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Kinematic Dynamo Problem 
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summary 
The properties of the dynamo equation are discussed to show that the 
dynamo equation is self-adjoint for a curl-free velocity under a suitable 
restriction. The impossibility of a steady dynamo by a motion having 
only a radial velocity component which vanishes at the boundary surface 
is proved, and an attempt has been made to verify the possibility of an 
oscillating toroidal field dynamo. Also it is shown that any poloidal 
magnetic field cannot be amplified by a uniform stellar contraction, while 
quasi-steady toroidal fields can be maintained by a homologous 
contraction. 

1. Introduction 

Since the first suggestion made by Larmor (1919), the dynamo theory for the 
maintenance of a magnetic field by a regular fluid motion has been investigated by 
many researchers (Elsasser 1946a, b, 1947; Alfvbn 1950, 1961; Bullard & Gellman 
1954; Runcorn 1954; Herzenberg 1958; Backus 1958; Davis 1958; Namikawa 
1961; Taylor 1963; Braginskiy 1964a, b, 1965a, by 1967; Gibson & Roberts 1965; 
Stevenson 1965; Stevenson & Wolfson 1966; Childress 1967; Tough 1967; b r t z  
1968b; Jayanthan 1968; Cowling 1968; Tough & Roberts 1968; Kato & Nakagawa 
1969). Turbulent dynamo theory has also been studied by a number of investigators 
(Batchelor 1950; Biermann & Schliiter 1950,1951; Zel'Dovich 1957; Moffatt 1961; 
Saffman 1963; Malkus 1963,1968; Kraichnan 1967; Thomas 1968; Tsytovich 1969; 
Vainshtein 1969; Steenbeck & Krause 1969). In spite of these efforts, no definite 
conclusion OD the dynamo maintenance of the terrestrial and the stellar magnetic 
field has been obtained. The impossibility theory of a steady dynamo with axial 
symmetry has first been presented by Cowling (1934), and generalized by Backus & 
Chandrasekhar (1956), Cowling (1957) and Lortz (1968a). 

In the present paper, the kinematic dynamo problem is considered; our concern 
is only the generation of the magnetic field for a specified regular motion of the fluid. 
The general properties of the dynamo equation are discussed in Section 2 and the 
impossibility of a steady dynamo with a radial velocity field which vanishes on the 
boundary surfaces is treated in Section 3. The possibility of the oscillating toroidal 
field dynamo is discussed in Section 4. Impossibility of the amplification of a poloidal 
magnetic field in a uniformly contracting star and the possible maintenance of quasi- 
steady toroidal fields by a homologous contraction in a star are discussed in Section 5. 
The adjoint equation of the dynamo theory is derived in Section 6. 
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396 Namikawa and Matsushita 

2. The dynamo equation 

The basic equations of the dynamo problems are given by Maxwell’s equations, 
Ohm’s law and the equations for the fluid motion and for the energy. Because of 
the mathematical difficulties in solving these equations simultaneously (Stevenson k 
Wolfson 1966), we consider here the dynamo problem only in the kinematic formula- 
tion, namely, we are interested only in the generation of the magnetic field for a 
specified regular motion of fluid (Elsasser 1946a, b, 1947; Bullard & Gellman 1954; 
Backus 1958; Herzenberg 1958; Braginskiy 1964b, 1965a, b, 1967; Childress 1967; 
Jayanthan 1968; Gibson & Roberts 1965; Lortz 1968a, b; Tough 1967). 

Then, the hydromagnetic dynamo can be described by the induction equation: 

V x B = 4 n p ~ ( E + ~  x B), 
or equivalently, 

V x (V x B), aB - = V x (V x B)- - 
at 4npo 

where B, p, Q, E and v are the magnetio induction, magnetic permeability, electrical 
conductivity, electric field and velocity, respectively. The electromagnetic units are 
used through the calculations. The non-dimensional forms of equations (1) and 
(2) are 

qV x B = E+v x B, (3) 

(4) -- ‘B - (B.V)v-(v.V)B-BV.v-qV x (V x B), 
at 

where v, E and time t are measured in units of V, V B  and L/V, respectively. V, B, 
and L are the characteristic velocity, magnetic field, and the length associated with 
the system. 

1 
= 4npaVL 

is the reciprocal of magnetic Reynolds number R,. 
At the boundary surface S, we assume that 

or 

or 

u,, = 0, B = 0 and E = (qV x B) is continuous, 

u,, = 0, B and E are continuous, 

u = 0, B and E = (qV x B) are continuous, 

(6) 

(6a) 

(7) 

where n denotes outward ‘ normal ’ at the boundary surface. The boundary condi- 
tion (6) may be applied to the surface of a planetary inviscid liquid core and to a 
stellar surface having only a toroidal field; equation (6a) may be applied to a surface 
of a planetary inviscid core and to a stellar surface having both a toroidal and a 
poloidal field, while the condition (7) may be applied to a planetary viscous liquid 
core, having both a toroidal and a poloidal field. We denote the dynamo-acting 
region by 7, the whole space by e, and the outer space of -r by e--r. 

Let B’* be the complex conjugate of a second field B, corresponding to an 
arbitrary current system j‘ within the volume z of the conducting fluid. Then, taking 
the dot product of equation (1) by V x B‘* and integrating it through the volume 
t gives 

q V x B.V x B * d t  = E.V x B’*dz+ v . @  x (V x B*)}dt. (8) s s s 
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Kinematic dynamo problem 397 

Making use of the identity of 

V.(E x B*)  = B * . V  x E-E.V x B*,  (9) 

together with Gauss’s theorem and Maxwell’s equations, the first of the right-hand 
side of (8) becomes 

JE.V x B * d r  = -/B*. $dr-J(E x B’*).dS. (10) 
r r S 

Since V x B *  = 0 in the outer space, (9) gives 

- / @  x B’*).dS = - 1 B * .  ;5;dr. aB 

S C - Z  

Combining (10) and (1 1) presents 

The second term of the right-hand side of (8) is expressed as a sum of a symmetric 
part and an anti-symmetric part with respect to B and B * :  

+ J  v.{B x (V x B’*)+B‘* x (V x B)}dr 
r 

++J v.{B x (V x B*)-B* x (V x B)}dt. (13) 
r 

Making use of the identity of 

V(B.B‘*) = B x (V x B’*)+B’* x (V x B)+(B.V)B’*+(B’*.V)B, (14) 

the symmetric part in (13) is 

3 1 [v. V(B .B*) - v .  {(B. V) B’* + (B*  . V) B}] dr.  (15) 
r 

Applying Gauss’s theorem to (15) with the boundary conditions (6) or (7) gives 

where 

all = { 

Equation (16) indicates that for the dynamo maintenance of a magnetic field, 

The anti-symmetric part of (13) can be written 
either the normal strain rate or shear strain rate or both should not vanish. 
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398 Namlkawa and Matarsbita 

where 
L = V x (B x B’*), 

and 

From (20) and (21), we find 
V.L = 0, 

and 
V x M = 2VBj x VB,’*, 

V.M = BjV2B;*-B,’*V2Bj. 
M can be expressed by Helmholtz’s theorem 

M =  V x N+VY, (25) 
where 

and 
r 

B;* V2 Bj-Bj V2 Bj’* dt. 
4nR 

Here B, and B,’* are functions of (r’, O’, I$’), d t  = rt2 sinO‘dO’dt$’dr’, and 

R = [r2 + r” - 2rr‘{cos 8 cos 8’ + sin 8 sin 8’ cos (4 -#)}I*, 
in a spherical co-ordinate system (r, O,t$). But M cannot be expressed in a simple 
form such as L in (2O).RFromf(8), (12), (16) and (19), we get 

/ z . B * d r  = t / ~ * , ( B , B ~ * + B , ’ * B l ) d r - - r l  I V x B.V x B * d r  
C T I 

+ + l V  x v.(B x B*)dr-+JW*.(v.V)B-B.(v.V)B*}dr. (8a) 
T T 

The same equation can be obtained from (4) (see Appendix A). 

symmetric part (19) can be written 
Making use of Gauss’s theorem and the boundary conditions (6) or (7), the anti- 

+ l [ V  x Y.{@ x B*)+N)+YV.v]dr. (28) 
0 

IfV.v=OandV xvisperpendiculartoB xB*+N,or i fV xv=Oandv.VY=O, 
the anti-symmetric part of (8) vanishes when aB/at = 0 and (8) becomes a Hermitian 
form. When the symmetrical part of (8) does not vanish, we can solve this eigen- 
value problem. 

For a general velocity field, 

Y = v u + v j x  w, 
the anti-symmetric part can be written 

+J{V x v.(B x B*)+U(B’*.V2B-BV2B’*)+W.(VBj x VBj’*)}dZ. (29) 
7 

The first term of (29) comes from the term (B. V) Y, and the second and third terms 
come from the advection term (v.V)B of (4). The first term vanishes for arbitrary 
B and B *  when the velocity is curl-free, but it is difficult to find the condition of 
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Kinematic dynamo problem 399 

vanishing of other terms for arbitrary B and B’*. Therefore, the advection term 
(v . V) B causes a difticulty in solving the dynamo problem. For the boundary condi- 
tion (6a), the derivations of (16) from (15) and of (28) and (29) from (19) are 
impossible. In this case, however, the same discussions mentioned above may hold, 
because V x v = 0 must be true for the vanishing of the integral 

1 v . V  x ((B x B*)+N)dz. 

The equation (8a) can be written, for the boundary condition (6a), in the following 
form: 

1% at .B*dT = -+~[(B.B’*)V.V+V.{(B.V)B’*+Q*.V)B}]~T 
r r 

-q[V x B . V  x B * d r + f / v . V  x (B x B’*)d.r 

(a) Irrotational fluid dynamo 
In a steady state, the equation of continuity is 

pv.v+v.vp = 0, (30) 
where p is the density of fluid. The estimation of the order of magnitude of the 
first and second terms of equation (30) gives pv/L and (u/L)dp respectively, where 
L is the radius of the Earth‘s core or a star and 6p is the difference in density between 
the centre and the surface of the Earth’s core or a star. In the Earth’s core p and 6p 
are approximately 10 and 2, while 6p - p in a star. Since the ratio of the second 
term to the first is about 1/5 in the Earth’s core and is nearly equal to unity in a 
star, the velocity field which actually exists inside the Earth and in stars must be at 
least partly curl free. Furthermore, in the Earth’s core, the forces associated with 
convection are much less than the static force. Non-homogeneity in the Earth’s 
core far exceeds the deviations associated with convection (Braginskiy 1964b). 
Therefore, a curl-free velocity field may be important for the dynamo maintenance 
of a magnetic field in the Earth’s core and a magnetic star. 

The term (v. V) B in equation (4) represents the advection of magnetic induction 
due to mass motion. The term @. V) v shows that a fluid flow stretches the magnetic 
lines of force and thus increases the magnetic energy of the system. The term 
- B V . v  expresses the increase of magnetic energy by compression. In a system 
moving with fluid, the variation of magnetic field is given by the term 

DB/Dt I dB/dt+(v.V)B, 

and the terms (B.V)v and -BV.v  compensate the Ohmic dissipation term 

qV x (V x B). 
Therefore, the essential terms for dynamo maintenance of a magnetic field are the 
terms (B. V) v and -BV . v in (4). The importance of the terms (B. V) v and - BV . v 
can be seen from the similarity between the heat conduction equation of ideal gas 
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400 Namikawa and Matsusbita 

and equation (4) in the tensor form 

where T, Q, C,, IC and R are temperature, quantity of heat generated by sources in 
unit volume of the fluid per unit time, specific heat at constant volume, thermal 
conductivity, and universal gas constant, respectively. Bi and T have similar 
behaviour, and the term (B.V)v in (32) corresponds to the heat source term in 
(31). There is also a similarity between the equation of continuity and (4) as follows: 

a P  a - + - (PO,)  = 0, 
at axj 

aB, a a v .  a 2 B .  
- + - ( B i v j )  = B +q-' .  
at axj j axj axj2 

Bi and p have similar behaviour, and the terms (B.V) v and qV2 B correspond to a 
mass source and a mass sink. 

When V x v = 0, aB/dt = 0, and 

(v.V)B = 0, (33) 
or V x {(v.V)B} = 0, (34) 

the anti-symmetrical part of (8) vanishes. Thus, when the symmetrical part of (8) 
does not vanish, (8) becomes a Hermitian form. Eigenfunctions and eigenvalues 
can be obtained (see Appendix B) by the calculation of the minimum value of 

B *  . { (B. V) v -BV . V} dt 
S , V x B . V x B * d t  ' 

(35) 

In this case, we must solve simultaneously the equation of motion, the equation of 
continuity, and the induction equation under a restraint (33) or (34), as a complete 
dynamo problem. The solution is more restrictive than usual. 

(b) Incompressible fluid dynamo 
Integrating the vector identity 

V . (B . B *  V) = (B . B*) V . v + B *  . (v. V) B +B . (v. V) B*, 

through a volume t and making use of Gauss's theorem and the boundary condition 
of the vanishing of the normal velocity, we obtain 

/V.(B.B*v)dr = J(B.B'*)vdS 
r S 

= 0 - [ (B.B*) V . vdt + {B* . (v. V) B+B.  (v. V) B*}  dt. (36) 
r 

The first term of the right-hand side vanishes in this incompressible case. Thus, 
jr B *  . (v. V) B dt is anti-symmetric. Therefore, we see from (8a) the advection 
term indicates oscillations of magnetic field. Only the (B . V) v term can compensate 
the Joule loss term. Therefore it is necessary to equate to zero the s u m  of the anti- 
symmetric part of sT B *  . (B. V) v dt and IT B *  . (v. V) B dt. 

As a very special case, we consider a toroidal field dynamo in an incompressible 
fluid. Sufficient conditions for a zero value of the antisymmetrical part (19) or (28) 
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Kinematic dynamo problem 40 1 

for arbitrary B and B *  when V.v = 0, are that B and B *  are toroidal fields, v is 
poloidal, and (33) or (34) is satisfied. Moreover, a condition 

(B.V) u, = 0, (37) 
or equivalently 

is necessary to produce only toroidal fields from the interaction of a poloidal velocity 
and the toroidal magnetic field B = VT x P, where ur is the radial component of 
the velocity and (&+) are spherical angular co-ordinates. It can be seen that this 
dynamo is very restrictive. 

3. Impossibility of the maintenance of a steady magnetic field by a radial velocity 
vanishing on boundary surfaces 

The Earth's liquid core is probably a mixture of iron and silicon; silicon floats 
up to the mantle, while iron precipitates to the inner core (Verhoogen 1960; Bragin- 
skiy 1964b). Accordingly, in the liquid core the density distribution changes. Due 
to the rotation of the Earth, however, other velocity components may also be 
generated. For simplicity, we consider here a dynamo with only a radial velocity 
which vanishes at the boundary surfaces. In this case, the dynamo equation (4) 
can be represented by two very simple equations which govern a poloidal field BP 
and a toroidal field BT, respectively, as follows: 

and 

(39) 

where 
(41) 

and 

Here Ynm(0,4) and P are the spherical surface harmonics and the unit vector of 
radial direction, respectively. The velocity obeys the continuity equation 

v = u(r) P. 

ap 1 a - + - - (rZ pv) = 0. 
at rz ar 

(a) Poloidal magnetic field 
From (39), we obtain 

(43) 
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402 N a m l l r a w a d M a ~ t a  

When an electrically-conducting fluid exists in a sphere of unit radius, and the 
exterior of the sphere is a non-conducting medium or a vacuum, the boundary 
condition of the continuity of magnetic field is given by 

P,, = 0 at r = 0, 
and 

+nP, = 0 at r = 1. - dP, 
dr 

(45) 

Because PJO) = 0 and dPn(l)/dr 8 0 according to whether P,,(l) 5 0, P,(r) has, 
at least, either a minimum or a maximum in the interval 0 < r < 1 .  Therefore, 
dP,,(r)/dr = 0 at a point in 0 < r < 1, and d2 P,,(r)/dr2 8 0 for P,,(r) 5 0 at .the 
point of d P,,(r)/dr = 0. Thus, d2 P,,(r)/dr2 - [n(n + l ) /r2]  P,,(r) 8 0 according to 
whether Pn(r) 5 0. Hence u tends to infinity at the point of dP,(r)/dr = 0, and no 
steady poloidal magnetic field can be maintained by a radial velocity which is finite 
in the interval 0 Q r Q 1 and vanishes on the boundary surfaces. 

(b) Toroidal magnetic @eld 
Multiplying equation (40) by T,' and integrating with respect to r ,  gives 

Integration by parts presents 

] y]  T,dr = 0. (47) T,' +v- 
d2 T,' n(n+l)  

r2 
'1 

(1) If we consider a dynamo in a fluid sphere of unit radius, we must take rl = 0 
and r2 = 1. When the boundary conditions are given by 

~ ( 0 )  = ~ ( 1 )  = T,,(O) = q(1) = T,'(O) = T,'(l) = 0, (48) 
the integrated parts of (47) vanish; the adjoint equation of the dynamogequation 
(40) is 

(49) 

This equation is essentially the same as that of poloidal field except with a reversed 
velocity. 

(2) When a spherical conducting fluid shell is surrounded by a conducting solid 
shell and has an inner solid conducting sphere as shown in Fig. 1, the equation and 
solutions for regions (a) and (c) are 

and 
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Kinematic dynamo problem 403 

where 4 is an electric potential. The region (d) is the vacuum or an electrically 
insulating solid. From the continuity of the magnetic induction and tangential 
components of the electric field, we get 

and 

If equation (40) is satisfied and Tn and T,,' satisfy the boundary conditions (54) and 
(55), the integrated parts of (47) vanish and the adjoint equation (49) can be defined 
also in this case as in category (1). 

Suppose the solution of the dynamo equation (40) satisfying the boundary 
condition (48) [or (54) and (55)] could be obtained for a finite velocity in the interval 
rl < r < r2,  the adjoint equation should then have a solution which satisfies the 
same boundary conditions. In this case, we get from (49) 

d2 T,' n(n+l) 
dr2 r2 T,' --- 

v =  -1 
dT,' 
dr 
- 

The coefficient of Tn in (54) is positive, while that of T, in (55) is negative. There- 
fore, from (48) [or (54) and (55)], we can see that d Tn'/dr = 0 at a point in r1 < r < r2. 
At the point dT,,'(r)/dr = 0, d2 T,,'(r)/dr2 3 0 for r ( r )  2 0, hence 

according to T,' 8 0. Therefore, u becomes infinite at the point dT,'(r)/dr = 0 
and contradicts the assumptions. Thus, we conclude that no steady toroidal field 
can be maintained. Although we have studied here a non-axially symmetric field 
in general, equations (39) and (40) have a resemblance to (6) and (8) in Lortz's paper 
(1968a):of an axially symmetric field, and (39) and (40) may be discussed in the same 
way as Lortz's theory. 
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404 Namikawa and Matsushita 

4. Oscillating dynamo 

The magnetic variable star changed its magnetic polarity in the order of days 
(Babcock 1958; Ledoux & Renson 1966), the Sun changed its polarity of dipole 
magnetic field during 1957-1958 (Babcock 1959), and the Earth‘s dipole magnetic 
field often changed its polarity during geological time (Hide & Roberts 1961; Cox 
1969). Since the time scale of reversals in the Earth’s dipole magnetic field is very 
long, the reversals might have occurred incidentally as a result of changes in the 
structure of the Earth’s interior. If these reversals are caused by a manifestation of 
non-linear hydromagnetic oscillations in the magnetic variable star and the Earth’s 
core, we should consider a non-steady dynamo. From the study of the oscillations 
of a pair of coupled disc dynamos each of which is excited by the other, Rikitake 
(1958) and Allan (1958) showed that both the angular velocities and magnetic fields 
were reversed in the general large amplitude case. When a magnetic field oscillates, 
some of the terms in (4) compensate the Joule loss term and the others make the 
magnetic field oscillation. 

(a) Oscillating incompressible toroidal field dynamo 
When 

-=- DB - aB +(v.V)B = 0, 
Dt at 

and 
v . v  = 0, 

the dynamo equation reduces to 

qV x (V x B) = (B.V)v. 

Equations (57) and (59) are equivalent to 

1 

and 

1 . B * d r +  B*.(v.V)Bdr = 0, I 
3 1 a,,(B,B,’*+B,I*B,)dr++ 1 V x v.(B x B*)dz 

7 7 

-q V x B.V x B * d r  = 0. (61) 
r 

From equation (58) and the condition that the normal component of the velocity 
vanishes, the symmetrical part of the second term of (60) vanishes as shown in (36). 
Then, the toroidal field oscillates and the total magnetic energy of the volume T 
does not change. Therefore, this dynamo is a steady total energy dynamo, 

contrasting to a steady field dynamo, aB/at = 0. When B and B *  are toroidal 
fields and v is poloidal, the second term of (61) vanishes, because B x B *  has only 
a radial component and V x v is toroidal (with only 8 and 4 components which are 
perpendicular to the radius vector). Equation (61) becomes a Hermitian form 
and this eigenvalue problem can be solved. 
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Kinematic dynamo problem 405 

Only the toroidal field VT x P is self-excited y d e r  the condition (37) or equi- 
Taking dot product of (57) by B* and integrating through the valently (38). 

volume z give 

1 .B*dz = - 
T 

The right side of this equation is anti-symmetric from (36). When v is steady, we 
can assume B is proportional to em', and this equation becomes 

r T 

showing cu is imaginary. Therefore the magnetic field moves with convection 
according to (57) along closed stream lines and oscillates even if the velocity is 
steady. When a conducting layer with finite electrical conductivity, zero velocity 
and non-vanishing toroidal field surrounds the dynamo region, the magnetic field 
in this layer obeys the equation 

aB - = qV2B. 
at 

The toroidal field is continuous at the inner boundary and must vanish at the outer 
boundary of this layer. When a strong toroidal magnetic field moves by convection 
at the inner boundary of this layer, its radial gradient of the magnetic field becomes 
large. If, however, no such layer exists, the magnetic field must vanish along the 
stream lines part of which lie on the boundary, because the toroidal field, which must 
vanish on the boundary, moves with the fluid in this case. If this dynamo is stable 
and a poloidal field is generated as a small perturbation due to a velocity perturba- 
tion, the polarity of a dipole magnetic field can easily be reversed. 

5. Quasi-steady dynamo due to contraction of a star 

As a simple example of non-steady dynamo, we consider solutions of the dynamo 
equations of uniformly contracting stars, which are non-steady cases of equations 
(39) and (40) 

and 

From (63) we obtain 

V =  

aPn - 
ar 

In the same way as discussed in Section 3, we have 
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406 Namikawa and Matmwbita 

for P,,(r, t) 5 0 at the point of aP,(r, t)/& = 0. Also aP,,(r, t)/at 3 0 according to 
whether P,,(r, t) 2 0 for a growing magnetic field. Hence v becomes infinite at the 
point of dP,(r, t)/ar = 0. Therefore we may conclude that uniformly contracting 
stars cannot amplify any poloidal magnetic fields. 

If we assume homologous contraction (Rosseland 1949) given by 

the solutions of (64) are given by 

and 

where R(t )  and al are the radius of the star and the Zth root of J,,++(al) = 0. We 
took V in (5) as the magnitude of the initial velocity on the stellar surface and L in 
(5 )  as the initial radius of the star. Initial conditions are R(0) = 1 and k,(O) = a,. 
A(t )  is determined by the equation 

For k,( t )  making the right side of (69) positive, I A,(t)l increases; we have growing 
toroidal magnetic fields. The estimation of the order of magnitude of (69) gives 

v > -  4ltpaL ' 
for growing magnetic fields. Thus a toroidal magnetic field given by (67) is amplified 
when the magnitude of velocity satisfies the condition (70). As a numerical example, 
let us take the value of a = e.m.u. (Cowling 1953), and L = 7 x 10" cm for 
the Sun. Using the value of a1 = 4-49 for n = 1, we get V = 2.4 x lo-' cms-' 
and L/V = 10" yr. The radius of the Sun decreases by only 1/10 during lo9 yr. 
Therefore quasi-toroidal fields may be maintained in a slowly contracting star. As a 
simple example we get an exponentially increasing solution 

~ , ( t )  = A(0) exp (At) ( A  = 3(1 +qa12)-'), (71) 
for 

k,( t )  = al{(l+qa,2) exp (-4Ar/3)-qa,2}-4 

R(t )  = {( 1 + qa?) exp ( -412t/3) - qa?}*. 

(73) 

(74) 
At fist sight it seems that there is a solution making the right side of (69) zero. 

and 

Since A, is constant in this case, we have from (67) 

Making use of the boundary conditions, we get from this equation 

Because 
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Kinematic dynamo problem 407 

this equation shows that the total magnetic energy decreases, and no magnetic fields 
can be maintained. 

We obtain an oscillating solution 
A,(?) = A,(O) exp (sin ot), (76) 

for 
k,(t) = a1 exp (2 sin ot/3) exp (4 sin 4 3 )  dt (77) 

R ( t )  = exp (- 2ot/3): exp (4 sin of/3) dt (78) 

and 

o cos or + Val2 exp (4 sin 4 3 )  exp (4 sin wt/3) d t  . (79) 11 
This solution represents that for pulsating stars contracting very slowly, toroidal 
magnetic fields also oscillate but are not reversed. 

6. Adjoint equation 
We seek here an equation adjoint to the steady dynamo equation 

qv X (v X Bb)  = v X (V X Bb), (80) 

in a region of fluid z b  surrounded by two conducting regions (a) and (c) as shown 
in Fig. 1. Suppose the fluid velocity v vanishes on S,, and s b .  In the regions (a) 
and (c), the fields B,, and B, obey 

V.B = 0, (81) 

and Ohm’s law for a stationary conductor: 

or I VV x B =  -V+, 

VV x (V x B) = 0. 

In the vacuum region (or non-conducting solid region) zd, Bd obeys (81) and 
v X B d  = 0. (83) 

The regions (a), (b), (c) and (d) in the Earth represent the inner solid core, the liquid 
core, the lower mantle layer which has a small electrical conductivity, and the mantle, 
respectively. The region (a) does not exist in a star. The regions (b), (c) and (d) 
are the stellar body, conducting stellar atmosphere, and the vacuum. Across the 
boundary surfaces S,, s b  and S, (see Fig. l), B and 4 are continuous. 

Taking the scalar product of (80) with an arbitrary solenoidal vector Bd and 
integrating over ‘Eb gives 

j B b . v  x ( V b v  x & ) d z b - / v  x (v x B ) . B b d Z b  = 0 
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408 Namikawa and Matsushita 

= 1 qb{(V X Bb) x 8 b - ( v  x 8,) X Bb}.dS 
S.+. s b -  

+ {v x ( q b v  x 8 b ) + v  x v x &,}.Bbdrb, (84) s .  
where S,' and S b -  denote the surfaces just outside S, and inside S b .  The surface 
integral containing 1) vanishes by the boundary condition of zero velocity on the 
boundaries. Similarly, assuming that B, = O(r) and 4, = O(r) when r + 0 in T,, 
we obtain from (82) 

s 8 , . V  x (q,V x B,)dz, = 0 

= - s q,{(V x B& x Ba-(V x 8,) x Bu}.dS + V x (q,V x B,,).B,dr,, (85)  s 
Sa - 

and 

s 8 , . V  x (qcV x B,)dr, = 0 

= - 1 q,{(V x B,) x 8,- (V x 8,) x B,} .dS 
s b  

+ V x (q,V x B,).B,dz, s 
+ 1 q,{(V x B,) x 8,- (V x 8,) x B,I .dS, 

So - 
because no current flows in the region zd, the field 8 d  must satisfy 

In the region rd, we have 
v x B d  = 0. 

1 (k, x B,).dS E 0. 
Sc + 
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The last term of (86) is equal to the difference between (88) and (89), because the 
tangential components of E, - qc V x B,), a, (= gV x 8,), B, and 8, are continuous 
across S,  and equal to Ed, &and 8 d .  Thus the last term of (86) vanishes. 

Adding (84) through (86) gives 

+ V x (qcV x B,).B,dr, = 0, (90) 

because the tangential components of E = (qVx B) and B are continuous across 
the surfaces S,, Sb and S,. The volume integrals vanish for every eigenvector B. 
Assuming these form a complete set, we have 

s 
v x ( q , ~  x B,) = o in z,, (91) 

or 

where 

and 

These equations determine the adjoint system together with (81), (87) and the condi- 
tion that 8 and the tangential components of fi are continuous across the boundary 
surfaces. The adjoint equations in z,, z, and zd are the same as those of the given 
system, but the adjoint equation in f b  is quite different from the given equation. 
Boundary conditions of the adjoint system are the same as those of the given system. 
Gibson & Roberts (1965) derived the adjoint equation of the dynamo equation, 
but they had difficulty in the expression of boundary conditions. Their Bt corres- 
ponds to our current density j as follows: 
Making use of the relation 

we can take 

as the adjoint equation instead of (92). Equation (95) is their equation [A6]. 
obtained from the calculation of the minimum value of 

v x 8 b  = 4&, (94) 

v qbjb = -v4b-v jb, (95) 
is 

because if Bb and 8, satisfy the dynamo and the adjoint equations, 6qo is zero to 
the first order for all small variations of 6Bb and satisfying the boundary condi- 
tions and vice versa. 

7. Concluding remarks 

We have examined the general properties of the kinematic dynamo equation 
(see Section 2), and found that the advection term (v. V) B in (4) prevents the equation 
from becoming self-adjoint. If the third and fourth terms of the right-hand side 
of (8a) cancel each other, however, the equation becomes self-adjoint for dB/dt = 0. 
Unfortunately, the fourth term which comes from the advection term cannot be 
expressed as simply as the third term which comes from the (B. V) v term. Thus, 
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we cannot find any condition on the velocity in which these terms may cancel each 
other. When the advection term is zero or curl-free, the fourth term of (8a) vanishes. 
Then the equation becomes self-adjoint for a curl-free velocity. But in this case, 
as a complete dynamo problem, we must solve the equation of motion and the 
induction equation under a restriction of (33) or (34): then the solution may be 
restrictive. 

In Section 3, the impossibility of a dynamo with zero radial velocity on the 
boundary surface has been proved. The possibility of an oscillating toroidal magnetic 
field dynamo is discussed in Section 4. This is a dynamo which has a constant total 
magnetic energy of the volume d/dt lB12 dz = 0 in contrast to a steady field dynamo 

Amplification and maintenance of magnetic fields in a uniformly contracting star 
is discussed in Section 5. It is proved that no poloidal magnetic field can be amplified 
in a uniformly contracting star, while quasi-steady toroidal magnetic fields can be 
maintained by a homologous contraction. 

The adjoint equation of the dynamo equation is derived in Section 6. This is 
quite different from the original equation, although both equations have the same 
boundary conditions. We have suggested that a non-homogeneous dynamo with a 
curl-free velocity under a restriction, a homogeneous and oscillating toroidal field 
dynamo, and a quasi-steady toroidal field dynamo in a uniformly contracting star 
are possible to exist. However, the complete hydromagnetic problem, which requires 
the solution of the equation of motion, Maxwell's equation, and the energy equation, 
is almost impossible to solve analytically. It will require an electronic computer 
with much larger memory and much higher speeds than the present ones t6 solve 
this problem numerically (Stevenson & Wolfson 1966). 

aB/at = 0. 
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APPENDIX A 

Multiplying equation (4) scalarly with B *  and integrating through volume T, 
we get 

1; . B * d r  = + {B*.(B.V)v+B.(B’*.V)v}dr 
7 

-3 J {B * . (v . V) B + B. (v. V) B’*} dt - 1 (v . V)(B .B*) dt 
7 7 

- q  f V  x (V x B).B*dr++ f{B*.(B.V)v-B.(B’*.V)v}dr 
7 7 

-+ 1 (B’*. (v . V) B - B . (v . V) B *} dr. 
1 

Making use of (6) [or (7)], Gauss’s theorem and the identities 

V . {(v .B) B*} = v . (B* . V) B+B. ( B  * . V) V, 
and 

V .  {(v .B*) B} = V .  (B. V) B* + B *  . (B. V) V, 

the first and fifth terms of the right-hand side in (A. 1) reduce to 

-3 J v .  {(B .V) B *  + @* . V) B} dr, 

v . { (B’* . V) B - (B . V) B *} dr. 

r 

and 
3 

r 

With the boundary conditions, Gauss’s theorem and the identities 

V x (B x B*) = (B’*.V)B-(B.V)B* 
and 

(A.4) and (A.5) are reduced to 

V.{v x (B x B*)} = (B x B*).V x v - v . v  x (B x B*), 

and + J v x V.(B x B*)dr. 
I 

Making use of Gauss’s theorem, (6) [or (7)] and (36), the second term on the 
right-hand side of (A. 1) becomes 

3 1 (B.B*) v .vdr. 
7 

(A.l l )  
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The fourth term on the right-hand side of (A. 1) can be written as 

- S q V  x (V x B).B*dr 
I 

= - sV.(qV x B x B*)dr-  qV x B.V x B’*dt 

= - s{qV x (B x B’*)}.dS- S q V  x B.V x B*dr.  

I / 
S T 

In the exterior of the dynamo-acting region, we have 

1 V.(E x B*)dr  
e - r  

aB = - x B * ) . d S  = - s B*. ; i ;d t -  E.V x B * d r  
S e - r  8-T 

413 

(A. 12) 

= - 1 B’*.;dr, (A. 13) 
C-T 

because V x B *  = 0 in the region. Since E (= qV x B) and B *  are continuous 
across the boundary surface, adding (A. 12) and (A. 13) gives 

- 1 B’*. z d r -  qV x B.V x B*dr  = - 1 V  x (V x B).B’*dr. (A.14) 
&-I at [ [ 

From (A. l), (A.9), (A. lo), (A. 11) and (A. 14), we have 

aij(B,Bj’*+B,‘*Bj)dr- qV x B.V x B * d t  
& 

++ 1 V x v.  (B x B’*) dr -3 1 {B* . (v. V) B-B. (v. V) B*} dr. 
r r 

This agrees with (8a). Here aiis are given by (17) and (18). 

APPENDIX B 
As seen in Section 2a, the anti-symmetric part of fr{B x (V x B*)}.vdz 

Under vanishes when V x v = 0, aB/at = 0 and the condition (33) is satisfied. 
these conditions, we calculate the minimum value of 

where 
J,(B,B) = /{(B.V)v-BV.v}.B*dr, (B 2) 

T 

and 
J,(B,B) = S V  x B.V x B*dr.  (B .3) 

(B - 4) 

? 

Then, putting 61 = 0, we get 
651-1652 = 0. 
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Denoting the minimum value of q as q,,  the corresponding B as B,, and 

we get, to first order of E~ 
B=B,+e,b,  

JI(B~ B) = JI@I, BI)+EI* J,(Bi, b)+e, JI@, Bd- (B * 6)  
Since 

we see 
{(B,*.V)v>.b = {(b.V)v}.B,* for V x v = 0, 

J , @ ,  B,) = /{@.V)v-bV.v}.B,*dz 
7 

= 1 { (B, * . V) v-B, * V . v} . b dz 
1 

= JI*(Bl ,  b). 
Thus, we have 

where R denotes the real part. 
Ji@, B) = J i ( B 1 ,  Bi)+2Rei* Ji(Bi, a), 

Similarly, 

as 

Inserting (B.8) and (B.9) in (B.4), we have 

~R~,*{JI(BI,  b)-qi J2(B1, b)) = 0- 

Since el is arbitrary, we get 

Jl(B1, b) - V l  J2@1, b) = 0. 
We see 

(B * 9) 

(B. 10) 

(B. l l )  

(B. 12) 

q ,  Jz(B1, b) = J q ,  0 x B1.V x b*dr 
1 

= JV.(b* x q ,  V x B,)dz+ ql V x (V x Bl).b*dr 
T [ 

= I@* x q l V  x B,).dS+ q l V  x (V x B,).b*dz. ( B e  13) 
S 

In the exterior of t, we have 

V.(b* x El)& = E1.V x b*dz - 

= - I@* x El).& = 0, 

b*.V x El& I 
a-7 

I 
c - 1  K-r 

(B .14) 

because V x b* = V x E, = 0. Therefore, the first term of the last expression in 
(B. 13) vanishes from the continuity of El = q1 V x B1 and b*. Furthermore, 
from (B.12) we have 

S 

n 

J {(B,.V)V-B, V.V-q1 V x (V x Bl)}.b*dz = 0. (B. 15) 
T 
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As b is arbitrary, we get 

q 1 V  x (V x B1) = (B1.v)~-B1V.v. (B. 16) 
Thus, we can see that as a solution of minimum value to the problem of (B. l), 
q l  and Bl are the eigenvalue and the corresponding eigenfunction of (B. 16), 
respectively. Next, under the condition of 

j B . B l  d.r = 0, (B. 17) 

calculating the minimum value of (B. 1) gives 

q 2 V  x (V x B2) = (Bz.V)v-BzV.v, (B.18) 
where q2 is the second eigenvalue and B2 is the second eigenfunction. Similarly, 
we can obtain the eigenvalues ql  < qz < q3 ... and eigenfmctions B1, B2, B3, ... . 

When the condition (34) is satisfied instead of (33), we a n  write 

J { ~ ~ ) V - B ~  V.V-(V.V)B~-~,  v x (V x ~ ~ ) } d r  = 0, (B. Ha) 

(B. 16a) 
(v.V)Bl.b*dz = 0. We can obtain all 

r 
and 

q i V  x (V x B1) = @1.V)V-BiV.V-(V.V)B1, 
instead of (B. 15) and (B.16), because 
eigenvalues and eigenfunctions of (B. l6a) in the same manner. 
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