matrix. The rotations about the natural basis vectors
are denoted and is any rotation matrix whose
th column is the vector The functions [26]

and

vect

can be thought of as those which extract the angleand axis
from the rotation matrix ROT Park’s metric is then

Regardless of how the values and, hence, the matrices
are generated, the problem reduces at each value

of to find an optimal match between at least two stator
and rotor poles that are attainable given the current actual
orientation 2

2Fixing only two points on the surface of the sphere (which do not lie on
the same axis through its center) is required to fix the orientation of the sphere
whose origin is already fixed.

Since the motor has discrete states, in general,
but is minimal under the constraints of the motor
design and motion history dictated by the desired trajectory.

Given the set of stator poles and the set of rotor
poles one can sort the distances

for each desired rotation to find candidates for the
matching that would best implement the desired rotation.
In general, none of these matchings will yield the desired
rotation but rather a set of approximations for

The one matching that is chosen from
this set is then denoted as In order to arrive at this choice,
the list of candidates is reduced based on two criteria.

• All candidates for which the distance
are too large to achieve for the given

motor design are excluded.
• Even if the transition from to is within the reach

of a single step, it is desirable to have the axis of the
relative rotation point as much as possible
along the direction of the axis of Hence, the
remaining candidates are reduced to a single candidate
by finding the one which minimizes the cost function

If the motor is properly designed, at each step there will be
a nonempty set of possible moves. If more than one choice
exists, it is possible for the sequence for to
not be uniquely specified by the sequence of desired rotations

The drawback of this approach is that it is a purely kinemati-
cal model, and does not take into account the electromechanics
of the stator–rotor interaction. For instance, if two stator
coils are activated and they do not exactly line up with the
rotor poles, then an equilibrium orientation will be established
which is governed by the minimum of a potential energy
function. In the next section, we present an approach which
approximates the effects of magnetic field strength with a
purely phenomenological potential energy function.

B. Planning Using Potential Functions

The approach to the commutation problem presented in the
previous section does not explicitly account for the spatial
variability of the magnetic field strength of the electromagnets
in the stator assembly and permanent magnets in the rotor
poles. Here, we do not explicitly solve the electromagnetics
from Maxwell’s laws. This is an involved problem requiring
simplifying assumptions, as pointed out in [10]. One such
assumption in the context of the design in [10] is that the
reluctance force (the force which aligns rotor and stator poles)
is proportional to the area of overlap between the poles.
Within this model, the area on the sphere corresponding
to the th stator can be thought of as a window function,

on the sphere which is constant on the
spherical circle of radius centered at and zero otherwise.
Likewise, the function corresponds to the
th rotor pole of radius Then, the overlapping area can be

calculated as the integral over the sphere of the absolute value
of the difference of these functions, or equivalently in the
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(a)

(b)

Fig. 6. (a) Actual and model force relation and (b) potential function.

context of this example, the square root of the integral of the
square of the difference of these functions.

More generally, we approximate the interaction of the
magnetic fields of one rotor pole and one stator pole as a
potential function

(4)

The potential for multiple poles follows in a similar way.
The functions need not be piecewise constant. Based on
force measurements of the interaction between electromagnets
used in the stators and permanent magnets used in the rotor,
one can choose an “ansatz” for and fit parameters so that

matches the data. We note that this model is purely
phenomenological and was chosen because it has the correct
qualitative performance.

Fig. 6 graphs the actual measured force, and an analytical
approximation of force with the best fourth-order polynomial
fit. The approximate potential function is then found analyti-
cally from the force–displacement curve. The experiment was
performed by translating a rotor magnet in the plane whose
normal is the axis of the stator, since this is a convenient mea-
surement to take. Small rotations of the rotor are approximated
well as translations [27], and so we use this translational data
as the starting point for fitting our ansatz.

In the subsequent two sections, we present the mathematics
required to approximate these functions on the sphere using
spherical harmonics, and write the rotated versions of these
functions in an analytically tractable way. In Section III-B-3,
we show how these techniques are applied to the problem at
hand.

1) Orthonormal Expansions on the Sphere:The spherical
harmonics that are used to expand functions on the sphere
are given as [32]3

(5)

These are called harmonics, because they are eigenfunctions of
the Laplacian operator, i.e., they are solutions to the equation

where and the Laplacian for the sphere is
defined as [15]

As a general rule, the eigenfunctions of the Laplacian on any
compact-oriented Riemannian manifold, forms a complete
orthonormal series with which to approximate any member of
the set of square-integrable functions on the manifold,
Hence, as a special case, any function in can be
expanded in a(spherical) Fourier seriesas

where

(6)

Here, we use the notation

The collection of coefficients is called the(spherical)
Fourier transform (or spectrum) of The Plancherel
(Parseval) equality holds as

Both the Plancherel and reconstruction formulas follow easily
from the orthonormality of the spherical harmonics

and their completeness.

3Note that spherical harmonics are often defined as~Ym

l
= (�1)mY

m

l
:
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It is interesting to note that, while the Abelian fast Fourier
transform (FFT), which dates back to the time of Gauss, and
was rediscovered by Cooley and Tukey [28], is quite old and
well known, an FFT and inversion formula for the sphere
developed by Driscoll and Healy is quite modern [29].

2) Orthogonal Expansions on the Rotation Group:
Functions on the rotation group can be expanded in
harmonics in a similar way to functions on the sphere. When

Euler angles are used

where ROT In this parameterization, the
Laplacian on is given as

cot

(7)

The eigenfunctions which satisfy

can be found using separation of variables.4 They are written
as for and and
again solve the problem for These harmonics
can be viewed as the matrix elements of the

dimensional matrices called the irreducible unitary
representations of [31]–[33]. These matrix elements
are given by

(8)

In the literature, a range of equivalent formulas for these eigen-
functions are provided. For instance, it is often convenient to
consider the representations of parametrized in ways
other than Euler angles. When Euler angles are
used

and so

Hence, when one evaluates the matrix elements (8), one finds

(9)
4Note that the Laplacian forSO(3) degenerates to that onS2 if u has no

dependence on� (or 
):

since the factor cancels with the
in (8). The matrix elements in (9) are often referred to in the
physics literature as theWigner D-functions[32].

The functions are generalizations of the as-
sociated Legendre functions, and are given by the Rodrigues
formula [32]

(10)

These functions satisfy certain symmetry relations, includ-
ing

(11)

(12)

They also satisfy certain recurrence relations, including those
shown at the bottom of the page [31]–[33],5 where

Note that The above
recurrence relations are key in the efficient calculation of the
FFT on the rotation group [30].

Furthermore, they can be related to functions of classical
physics such as the Legendre polynomials

and the associate Legendre polynomials

where for and for
It is easy to see that given the orthogonality and complete-

ness properties of the functions (which follow because
they are eigenfunctions of the Laplacian) that

5Our notation is consistent with Vilenkin and Klimyk [32]. The functions
that Gel’fandet al. [31] call P lmn differ from ours by a factor ofim�n;
which results in slightly different looking recurrence relations. Varshalovich
et al. useZY Z Euler angles. Their relations are different from ours by a
factor of (�1)m�n:
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In Euler angles

The factor is the normalization such that
Hence, we expand functions in

in a Fourier series as

(13)

where

(14)

We state without proof that the homomorphism property
holds, and that for

is a complete set of irreducible unitary rep-
resentations for Taking these facts for granted, the
Plancherel equality

and convolution theorem

hold as special cases of the general theory, where is
the Hilbert–Schmidt norm, and convolution is defined in the
group theoretical context as

See [33] and [34] for details.
When Euler angles are used, the matrix

elements are related to the spherical harmonics as

and

It follows from the homomorphism property that

This means

(15)

where and are the transformed spherical coordinates such
that

Using the notation and conjugating
both sides of (15), one writes

Substitution of for and using the unitarity of the
representations gives

(16)

In summary, the harmonics provide a tool to express
the rotated version of a function on the sphere expanded in
terms of spherical harmonics. The harmonics also are
used to expand functions on and, when such functions
are constant on isotropy subgroups isomorphic to they
reduce down to functions on which are
scalar multiples of the spherical harmonics.

3) Applications to Our Model:A stator pole can be taken
as the north pole. As the rotor rotates, the potential becomes a
function of rotation. For a scalar-valued function of -
valued argument like in (4), one has

Hence, approximating and in the ansatz potential (4)
using spherical harmonics and using (16) allows for a neat way
of writing the potential Without using this technique to
simplify the form of the integrands in the potential function,
the integration in (4) would have to be evaluated for each

. With the tools of Section III-B-2, the integration can be
performed independent of .

IV. I MPLEMENTATION OF THE PROTOTYPE

The implementation of our spherical stepper motor was
achieved by placing cylindrical rare-earth permanent magnets
along the inside surface of a hollow plastic sphere (with
magnetic poles aligned with axes of the sphere) to form the
rotor.

The stator consists of off-the-shelf wrapped soft iron cores
placed on the outside of a spherical cap which are polarized to
form electromagnetic fields. Due to the fact that the symmetry
of the rotor pole arrangement is different than that of the stator
poles, the fields created by energizing stator coils provide a
torque that changes the orientation of the rotor.

A key feature of our design that is different than others
found in the literature is that the stator does not envelop the
rotor. In fact, it covers less than a hemisphere. As a result, our
design is able to achieve a very wide range of motion.
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Fig. 7. Stator assembly.

A. Construction

A 12-in-diameter plastic sphere is used as the rotor. It is
very rigid and splits into two pieces, making it easy to alter
the packing of the permanent magnets. The stator structure
supports this rotor. An adjustable magnet saddle holds the
stator magnets. The saddle has two functions. It positions
and orients the stator magnets and provides internal structure
for the pedestal. The saddle geometry involves many different
angles and intersections that would make it very difficult to
machine using classic tools with any accuracy. Inaccuracy in
the stator packing would propagate throughout the structure.
The saddle was build by first converting CAD drawings of the
saddle pieces into G-Code. The pieces were then machined
using a wire EDM machine. This assures us very high accuracy
on the position of the stator magnets. By making different
saddles, the stator packing can be changed. The saddle can
slide up and down in the pedestal to adjust the gap between
the rotor and stator. The stator electromagnets chosen are 2-
in diameter by 1.625-in high and mount to the saddle by a
1/4-20 bolt that passes through the saddle rail and threads into
a threaded hole in the magnet. A ring housing machined out
of garolite and eight miniature ball castors support the rotor.
The ring is press fit into the top of the motor pedestal and
positions the castors to be perpendicular to the ball at the
contact points. This ring levitates the rotor above the stator
magnets and allows the rotor to move relatively friction free.
Any inaccuracies in the ring would cause only some of the
castors to contact the ball, which would lead to binding. Five
removable posts with ball castors at the terminal ends are also
used to support the rotor from inside the stator assembly.

Fig. 7 shows the actual stator packing and the castor ring.
The rotor was assembled by fixing permanent magnets to the
inside of the sphere. Locating points on an actual sphere is
a difficult process. We actually drew the Platonic projection
on the surface of the sphere, along with the lines required to
perform geometric constructions. This enabled us to position
the permanent magnets accurately. One-half of the actual

Fig. 8. Inside of the rotor.

Fig. 9. Assembled motor.

rotor packed with magnets is shown in Fig. 8. It is crucial
that the magnets be positioned with high accuracy. The ball
should have no internal torques. For this to be possible, the
principal moments of inertia of the rotor have to be equal

Since semiregular packings are used,
the rotor, in theory, is balanced, but if the magnets are not
positioned accurately, a heavy region will develop, resulting
in an internal torque. The gap between the rotor and the faces
of the stator magnets is adjusted to be approximately 0.005 in.
The final assembly is shown in Fig. 9.

B. Control of the Motor

Printed circuit (PC) relay boards control the states of the
stator electromagnets. The boards chosen are Arbor PCI-7250
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Fig. 10. Example of commutation.

and piggyback boards PCI-7251. Each board contains eight
relays. Up to three PCI-7251’s can be piggybacked to the PCI-
7250, which would allow us to control stator packings up to
32 magnets. A C-language program switches the states of the
relays. This enables us to make changes to the motor function
and commutation very easily. Power for the electromagnets is
supplied by a standard 24-V magnet supply rated up to a 100
W of power.

A computer model of the motor allows us to check the
commutation of the motor for different rotor/stator packing
and axes of rotation. The algorithm outlined in Section III-A is
the computation needed to form the commutation model. The
model takes in the packings, rotation axis, rotation direction,
allowable errors, and returns the rotor/stator pairs that result
in the desired rotor motion. Fig. 10 shows the output of the
model for three steps in the motion of the rotor. The motion is
along a rotation axis coming out of the page, through the center
magnet, with a positive rotation direction. The large ellipses
represent the base electromagnets projected onto the plane
defined by the rotation axis. The small ellipses correspond
to the projection of the rotor magnets that are used in the
commutation. The line perpendicular to the rotation axis and
projecting to the right in Fig. 10 is a marker that allows us
to see the magnitude of the rotation. Filled small ellipses
correspond to rotor magnets that are being attracted by the
stator at the current instant in time. The hatched small ellipse
denotes the next rotor magnet to be attracted by a stator pole
to produce rotation along the desired axis. All other magnets
are not shown.

V. CONCLUSIONS

We have developed a general theory for the kinematic
design and commutation of spherical stepper motors where

the rotor consists of permanent magnets. This formalism has
been applied to the design and commutation of a particular
physical prototype. Much work remains in the refinement of
this methodology so that motor designs can be generated for
specified tasks.

The flexibility built into the design of the motor enable us to
perform upgrades relatively easily. We have so far tested one
different rotor/stator pair and are planning on testing more.
Further testing also needs to be conducted to look at the effect
of the size of the rotor magnet relative to the stator. Along
with this rotor, magnets of a different composition from those
presently being used will be examined.
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