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Kinematic Manipulability of General
Constrained Rigid Multibody Systems

John Ting-Yung Wen,Senior Member, IEEE,and Lee S. Wilfinger

Abstract—This paper extends the kinematic manipulability
concept commonly used for serial manipulators to general con-
strained rigid multibody systems. Examples of such systems
include multiple cooperating manipulators, multiple fingers hold-
ing a payload, multileg walking robots, and variable geometry
trusses. Explicit formulas for velocity and force manipulability
ellipsoids are derived and their duality explained. Singularities
are classified into two types:

1) unmanipulable singularity;
2) unstable singularity.

The former is similar the singularities in serial chains where
velocity manipulability ellipsoid is degenerate and force ma-
nipulability ellipsoid infinite. The latter is unique to parallel
mechanisms, the velocity manipulability ellipsoid becomes infinite
and force manipulability degenerate. In the case of multifinger
grasp, these concepts correspond to unmanipulable or unstable
grasps.

Index Terms—Kinematic stability, manipulability, multiarms,
multibody systems, multifingers, parallel robots.

I. INTRODUCTION

AMECHANISM is called parallel if it consists of internal
closed kinematic loops. Such mechanism has long been

recognized to offer superior rigidity and load to weight ratio
than their serial counterparts. A platform type of parallel
mechanism was first introduced in [1] and later in [2]. This
mechanism is now popularly known as Gough–Stewart plat-
form (or simply Stewart platform). Most papers on parallel
robots are based on this geometry. Extensive survey of parallel
robots can be found in [3]–[5]. Most of this work is related
to platform type of parallel robots, though there are later
extension to truss type of robots [6], [7]. Parallel mechanism
has also been introduced in machine tool design with products
offered by Ingersoll, Giddings and Lewis, and Hexel. These
products all consist essentially of an inverted Gough–Stewart
platform, called hexapod. Other parallel machining centers
have also been proposed [4], [8].

Motivated by applications to parallel robots, this paper
considers the kinematic manipulability of general constrained
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multibody systems (including passive joints and multiple
closed kinematic loops). We first present a general kinematic
model which considers all degrees of freedom and then
imposes the constraints as algebraic conditions. Kinematic
models of multifinger grasping and a 6-DOF Gough–Stewart
platform are used as illustrative examples. Through the
principle of virtual work, we also derive the general static
force balance model which can be considered as a dual
of the differential kinematics. We then extend the familiar
single arm manipulability ellipsoid concept first proposed in
[9]. Characterization for both velocity and force ellipsoids
is presented. When applied to multiple cooperative arms
employing a rigid grasp or to multiple finger grasping, this
work is closely related to the work by [10] and [11] and
is also closely related to the past work by [12] and [13].
We also extend the important concepts of grasp stability
and manipulability. We obtain explicit characterization for
both properties and present their physical interpretation. As
illustrations, we include a planar Gough–Stewart platform, a
full 6-DOF Gough–Stewart platform, and a planar two-finger
grasping example from [12] and [13].

This paper is laid out in the following manner. We will
first present the differential kinematic and static force model
of a general constrained multiple-manipulator systems in
Section II. The velocity and force ellipsoids, and extension of
grasp stability and manipulability are presented in Section III.
Section IV presents a number of examples.

Terminology and Notation:We shall use the term “spatial
force” at a given frame to mean the vector of ,
and the term “spatial velocity” at a given frame to mean the

vector . Given a matrix , we use to
either denote the annihilator of ( ) or the transpose
of the annihilator of ( ). The distinction of the two
cases will be clear from the context.

II. DIFFERENTIAL KINEMATICS AND STATIC FORCE MODEL

This section considers the differential kinematics and static
force balance of general rigid multibody systems. Multiple-
finger grasping and a Gough–Stewart platform will be used
as examples.

A. Differential Kinematics

We consider a general mechanism subject to kinematic
constraints. The generalized coordinate (with the constraints
removed) is denoted by. The active joints’ angles are denoted
by and passive ones by . We order the angles so that
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Fig. 1. Two constrained manipulators in a load-sharing configuration.

. Consider a general constraint (written in terms
of the joint velocity vector)

(1)

Let the spatial velocity of the task frame be

(2)

Suppose that is full rank. Then , where is
the annihilator of . The task velocity can be written as

(3)

The mechanism is singular if loses rank; in other words,
there are some directions in that cannot be attained (but
which can be attained in other arm configurations).

1) Multifinger Grasp Example:As an example, consider
the kinematic model of multiple fingers grasping a rigid
payload shown in Fig. 1. For each serial chain, the joint
velocity vector is defined as , the arm tip spatial velocity
is , and they are related by the arm Jacobian :

We consider a single task frame attached to the constraining
rigid body (see Fig. 1) whose spatial velocity is defined as.
On the payload side of the contact, the spatial velocity,, is
related to the task velocity by

where (4)

where is the vector from theth tip to the task frame. The
relative velocity at each contact is parameterized by a velocity
vector :

where the columns of are the directions where relative
velocities at the contact are allowed.

To write the multiarm kinematics more compactly, we stack
all the vectors (e.g., ’s are stacked into a single vector) and
block diagonalize all the matrices (e.g.,’s form the diagonal

blocks of ), except for . Then the
differential kinematic relationship can be written as

(5)

Some examples of possible contacts are shown in Fig. 2.

Fig. 2. Examples of different contacts.

Defining , we can represent the multifinger kine-
matic model in the general form as in (1) and (2):

(6)

(7)

where is the annihilator for and is the Moore–Penrose
pseudo-inverse of . Note that is of full column rank.

It is important to note that information may be removed
from and prior to calculating . For example, if
orientation is not important for the task to be performed, it may
be useful to remove the orientation components ofand ,
and calculate a simpler form for . However, the constraint
Jacobian should contain full information about the system.

It is also possible to include fingers having multiple (dis-
crete) points of contact with the payload. The spatial velocities
at these additional contact points can simply be added to the
set of contact velocities, . We are currently working on
the extension to continuous contact, e.g., when a finger wraps
around an object.

2) Gough–Stewart Platform Example:For another exam-
ple, consider a Gough–Stewart platform which consists of two
triangular plates, with spherical joints at each of their three
nodes as shown in Fig. 3. Each bottom node is connected to
two top nodes via a linear actuator, so there are six actuators in
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Fig. 3. Stewart platform.

all. Suppose the task frame is attached rigidly to the top plate.
Let the unit vector attached to each linear actuator be denoted
by , where , the length of the connection be

, the angular velocity of each leg be , and the angular
velocity between the top plate and legbe . The rigid
body transformation between the task frame and the top node
connected to theth leg is denoted by [as given in (4)].
The kinematics then becomes

Define a joint velocity vector with 42 components:

(8)

Note that to are active and others are passive. Stacking
all the kinematic relations up vectorially, we have

(9)

where

...
...

and

... (10)

Equation (9) can be equivalently written as

In addition, the legs are constrained so they cannot spin about
themselves, so

which can also be written in terms ofas where
is . Putting the constraints together, we havein (1) as

(11)

B. Force Balance

Static force balance can be considered as a dual to the
kinematics. However, there is also the additional complication
of static load such as gravity on each link and position
feedback on the joint torque. We assume that these loads
have already been excluded from the joint torque, or more
specifically, we consider the joint torqueto be the portion
that balances with the load torque (the force that the arm
exerts at frame ). In the serial arm case, the force balance is
simply , where is the joint torque. This follows
from the principle of virtual work:

Since this holds true for any, the stated force relationship
follows.

In the constrained mechanism case, we can apply the
principle of virtual work in a similar fashion [using the
differential kinematic relationship (2) and (3) and noting that

is now applied only at the active joints]:

Since this holds true for any, we have the force balance
equation:

(12)

This can be equivalently stated as

(13)

where is the “internal force” (in the multiple-arm context,
the squeeze force).

The above can be viewed from another perspective. Instead
of the constraint (1), we replace it with a “virtual velocity”
(in the same spirit as in [14] in the multiple-arm rigid grasp
context):

(14)

Applying the principle of virtual work again, we obtain

(15)

where is the force that enforces the constraint (1).
Since the explicit constraint is removed, we have

(16)

This shows that the internal force in (13) is actually the
force that enforces the constraint (1).

As an aside, it should be noted that in mechanism design, it
is important to know the internal loading, , for a given
amount of actuator torque,, and task loading, . This
can be done unambiguously if [where
denotes the null space]. Equivalently, this means that the
total number of unconstrained degrees of freedom (dimension
of ) is at least as many as the number of independent
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constraints. Otherwise, one has an underdetermined problem
for the constraint force. Such systems are called hyperstatic.
This problem has been noted in the walking robot literature
[15], [16]. In [17], several different approaches to resolve this
issue have been compared.

We now apply the general frame work to the specific
example of multifinger grasping. The force relationship is
given by

(17)

which states that the stacked contact forceis zero in
the direction where the contact is unconstrained (i.e., where
relative motion is allowed) and the contact forces sum at the
task frame to . Solving in terms of , we have:

where is the force that enforces the constraint. Substituting
into the equation and the contact constraint equation, we
obtain (13):

(18)

As a specific example, consider two fingers pressing against
each other with a frictional point contact. In the absence of
the load force, , we have the force balance

The last two sets of equations mean that is a pure force
(no torque component). The first two equations mean that the
force due to the first finger is exactly balanced with the force
from the second finger.

III. V ELOCITY AND FORCE MANIPULABILITY ELLIPSOIDS

A. Serial Manipulators

The velocity manipulability ellipsoid of a single, serially-
linked manipulator was introduced in [9] as an indication of
the relative capability of a robot arm to move in different di-
rections. Singular value decomposition (SVD) of the Jacobian,

, is the key tool in this analysis:

(19)

where and are orthogonal matrices, and consists of a
diagonal matrix with rows or columns of zeros added so that
its dimension is the same as that of. The Jacobian maps a
ball in the joint velocity space to an ellipsoid in the spatial
task velocity space:

The principal axes of the ellipsoid are given by the columns
of (left singular vectors), ’s, and the lengths are given by

the singular values, ’s. The right singular vectors, ’s, (
is the th row of ) are the preimage of ’s: .
If is less than full rank, then one or more principal axes
of the ellipsoid will have zero length, and the ellipsoid will
have zero volume. We say that the ellipsoid isdegeneratein
this case. If the ellipsoid is degenerate for all configurations
(for example, for an arm with less than 6 DOF), then we
can restrict the spatial task velocity to a lower dimensional
manifold so that the ellipsoid is not degenerate at least
for some configurations. If the rank of the Jacobian drops
below its maximum rank at certain configurations, the arm
is said to besingular in those configurations. With the spatial
task velocity suitably restricted, singular configurations would
correspond to degenerate ellipsoids. In this paper, we shall
always assume that the maximumrow rank of over all
possible configurations is full (i.e., ); this
necessarily means that is square or fat (redundant arm).
Otherwise, the range of can be suitably restricted (for all
configurations) so this assumption would satisfy.

As a dual to the velocity ellipsoid, the force ellipsoid has
also been introduced in the literature as the image in the end
effector force space corresponding to a ball in the joint torque
space:

By applying the SVD to , we have . The

nondegeneracy assumption means that where is
square, diagonal, and full rank for at least some configurations.
Partition with dimensions compatible with .
Then

The bottom half of the above says that certain combination
of joint torques cancel one another and does not produce an
effector spatial force. They correspond to the self motion of a
redundant arm. Solving the top half we obtain:

This means that the principal axes of the force ellipsoid
are the same as the velocity ellipsoid, but the lengths are
the reciprocal of those in the velocity ellipsoid. When the
arm is in a singular configuration, the null space of
would be nonzero (or one or more diagonal entries in
are zero), implying that the force ellipsoid is infinite in the
corresponding directions in . Such configurations restrict
motion but are mechanically advantageous as the mechanism
can (theoretically) bear infinite load in certain direction.

In this section, we present an extension of these concepts
to general constrained mechanisms. For the specific cases of
multifinger grasp, the development here is similar to that in
[12] and [13] and the more recent work in [18].

B. Velocity Ellipsoid

The unconstrained Jacobian,, maps a unit ball in the joint
velocity space to an ellipsoid in the tip contact velocity space.
Due to the constraint (1), only a certain slice of the ball (resp.,
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ellipsoid) is feasible. It is reasonable to define the constrained
ellipsoid as the set of spatial task velocities generated by a
unit ball in theactive joint velocity space:

(20)

The general kinematic equation (1) can be used to solve for
. Partition and according to the dimension of and
(active and passive joints):

(21)

Typically, is square, implying that the number of con-
straints is equal to the number passive joints. If is
tall, the mechanism is over-constrained meaning some of the
constraints may be removed (redundant constraints) and the
constraint forces cannot be uniquely solved through rigid
body formulation alone. This situation sometimes occurs in
walking robots [15], [16]. If is fat the mechanism is
under-constrained, meaning that the mechanism can always
have internal motion even when all the active joints are locked.

Since the kinematic constraint always has at least one
solution (otherwise the mechanism cannot move), we can write
the complete solution of the passive joint velocity as

(22)

where col spans the null space of , and is an arbi-
trary vector parameterizing the null space of . Substituting
into (2), we have

(23)

Define the manipulability Jacobian as

(24)

The constrained ellipsoid can be written as

(25)

It is also straightforward to include weighted norms in the
joint and/or task spaces in the above definition. Clearly, this
definition makes physical sense only if . Indeed,
we consider the following classes of singularities:

1) Unmanipulable Singularity: This corresponds to config-
urations at which loses rank. This is the same as
the singularity as in the serial manipulator case. The
velocity manipulability ellipsoid becomes degenerate
(one or more principal axis has zero length).

2) Unstable Singularity: This corresponds to configurations
at which . This type of singularity is unique
to parallel mechanism and there is no counterpart in
serial manipulators. The velocity manipulability ellip-
soid becomes infinite in along one or more principal
axis. Physically, an unstable singularity means that there
exists unactuated task motion, i.e., the task frame can
move even when all the active joints are locked. An
example of this case is the unstable grasp in multiple-
finger grasping where the payload can rotate about
certain axis even when all the finger joints are locked.

It is possible that but . This corresponds
to the existence of internal motion involving only passive
joints in the mechanism that does not cause task frame motion.
An example of this case is when the support legs of a
Gough–Stewart platform can spin about its own axis which
does not cause any platform motion. Note that even when

, may be ill-conditioned due to the
term. For example, when the mechanism is near an unstable
configuration, the velocity manipulability ellipsoid would be
very large in certain directions.

In [19], the stable configuration condition is stated in terms
of being of full column rank [or, equivalently,

]. This is completely equivalent to the analysis here since
if and only if . This can be

shown as follows. Let . Then

which implies that . Suppose .
Then and therefore (since ).
By construction is of full column rank, hence, . In
the reverse direction, suppose there exists . Then
there exists such that . Now,

Hence .

C. Force Ellipsoid

The force ellipsoid can be intuitively defined as the set of
task forces that can be applied by the mechanism with active
torques (or forces) constrained on the surface of a weighted
ball. We first expand the constraint force balance equation
(12) as

Premultiply the second equation by , we obtain:

(26)

for all . Clearly, if (unstable singularity), there
exists some that the condition cannot be satisfied. This
corresponds to the task frame spatial forces that cannot be
resisted by active torque and internal constraint forces alone.
Hence, the mechanism is unstable. Indeed, this is precisely the
condition for unstable singularities.

If the mechanism is away from the unstable singularities,
there are also several cases to consider. As in the discuss of
velocity manipulability, the usual case is that is square
(same numbers of constraints and passive joints). If is
tall, then not all the internal forces can be solved (the system
is hyperstatic). In this case, we call this unresolvable internal
force which belongs to the null space of . If is

fat, is always nonzero, meaning unless , the
mechanism is at an unstable singularity.



WEN AND WILFINGER: KINEMATIC MANIPULABILITY OF GENERAL CONSTRAINED RIGID MULTIBODY SYSTEMS 563

Given the above discussion, we assume .
Then can be solved from (12) when the mechanism is not
at an unstable singularity:

(27)

We may now define the force manipulability ellipsoid as the
dual of the velocity manipulability ellipsoid:

(28)

As in the single arm case, we assume that
except at singular configurations (i.e., the velocity manipula-
bility ellipsoid is not always degenerate). If this is not satisfied,
we can always suitably restrict (and ) so that it is
true. The force manipulability ellipsoid has the same principal
axes as the velocity manipulability ellipsoid except that their
corresponding lengths are reciprocal of one another.

When the mechanism is in an unmanipulable singularity
( becomes singular), the force ellipsoid becomes infinite
in certain directions as in singular configurations for single
arms. When the mechanism is in near an unstable singularity
( ), would become increasingly singular (since

would be very large in certain direction). At the unstable
singularity, in order for the force balance equation (12) [and
hence (26)] to satisfy, must be in the null space of

which means that the force manipulability ellipsoid is
degenerate exactly when the velocity manipulability becomes
infinite.

D. Configuration Stability and Manipulability

For multifinger systems, there are two important concepts:
grasp stability and grasp manipulability. A grasp is stable if
any external force applied at the task frame can be resisted
by suitably chosen joint torques. Equivalently, a grasp is
also stable if there is no task motion independent from the
joint motion. A classic example of an unstable grasp is two
fingers holding a payload with frictional point contacts. The
object can then spin about the line linking the contact points.
Mathematically, the stable grasp condition can be stated as

where and are as defined in Section II-A-1. A grasp is
manipulable if any task velocity can be achieved with suitably
chosen joint velocity. Mathematically, this condition can be
stated as

For general mechanisms considered here, unstable grasp cor-
responds exactly to unstable singularity and unmanipulable
grasp corresponds to unmanipulable grasp.

It is interesting to observe the dual relationship between
unstable configurations and unmanipulable singular configura-
tions. At a unmanipulable configuration, the velocity ellipsoid
is degenerate (mechanism cannot move in certain directions)
and the force ellipsoid is infinite (mechanism can resist infinite
force in the same directions). At an unstable configuration,
the force ellipsoid is degenerate (mechanism cannot resist

force in certain directions) and the velocity ellipsoid is infinite
(mechanism can have any velocity using only passive joints).
In a near unmanipulable configuration, large joint motion may
be required to achieve small task motion. Similarly, in a near
unstable configuration, large joint torques may be required to
counteract small external force applied at the task frame.

E. Internal Force and Virtual Velocity

In (14), we introduced the concept of virtual velocity as the
dual of the internal force. Similar to [20], we can also define a
virtual velocity ellipsoid (resp. internal force ellipsoid) as the
image of a unit ball of active joint velocity (resp. active joint
torque) subject to the constraint that the spatial task velocity
(resp. spatial task force) is zero:

(29)

(30)

Mathematically, these ellipsoids are exactly the same as the
velocity and force ellipsoids discussed before except that the
subscripts and are exchanged. Therefore, all the preceding
discussion on their computation remains valid. The concept of
unstable configuration now translates to a degenerate internal
force ellipsoid and infinite virtual velocity ellipsoid.

In a general mechanism, internal force may determine if
a constraint can be enforced. For example, in a multifinger
grasp with frictional contacts, each contact force needs to be
in the friction cone to ensure that the contact can be sustained.
The internal force ellipsoid provides information on the ability
that the active joints may impart on the internal force. Virtual
velocity provides an appealing dual to the internal force, but
it is not as practically significant.

IV. I LLUSTRATIVE EXAMPLES

A. Simple Two-Arm Example

We first consider a planar two-finger grasping example.
Fig. 4 shows two two-joint fingers holding a rigid object (here
depicted as a bar) between them. First consider the Jacobian
for each arm mapping the joint angles to the tiptranslational
velocity:

where is the length of the th link of the th arm, is
the sine of the th angle of the th arm, is the sine of the
sum of the th and th angles of theth arm. The task velocity
(defined as the translational velocity of a specific point on the
held bar) is related to the tip velocity as:

where , , and denotes the angle
at the th contact. The overall kinematics is of the following
form:

(31)
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Fig. 4. Two arms holding a rigid payload.

where diag , diag , and

For the constraint, the orientation needs to be included. The
corresponding kinematics are:

(32)

where

diag

diag

The kinmeatics can be written as (1) and (2) with

Consider in particular the configuration shown in Fig. 5. Such
an example was first suggested in [20], and discussed further
in [12], [13], [21], and [22]. The ellipsoid indicates that the
system permits in both the and directions. This makes
sense since the robots are allowed to pivot at the contact points.

To prevent pivoting at the contact, we simply remove
in (31) and in (32). In this case, the ellipsoid is
degenerate and the task frame can only translate in the

Fig. 5. Manipulability ellipsoid with orientation consideration.

direction. The degenerate ellipsoid (a horizontal line segment)
is shown in Fig. 5.

In [13], this example was used to demonstrate the superiority
of the ellipsoid characterization as compared to those in [20]
and [23]. However, the key difference in terms of the nature
of the grasp was not noted.

B. Planar Gough–Stewart Platform Example

We use a planar Gough–Stewart platform to illustrate our
approach applied to a mechanism that isnot a single closed
chain. Fig. 6 shows various different planar Gough–Stewart
platforms each with 3 active prismatic joints and 6 passive
rotational joints.

We consider the task velocity as the linear velocity of the
center of the platform.

(33)

where diag , diag ,
(primastic joint velocities),

,

is the angular velocity of leg with respect to the ground,
is the angular velocity of the platform with respect to leg

, , .
As in the previous example, the constraint kinematics in-

clude orientation and therefore needs to be separately stated:

(34)
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Fig. 6. Velocity ellipsoids for various Gough–Stewart platforms.

where diag ,

diag ,
and

Transforming these equations to the form that we have used,
(1) and (2), we have

(35)

(36)

Using the results presented earlier, ellipsoids for different
configurations can be readily generated (as shown in Fig. 6).

Fig. 7. Unstable configuration.

All of these cases correspond to stable, nonsingular configu-
rations.

For the configuration shown in Fig. 7, . For
the case shown, the mechanism can have a pure horizontal
motion involving only the passive joints ( ).
From a force perspective, the unstable configuration means that
the mechanism cannot resistdirection force applied at the
task frame.

When the mechanism is near an unstable configuration, it
may not be unstable mathematically, but the ellipsoid will be
badly conditioned. As shown in Fig. 8, the motion in the

direction is much larger than in the direction. When
the mechanism moves in to the unstable configuration, the
ellipsoid becomes infinite in the direction. From the force
perspective, this suggests that a nearly unstable configuration
is also highly undesirable as large forces from the active
joints are needed to counteract disturbance force at the task
frame. We have constructed a physical 3-DOF Gough–Stewart
platform, and have indeed verified that unstable and nearly
unstable configurations can have large internal motion with all
the active joints locked. When the ellipsoid is well conditioned,
such internal motion is no longer possible.

C. Six-DOF Gough–Stewart Platform Example

We now consider a 6-DOF Gough–Stewart platform. Let
the three base nodes be at

The top platform is an isosceles triangle with the two equal
sides of length 1.12 and the third side of length 1. The task
velocity, , is defined as the translational velocity of the half
way point of the line perpendicular to the base of the isosceles
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Fig. 8. Nearly unstable configuration.

Fig. 9. Three-dimensional ellipsoid for six-DOF Gough–Stewart platforms:
case 1.

platform. As in the two previous examples, the task velocity
only involves the linear motion but the constraints need to
include orientation. Therefore, the kinematics developed in
Section II-A needs to be slightly modified. Withas defined
in (8), the task velocity kinematics is now

...
...

... (37)

Fig. 10. Three-dimensional ellipsoid for six-DOF Gough–Stewart platforms:
case 2.

Fig. 11. Three-dimensional ellipsoid for 6-DOF Gough–Stewart platforms:
case 3.

The constraint equation, (1), is the same as in Section II-A,
given by (11).

The velocity ellipsoids of the Gough–Stewart platform in
three different configurations are shown in Figs. 9–11 (the
force ellipsoids have the same principal axes but reciprocal
length). In the first case, the platform is horizontal. In the
second case, the task frame is rotated 45about the axis

. In the third case, the task frame is rotated
22.5 about the vertical axis .

In each case, three ellipses lying in the plane generated by
two of the principal axes are shown. In the first case, the
ellipse is well conditioned with the lengths of principal axes:
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1.78, 1.43, 0.81. In the second case, the ellipsoid becomes
less well conditioned, the lengths of the principal axes are

2.31, 1.62, 0.29. The motion parallel to the platform is more
difficult than other directions. In the third case, the lengths of
the principal axes are5.62, 1.69, 1.49. Even though the
ellipsoid is fairly well conditioned (condition number of the
singular values is 3.78), but external forces along the principal
axis that corresponds to 5.62, , cannot
be resisted as easily as in other directions.

V. CONCLUSION

This paper generalizes the velocity and force manipulabil-
ity to general constrained multibody systems. Such systems
include simple closed kinematic chain as two arms jointly
holding a payload, multiple kinematic chains as in multi-
finger grasping, and more complex structures as multiple
Gough–Stewart platforms. We classify singularities into two
classes: unmanipulable singularities and unstable singularities.
For the former, velocity ellipsoid is degenerate ad force
ellipsoid infinite. For the latter, velocity ellipsoid is infinite
and force ellipsoid degenerate. In general, unstable (or nearly
unstable) configurations need to carefully considered in the
kinematic analysis, otherwise there may be uncontrolled mo-
tion or large joint loading. Future work will include optimal
kinematic synthesis based on the manipulability ellipsoids and
consideration of systematic addition of kinematic constraints
or actuation to modify the singularity structure.
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