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1 QUARTZ-SUPMECA – Institut Supérieur de Mécanique de Paris, 3 rue Fernand Hainaut, 93400 Saint-Ouen, France
2 Univ Rennes, INSA Rennes, LGCGM - EA 3913, F-35000 Rennes, France
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Abstract. In many engineering applications, the vibration analysis of a structure requires the set up of a
large number of sensors. These studies are mostly performed in post processing and based on linear modal
analysis. However, many studied devices highlight that modal parameters depend on the vibration level non
linearities and are performed with sensors as accelerometers that modify the dynamics of the device. This work
proposes a significant evolution of modal testing based on the real time identification of non linear parameters
(natural frequencies and damping) tracked with a linear modal basis. This method, called Kinematic-SAMI
(for multiSensors Assimilation Modal Identification) is assessed firstly on a numerical case with known non
linearities and secondly in the framework of a classical cantilever beam with contactless measurement technique
(high speed and high resolution cameras). Finally, the efficiency and the limits of the method are discussed.

Keywords: Experimental modal analysis / Extended Kalman Filter / Data Assimilation / Nonlinear
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1 Introduction

Measurements in structural dynamics are used to identify
and update models in order to determine the stability,
safety and lifetime of mechanisms under operational or
exceptional conditions. In many cases, this experimen-
tal process is developed in the scope of modal analysis.
Modal analysis is a very well-known tool which consists
in measuring input and output signals in order to define
the studied system in terms of modal parameters (natural
frequencies, damping ratio and mode shapes) [1]. Modal
parameters are often identified in the frequency domain
from Experimental Modal Analysis (EMA) techniques by
using the Frequency Response Functions (FRF) and this
method solves efficiently many problems [2].
In experimental modal analysis, experiments are often

performed using a limited number of measurement points.
These measurement points are mostly acquired using
accelerometers. The presence of these sensors on the stud-
ied structure induced some drawbacks. First, the added
mass effect induced by the sensors located on the struc-
ture can affect its natural frequencies and mode shapes.
Moreover, wires used to connect sensors to the acqui-
sition systems modify the measured modal damping.
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These drawbacks and the limited number of measurement
points are successfully avoided in many studies with laser
measurements [3,4]. However, this technique is based on
sequential scanning method and need to study the dynam-
ics of structures with periodic or repeated deterministic
responses. Transient and random excitation cannot be
studied with this technique by measuring all points in
the same time. The commonly used solution consists in
reproducing the same excitation (transient or pseudo ran-
dom) for each measured point. However, the experimental
process is yet much longer and numerous assumptions are
required: the system is assumed to be deterministic and
stationary and measurements have to be synchronized.
The motivation of this work is to tackle these draw-

back. Part of the solution consists in using contactless
devices such as laser, micro wave, or high speed vision.
The purpose of this article is to introduce a new real-
time method which is able to identify nonlinear modal
parameters using a large number of observation points
from different contactless sensors input.
In most of the recent methods modal parameters are

assumed to be obtained from a linear structure. However,
for industrial structures such as aircraft, space launch-
ers, bridges, but also for smaller structures like brakes
or ski, weak non linearities can be observed even for
small vibration levels. These weak non linearities modify
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natural frequencies and modal damping which depend on
the vibration level. There are methods, most of them
based on the work of Kerschen et al. [5]. These methods
require significant computation times. In many industrial
studies, Numerical Modal Analysis are more and more
performed before Experimental Modal Analysis. Thus,
expected frequencies, damping and mode shapes are used
to optimize experimental parameters in the acquisition
system, sensors and measurement point location.
The present study aims to identify in real time nonlin-

ear modal parameters in the case of weak nonlinearities.
The Kinematic model used is based on the numerical
modal basis and is assumed to not depend on vibra-
tion amplitude. We propose to use the framework of data
assimilation. Data assimilation is a family of methods
which allows to use a model with data in a stochastic
framework [6].
In order to perform real time identification, we use a

sequential assimilation method known in the signal pro-
cessing domains as Kalman filters. This work is specifically
focusing on nonlinear Kalman filters. Firstly introduced
in the early sixties [7], this promising technique for esti-
mation with a linear model designed by Rudolf Kalman
was not well accepted [8] but quickly became a very used
algorithm until now. Not to ease the bibliographic work,
the filter has been improved in a lot of different way and
domains, in order to deal with a large variety of problems.
Indeed, Kalman filter is not only the original algorithm,
but also it has become a family of algorithms. In order to
go beyond the linear framework of the Kalman filter, Stan-
ley Schmidt developed in a NASA context an Extended
Kalman Filter (EKF) [9] developed decades later in a
civil context [10] based on a linearization of a nonlin-
ear model. From this filter has derived a lot of references
on multiple domains: ballistic, chemical reactions control,
aerospace, robotic [11,12]. In the particular field of dynam-
ics, EKF has been widely used for tracking specific model
parameters in order to do health monitoring [13]. In the
EMA framework, linear Kalman filter was used to esti-
mate simulated vibrating forces [14] following by the EKF
for estimating simulated input forces acting on structural
systems [15]. Other approaches use data driven stochastic
subspace identification (SSI-DATA) in order to mix com-
putational and structural parameters in the identification
results. The disadvantage of the SSI methods is the use of
computational resources, which is difficult to transpose in
a real time framework.
Frequency tracking is not a new trend. The real time

framework, the objectives of non linear identification and
the expected time-frequency accuracy stop us from using
Fourier Analysis Methods. But this framework has been
tackled with Auto Regressive Moving Average (ARMA
models) [16,17] with a drawback on the complexity and
robustness of the identification process in the case of
nonlinear systems. Different methods from the optimal
estimation framework [18] are already employed to track
frequency. For example a monitoring vibration approach
is applied on a gearbox, providing alert indicators using an
EKF coupled with autoregressive models [19]. The system
is robust and effective to identify optimal model order.
However some false alerts are generated by this method

and the system is not designed to use the whole modal
information. The specific topic of modal parameters esti-
mation is very dynamic and a lot of different recent works
use the optimal estimation framework.
Nowadays, some authors points out the importance of

the experimental extraction of nonlinear modes to model
systems or characterize the system dynamic [20]. Yang
et al. [21] is using high speed videos of structures with a
video magnification to amplify the displacement. Then,
a blind source separation is performed to extract the
modal parameters, but in a linear context. Abdollahpouri
et al. [22] compare EKF and Moving Horizon Estima-
tion to tackle real time estimation but the estimation
is limited to one mode. Dzunic et al. [23] use Bayesian
State-space (BSS) approach to estimate the probability of
defect occurring in a structure. The BSS formalism can be
used in real-time, but the computation of the probability
distributions is expensive. Nonlinear version of Kalman
filters needs less computational time. Using those promis-
ing methods, Naets et al. [24] use an EKF for identifying
forces input in a structural system using a classical ran-
dom walk model. This approach implements directly a
discretized version of the classical differential system as
a model and follows the framework developed by Chatzi
[13] in the structure health monitoring field. The results
propose only the estimation of the force.
A different approach using Kalman filtering consists

in performing a modal demodulation model in the EKF
for accurate measurements of non stationary natural fre-
quencies and modal damping [25]. However observations
are based on 1D sensors and the proposed algorithm is
built on Extended Kalman Filter Series, with no link to
the structure and its eigenvector basis. Cha et al. [26]
use another nonlinear version called Unscented Kalman
Filter and a model of the expected signal response to
estimate structural properties of the structure and the
input force. This approach does not use a modal context
which allows several modes estimation and even if the
model used is nonlinear, the estimation is performed on a
linear structure. Other recent approaches use demodula-
tion techniques with neural networks to identify nonlinear
modes but for a single frequency response function [27].
The proposed method based on sequential data assim-

ilation is developed in Section 2 with the description of
the modal model generalized in a EKF for N-Dimensional
observations. The purpose of this article is to develop a
real time modal analysis for weakly nonlinear structures
based on an EKF and fused contactless measures. On
the tracks of identification with sequential data assimi-
lation as Kalman filters using nonlinear models [28], we
use a modal framework for modeling the input data. The
method presented in this article is at the centre of the
measurement/processing chain. It allows in the targeted
applications to combine different types of sensors while
offering fast information processing.
The system is able to identify in a real time scheme the

different nonlinear parameters of a structure modal model
for each vibration eigenmode and for transient observa-
tions: frequency, magnitude and damping. It is using a
Reduced Order Model based on the modal basis of the
structure. The experimental procedure is using data from
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high speed camera and laser. The application test cases
are described in Section 3 with a validation on a numer-
ical test case and an experimental one with geometrical
nonlinearities. Finally, in Section 4 both numerical and
experimental results are given for nonlinear simulation
and discussed for the nonlinear simulation and the real
measurements acquired with the experimental setup.

2 Sequential assimilation in a modal
framework

Data assimilation is very well described by the elegant
formula from the geoscience fields: “Data assimilation is
the science of successful compromises” [6], compromises
between both simulation and experimental worlds. Devel-
oped since the thirties in the meteorology field, these
methods are generating an increasing interest in a lot of
different domain following the data driven philosophy.
Data assimilation groups two main types of methods:

– Variational methods use data on an interval including
past and future information regarding the time where
estimation is performed. The most used method in this
case is the 4D-Var method [29].

– Sequential methods use only past information. These
methods are based on Kalman filters algorithms to
assimilate the model with data.

The Extended Kalman Filter, as described in Dion et al.
[25] is robustly designed to track sine component signals.
In order to adapt the method to N-dimensional measure-
ment, we have to set up a spatial relationship between
the different observed points according to the time vision
of the sinus tracking. Section 2.1 describes the system
of equations. Extended Kalman Filter equations and
state system employed are introduced in Section 2.2 and
Section 2.3.

2.1 Modal model in a weak nonlinearity framework

A vibrating system can be written as :

Mẍ+ Cẋ+Kx+ FNL(x, ẋ) = Fext + ν. (1)

These equations describe the time and space relations
for the general coordinates of the system described by
their position x, speed ẋ and acceleration ẍ. M is the
mass matrix, K and C are the stiffness and damping
matrix. Fext is modeling the external forces and FNL the
nonlinear forces depending on position and speed. ν is
modeling the uncertainty of the model. This uncertainty
is assumed to be unbiased and Gaussian, with zero means
and a covariance matrix Rν .
In the linear context of modal analysis the deterministic

system can be written in the frequency domain as:

(−ω2ΦTMΦ+ jωΦTCΦ+ ΦTKΦ) · q̂ = ΦT F̂ext

with x̂ = Φq̂. (2)

The solutions of the system (Eq. (2)) can structurally
be decoupled in time and space. Thus, the solution can
be decomposed on a modal basis depending on the struc-
ture Φ =

{
Φ1,Φ2, ...,Φn

}
depending only on the space.

The mode index i ∈ [[1, ..., n]] is in superscript for the con-
sistency of the following. Different important underlying
hypotheses have to be pointed out:

– At any time, the shape function is a linear combination
of mode shapes.

– Instantaneous natural frequency and damping depend
on the modal amplitude of the corresponding mode.

From those, two important assumptions can be made:

– The modal base used is assumed to be strictly real
(without any phase between nodes for each natural
mode).

– The system is in the weak nonlinear framework [30]: the
eigenvectors are assumed to be time invariant.

In the case of free oscillations, the solution can be written
as a shape function S(x, y, z, t) under the form:

S(x, y, z, t) =

n∑

i=1

V i(t) · Φi(x, y, z) + ν (3)

with V i(t) = Ai(t) · cos

(
2π ·

∫ t

0

f i(τ)dτ + φi

)
(4)

Ai(t) = ai · e−2π·fi(t)ξi(t)t (5)

ν =

∞∑

i=n+1

V i(t) · Φi(x, y, z) + µ. (6)

In the previous equations f i(t) is representing the fre-
quency, φi the phase, ξi(t) the damping and ai the initial
mode coefficient for mode i. ν includes the uncertainty of
the model but also the rest of the modal basis in the case
of a truncated modal basis (reduced order model). We call
ν the residual and we verify in the last section that this
residual model given in the above equation is verified. µ
is modeling the uncertainty.
The model and observation function derive from this

general model and are given in Section 2.3 while the
Kalman framework is introduced first in Section 2.2.

2.2 The extended Kalman filter

This section describes assumptions and the retained set of
equations for the Kalman filter. Let’s consider a classical
nonlinear state system with a time evolutive equation and
an observation equation:

{
ẋ(t) = fc(x(t)) + w(t)
z(t) = hc(x(t)) + v(t)

or in a discrete form:

{
Xk+1 = f(Xk) + wk

Zk = h(Xk) + vk.
(7)

In these equations, Xk is the state vector at step k, mir-
roring the discrete version of the continuous state version
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x(t). The function fc and its discretized version f mod-
els the system evolution with a process noise w(t) or wk.
The function hc or its discretized version h is the obser-
vation function. It links the state variable space with the
measurement space with an observation noise v(t) or vk.
Kalman filters are part of the largest class of Data

Assimilation algorithms. Data assimilation groups the
methods used to fit models with real data in order to
do prediction or identification. Kalman filters belong to
the class of sequential algorithms and uses the two first
statistical moments, the means and covariances of a vari-
able vector X and an evolutive state system (Eq. (7)) to
compare real data with an input model.
The original Kalman filter [7] estimates the probabil-

ity distribution of X with the functions f and h defined
linear (for the sake of clarity, f has no link with FNL

and Fext introduced in Eq. (1)). Defining fk and hk two
invariant matrix as f(X) = fkX and h(X) = hkX, the
linear equation can be expressed in a two-step process.
First, the prediction step, which uses the evolution part
of the equation (7) to predict an estimation of the future

state for mean X̂k|k−1 and covariance Pk|k−1 based on

their past state X̂k−1|k−1 and Pk−1|k−1

X̂k|k−1 = fkX̂k−1|k−1 (8)

Pk|k−1 = fkPk−1|k−1f
T
k +Qk (9)

Kalman filter introduces Qk, which is the covariance
of the process noise wk supposed to be Gaussian and
centered.
The second step is the update, during which the predic-

tion is compared to the observation using the observation
part of the equation (7).

Sk = hkPk|k−1h
T
k +Rk (10)

Kk = Pk|k−1h
T
k S

−1
k (11)

X̂k|k = X̂k|k−1 +Kk(zk − hkX̂k|k−1) (12)

Pk|k = (I −Kkhk)Pk|k−1. (13)

These equations introduce Kk the Kalman gain and Rk

the covariance of the observation noise vk supposed to be
Gaussian and centered. As we can see in equation (10),
the strength of this class of methods is to use a gain
driven by the covariances to adapt the state vector to the
observations.
Unfortunately, the linear algorithm is not sufficient

to characterize the distributions in nonlinear cases. The
Extended Kalman filter tackles this problem by lineariz-
ing the functions at each step. It uses the nonlinear state
equations (Eq. (7)) to propagate the means and intro-
duces the Jacobian matrix Fk and Hk derived from the
functions f and h linearized at step k to propagate the
covariances.
The complete extended Kalman filter equations with

linearization of the nonlinear functions f and h are then

shown below.

X̂k|k−1 = f(X̂k−1|k−1) (14)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (15)

Sk = HkPk|k−1H
T
k +Rk (16)

Kk = Pk|k−1H
T
k S

−1
k (17)

X̂k|k = X̂k|k−1 +Kk(zk − h(X̂k|k−1)) (18)

Pk|k = (I −KkHk)Pk|k−1. (19)

The Extended Kalman Filter has several drawbacks. Its
implementation is not easy because of the complexity of
the jacobian calculus. The jacobian drives up the compu-
tational cost of the EKF compared to a standard Kalman
for example. Another drawback caused by the lineariza-
tion of the model is the robustness in the case of high
nonlinearity. Indeed EKF induces process errors because
of the difference between the curve and the linearized pro-
jection: those errors grows with the nonlinearity of the
function for a fixed step.
Those errors are also important to tune the filter. The

initialization is not difficult. The P0 matrix is defined
diagonal with the squared variance for each state variable.
It can be easily transposed by the experimenter as an error
interval allowed around the chosenX0 value. The Rk value
is defining the confidence on observation. It can be linked
with the precision of observations in the same way than
the P0 value. Qk value represents the error of the model.
This error includes linearization error and modeling error.
Section 2.1 describes the modal analysis framework.

The model is based on an invariant (linear) modal basis
and is designed in order to track weak nonlinearities that
are observed through the evolution of the natural frequen-
cies and damping. These weak nonlinearities of the model
allow to use EKF: only natural frequencies and modal
damping are time varying. Moreover amplitude and fre-
quency variations are assumed to be much slower than
studied vibrations: observed signals can be depicted as
narrow band signals.
Section 2.3 describes the state system derived from the

modal model in Section 2.1 and used to track modal
parameters of a structure.

2.3 State system

This section introduces the design of the state system used
in the EKF algorithm.
The design of the evolution function matrix has been

defined by Dion et al. [25] for the tracking a sine compo-
nents in a signal. The general form of the solution given
in equation (3) can be split in two parts: a time part and
a space part. For the specific mode i, the time part is
defined as:

V i(t) = Ai(t) · cos

(
2π ·

∫ t

0

f i(τ)dτ + φi

)
(20)

A common solution to model the signal is to use ana-
lytic signal based on the Hilbert transform. However the
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Hilbert transform induces some bias when implemented
and the approximation is correct only under the Bedrosian
theorem first condition [31], which is commonly called con-
ditions of narrow band signal. This assumption is often
well defined in telecommunication domain, but can be
more tricky in identification or tracking for complex sig-
nals [32]. This issue is a current investigation question,
and recent works try to extend the Hilbert transform with-
out the Bedrosian condition [33]. In our case, amplitude
and frequency evolutions given in equation (20) are slow
considering the signal, which allows to satisfy the narrow
band conditions.
In other terms, studied signals can be described with in

equation (20):

V i(t) ≃ Ai(t) · cos

(
2π ·

∫ t

0

f i
p(τ) + f i

∆ ·m(τ) · dτ

)

(21)

with f i(t) ≃ f i
p + f i

∆ ·mi(t) (22)

f i
∆ << f i

p (23)

|m(t)| < 1. (24)

Following the narrowband definition, we define the car-
rier and phase frequencies f i

p and f
i
∆ for the ith mode. The

m(t) function represents the bandwidth modulation of the
signal. This amplitude and frequency modulations implies
a last condition already verified regarding the definition
given in equation (3), but important to mention:

dAi(t)

dt
≪ 2π · f i

p(t). (25)

In a first approach, the pseudo harmonic signal can be
set into an analytical signal with the following discrete
version (the imaginary part is the Hilbert transform of
the original signal):

Vi
k = αi

k · ej2πf
i

k
k·∆t . (26)

Considering that the parameters αi and f i are varying
slightly over time:

Vi
k+1 ≃ αi

k · ej2πf
i

k
(k+1)∆t . (27)

Then, we have the following state form :

Vi
k+1 ≃ Vi

k · ej2πf
i

k
∆t . (28)

Separating real part and imaginary part:

Vi
k = V i

k + j · Ṽ i
k . (29)

The state system becomes:

(
V i
k+1

Ṽ i
k+1

)
=

[
cos(2πf i

k∆t) − sin(2πf i
k∆t)

sin(2πf i
k∆t) cos(2πf i

k∆t)

](
V i
k

Ṽ i
k

)
. (30)

If we take into account the frequency modulation, the
state system becomes with notation from Section 2.2:

Xi
k = F i

k−1 ·X
i
k−1 (31)

with Xi
k =

[
V i
k , Ṽ

i
k , ω

i
k

]T
ωi
k = 2πf i

k∆t (32)

and F i
k =



cos(ωi

k) − sin(ωi
k) 0

sin(ωi
k) cos(ωi

k) 0

0 0 1


 . (33)

The evolutions of the amplitude αi
k =

√
V i2

k + Ṽ i2

k and

the frequency are slow regarding the time step. The state
system is nonlinear (Eq. (14)) and Wk the process noise is
centered and Gaussian with its covariance defined as Qk

in Section 2.2.
The following space part of the state system is one of the

key points introduce in this article. This part is significant
to introduce multiple observations. These observations
could come from multiple sensors or from processed digital
images. The observation function link the modal variables
of the state system to the observed measurements. These
link is performed with the modal basis. The discrete form
of the space is defined by the set of measurement points
(sensors) such as Φi

p = Φi(xp, yp, zp).
To deal with n modes, we concatenate vertically the

different modal variables and define the block matrix
evolution as:

Xk =




X1
k

X2
k

...

Xn
k


 and Fk =




F 1
k 0 ... 0

0 F 2
k ... 0

... ... ... ...

0 0 ... Fn
k


.

(34)

The observation from the sensors gives different dis-
cretized measures of shape functions Sk,p:

Sk,p =

n∑

i=1

V i
k · Φi

p + ν. (35)

The observation function has to be designed in order to
transform the state vector to the model space. This model
space is defined by the equation (3): this is the sum of the
n first modes contribution at each time step.
The modal basis is used in the observation equation in

order to link the state variable with the measurements:

Sk,p = H ·Xk (36)

=
n∑

i=1

V i
k · Φi

p (37)
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with H =
(
Φ1 0 0 Φ2 0 0 ... Φn 0 0

)
.
(38)

This new form is particularly designed for free vibra-
tions of structures measured with la large set of sensors.
The next section describes the implementation of the
previous model.

3 Experimental setup

This section describes the experimental setup we use
to validate the theoretical development of the previous
part. First, the test case chosen to prove the feasibility
of the theoretical concept is introduced: a classical can-
tiveler beam (Sect. 3.1). Then, the experimental setup is
described in Section 3.2 in order to validate the Kinematic
SAMI on a real test case. We choose to measure the
cantilever beam with a high speed video acquisition.

3.1 Application on a case study: the cantilever beam

We propose an experimental application with contact-
less measurements of a structure with geometrical non-
linearity in the modal analysis framework. In order to
test the different parts of the estimation process described
below, an experimental validation on a classical cantilever
beam is proposed. Only bending modes are studied which
means that the beam is considered in the 2D plane (ex, ez)
(see Fig. 1). According to the Euler Bernoulli theory, the
bending motion is assumed to be only along the ex axis
and displacements along ez axis are neglected. In order to
deal with all the cases, three tests cases are presented:

1. A numerical simulation composed with 3 modes
whose frequencies and damping are varying: the non-
linear case study. Three variables per mode will
be identified along time: the modal magnitude, the
damping coefficient and the frequency. One mode is
hardening and two are softening ones.

2. A real test case described in the Section 3.2 and
excited by a shock. Measurements are performed
with a high speed camera and with specific marks
on the beam. The camera position allows to neglect
the depth and to consider the image processing of
the beam in a 2D plane (Fig. 1). The evolution of
the positions of each marker is extracted with a video
processing algorithm.

3. In the same experimental test case, another sensor is
added: displacement measurements measured with a
laser on one point of the cantilever beam.

3.2 Experimental setup

The modal basis of the aluminium alloy beam is obtained
in accordance with the Euler-Bernoulli theory.
Considering the 1D modal basis of this classical test case

Φ =
{
Φ1(x), . . . ,Φn(x)

}
, the cantilever beam solution

Table 1. Properties of the cantilever beam.

Length 0.45 m
Height 0.02 m
Width 0.0012 m
Density 2700 kgm−3

Young’s Modulus 74 Gpa

Table 2. Theoretical frequencies of the cantilever beam
modes.

Mode number 1 2 3 4 5
f (Hz) 4.17 10.43 17.45 24.43 31.41

S(x, t) is:

S(x, t) =

n∑

i=1

V i(t)Φi(x) (39)

The geometric and mechanical properties have been
chosen regarding the number of modes expected in the
observation. Table 1 presents the properties of the beam.
The theoretical first five mode frequencies are given in the
Table 2. The clamping is built with steel block (see Fig. 1),
not as ideal as the Euler-Bernoulli assumptions. However,
the displacement induced by the non ideal clamping is neg-
ligible compared to the bending displacement amplitudes
observed.
In this first part, the experimental setup is composed

of three elements:

– The high speed camera;
– the clamped free beam;
– the spotlight.

Using aluminum in the visual field brings a major dis-
advantage: its specular properties. Besides, there is no
particular position of the light and the cantilever beam
to avoid reflection stray light. This issue has been tackled
by using specific pattern placed every centimeter and pro-
viding 45 observation points for the estimation (Fig. 1).
The measures are extracted from the video using a specific
method based on the tracking of interest points [34].
The camera is calibrated using the method proposed by

Zhang [35] implemented in MATLAB. The pixel size pro-
jected on the experimental device (called Ground Sample
Distance or GSD the remote sensing field) is 108× 10−6m
and is presented in Section 4.4. The measures are pro-
cessed by our algorithm and then compared to a classical
Fourier analysis of each observation point.

4 Numerical investigations and experimental
results

First Section 4.1 defines the criteria for evaluating the
performance of the method and the tuning of the different
parameters used.
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Fig. 1. Experimental setup.

4.1 Criteria for method evaluation

The model introduced in Section 3.1 is used to simulate
a numerical test bench. This linear model is computed in
order to extract mode shapes. The assumption of weak
nonlinearities allows using these modes shapes with non-
linear natural frequencies and dampings. Then a nonlinear
simulation is proposed, introducing variations of the fre-
quencies (as introduced in Eq. (3)). An important noise is
added on observations in order to generate a realistic and
severe test for the proposed method. This noise is sat-
isfying two hypothesis: the noise is considered Gaussian
centered and the noise is considered to be additive.
To quantify the convergence of the filter, the error will

be measured regarding each variables. A classical Root
Square Mean Error (RMSE) residual estimator is used:

RMSE =

√∑kend

k=1 (Vkestimated
− Vksimulated

)2

kend ·∆t
. (40)

Indeed, the RMSE gap between the acquisition data
and the model output projected on the observation space
is very common in the Data Assimilation domain. In our
case, we compute a ratio between RMSE and the measures
in order to compare the different extracted modes through
a percent value. For example for the frequency:

f i
error =

√√√√
∑kend

k=1 (f
i
kestimated

− f i
ksimulated

)
2

kend ·∆t · f i
ksimulated

× 100. (41)

The constant parameters are extracted from the final
value of the output filters and compared to the ground
truth value in the case of the simulations. Finally, a spe-
cial attention is focused on the residual for the real case.
According to the modal decomposition in equation (3), it

is interesting to show that the residual is composed of the
sum of the non identified modes and the noise.
We choose to test the algorithm on a usual case of 3

modes identification. The simulation is based on the theo-
retical modes given in the Table 2. The performed during
5 s with a time step of ∆t = 5 × 10−6 s . A white and
Gaussian noise (standard deviation σsim = 200× 10−6m)
is added to the model equation (39) used to simulate the
beam shape evolution over time. The spatial frequency is
chosen very high for the ground truth with 1000 points,
whereas the spatial frequency of the data simulated for
the filter input is sampled to 25 points. The algorithm
is calibrated first on a linear test case with constant
frequencies.

4.2 Nonlinear numerical case study

Nonlinearities are introduced on natural frequencies and
dampings. Three modes are studied, one mode is harden-
ing and two are softening nonlinearities are larger than
classical structures in order to assess the method used.
The results are presented in Figure 2. The simulation

values of the reference variables are in a red dash-line.
The identified variables are in blue continuous line. Mul-
tiples of the covariances are in green around the different
parameters.
The results are convincing: the identification process is

able to track the frequency and the envelop in a real time
scheme. The envelop gives access to the time evolution
of the damping coefficient, which allows to characterize
completely the observed structure. Moreover, it is inter-
esting to point out that the covariance evolves on the
opposite expected behavior: instead of converging, the
covariance seems to grow with time. The different modes
amplitude are decreasing, generally as fast as the mode
number is high. The filter confidence in the higher modes
is then decreasing with time due to the observed ampli-
tude become smaller and is coming closer to the noise,
which explains the increasing covariance.
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Fig. 2. Results for identification on a nonlinear case study.

Fig. 3. Error evolution for each mode of the real time identification of the different modes of the numerical test case.

We choose to display the frequency and damping error
values compared to the simulation values on Figure 3a.
The values are evolving with time, and here we propose
to display a percentage from the true values at each time.
The identification of these two parameters is better than
2%. It is interesting to underline the oscillation behavior
of the different results Figures 2 and 3a. This behav-
ior is clearly induced by the first mode and it can be
observed on the other curves in smaller proportions: this
is the consequence of the approximation of the Bedrosian
theorem. The narrow band assumption is not completely
verified.
The RMSE for this simulation is given in Figure 3b. In

this numerical test case, the perfect measurement RMSE Fig. 4. Fourier Magnitude for the experimental test case data.
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Table 3. Resonant modes according to Fourier analysis.

Mode number Fourier analysis (Hz) Our Method ending values (Hz)

Peak Spectral resolution Mean 6 × Standard deviation

1 4.408 0.87 4.720 0.06
2 29.97 0.87 29.60 0.10
3 82.87 0.87 82.92 0.18
4 163.1 0.87 163.5 0.35

Fig. 5. Results for identification on an experimental test case.

can be displayed, this is not the case for the experimental
data in Section 4.3. The RMSE converges towards the
noise introduced in the numerical test case (end of the
continuous line on Fig. 3b).
These results highlights the robustness of the method in

the case of non stationary frequency evolution. The next
part is introducing real measures acquired with a high
speed camera.

4.3 Real time experimental data

4.3.1 Results on data from high speed video

The Fourier analysis (Fig. 4) show the first four natural
frequencies which are compared to the identified natural
frequencies Table 3. The resolution of the Fourier analysis
is 0.87 Hz.
The three first modes envelop and frequency iden-

tification with the standard deviation are displayed in
Figure 5.
In order to compare the results with the previous sim-

ulated ones we propose to display the RMSE but also the
probability density function (PDF) of the centered errors
on Figure 6. Figure 6a shows that the filter is minimizing
the errors, and that the mean error level at the end of the
signal is about 1× 10−5m is largely smaller than the GSD
1.08× 10−4m. Figure 6b allows to validate the Gaussian

assumption used for the Kalman filter. The noise deduced
from modal magnitudes is also Gaussian regardless the
number of identified modes.
The results obtained are convincing in different ways.

The observed parameters are invariant: the small dis-
placements of the cantilever beam allow to keep a linear
approach. Figure 6a shows that the noise chosen for the
simulation is very high regarding to the real case. The
identification process is performed with space resolution
smaller than 1/10 of pixel resolution for vibration ampli-
tudes. Another interesting point is that the identification
process do not need to be initialized with parameters close
to the good results. During the first 0.1 s the identifica-
tion process is deeply disturbed before and during the
shock, but converges as soon as the signals are significant
regarding the noise amplitudes.
The real-time performance results are depicted in

Figure 7 with the Kinematic SAMI prototyped in
MatLab R© language. Even if this code prototype can be
improved, these results highlight the efficiency of the
proposed tool for real time identification of non linear
modal parameters of most of classical structures with
modes in the 0 kHz–1 kHz bandwidth. The results can be
seen in Figure 7.
For the sake of clarity, this article is only focusing on

the signal processing part and not on the video processing
part. The code is executed in a sequential way in order to
simulate a real time sequential acquisition. These results
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Fig. 6. Two different ways to present the errors: the RMSE function of time and a centered probability density depending of the
number of modes identified.

Fig. 7. Refresh frequency evolution function of time.

could be optimized later on in a real-time execution envi-
ronment. The mean is varying from 1500Hz to 5000Hz1.
The refresh rate depends mainly on the computing time
of the innovation covariance inversion (88.6%). As the fig-
ure is not repeatable, we assume that the variation of
level observed are due to the operating system activity.
This frequency is high enough for MatLab R© code to con-
sider real time application applications with sample rate
smaller than 1000 Hz (fps).

4.3.2 Residual analysis

The residual analysis allows to better understand the fil-
tering process by analyzing the different contributions of

1 The processor is a Intel Core i7-412HQ @ 2.30GHz with 16Go of
RAM memory on a personal workstation.

the modes in the residual. Figure 8 display an absolute
and normalized representation of the residual in space.
Figure 8 shows that the absolute residual has the same

shape than the third mode in the case of the tracking of
2 modes. For 3 modes identification, the residual has a
lower absolute error level and its space shape is not con-
taining the third mode anymore: this experiment shows
that the residual is composed of the sum of the different
modes not taken into account in the reduced model. To
end this residual analysis, we propose to track the fourth
mode. The result is very promising because the method
is able to track a very small modal amplitudes, as we can
see in Figure 4. In term of residual shape, the fourth mode
has a very small contribution, but can be seen with the
change observed at the half of the shape residual between
the 3 modes and 4 modes identifications in Figure 8. Thus,
the residual shape is also an accurate tool for identifying
boundary condition problems: the error is concentrated
close to the clamp and highlights the difficult task to
perform a perfect clamp.

5 Conclusion

In this paper, a novel method based on data assimilation
has been introduced for applications on the identifica-
tion of linear or nonlinear modal parameters. The method
called Kinematic SAMI is designed for a real time iden-
tification of the frequencies and damping of a structure
excited by shock, and is based on modal projection (time
and space) of measurements performed with multi-sensors.
This paper proposes specifically a real time application.
The identification method is validated first on a non-

linear system simulation and second on multiple measure
points setup. This real test case is performed with high
speed camera acquisition and video processing extraction
on a cantilever beam. A specific residual analysis shows
the efficiency of the method in the identification process
for weak nonlinear modes.
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Fig. 8. Space residual display with identified mode.

Nomenclature

Symbol Definition Unit
ai Initial mode i coefficient m
A(t)i Time depending mode i coefficient m
C Damping matrix kg s−1

(ex, ey, ez) Space basis
F Evolution function
Fext External Forces N
FNL Nonlinear Forces N
f i Frequency of the mode i Hz
fp Carrier frequency Hz
f∆ Phase frequency Hz
H Observation function
k Step time index
K Stiffness matrix kg s−2

M Mass matrix kg
m(t) Bandwidth modulation of the signal
Pk|k−1 Covariance of state vector at step k

knowing step k − 1
Qk Process noise covariance
Rν Covariance matrix of ν N
S Shape function depending of the 3

axis position variables
m

t Time s
q̂ Generalized coordinate vector m
V i Temporal modal contribution of

mode i
m

Vi Hilbert transform of V i

vk Observation noise (vector) m
wk Process noise (vector)
Xk State vector at step k
x x position m
ẋ Speed on x axis m s−1

y y position m
z z position m
Zk Observation vector
∆t Step time t = k ·∆t s
ν Uncertainty of the model N
µ Uncertainty of the model N

Φ Modal basis
φi Phase of the mode i m
ω System Pulsation rad s−1

σsim Standard deviation m
ξi Damping of the mode i
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