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a  b  s  t  r  a  c  t

This  paper  covers  the  kinematic  modeling  of  a flexure-based,  hexapod  nanopositioner  and  a  new  method
of calibration  for this  type  of  nanopositioner.  This  six degrees  of  freedom  tri-stage  nanopositioner  can
generate  small  displacement,  high-resolution  motions  with  high  accuracy  by  actuating  three  inexpensive,
high  quality  planar  stages.  Each stage  is  equipped  with  linear  actuators.  In this  paper,  we  discuss  the
calibration  of  the nanopositioner  and methods  to  improve  its  accuracy.  First,  we  derive  the  kinematic
eywords:
anopositioner
lexure mechanisms
exapod platform
alibration
inematics

model  of  the nanopositioner  that  is a Stewart  platform  with  spherical  joints.  Based  on this  kinematic
model,  we  then  calculate  the  actuation  data  for  a set  of  commands  for  decoupled  and  coupled  motions.
We use  an  interferometer  and  an  autocollimator  to  measure  the  actual  displacement  and  rotation  of  the
platform.  Finally,  we obtain  the  Jacobian  matrix  of the  moving  platform  for  the  controller.  Experiments
showed  that  with  the calibration-corrected  parameters,  the  maximum  error  is approximately  0.002◦ in
rotations  and  3.3 �m  in  translation  for a workspace  of ±  0.2◦ and  ±200  �m  in  x,  y and  z direction.
. Introduction

Flexure or compliant mechanisms [1] composed of flexure
inges and leaf springs have the advantage of no backlash and
ltrahigh precision. They have been widely used in precision
anopositioners or naomanipulators which play an important
ole in emerging nanotechnology [2]. Compliant parallel platform
echanisms combine the advantages of flexure mechanisms and

arallel platforms, and have received particular attention from nan-
technologists [3–7]. However, modeling and controller design has
een a challenging task due to their inherent structural complex-

ty and difficulties in measuring the six-degree-of-freedom (6DOF)
ositioning accuracy.

Kinematic calibration is the mapping of the output movement
elative to the input to the actuators by means of physical experi-
ents. It is one of the key steps in the development of a controller. A

ot of prior work by other researchers has been done regarding kine-
atic modeling and calibration of flexure mechanisms. Dagalakis

t al. [8] derived the kinematic model of a parallel robot link crane.
hen and Hsu [9] derived the kinematic model of a tripod machine
ool. Culpepper and Anderson [10] designed and calibrated a mono-

ithic spatial compliant nano-manipulator. Chen and Culpepper
11] designed and calibrated a six-axis micro-scale nanopositioner.
aradarajan and Culpepper [12,13] conducted the calibration of a

∗ Corresponding author.
E-mail address: su.298@osu.edu (H.-J. Su).

141-6359/$ – see front matter ©  2012 Elsevier Inc. All rights reserved.
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dual-purpose positioner-fixture, which has six degrees of freedom.
Chao et al. [14] presented a novel method for kinematic calibration
of a planar parallel flexure positioner. Yao et al. [15] derived and
calibrated a kinematic model of a planar micropositioning stage.
Dong and co-workers [16] derived and tested a parallel kinematic
model for integrated multi-axis nanopositioning. However, there
is relatively little prior work for calibrating a parallel platform flex-
ure mechanism. Recently Brouwera et al. [17] designed and built
a flexure based hexapod nanopositioner. They derived a stiffness-
matrix-based kinematic model, however, no calibration was done
on this device.

Interferometers and autocollimators are commonly used instru-
ments for calibration in precision engineering. Yang et al. [18]
proposed a multi-probe scanning method, guided by means of
three laser interferometers and one autocollimator. This method
can measure five degrees of freedom simultaneously. In order to
measure the displacement of the platform, a new set of calibra-
tions should be made. Based on the calibrations, a new model for
the controller can be derived. Parker et al. [19] has done related
work by demonstrating a calibration-based modeling method for a
dual-axis inclinometer.

In this paper, we derive the kinematic model and calibrate the
motion of a hexapod platform nanoposioner (shown in the Fig. 1).
The hexapod nanopositioner was  previously built by the National

Institute of Standards and Technology (NIST). The nanopositioner
is composed of three main parts: base stages, struts and top plat-
form. Three X–Y micro-positioning base stages, which can generate
motion in two  orthogonal directions, are symmetrically positioned

dx.doi.org/10.1016/j.precisioneng.2012.07.006
http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:su.298@osu.edu
dx.doi.org/10.1016/j.precisioneng.2012.07.006
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Nomenclature

T̂ instantaneous motion twist representing motion of
the top platform

T̂ k instantaneous motion twist of the top platform by
the kinematic model

T̂ c instantaneous motion twist of the top platform by
the calibrated model

T̂ e measured instantaneous motion twist of the top
platform

cT̂ instantaneous motion twist representing motion of
the reflective cube

cT̂k instantaneous motion twist of the reflective cube by
the kinematic model

cT̂ c instantaneous motion twist of the reflective cube by
the calibrated model

cT̂ e measured instantaneous motion of the reflective
cube

Û actuation of the six linear motors
� rotational displacement of the top platform
ı translational displacement of the top platform
[Jk] the 6 by 6 Jacobian matrix of the top platform by the

kinematic model
[Jc] the 6 by 6 Jacobian matrix of the top platform by the

calibrated model
[Je] the 6 by 6 Jacobian matrix of the top platform by

experiments
[Jcube] the 6 by 6 calibrated Jacobian matrix of the reflective

cube
[Ad] a 6 by 6 adjoint transformation matrix
[R] a 3 by 3 rotational matrix
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[I] the 3 by 3 Identity matrix

n the base plane. The moving plate of each base stage supports two
truts, which are firmly attached to the plate on one end through
exure joints. The struts have flexures at both attachment points.
he struts are firmly attached on the base plate and the moving

latform and allow motion to take place through elastic deforma-
ion of their flexures thus eliminating backlash and stiction. The

oving platform is the load carrying part of the device. By means

Fig. 1. The NIST hexapod nanopositioner.
Fig. 2. The simplified kinematic model of the positioner.

of a kinematic model, we first derive the kinematic Jacobian matrix,
which is used to generate suitable actuation samples for calibration.
Using three interferometers and two  autocollimators, we construct
a calibration frame of reference for measuring the six degrees of
freedom of the platform. Then, based on the experimental data, the
calibrated Jacobian matrix is derived.

The rest of the paper is organized as follows. Section 2 derives
the Jacobian matrix by kinematic modeling. Section 3 shows the
calibration hardware set up, including the interferometers which
measure the translational motions and the autocollimators which
measure the rotational motions. In Section 4, we  derive the Jaco-
bian matrix of the cube and Jacobian matrix of the top platform by
means of the kinematic model derived in Section 2 and the exper-
imental measurements described in Section 3. Finally, in Section
5, the same 54 sets of actuation are applied to the kinematic
model, calibrated model and the experimental device. Errors of
the kinematic model and calibrated model are then calculated and
analyzed.

2. Kinematic modeling

As shown in the Fig. 2, we place the global coordinate sys-
tem at the home position of the geometrical center of the top
platform. In the kinematic model, the short flexure joints of the
struts are treated as spherical joints with three degrees of free-
dom, the centers of which are located at physical endpoints
of the flexures, both at the base end and at the top platform
end.

For convenience, we define the following parameters for
describing the geometry of the kinematic model. For the base
stages, the distance between the neighboring intersecting points
of the struts is c1. The distance between the non-neighbor inter-
secting points of the struts at the base platform is c2. The struts
have a total length L and diameter D, and have a short flex-
ure joint of length l and diameter d at the both ends(L � l). At
the other ends of the six struts, the top square moving plat-
form is rigidly attached through an additional flexure on each

strut. The moving platform of thickness t carries the load of the
device. The distance between the neighboring intersecting points
of the struts at the top platform is c3. The distance between the
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Fig. 3. Geometrical description of the top platform and bottom stage.

on-neighbor intersecting points of the struts at the top platform
s c4. See Fig. 3.

.1. Geometry of the positioner

Fig. 3 shows the geometrical relationship of the 12 points. We
enote the position of six points at the top platform and the base
tages by Ai(i = 1, . . .,  6) and by Bi(i = 1, . . .,  6) respectively. The
oints on the moving platform can be described in the global coor-
inates as

0
i = [Z(�i)]

⎧⎨
⎩
ra

0

−t/2

⎫⎬
⎭ , B0

i = [Z( i)]

⎧⎨
⎩
rb

0

−H

⎫⎬
⎭ , (1)

here [Z(·)] is the 3 by 3 rotation matrix about the z axis. rA and rB

re the radii of the strut attachment points (bottom plates in home
osition). Angles �i and  i are tabulated in Table 1.

.2. Positional and velocity constraint equations

By the kinematic model shown Fig. 2, the kinematic constraint
quation of this platform is

Ai − Bi)
T (Ai − Bi) − L2 = 0, (2)

here L is the strut length.
The instantaneous small motion of the platform at the original

osition is obtained by taking the derivative of the kinematic Eq. (2)
ith respect to time and substituting with geometric parameters,

ritten as

A0
i − B0

i )T (ω × A0
i + v) = (A0

i − B0
i )T ıBi i = 1, . . . , 6. (3)

able 1
eometric dimensions of the hexapod nanopositioner.

ra = 81.44 mm,  rb = 138.92 mm,  t = 13.2 mm,  H = 221.93 mm,  L = 240 mm
c1=20 mm,  c2=230 mm,  c3=20 mm,  c4=100 mm
�1 = 189◦ , �2 = 171◦ , �3 = 69◦ , �4 = 51◦ , �5 = −51◦ , �6 = −69◦

 1 = 236◦ ,  2 = 124◦ ,  3 = 116◦ ,  4 = 4◦ ,  5 = −4◦ ,  6 = −116◦
ring 37 (2013) 117– 128 119

Here ıBi is the instantaneous movement of points Bi, written as:

ıB1,6 =

⎧⎪⎨
⎪⎩
U1x

U1y

0

⎫⎪⎬
⎪⎭ , ıB2,3 =

⎧⎪⎨
⎪⎩
U2x

U2y

0

⎫⎪⎬
⎪⎭ , ıB4,5 =

⎧⎪⎨
⎪⎩
U3x

U3y

0

⎫⎪⎬
⎪⎭ (4)

where Ujx, Ujy(j = 1, 2, 3) represent the horizontal displacement
of the three stages on the base, i.e., the six input actuation data.
In small deflection, the v and ω in Eq. (3) are the instantaneous
linear velocity and angular velocity of the top platform, written
as:

ω =

⎧⎪⎨
⎪⎩
�x

�y

�z

⎫⎪⎬
⎪⎭ , v =

⎧⎪⎨
⎪⎩
ıx

ıy

ız.

⎫⎪⎬
⎪⎭ (5)

2.3. Derivation of the Jacobian matrix

Now we  can write Eq. (3) in matrix form as

[Jl]T̂ = [Jr]Û, (6)

where T̂ = (�x, �y, �z, ıx, ıy, ız)
T is the motion twist of the top

platform and Û = (U1x, U2x, U2y, U3x, U3y, U1y)
T is the actuating dis-

placement of the linear motors. The left matrix [Jl] has the following
form

[Jl] =

⎧⎪⎪⎨
⎪⎪⎩

(A0
1 − B0

1)T [−A0
1× | I]

...

(A0
6 − B0

6)T [−A0
6× | I]

⎫⎪⎪⎬
⎪⎪⎭
, (7)

where I is the 3 by 3 identity matrix and symbol [a ×] represents
the cross product matrix defined as

[Aoi ×] =

⎡
⎢⎣

0 A0
iz

−A0
iy

−A0
iz

0 A0
ix

A0
iy

−A0
ix

0

⎤
⎥⎦ , ∀a = (ax, ay, az)

T . (8)

The right matrix [Jr] has the following form⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A0
1x − B0

1x 0 0 0 0 A0
1y − B0

1y

0 A0
2x − B0

2x A0
2y − B0

2y 0 0 0

0  A0
3x − B0

3x A0
3y − B0

3y 0 0 0

0  0 0 A0
4y − B0

4y A0
4x − B0

4x 0

0  0 0 A0
5y − B0

5y A0
5x − B0

5x 0

A0
6x − B0

6x 0 0 0 0 A0
6y − B0

6y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

It follows that the Jacobian matrix relating the motion twist T̂
to the six actuator inputs Û is calculated from Eq. (6)

[Jk] = [Jl]
−1[Jr ] =⎡

⎢⎢⎢⎢⎣

−0.0016 0.0016 0.0009 −0.0019 0.0000 −0.0009

−0.0009 −0.001 0.0016 0.0000 −0.0019 0.0016

0.0018 −0.0018 0.0010 −0.0020 0.0000 −0.0010

0.2431 0.2431 0.1563 0.0000 −0.5138 0.1563

0.1563 −0.1563 −0.4236 −0.1529 0.0000 0.4236

0.0760 0.0760 0.1316 0.0000 0.1519 0.1316

⎤
⎥⎥⎥⎥⎦ ,

(10)

where we  have substituted the geometric parameters in Table 1.

3. Calibration hardware set up
In this section, we describe the setup of the physical mea-
surement and the calibration process. To accurately measure the
movement of the platform, a high precision reflective cube is
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(a)

(b)
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Retro-reflectors, and ¼ Wave Plate)

Laser Head x

o
Cube

y

Laser Head

z

y o
Cube

h

Beam from Laser Head

Recombined Beam

Reference Beam
Measurement Beam
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ig. 4. Interferometer set up for measuring translational displacements; (a) schema
hown in (a) and (b), respectively.

ttached to the lower side of the top moving platform and trans-
ates and rotates with the top platform as a single rigid body (See
ig. 1). The cube has five highly polished reflecting sides orthogo-
al to each other within 1.4E−3◦. The center of the cube and center
f the top platform are both aligned along the z axis in the local
oordinate frame.

The calibration process is divided into two major steps. The
rst step is to measure the translational motions of the cube
ith interferometers. The second step is to measure the rotational
otion of the cube with an autocollimator. We  describe each in

he following subsections. In both steps, the same set of calibra-
ion actuator position commands is fed to the computer controller
nd the output movements of the cube are recorded (translation or
otation).

.1. Measuring Translational Displacement

Our first step is to measure the three-axis translational motion
f the cube using interferometers. The physical set up is shown
n Fig. 4. We  use a Hewlett-Packard hp5507A Laser Position
ransducer system1. An interferometer is an optical calibration
nstrument that makes use of the interference of light that has
raversed different pathways to measure the difference in distance
raversed. Typically one path (the reference beam) is fixed, and the
ther path (the measurement beam) is reflected off of a moving
irror. As the mirror moves along to the measurement beam path,

he beam path length increases (or decreases), and the reflected
eam, superimposed on the reference beam, interferes alternately

onstructively and destructively as the beam path changes by
ingle wavelengths. These bright and dark interference fringes
re captured by signal detectors and fed into the interferometer

1 Certain commercial equipment, instruments, or materials are identified in this
aper in order to specify the experimental procedure adequately. Such identification

s  not intended to imply recommendation or endorsement by the National Insti-
ute of Standards and Technology, nor is it intended to imply that the materials or
quipment identified are necessarily the best available for the purpose.
Fig. 5. Elcomat setting for measuring rotational displacements about x and z axes.
Rotate the autocollimator to measure the rotational displacement about y axis.

control unit to interpolate between fringes and to integrate the
number of fringes traversed. The fringe detection and interpolation
can also be accomplished using a heterodyne method, as in our
case, in which the Doppler shift caused by the moving mirror is
measured as a change in the difference frequency between the
reference and measurement beams, and is integrated to yield
displacement.

In our set up, the interferometer laser head sends one laser beam
that is split into three beams, directed by mirrors to the interfer-
ometer beam splitters. Two  of the interferometers are aimed at the
precision cube along the x and y axis. The resulting signals are used
to measure translational motion along x and y, denoted by cıex and
cıey. The third interferometer is aligned with a mirror that is fixed
at the center of the top platform surface. We  measure the transla-
tional motion cıez along the z axis using this third beam. Alignment
of the interferometer beams with the mirror surfaces is done to
better than 2E−5◦ by checking the overlap of the reflections with

the source.

The stage is driven through a set of 54 calibration positions.
The motions and measurements are quasi-static. At each position,
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Table 2
Commanded motion of the platform T̂ k

i
and the measured motion of the cube c T̂ e

i
from experimental measurements.

�x (◦) �y (◦) �z (◦) ıx (�m)  ıy (�m) ız (�m)

T̂ k1 0.1 0 0 0 0 0
c T̂ e1 9.72E−02 2.21E−04 −4.38E−04 2.31E+00 4.58E+01 2.83E+00

T̂ k2 0 0.1 0 0 0 0
c T̂ e2 −1.43E−03 9.50E−02 −1.94E−03 −5.83E+01 5.58E+00 −2.42E+00

T̂ k3 0 0 0.1 0 0 0
c T̂ e3 2.20E−03 1.83E−03 9.97E−02 −2.62E+00 9.27E+00 −1.69E+00

T̂ k4 0 0 0 100 0 0
c T̂ e4 −1.75E−06 1.94E−04 9.51E−04 9.91E+01 −2.21E+00 −6.18E−01

T̂ k5 0 0 0 0 100 0
c T̂ e5 −6.44E−05 8.25E−05 5.83E−05 3.74E+00 9.88E+01 5.78E−01
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0 interferometer or autocollimator readings are averaged, tak-
ng approximately 30 s. The calibration position sequence includes
everal returns to the nanopositioner home position to check
epeatability and drift.

.2. Measuring rotational displacement

The second step is to measure the rotational motion of the cube
y using an electronic autocollimator (Elcomat 3000)1. An autocol-

imator is an optical measurement instrument for measuring small
ngular deviations of inclination in two orthogonal axes. A slight
lteration of the angle between the optical axis of the autocolli-
ator and the mirror causes a deviation which can be determined

recisely. According to the manufacturer, the measurement accu-
acy of the Elcomat 3000 is ± 7 × 10−5 ◦, with a measuring range of
.55 ◦.

Fig. 5 shows the hardware set up for measuring the rotation
bout the x and z axes. The autocollimator has to be moved to point
t the other cube face to measure the rotation about the y axis.
y feeding the calibration set of position commands to the actua-
ors, we record the output rotational movement of the cube over a
epresentative range of motion, denoted by c�ex,

c�ey,
c�ez . The same

et of 54 calibration positions are used as previously. All measure-
ent sets are referenced to their initial measurement of the home

osition of the nanopositioner stage.

. Data collection and processing

In this section, we derive the calibrated Jacobian matrix of the
op platform by means of the kinematic Jacobian matrix from
ection 2 and the experimental data acquired in Section 3. We  first
erive the calibrated Jacobian matrix of the cube center. Coordinate
ranslation is then used to obtain the calibrated Jacobian matrix of
he top platform.

.1. Jacobian matrix of the cube center

By using Eq. (10), we first calculate the actuation Ûk
i

to command

he platform to move only in single degree of freedom, T̂ k
i

as shown
n the Table 2. That is,

ˆk
i

= [Jk]−1T̂ k
i
, i = 1, . . . , 6. (11)

hen we measure the displacement (rotation and translation) of

he cube center with the interferometer and the autocollimator,
enoted by

T̂ e
i

=
[
c�e
ix

c�e
iy

c�e
iz

cıe
ix

cıe
iy

cıe
iz

]T
, i = 1, . . . , 6, (12)
0 0 100
4.92E+00 3.38E−01 9.59E+01

which are tabulated in Table 2. Lastly, the Jacobian matrix relating
the displacement of the cube to the actuator inputs is calculated as

[Jcube] =
[
c T̂ e1

c T̂ e2
c T̂ e3

c T̂ e4
c T̂ e5

c T̂ e6

][
Ûk1 Ûk2 Ûk3 Ûk4 Ûk5 Ûk6

]−1
. (13)

By substituting cT̂ e
i

from Table 2 and Ûk
i

calculated in Eq. (11), we
obtain the numerical [Jcube] as

⎡
⎢⎢⎢⎢⎣

−0.00151 0.00155 0.00092 −0.00185 0.00004 −0.00095

−0.00083 −0.00089 0.00158 −0.00004 −0.00176 0.00155

0.00185 −0.00170 0.00103 −0.00203 −0.00002 −0.00099

0.27679 0.27470 0.09127 −0.00512 −0.43932 0.12351

0.11332 −0.12952 −0.38636 −0.21076 0.00592 0.39065

0.06922 0.07608 0.12106 −0.00192 0.15147 0.12492

⎤
⎥⎥⎥⎥⎦ . (14)

4.2. Jacobian matrix of the top platform

Note that the cube is assembled directly below the top platform.
Therefore the transformation is a pure translation along the z axis
by a height h, represented by a vector t = (0, 0, h)T . To obtain the
calibrated Jacobian matrix of top platform [Jc], we just need to apply
a pure translational transformation to [Jcube], calculated as

[Jc] = [Ad][Jcube] =⎡
⎢⎢⎢⎢⎣

−0.0015 0.0016 0.0009 −0.0018 0.0000 −0.0010

−0.0008 −0.0009 0.0016 0.0000 −0.0018 0.0016

0.0018 −0.0017 0.0010 −0.0020 −0.0000 −0.0010

0.2506 0.2465 0.1411 −0.0065 −0.4948 0.1724

0.1611 −0.1784 −0.4153 −0.1522 0.0048 0.4206

0.0692 0.0761 0.1211 −0.0019 0.1515 0.1249

⎤
⎥⎥⎥⎥⎦ ,

(15)

where [Ad] is the well known adjoint matrix for coordinate trans-
formation of Jacobian matrices [20], written as

[Ad] =
[

I 0

[t×] I

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 h 0 1 0 0

−h 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (16)

where h = 31.57 mm.
5. Error calculation and error analysis

In this section, we will calculate and analyze the errors of the
kinematic model and the calibrated model.
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ig. 6. Comparison of the kinematic model and the calibrated model. The left figure p
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.1. Calculate model errors

Now we calculate the errors of the kinematic model and the
alibrated model and compare them with the experimental mea-
urements using the following steps.

 Choose 54 sets of translation and rotation measurements of the
top platform, which consists of 24 sets of single degree of freedom
motions and 30 sets of coupled motions, denoted by

T̂ c
j

= (�cjx, �cjy, �cjz, ıcjx, ıcjy, ıcjz)
T , (j = 1, . . . , 54).

 Calculate the actuation required to achieve the commanded
motion T̂ c

j
by

Ûj = T̂ c
j
[Jc]−1 =

[
�k
jx
�k
jy

�k
jz
ık
jx
ık
jy

ık
jz

]T
.

 Calculate the motion predicted from the kinematic model by

T̂ k
j

= [Jk]Ûj.

 Feed the actuation Ûj to the controller and measure the motion
of the top platform as

T̂ e
j

=
[
�e
jx
�e
jy

�e
jz
ıe
jx
ıe
jy

ıe
jz

]T
.

 Calculate the error of the kinematic model as

�T̂k
j

= T̂ e
j

− T̂ k
j

=
{
��k

j

�ık
j

}
, (j = 1, . . . , 54),
where ��k
j

= (�e
jx

− �k
jx
, �e
jy

− �k
jy
, �e
jz

− �k
jz

)T , �ık
j

= (ıe
jx

− ık
jx
, ıe
jy

−
ık
jy
, ıe
jz

− ık
jz

)T .

able 3
he range of the error of the calibrated model �T̂c

j
.

��c
jx

(◦) ��c
jy

(◦) �

Max  0.00127 0.00105 0
Min −0.00119 −0.002 −0
Standard  deviation 0.000276979 0.000387935 0
Fig. 8. Distribution plotting of |�ık| and |�ıc|.

6 Calculate the error of the calibrated model as

�T̂c
j

= T̂ e
j

− T̂ c
j

=
{
��c

j

�ıc
j

}
, (j = 1, . . . , 54),

where ��c
j

= (�e
jx

− �c
jx
, �e
jy

− �c
jy
, �e
jz

− �c
jz

)T , �ıc
j

= (ıe
jx

− ıc
jx
, ıe
jy

−
ıc
jy
, ıe
jz

− ıc
jz

)T .

5.2. Error Analysis
To compare the errors of the kinematic model and the cali-
brated model, we plot the norm of rotational and translational
errors in Fig. 6. It can be seen that the calibrated Jacobian matrix sig-
nificantly improved the accuracy of kinematic Jacobian matrix by

�c
jz

(◦) �ıc
jx

(�m) �ıc
jy

(�m) �ıc
jz

(�m)

.00235 3.34041 2.27184 0.11

.0009 −2.1961 −1.50408 −1.82

.00046507 0.686572 0.570813 0.410767
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Fig. 9. Command rotational displacement vs. measured rotational displacement and parasitic error. (For interpretation of the references to color in the text, the reader is
referred  to the web  version of the article.)
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pproximately four to five times. The details are described below. In
erms of the rotational errors, the maximum and the mean of the
inematic model error ��k

j
are about 0.0126◦ and 0.0037◦ while

hose of the calibrated model ��c
j

are about 0.0030◦ and 0.0009◦.
ith regard to the translational error, the maximum and the mean

f �ık
j

are about 19.91 �m and 9.33 �m.  After the calibration, these
wo errors are reduced to about 3.95 �m and 1.60 �m.

Now, we analyze the error of the calibrated Jacobian matrix Jc

y means of �T̂c
j
. The Figs. 7 and 8 respectively shows the distri-
ution of the absolute errors of kinematic and calibrated rotational
nd translational displacements about axis x, y, z. The box plotting
ontains the data with 90 % confidence. The maximum mean error
or the calibrated model is |��cy|, around 0.001◦ and |�ıcx|, around
1 �m.  Based on the distribution shown in Figs. 7 and 8, the standard
deviation is calculated and shown in Table 3.

Table 3 shows the maximum and minimum values of the
calibrated model compared with the experimental results. We con-
clude that the accuracy of the control is improved by means of
the calibrated Jacobian [Jc]. The maximum error of the rotation is
0.0024◦ and the maximum standard deviation of the error of the
rotation is 0.000465◦. The maximum error of translation is 3.34 �m
and the maximum standard deviation of the error of the transla-
tion is 0.686572 �m for a workspace of ± 200 �m by ± 200 �m by

± 200 �m by ± 0.2◦ by ± 0.2◦ by ±0.2◦.

There are two  lines in the left three plots of Fig. 9. One line shows
the measured vs. commanded rotational displacements about axes
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Fig. 10. Command translational displacement vs. m

, y, z. The other line shows the errors. The right three plots show
he parasitic errors in the other five directions. Note that the red
ines represent the errors of rotation and blue lines represent the
rrors of translation. The unit of the left red vertical axis is degree
hile the unit of the right blue vertical axis is �m.  Similarly the
easured vs. commanded translational displacements along axes

, y, z are plotted in the left column of Fig. 10 while the parasitic
rrors are plotted in the right column. As one can see, the measured
isplacements are linear with the commanded displacements as
xpected. The parasitic error is very low.
. Conclusion

In conclusion, we have presented a two-phase platform cali-
ration method for a hexapod nanopositioner. First, a kinematic
Command ed           (μm)zδ

red translational displacement and parasitic error.

model is derived for the nanopositioner platform. Next, a new
calibration set for the platform is determined using an inter-
ferometer and an autocollimator to measure the displacements
in six degrees of freedom. Kinematic-model-based calibration
is used to get more accurate results. The results show that
the maximum of rotational error is 0.0024◦ and the maximum
of translational error is 3.34 �m.  In future work, a controller
would be developed based on the calibrated Jacobian matrix.
Furthermore, this calibration method can be applied to a small-
scale hexapod platform realized using microelectromechanical
systems.
Appendix A.

Table 4.
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Table 4
54 sets of displacement.

�x (◦) �y (◦) �z (◦) ıx (�m) ıy (�m) ız (�m)

j = 1; T̂ c
i

1.00E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
j  = 1; T̂ k

i
1.03E−01 −2.14E−04 5.07E−04 −2.66E+00 8.02E+00 −3.09E+00

j  = 1; T̂ e
i

9.98E−02 −8.10E−04 4.00E−04 −1.15E+00 7.12E−01 −5.80E−01

0.00E+00 1.00E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
j  = 2 1.49E−03 1.05E−01 1.96E−03 6.45E+00 −6.68E+00 2.72E+00

2.50E−04  9.92E−02 6.20E−04 −1.18E+00 1.22E−02 −7.30E−01

0.00E+00 0.00E+00 1.00E−01 0.00E+00 0.00E+00 0.00E+00
j  = 3 −2.30E−03 −1.94E−03 1.00E−01 1.78E+00 −8.19E+00 1.85E+00

1.80E−04  −3.90E−04 1.00E−01 1.05E−01 −4.92E−02 −8.90E−01

0.00E+00 0.00E+00 0.00E+00 1.00E+02 0.00E+00 0.00E+00
j  = 4 2.02E−05 −1.96E−04 −9.73E−04 1.01E+02 2.35E+00 6.12E−01

9.00E−05  −1.13E−03 −3.40E−04 9.91E+01 1.22E+00 −6.50E−01

0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+02 0.00E+00
j  = 5 6.85E−05 −7.23E−05 −1.55E−05 −3.83E+00 1.01E+02 −6.38E−01

1.40E−04  −7.20E−04 −2.30E−04 4.13E−01 1.01E+02 −3.90E−01

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+02
j  = 6 −3.70E−04 −1.20E−03 −1.31E−03 −5.90E+00 −1.27E−01 1.04E+02

1.60E−04  −4.00E−04 2.60E−04 −8.80E−01 1.00E+00 9.91E+01

−1.00E−01  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
j  = 7 −1.03E−01 2.14E−04 −5.07E−04 2.66E+00 −8.02E+00 3.09E+00

−9.96E−02  −3.80E−04 −1.30E−04 8.06E−02 −3.93E−02 −7.90E−01

0.00E+00 −1.00E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
j  = 8 −1.49E−03 −1.05E−01 −1.96E−03 −6.45E+00 6.68E+00 −2.72E+00

1.90E−04  −1.01E−01 −5.50E−04 −1.01E+00 1.53E−02 −9.70E−01

0.00E+00 0.00E+00 −1.00E−01 0.00E+00 0.00E+00 0.00E+00
j  = 9 2.30E−03 1.94E−03 −1.00E−01 −1.78E+00 8.19E+00 −1.85E+00

2.50E−04  −1.11E−03 −9.99E−02 −1.09E+00 8.72E−01 −3.00E−01

0.00E+00 0.00E+00 0.00E+00 −1.00E+02 0.00E+00 0.00E+00
j  = 10 −2.02E−05 1.96E−04 9.73E−04 −1.01E+02 −2.35E+00 −6.12E−01

6.00E−05  −3.20E−04 1.60E−04 −1.00E+02 1.61E+00 −6.00E−01

0.00E+00 0.00E+00 0.00E+00 0.00E+00 −1.00E+02 0.00E+00
j  = 11 −6.85E−05 7.23E−05 1.55E−05 3.83E+00 −1.01E+02 6.38E−01

1.60E−04  −8.40E−04 −1.00E−04 −9.93E−01 −9.83E+01 −4.30E−01

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 −1.00E+02
j  = 12 3.70E−04 1.20E−03 1.31E−03 5.90E+00 1.27E−01 −1.04E+02

1.70E−04  −8.90E−04 −2.40E−04 −4.20E−01 1.66E−01 −1.00E+02

2.00E−01  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
j  = 13 2.06E−01 −4.27E−04 1.01E−03 −5.32E+00 1.60E+01 −6.19E+00

2.00E−01  −3.50E−04 −7.00E−05 2.18E+00 1.02E+00 −1.82E+00

0.00E+00 2.00E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
j  = 14 2.98E−03 2.10E−01 3.92E−03 1.29E+01 −1.34E+01 5.45E+00

6.30E−04  1.99E−01 −6.90E−04 −1.16E+00 −9.57E−01 −1.25E+00

0.00E+00 0.00E+00 2.00E−01 0.00E+00 0.00E+00 0.00E+00
j  = 15 −4.61E−03 −3.89E−03 2.00E−01 3.55E+00 −1.64E+01 3.70E+00

4.30E−04  −6.90E−04 2.00E−01 1.40E+00 −9.97E−01 −6.80E−01

0.00E+00 0.00E+00 0.00E+00 2.00E+02 0.00E+00 0.00E+00
j  = 16 4.05E−05 −3.92E−04 −1.95E−03 2.01E+02 4.69E+00 1.22E+00

0.00E+00 −5.70E−04 2.80E−04 2.00E+02 1.20E+00 −8.60E−01

0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.00E+02 0.00E+00
j  = 17 1.37E−04 −1.45E−04 −3.10E−05 −7.65E+00 2.02E+02 −1.28E+00

2.20E−04  −8.30E−04 −6.30E−04 −8.77E−01 2.02E+02 −4.40E−01

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.00E+02
j  = 18 −7.40E−04 −2.40E−03 −2.61E−03 −1.18E+01 −2.54E−01 2.08E+02

−1.19E−03  −2.00E−03 −6.80E−04 −2.11E+00 8.96E−01 1.99E+02

−2.00E−01  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
j  = 19 −2.06E−01 4.27E−04 −1.01E−03 5.32E+00 −1.60E+01 6.19E+00

−1.99E−01  −9.00E−05 −3.80E−04 3.34E+00 −1.40E+00 −1.58E+00

0.00E+00 −2.00E−01  0.00E+00 0.00E+00 0.00E+00 0.00E+00
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Table  4 (Continued)

�x (◦) �y (◦) �z (◦) ıx (�m) ıy (�m) ız (�m)

j = 20 −2.98E−03 −2.10E−01 −3.92E−03 −1.29E+01 1.34E+01 −5.45E+00
−6.10E−04  −2.00E−01 1.98E−03 −5.41E−01 −8.04E−01 −1.15E+00

0.00E+00 0.00E+00 −2.00E−01 0.00E+00 0.00E+00 0.00E+00
j  = 21 4.61E−03 3.89E−03 −2.00E−01 −3.55E+00 1.64E+01 −3.70E+00

−1.03E−03  −1.56E−03 −1.98E−01 −2.90E−01 1.38E−01 −4.40E−01

0.00E+00 0.00E+00 0.00E+00 −2.00E+02 0.00E+00 0.00E+00
j  = 22 −4.05E−05 3.92E−04 1.95E−03 −2.01E+02 −4.69E+00 −1.22E+00

−5.00E−05  −2.30E−04 1.31E−03 −2.01E+02 1.61E+00 −2.70E−01

0.00E+00 0.00E+00 0.00E+00 0.00E+00 −2.00E+02 0.00E+00
j  = 23 −1.37E−04 1.45E−04 3.10E−05 7.65E+00 −2.02E+02 1.28E+00

2.00E−04  −7.00E−04 −3.00E−05 3.04E−01 −2.00E+02 −1.00E−01

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 −2.00E+02
j  = 24 7.40E−04 2.40E−03 2.61E−03 1.18E+01 2.54E−01 −2.08E+02

1.27E−03  1.05E−03 9.40E−04 6.86E−02 −9.30E−01 −2.01E+02

1.00E−01  1.00E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
j  = 25 1.04E−01 1.05E−01 2.47E−03 3.78E+00 1.34E+00 −3.70E−01

1.00E−01  9.91E−02 2.00E−04 −7.90E−01 −6.11E−01 −9.30E−01

1.00E−01  0.00E+00 1.00E−01 0.00E+00 0.00E+00 0.00E+00
j  = 26 1.01E−01 −2.16E−03 1.01E−01 −8.87E−01 −1.73E−01 −1.24E+00

1.00E−01  −2.90E−04 9.99E−02 1.00E+00 1.53E+00 −1.07E+00

1.00E−01  0.00E+00 0.00E+00 1.00E+02 0.00E+00 0.00E+00
j  = 27 1.03E−01 −4.10E−04 −4.67E−04 9.80E+01 1.04E+01 −2.48E+00

1.00E−01  −1.17E−03 −2.40E−04 9.98E+01 1.10E+00 −5.70E−01

1.00E−01 0.00E+00 0.00E+00 0.00E+00 1.00E+02 0.00E+00
j  = 28 1.03E−01 −2.86E−04 4.91E−04 −6.49E+00 1.09E+02 −3.73E+00

1.00E−01  −6.30E−04 0.00E+00 4.53E−01 1.01E+02 −9.10E−01

1.00E−01  0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+02
j  = 29 1.02E−01 −1.42E−03 −7.98E−04 −8.57E+00 7.89E+00 1.01E+02

1.00E−01  −4.70E−04 2.80E−04 1.10E−02 1.22E+00 9.91E+01

0.00E+00 1.00E−01 1.00E−01 0.00E+00 0.00E+00 0.00E+00
j  = 30 −8.15E−04 1.03E−01 1.02E−01 8.22E+00 −1.49E+01 4.58E+00

7.50E−04 9.92E−02 1.00E−01 2.46E−01 8.27E−01 1.10E−01

0.00E+00 1.00E−01 0.00E+00 1.00E+02 0.00E+00 0.00E+00
j  = 31 1.51E−03 1.05E−01 9.85E−04 1.07E+02 −4.34E+00 3.34E+00

−5.00E−05 9.94E−02 2.50E−04 9.88E+01 −7.24E−02 −9.00E−01

0.00E+00 1.00E−01  0.00E+00 0.00E+00 1.00E+02 0.00E+00
j  = 32 1.56E−03 1.05E−01 1.94E−03 2.62E+00 9.44E+01 2.09E+00

2.40E−04 9.97E−02 3.60E−04 −1.08E−02 9.91E+01 −1.20E+00

0.00E+00 1.00E−01 0.00E+00 0.00E+00 0.00E+00 1.00E+02
j  = 33 1.12E−03 1.04E−01 6.54E−04 5.44E−01 −6.81E+00 1.07E+02

1.70E−04 1.00E−01 6.50E−04 −8.00E−01 −2.04E−01 9.88E+01

0.00E+00 0.00E+00 1.00E−01 1.00E+02 0.00E+00 0.00E+00
j  = 34 −2.28E−03 −2.14E−03 9.93E−02 1.02E+02 −5.85E+00 2.46E+00

1.00E−04  −1.12E−03 9.91E−02 9.89E+01 1.25E−01 −5.10E−01

0.00E+00 0.00E+00 1.00E−01 0.00E+00 1.00E+02 0.00E+00
j  = 35 −2.24E−03 −2.01E−03 1.00E−01 −2.05E+00 9.29E+01 1.21E+00

2.70E−04 −1.11E−03 1.00E−01 3.18E−01 1.00E+02 −8.80E−01

0.00E+00 0.00E+00 1.00E−01 0.00E+00 0.00E+00 1.00E+02
j  = 36 −2.67E−03 −3.15E−03 9.89E−02 −4.13E+00 −8.32E+00 1.06E+02

3.70E−04 −8.00E−04 1.01E−01 −2.08E−02 5.46E−01 9.91E+01

0.00E+00 0.00E+00 0.00E+00 1.00E+02 1.00E+02 0.00E+00
j  = 37 8.87E−05 −2.68E−04 −9.89E−04 9.68E+01 1.03E+02 −2.65E−02

1.60E−04  −1.10E−03 −3.00E−04 9.78E+01 1.02E+02 −4.80E−01

0.00E+00 0.00E+00 0.00E+00 1.00E+02 0.00E+00 1.00E+02
j  = 38 −3.50E−04 −1.40E−03 −2.28E−03 9.48E+01 2.22E+00 1.05E+02

9.00E−05  −5.60E−04 −4.90E−04 9.97E+01 1.05E+00 9.88E+01

0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+02 1.00E+02
j  = 39 −3.01E−04 −1.27E−03 −1.32E−03 −9.73E+00 1.01E+02 1.04E+02

6.00E−05  −7.80E−04 3.00E−05 −1.30E−01 1.00E+02 9.96E+01

−1.00E−01  −1.00E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
j  = 40 −1.04E−01 −1.05E−01 −2.47E−03 −3.78E+00 −1.34E+00 3.70E−01

−9.95E−02 −1.00E−01 1.00E−05 1.08E+00 1.65E−01 −1.81E+00

−1.00E−01  0.00E+00 −1.00E−01 0.00E+00 0.00E+00 0.00E+00
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Table  4 (Continued)

�x (◦) �y (◦) �z (◦) ıx (�m) ıy (�m) ız (�m)

j = 41 −1.01E−01 2.16E−03 −1.01E−01 8.87E−01 1.73E−01 1.24E+00
−9.98E−02  −4.90E−04 −1.00E−01 1.41E+00 7.95E−01 −1.09E+00

−1.00E−01 0.00E+00 0.00E+00 −1.00E+02 0.00E+00 0.00E+00
j  = 42 −1.03E−01 4.10E−04 4.67E−04 −9.80E+01 −1.04E+01 2.48E+00

−1.00E−01  5.00E−05 4.00E−05 −9.88E+01 2.32E−01 −1.46E+00

−1.00E−01  0.00E+00 0.00E+00 0.00E+00 −1.00E+02 0.00E+00
j  = 43 −1.03E−01 2.86E−04 −4.91E−04 6.49E+00 −1.09E+02 3.73E+00

−9.99E−02  −4.40E−04 1.60E−04 4.18E−01 −1.00E+02 −1.56E+00

−1.00E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 −1.00E+02
j  = 44 −1.02E−01 1.42E−03 7.98E−04 8.57E+00 −7.89E+00 −1.01E+02

−9.98E−02  −5.10E−04 −5.10E−04 1.24E+00 −8.80E−01 −1.01E+02

0.00E+00 −1.00E−01 −1.00E−01 0.00E+00 0.00E+00 0.00E+00
j  = 45 8.15E−04 −1.03E−01 −1.02E−01 −8.22E+00 1.49E+01 −4.58E+00

8.00E−05  −1.00E−01 −1.00E−01 6.62E−01 −1.50E+00 −6.80E−01

0.00E+00 −1.00E−01 0.00E+00 −1.00E+02 0.00E+00 0.00E+00
j  = 46 −1.51E−03 −1.05E−01 −9.85E−04 −1.07E+02 4.34E+00 −3.34E+00

3.10E−04  −1.01E−01 2.00E−05 −1.01E+02 7.29E−01 −7.80E−01

0.00E+00 −1.00E−01 0.00E+00 0.00E+00 −1.00E+02 0.00E+00
j  = 47 −1.56E−03 −1.05E−01 −1.94E−03 −2.62E+00 −9.44E+01 −2.09E+00

5.20E−04  −1.01E−01 −4.20E−04 −1.76E+00 −9.93E+01 −5.90E−01

0.00E+00 −1.00E−01 0.00E+00 0.00E+00 0.00E+00 −1.00E+02
j  = 48 −1.12E−03 −1.04E−01 −6.54E−04 −5.44E−01 6.81E+00 −1.07E+02

4.90E−04  −1.01E−01 −6.40E−04 −1.63E+00 −7.80E−01 −1.00E+02

0.00E+00 0.00E+00 −1.00E−01 −1.00E+02 0.00E+00 0.00E+00
j  = 49 2.28E−03 2.14E−03 −9.93E−02 −1.02E+02 5.85E+00 −2.46E+00

1.40E−04  −3.70E−04 −9.89E−02 −1.00E+02 1.26E+00 −9.40E−01

0.00E+00 0.00E+00 −1.00E−01 0.00E+00 −1.00E+02 0.00E+00
j  = 50 2.24E−03 2.01E−03 −1.00E−01 2.05E+00 −9.29E+01 −1.21E+00

−1.20E−04  −2.90E−04 −1.00E−01 −3.80E−01 −9.80E+01 −6.40E−01

0.00E+00 0.00E+00 −1.00E−01 0.00E+00 0.00E+00 −1.00E+02
j  = 51 2.67E−03 3.15E−03 −9.89E−02 4.13E+00 8.32E+00 −1.06E+02

3.00E−05  −4.30E−04 −1.00E−01 −6.57E−01 6.03E−01 −1.00E+02

0.00E+00 0.00E+00 0.00E+00 −1.00E+02 −1.00E+02 0.00E+00
j  = 52 −8.87E−05 2.68E−04 9.89E−04 −9.68E+01 −1.03E+02 2.65E−02

7.00E−05  −3.30E−04 2.30E−04 −9.86E+01 −9.98E+01 −4.30E−01

0.00E+00 0.00E+00 0.00E+00 −1.00E+02 0.00E+00 −1.00E+02
j  = 53 3.50E−04 1.40E−03 2.28E−03 −9.48E+01 −2.22E+00 −1.05E+02

8.00E−05  −6.20E−04 8.30E−04 −1.01E+02 1.26E−01 −1.00E+02

0.00E+00 0.00E+00 0.00E+00 0.00E+00 −1.00E+02 −1.00E+02
j  = 54 3.01E−04 1.27E−03 1.32E−03 9.73E+00 −1.01E+02 −1.04E+02
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