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SUMMARY

A nonholonomic system subjected to external noise from the environment, or internal noise in its
own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This
ensemble of trajectories is equivalent to the solution of a Fokker–Planck equation that typically
evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for
subsequent motions from the current state are to be made so as to move the system to a desired state
with high probability, then modeling how the probability density of the system evolves is critical.
Methods for solving Fokker-Planck equations that evolve on Lie groups then become important.
Such equations can be solved using the operational properties of group Fourier transforms in which
irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple
approach for the numerical approximation of all the IUR matrices for two of the groups of most
interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion
group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these
groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other
techniques for density estimation on groups are also explored. The computed densities are applied
in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering
in three-dimensional space. In these examples the injection of artificial noise into the computational
models (rather than noise in the actual physical systems) serves as a tool to search the configuration
spaces and plan paths. Finally, we illustrate how density estimation problems arise in the
characterization of physical noise in orientational sensors such as gyroscopes.
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1. Introduction

In robotic systems, sensors make observations about the state of the system and actuators
change the state by moving the robot in space. The “kinematic state” (or configuration) of a
quasi-static robot often can be viewed as an element of a Lie group, G.§ For a system whose
state is specified in part by a stochastic input, the state cannot be known or controlled exactly.
For such systems, the best that one can do is to estimate the state, and make plans to evolve

*Corresponding author. greg@jhu.edu.
§In this work, when we refer to the state of a system, this is what we mean (rather than the dynamic state that includes rates of change
of kinematic variables).
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the state so as to achieve some desired goal in a probabilistic sense. In contrast, in motion
planning scenarios, the injection of “artificial noise” into the computational models can serve
as a tool to search the configuration spaces and plan paths by following paths of high
probability.

For these reasons, methods for probability density estimation can play an important role in
applications. Systems that have states that evolve on Lie groups include gyroscopic sensors,
cart-like mobile manipulators (including a library robot implemented in our research group),
and flexible needles with bevel tips used in minimally invasive medical treatment planning.
After establishing a general theoretical framework, we address each of these topics later in the
paper.

Several orientation sensing modalities exist for mobile robots and satellites. These include star
trackers,38,32 gyroscopes,29,45 magnetometers,33,34 and omnidirectional vision systems.4,5

Each of these can use the concepts of IURs for SO(3) in one form or another. A detailed
literature review of this area is presented in ref. [6] (Chapters 14 and 15).

Another area of robotics in which methods of group theory can be applied is nonholonomic
motion planning. The problem of motion planning for nonholonomic robots has received
significant attention within the robotics community over the past two decades. For a summary
of the state of the art, see refs. [67,74,79,80]. One approach is to do planning in high-dimensional
configuration space. In contrast, we follow the approach of doing planning in workspace
variables, which can have a greatly reduced dimension relative to that of configuration spaces.
This approach has been taken in a number of prior papers from our research group shown in
refs. [73,78]. In particular, the inverse kinematics of hyper-redundant and binary manipulators
using “workspace densities” has been pursued in refs. [72,75,76]. This approach was adapted
for nonholonomic planning in ref. [77] by sampling allowable moves. In contrast to sampling,
a Fokker–Planck equation can be written that describes the evolution of probability
density70. In cases when the probability density is highly concentrated, this can be
approximated as a Gaussian distribution, and covariances can be propagated.68,69,71 These
variations on the general theme of propagating probability densities in the workspace of the
robot will be pursued later in the paper.

The remainder of this paper is structured as follows. Section 2 reviews the relationship between
Fokker–Planck equations and stochastic differential equations that describe processes in IRn

and in Lie groups. Section 3 reviews and develops theory for Fourier-based estimation on Lie
groups. Section 4 applies this methodology to the state estimation and motion planning of the
kinematic cart. Section 5 applies the same methodology to steering a flexible needle in three-
dimensional space. Section 6 applies this theory to the attitude estimation problem when using
an inertial navigation systems and examines the problem of extracting system noise parameters
from measured data, which is a capability that is important for handling all of these systems.
Finally, Section 7 gives conclusions.

2. Fokker–Planck Equations

A stochastic differential equation (or SDE) in IRp is of the form

(1)

where x ∈ IRp and W ∈ IRm. Here the deterministic dynamical system dx/dt = h(x, t) is
perturbed at every value of time by noise, or random forcing described by W(t) where W(t) is
a vector of uncorrelated Wiener processes, each with unit strength and H ∈ IRp×m is a matrix
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that scales and couples these noises. SDEs used in modeling can either be of Ito or Stratanovich
type.54 In cases when H (x(t), t) is independent of x, this distinction is not important.

The Fokker–Planck equation is a partial differential equation that governs the time evolution
of a probability density function ρ(x, t). When (1) is interpreted as an Ito SDE, the Fokker–
Planck equation is written explicitly as

(2)

We present the result without proof. The methodology was first employed by Fokker53 and
Planck.61 Many good books explain the methodology thoroughly.54,59,62,64 Rather than
repeating this classical derivation, we present a derivation for the Lie group case. In fact, this
result is also known as shown in refs. [51,55,56,57,58,60,63,65] but with the possible exception
of ref. [52], we have not seen a presentation that is easy for engineers to understand. Therefore,
we attempt such a presentation here.

Let ρ(g, t) denote a time-parameterized probability density function on a unimodular Lie
group‡ (e.g., the rotation or motion groups). That is,

for all values of t ∈ IR+, and

The Dirac delta function for a unimodular Lie group is well defined. This and other definitions
and proofs can be found in ref. [6].

As usual, the partial derivative with respect to time is defined as

However, for a process that evolves on a Lie group, we should have

As in the proof of the classical Fokker–Planck equation, one substitutes this convolution
integral into the definition of partial derivative, and computes

‡A unimodular Lie group is one for which the integration measure is bi-invariant,6 i.e., d(h ◦ g) = d(g ◦ h). This is a less restrictive
condition than the existence of a bi-invariant metric.
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where f(g) is an arbitrary function. Then one changes coordinates, and expands f(g) in a Taylor
series. One can define a Taylor series expansion on a Lie group in a way that is analogous to
the classical case. If Xi is a basis element of the Lie algebra ℊ, then the “right” Lie derivative

 is defined by shifting from the right side of the argument of a function f(g) as

(3)

If εi is a small real number, then the Taylor series corresponding to small perturbations on the
right side of the argument of the function is:

A left Lie derivative can be similarly defined, and

The differential operators  and  obey the product rule. Note that derivatives resulting from
right shifts are left invariant, and those resulting from left shifts are right invariant.

When the stochastic process on the group defined by

(4)

is substituted into the Taylor series expansion to second order, where

averages are then taken over the ensemble of all possible motions, and the properties of
uncorrelated white noises are used to eliminate terms. Integration by parts then results in the
localization of the form

where E = 0 is the Fokker–Planck equation
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(5)

The superscripts (r, l) are chosen depending on whether the SDE on the left or right of (4) is
used, and d is the dimension of the Lie group. Examples of (5) will be demonstrated in
subsequent sections in the context of gyroscopes, kinematic carts, and flexible needle steering.
Focusing on the “r” case, when h and H are constant, we can write

(6)

where

When considering stochastic differential equations and the corresponding Fokker–Planck
equations, it is usually important to specify whether the Ito or Stratanovich form is used.
Without getting into too much detail, it suffices to say that the Ito form has been assumed in
the derivation of both of the above Fokker–Planck equations. However, if the coloring matrices,
H, are independent of the coordinates used (or do not depend explicitly on the group elements),
then the Ito and Stratanovich forms of the Fokker–Planck equation will be identical. In the
examples that we will consider, the Ito and Stratanovich forms of the Fokker–Planck equation
are all the same unless otherwise specified.

3. Fourier-Based Estimation on Lie Groups and Applications

In estimation, one desires to obtain the underlying probability density function that describes
the process giving rise to these data. There are two closely related variations of this problem.
In the first, a set of randomly drawn group elements g1, g2, …, gm are obtained and we seek
to estimate the underlying density ρ(g). In the second variation, we sample the probability
density itself at points on a grid, {gi}, and we seek to evaluate (or interpolate) ρ(g) at any other
value of g ∈ G. In this paper we develop techniques that allow both of these variations of the
problem to be solved when G = SO(3). One kind of estimator in IRn is the Fourier estimator.
23,25 This concept generalizes to Lie groups.22,24 Abstract estimation problems on SO(3) and
compact Lie groups in general have been reported elsewhere.36,37

Both of the variations of the problem described above can be formulated as follows:

where δ(·) is the Dirac delta function for the group G and
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In the first variation of the problem, αi = 1/m. In the second variation αi = ρ(gi). In order to
define the appropriate concept of a Fourier estimator in this context, some review is required.

3.1. Group representations and harmonic analysis

A group representation can be thought of as a matrix-valued function of group-valued
argument, U(g), with the homomorphism property:

Irreducibility means that it is not possible to simultaneously block-diagonalize U(g) by the
same similarity transformation for all values of g in the group. Completeness of a set of
representations means that every (reducible) representation can be decomposed into a direct
sum of the representations in the set. A famous result (due to Schur) states that every irreducible
representation is equivalent to a unitary one. Therefore, without loss of generality we can take
U to be unitary, i.e., U−1 = U* where * denotes the Hermitian conjugate. It then follows that
since,

then

In a number of practical applications, data is presented on Lie groups such as the rotation group
and group of rigid-body motions. These are noncommutative groups for which the
representation theory and harmonic analysis have been fully worked out (see e.g., refs. [7,8,
16,17,21]). In particular, the method of induced representations9 was used by Miller for the case
of the rigid-body motion group.13 Connections between group representations and special
functions are explored in refs. [12, 19]. Representations of the rotation group play a central role
in quantum mechanics.7,18,20 In that application, the Euler angles are used to parameterize
rotations. This corresponds to the double-coset decomposition used in refs. [10,11] for FFTs
developed for the rotation group, SO(3).

In their most general form, the results of this paper are as follows, where G is a unimodular
Lie group (e.g., SO(3), SE(2), SE(3)). Given functions fi (g) for i = 1, 2 which are square
integrable with respect to a bi-invariant integration measure dg on a the group (G, ◦), we can
define the convolution product

and the Fourier transform
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where U(·, λ) is a unitary matrix function (called an irreducible matrix representation) for each
value of the parameter λ (where the set of all values of λ is called the dual of the group, and is
denoted as Ĝ).

The shorthand ℱ(f)(λ) = f̂(λ) is often convenient. The Fourier transform defined in this way
has corresponding inversion, convolution, and Parseval theorems:

(7)

and

Here ||·|| is the Hilbert–Schmidt (Frobenius) norm, and d(λ) is the dimension of the matrix U
(g, λ). Much of this is classical mathematics (see e.g., ref. [15]), which has not been fully
embraced by the engineering world until relatively recently.6

A useful definition is

We develop explicit expressions for U(g, λ) and u(Xi, λ) using the exponential map and
corresponding parameterizations for the groups SO(3), SE(2) and SE(3). In particular, given
the scalar parameters xi ∈ IR, the linearity of the Lie algebra allows one to write

and a famous theorem states that7,14,6:

(8)

These results together with the surjectivity of the exponential map (up to a set of measure zero)
and the sparseness of the matrices u(Xi, λ) provides the properties that we exploit for the rapid
evaluation of U(g, λ).
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This all relates back to the problem of density estimation on G as follows. The Fourier matrices
corresponding to ρsamp(g) are computed as

Substitution into the Fourier inversion formula,

or

(9)

Here ĜT denotes the truncated/bandlimited version of the dual space Ĝ. Since ĜT ≠ Ĝ, it follows
that ρest(g) ≠ ρsamp(g). The function ρest (g) is a smoothed version of ρsamp(g) that can be
evaluated at group elements g ≠ gi.

3.1.1. Example 1: the SO(3) case—In the particular case of SO(3), the basis elements for
the Lie algebra so(3) are

Exponentiating any linear combination of these basis elements yields an element of the rotation
group, SO(3), as reviewed in refs. [6,48–50]. In this case, the set of IUR matrices is indexed by
λ = l where l = 0, 1, 2, 3, ··· and each IUR is a (2l + 1) × (2l + l) matrix. The m, nth entry of the
lth matrix is of the form6:

where −l ≤ m, n ≤ l and .

If we define

Park et al. Page 8

Robotica. Author manuscript; available in PMC 2010 May 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



where , then as stated earlier, the exponential of this (2l + 1) × (2l + 1) matrix
will be an irreducible unitary representation of SO(3) expressed in terms of the exponential
coordinates for SO(3).

3.1.2. Example 2: the SE(2) case—The SE(2)-Fourier transform, as expressed in the
coordinates x, y, θ, or equivalently in the polar coordinates (r cos φ, r sin φ, θ), has been used
previously to solve similar equations in a variety of different applications.71,72 We note here
an alternative approach. Even though the IURs of SE(2) are infinite dimensional, it is possible
to approximate them as finite unitary matrices by using (8) in truncated form. In particular, for
SE(2) a set of basis elements for the Lie algebra are:

The corresponding Lie algebra representation matrices are:

(10)

(11)

(12)

where in the SE(2) case λ = p takes continuous values over all of the nonnegative real numbers,
and in the Fourier inversion formula the sum over λ is replaced by an integral over p with
measure pdp/4π2. These umn(Xk, p) are infinite-dimensional sparse skew-Hermitian matrices,
which when truncated to a finite range −d ≤ m, n ≤ d results in (2d + 1) × (2d + 1) matrices.
The truncation does not change their skew-Hermitian nature, and exponentiation of these
matrices results in unitary matrices that approximate the IURs for SE(2). This approximation
becomes better as d becomes large.

3.2. Solving Fokker–Planck equations using harmonic analysis

By the definition of the group Fourier transform ℱ[·] and operators  reviewed earlier in this
paper, one observes that

(13)
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By performing the change of variables h = g ◦ exp(tXi) and using the homomorphism property
of the representations U(·,λ), one finds

(14)

(15)

By defining

we write

Hence, (6) can be transformed to the system of linear differential equations:

(16)

subject to the identity matrix as initial conditions, where

In principle, ρ(g; t) is then found by simply substituting ρ ̂(λ; L) = exp(Lℬ(λ)) into the the group
Fourier inversion formula (7).

3.3. Shifted Gaussian solution for Fokker–Planck equations with small diffusion

In this subsection, we show that the solution for the Fokker–Planck equations can be
approximated by the shifted Gaussian when the diffusion is small. Even though we describe
the SE(3) case here, similar arguments are possible for the SE(2) case.

A driftless diffusion equation on SE(3) is of the form:

(17)

Park et al. Page 10

Robotica. Author manuscript; available in PMC 2010 May 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



which subject to the initial conditions f(g, 0) = δ(g). For intermediate to large values of t such
equations can be solved efficiently using methods from harmonic analysis as seen in earlier
section. However, for small values of t, such methods become impractical due to Gibbs peaks
and the large number of harmonics required. In contrast, as will be seen in Section 6.2.1., the
concentrated Gaussian distributions provide a closed-form solution in the small t limit. A highly
concentrated Gaussian distribution on SE(3) can be defined as shown in ref. [71]

(18)

where  with {Xi} denoting the standard basis for the Lie algebra se

(3), and c(Σ) = (2π)−3/2| det(Σ)|−1/2. A small-time solution to (17) is f(g, t) = ρ(g; tD).

If the drift term is added to (17), thus resulting in an equation of the form (6), the solution of
this modified system can be approximated by the shifted Gaussian in the very small noise limit.

Namely, this approximated solution has the form of (18) and , where gm(t)
is the mean path. In this case, the covariance matrix can be computed by covariance
propagation. The covariance propagation in ref. [71] is based on the concatenation of a finite
number of noisy motions. In the limiting case of a time-parameterized path of noisy motions,
the covariance propagation formula can be written as

(19)

where Adg(·) is the adjoint. Technically, the mean path, gm(t) is not the same as the noiseless
path that can be obtained by solving the deterministic model. Referring back to the drift
coefficients {hi} in (6), the path that the solution would follow if all Dij = 0 would be

. While this is not exactly equal to gm(t), in practice we use the noiseless path
for the mean path since it is easier to have the noiseless path than the mean path and the
difference between the two can be assumed to be small in the case of small diffusion. This
approach will be used for path planning for the cart and the flexible needle in subsequent
sections.

4. Estimation and Motion Planning for the Stochastic Kinematic Cart

In this section, a stochastic version of the kinematic cart is considered. We first address the
problem of estimating the position and orientation of the cart when nothing but a history of
noisy wheel angles is given (i.e., dead reckoning). Then we address how to use the probabilistic
information obtained by solving Fokker–Planck equations for the purpose of planning.

4.1. Pose estimation for the stochastic cart

Consider the kinematic cart shown in Fig. 1(a). The position of the cart is (x, y) and the
orientation is θ. Here L is the length of the wheel base (distance between the wheels as measured
along the axis), r is the radius of the wheels, φ1 is the angle through which the right wheel
rotates, and φ2 is the angle through which the left wheel rotates. Both of these angles are
measured counterclockwise when viewed along the axel from outside the cart to the left side.
This is perhaps the most common geometry for mobile robots used in robotics research. For

Park et al. Page 11

Robotica. Author manuscript; available in PMC 2010 May 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



example, the mobile manipulator shown in Fig. 1(b) was developed by our research group for
the purpose of retrieving books from library shelves and moves as a kinematic cart.

The infinitesimal motions of the kinematic cart are governed by no-lateral-slip conditions,
which allow the following transverse translational motions and rotations:

If the infinitesimal changes in wheel rotation angles are of the form

where dWi are increments of unit-strength Wiener processes, σ allows us to specify the strength,
and the commanded wheel angle rates are ω1 = ω + Δ and ω2 = ω − Δ, then the result is the
stochastic differential equation:

(20)

where α = 2rΔ/L.

If the specified speeds of the wheels are either constant, or explicit functions of time (without
dependence on time through x(t) = [x(t), y(t), θ(t)]T), then by using the Fokker–Planck Eq. (2)
results in:

(21)

Of course, this system is evolving on the group of rigid-body motions of the plane, SE(2),
which has group elements that can be described in the form

The reason why we can use (2) is that the bi-invariant integration measure for SE(2) is dg =
dxdydθ, and so, to within a set of measure zero, SE(2) “looks like” the slab within IR3 defined
by θ ∈ (−π, π) to a sufficient degree that we can use the Fokker–Planck machinery developed
for Euclidean space.

On the other hand, we can view the same problem from a coordinate-free point of view. Recall
that for SE(2), the ∨ operation is defined as
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Realizing that

where

allows us to write (20) (viewed as a Stratanovich SDE) in the coordinate-free form:

(22)

This result is obtained by simply multiplying both sides of (20) by J(x). Note that the h and
H in (22) are independent of g. When the SDE is written in the form of (22) the no-slip condition
that results in the nonholonomic behavior of the system is clear from the zeros in the middle
row.

Equating (g−1dg)∨ with ε and using (5) for this system, the resulting invariant form of this SDE
is:

4.2. Stochastic motion planning for the cart

In this subsection, several related approaches to motion planning of the kinematic cart are
demonstrated for both the case when the workspace is free of obstacles and the case when
obstacles are present. Three variations of the Fokker–Planck/SDE approach are taken: (1) The
Fokker–Planck equation is solved explicitly using the approximate IURs and Fourier diffusion
matrix resulting from truncating and exponentiated the sparse infinite-dimensional se(2) Lie
algebra representation matrices; (2) in cases where the magnitude of the noise is assumed to
be small, covariances are propagated and probability densities are evaluated by shifting closed-
form Gaussian distributions along the drift path; (3) sample paths of the SDE are generated
and histograms are formed. Hybrid approaches that combine these techniques can also be taken.
Methods (1) and (2) work well in the case when there are no obstacles. However, they must
be augmented to take into account obstacles. This is easy to do with method (3) where sample
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paths are removed from the ensemble if any point on a path intersects an obstacle. These
methods are described in detail in the following two subsections.

4.2.1. The cart in an environment without obstacles—Consider the following
scenario: Suppose that we want to generate a path for the kinematic cart from (x, y, θ) = (0, 0,
0) to (2, 0.5, π/4). How can we do this? One approach could be to use sinusoids67 or some other
weighted sum of basis (or modal) functions as the input for the wheel angles. Then the unknown

coefficients { } in the expression  for the wheel angles φ1 and φ2 can be
found by numerically integrating the nonholonomic kinematic equations and using iterative
numerical procedures similar to those used in the inverse kinematics of hyper-redundant
manipulators (see ref. [81] for details). If the system were completely deterministic (no actuator
noise, and no slipping of the wheels), this approach might work well. However, in the stochastic
case, an ensemble of paths will result, and the probability of actually reaching a specific
neighborhood of the goal will depend on the amount of noise in the system. Therefore, we
propose to use here the path-of-probability (or POP) algorithm proposed in refs. [75,76]. In this
algorithm, each move is taken so as to maximize the probability density that remains to reach
the goal. And one of the nice features of this algorithm is that we do not even have to know a
priori a path that deterministically connects the initial and final states of the system. For
example, if we want to steer the cart so as to go from (x, y, θ) = (0, 0, 0) to (2, 0.5, π/4), we can
use as the deterministic drift which corresponds to both wheels moving forward with speed 1.
Then, in the deterministic case, the resulting pose at time t would be (rt, 0, 0). Even though
this is not the desired pose, if the Fokker–Planck equation resulting from this drift term and
some noise causes there to be nonzero probability density over the desired pose, then the POP
algorithm can be used to find a path. The intermediate step, gi can be determined by

where τ is the remaining time to hit the goal and S is the set of possible intermediate paths
generated by numerical integration of SDE. We use Euler–Maruyama numerical integration
method.66

The path planning results using the first method described in Section 4.2 are shown in Fig. 2.
Using approximate IURs and Fourier diffusion matrix, we can obtain the solution to the
Fokker–Planck equation, which is the probability density function. This PDF is used for the
POP algorithm. The cart starts from (x, y, θ) = (0, 0, 0) and the triangle in the figures shows
the position and orientation of the goal. The noise constant, σ = 0.3 was used in (22).

The path planning results by the shifted Gaussian are shown in Fig. 3. Unlike the harmonic
analysis method, the shifted Gaussian method can be applied to the small diffusion case. The
dash lines in Fig. 3 are the noiseless paths. Note that the goal is not far from the noiseless path.
The constant, α = 0.11 was used for the noiseless path in Fig. 3(b). For both cases, the noise
constant, σ = 0.02 was used.

4.2.2. The cart in an environment with obstacles—When obstacles are present in the
environment, the Fokker–Planck approach and covariance propagation break down since they
do not take into account obstacles. There are several modifications that can be attempted in
special cases. For example, one can ignore the obstacles, and use this approach, and if the
resulting path does not hit an obstacle, then it will have produced a valid result. Closely related
to this would be to propagate probability densities forward from the initial state until the amount
of probability density situated over the obstacles reaches some threshold value, and then stop.

Park et al. Page 14

Robotica. Author manuscript; available in PMC 2010 May 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Then do the same by propagating probability density backward from the goal. If there exists
an overlapping region in the workspace (which is a bounded subset of SE(2)) where the product
of these probability densities is nonzero, then the POP algorithm can be used to generate paths
to and from via points within these regions. The resulting composite paths will be guaranteed
not to intersect obstacles. Alternatively, the obstacles can be represented using artificial
potentials that can be incorporated into the Fokker–Planck equations. Unfortunately, the
resulting equations are difficult to solve.

While the techniques outlined above may work in specialized cases, it is desirable to have
algorithms that work in general. We simply generate many sample paths by integrating the
SDE describing the stochastic cart. This integration can be implemented by the Euler–
Maruyama method66. Each time we check for overlaps of the positional part of the poses that
constitute each path against the positions on the surface of the obstacles. If at any time step a
path penetrates the surface of an obstacle, we kill this path and then initiate a new sample path.
After a large number of obstacle-avoiding sample paths are generated, a PDF of the reachable
positions and orientations is generated. However, a big difference between the case with
obstacles and the case without obstacles is that the PDF is now dependent on the starting point.
This means that after each move of the robot, a new ensemble of sample paths must be
generated. In other words, we cannot simply generate PDFs and shift them as we move as is
done in the obstacle-free version of POP. Rather, we must recompute PDFs after each move.
The reason for this is that the relative location of obstacles (and their influence on the evolution
of probability density) changes with respect to the cart as it moves.

In order to have a smooth PDF from a finite number of path samples, we assigned a small
Gaussian function to each path sample and averaged an ensemble of the Gaussian functions.
The path planning results by this approach are shown in Fig. 4 and Fig. 5. Alternatively, we
can estimate the PDF by a Gaussian function from the sample paths. The mean and the
covariance of the Gaussian can be estimated from the sample paths. Using this approach, we
have the results as shown in Fig. 6.

5. Stochastic Motion Planning for the Flexible Needle with Bevel Tip

Recently, a number of works have been concerned with the steering of flexible needles with
bevel tips through soft tissue for minimally invasive medical treatments.82,83,84 In this
scenario, a flexible long needle with a bevel tip bends as it is inserted into the tissue. The
question becomes how to specify a time-history of the control variables (pushes and twists of
the needle at the insertion point) to deliver the needle tip to the desired location within the
tissue. In this section, we apply the shifted Gaussian to have the probability density function
of the flexible needle, and solve the path planning problem using the PDF.

Figure 7 depicts the needle and the body fixed frame. The needle is rotated with the angular
velocity, ω, while it is inserted with the insertion velocity, v. It follows an arc whose curvature
is κ. Using this body fixed frame, the nonholonomic kinematic model for the needle was
developed in ref. [82] as:

(23)

In order to get a noise model for the needle, we assume that
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and

in the similar way in ref. [83]. wi (t) is the unit Gaussian white noise. Thus, our noise model is

(24)

where dW = W (t + dt) − W (t) = w(t)dt are the non-differentiable increments of a Wiener process
W (t). This noise model can be seen as a stochastic differential equation. If the noise is small,
which means the small diffusion, the solution to the corresponding Fokker–Planck equation
can be approximated by the shifted Gaussian function as explained in Section 3.3.

For a numerical example, the values of λ1 and λ2 are both set to be 0.08. Figure 8 shows the
path planing results using the concentrated shifted Gaussian distribution. The number of
intermediate steps used in the path generation is 10. In this example, only positions of the goal
is considered in path planning since the specific needle orientation is less important than the
position in the needle insertion system. This can be achieved by the marginal density function.
Our full density function from shifted Gaussian approach is a six-dimensional function, and
the three-dimensional marginal density function can be obtained by integrating it over
orientational space.

6. Attitude Estimation Using an Inertial Navigation System

Inertial navigation systems generate estimates of the position, velocity, orientation, and angular
velocity by measuring the linear and angular accelerations of the system relative to an inertial
reference frame. A variety of orientational measurement sensors exist including classical
mechanical gyroscopes, laser gyros, vibrating fork gyros, hemispherical resonator gyros, and
magnetohydrodynamic gyros1–3. These are used in gimbaled gyrostabilized platforms,
fluidically suspended gyrostabilized platforms, and strapdown systems. All measurement
systems have associated noise, and inertial navigation systems, which integrate rate
information, are therefore subject to orientational drift errors. For example, Fig. 9, a
commercially available gyroscope used in our laboratory.

A vast literature exists on the attitude (orientation) estimation problem in the satellite guidance
and control literature. In addition to those works mentioned above, see e.g., refs. [26–28,30,31,
35,39,40,42–44], or almost any recent issue of the Journal of Guidance Control and Dynamics
for up-to-date approaches to this problem. For a geometric approach to the problem, see ref.
[41].

6.1. Model formulation

In this subsection we consider an estimation problem on SO(3) that was introduced in refs.
[46,47]. Consider a rigid object with orientation that changes in time, e.g., a satellite or airplane.
It is a common problem to use on-board sensors to estimate the orientation of the object at each
instant in time. We now examine several models.
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Let R(t) ∈ SO(3) denote the orientation of a frame fixed in the body relative to a frame fixed
in space at time t. From the perspective of the rotating body, the frame fixed in space appears

to have the orientation . The angular velocity of the body with respect to the space-
fixed frame at time t as seen in the space-fixed frame will be ωL = vect(ṘRT), and the same
angular velocity as seen in the rotating frame will be ωR = RTωL = vect(RT Ṙ) where Ṙ = dR/
dt. These are also easily rewritten in terms of R′.

If again {Xi} denotes the set of basis elements of the Lie algebra so(3), then

and

In practice, the increments dui = ωR · ei dt are measured indirectly. For instance, an inertial

platform (such as a gyroscope) within the rotating body is held fixed (as best as possible) with
respect to inertial space. This cannot be done exactly, i.e., there is some drift of the platform
with respect to inertial space. Let A ∈ SO(3) denote the orientation of the space-fixed frame
relative to the inertial platform in the rotating body. If there were no drift, A would be the
identity I. However, in practice there is always drift. This has been modeled as shown in ref.
[46]§§:

(25)

where the three-dimensional Wiener process W(t) defines the noise model.

The orientation that is directly observable is the relative orientation of the inertial platform
with respect to the frame of reference fixed in the rotating body. We denote this as Q−1. In
terms of R and A,

Therefore Q, which is the orientation of the rotating body with respect to the inertial platform,
is

§§We are not using the Itô Calculus, but the basic idea is the same.
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Taking the inverse of both sides gives

(26)

From the chain rule this means

Substitution of (25) and the corresponding expression for dR gives

Using (26) and defining xi dt = −dui, this is written as in ref. [46]:

(27)

The particular problem that we will address is the assessment of noise properties in the
gyroscope from measurements. In this context, the motions of the platform will be taken to be
zero, i.e., xi = 0. The Fokker–Planck equation corresponding to this stochastic differential
equation will then be of the form of (6) subject to the initial conditions ρ(R; 0) = δ(R). The
noises are assumed to be correlated as

(28)

and we do not know (and therefore seek) the values σij. The diffusion constant is related to the
noises as D = Σ = [σij].

From sample paths of a stochastic differential equation (which correspond to experimental
measurements) we will illustrate a procedure in the next sections for estimating the noise
parameters Dij that are intrinsic to the gyroscope.

6.2. Methods for determining noise parameters from measurements

In this section we explain how errors in orientational sensing or robot pose can be quantified.
We first consider the case of small errors, and then large ones. This problem is relevant to all
of the examples discussed in prior sections.

6.2.1. Small errors—Small errors can be handled by expanding quantities around the identity
of the group of interest and linearizing. As will be shown below, this amounts to treating
concentrated distributions as distributions on IRn. In particular, for a probability density
function on G that is highly concentrated around the identity, we can define the covariance as
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(29)

where x ∈ IRn are the exponential parameters for G. The justification for this kind of
linearization is given in.71

The Gaussian distribution in IRN can be defined as the solution to a diffusion equation. This
definition can be extended to the context of probability densities on the rotation group and
other Lie groups. Recall that given that elements of G (viewed as square matrices) are
parameterized as g = g(x), differential operators analogous to partial derivatives take the form

.

A diffusion equation on G is then of the form in (6). For intermediate to large values of t such
equations can be solved efficiently using methods from noncommutative harmonic analysis.
6 However, for small values of t, such methods become impractical. In contrast, as is shown
in the theorem below, the concentrated Gaussian distributions discussed throughout this paper
provide a closed-form solution in the small t limit.

It is easy to see that the solution to the diffusion Eq. (6) with small values of Dt is a Gaussian
distribution in exponential coordinates with covariance Σ = Dt. To prove this, let g ≈ I + X.
Then

If we define f̃(x) = f(I + X), then

where the approximate equality holds since both ε and ||x|| are small and so their product can
be viewed as a second-order term.

The solution to Eq. (6) for small values of time (therefore resulting in a highly concentrated
distribution centered around the identity) is exactly the same as the solution to

The solution to this is well known, and is the Gaussian in IRn with
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Therefore, for small measurement errors, we can obtain the noise properties by taking
experimental measurements in the group, computing their relation with respect to a group mean
of the measurements (see ref. [6] for definition of group means) and computing the covariance
in exponential coordinates of the residual orientations relative to the mean:

This then defines the error in the measurements on the group.

6.2.2. Large errors—For large orientational errors (i.e., those greater than 20%), the
linearized analysis of the previous subsection lose their effectiveness, and other techniques are
required. Fourier Density estimation is a technique to describe errors in this case.

Due to the operational property of the group Fourier transform, in SO(3) case, the Fokker–
Planck equation in (6) can be written in Fourier space as

where

The solution of the Fourier transform is then

This can be matched to the SO(3) Fourier transform of experimental measurements at time t
in each sample path in an ensemble of N trials:

Two natural ways to perform this match are: (1) to perform a gradient descent on the six
unknown diffusion parameters in the cost function

(30)

or, (2) to find in closed form the diffusion parameters by minimizing the quadratic cost function
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(31)

In practice, we solve for the minimum of C2 and use it as the starting point for a few gradient
descent iterations in the minimization of C1. This can be done at each value of t. The answer
can then be averaged over time.

6.3. Numerical experiments and results

To evaluate the methods purposed in Section 6.2.1. and 6.2.2., random samples of SO(3) need
to be drawn from a known time-evolving PDF that simulates the error in a orientational rate
measurement sensor. This can be done by a Monte Carlo approach and applying the Euler–
Maruyama method which was introduced and explained in detail by Higham as a numerical
method for SDEs.66 With the Euler–Maruyama method, a sample value of angular velocity
vector ω(t) at time t can be calculated in principle by doing numerical integration along a
discretized Brownian path in the following form:

(32)

where W denotes a vector of unit uncorrelated Wiener processes, B is a coupling and
amplification matrix, and we take as the initial condition ω(0) = [0, 0, 0]T. However, direct
integration of this angular velocity will lead to errors. Therefore, the exponential
parameterization for SO(3) is used, where we write

Then (32) becomes:

(33)

where

Once the random samples of SO(3) are produced, the method introduced in Section 6.2.1. can
be applied in small error case. The computed covariance, Σexp, in exponential coordinates of
the sample data is then the estimate of the model covariance Dmodel = BBT. To assess the
accuracy of the estimate, the error in the covariance estimate
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is used as a measurement of the distance (error) between the estimation and the model
covariance. Note that this is not the error in the sensor, but the error in the estimation algorithm
used to assess the error in the orientational rate sensor (which is defined by the covariance/
diffusion matrix). Here ||·|| is the Hilbert–Schmidt (Frobenius) norm. Figure 10 shows error
plot with different sample sizes. It clearly shows that the method provides a better estimate as
the sample size grows for small errors.

In large errors case, two methods purposed in Section 6.2.2. are tested with different
configuration of B and sample sizes. Figure 11 shows the error plots for one set of configuration
of B with sample sizes of 1000, 5000, 10000, and 50000. The errors is the form of

 which measures the accuracy of the estimates. The x-axis represents L, the
dimension of IURs (U(g) is a 2L + 1 × 2L + 1 matrix). The line with dots is the error for the
method using gradient descent and the line with circles is the error for the method (2) which
finds the diffusion parameters by minimizing (31). The figure shows that the larger sample
size being used in the methods the better estimate one can get. The figure also indicates that
the gradient descent method has better performance in terms of reducing errors. But it is very
much dependent on a good choice of starting point. In practice, we can solve for the minimum
of C2 (31) and use it as the starting point.

7. Conclusions

We showed that irreducible unitary representation (IUR) matrices for SO(3) and SE(2) can be
computed by matrix exponentiation. These IURs are used to estimate probability density
functions (PDFs) via the group Fourier transforms and inversion formulae. Such PDFs arise
both in applications in which physical systems are subject to noise, as well as in planning
problems in which the injection of artificial noise serves as a useful tool to search configuration
space.

We applied several other methods for obtaining PDFs for the stochastic kinematic cart. For the
small diffusion system, the shifted Gaussian could be used for the PDF. In order to solve the
path planning problem in the case with an obstacle, the sample paths were used to estimate the
PDF. By the Euler–Maruyama method, we integrated the SDE to generate an ensemble of
paths. By excluding the paths intersecting with the obstacle, we can take the obstacle into
account when estimating the PDF. From the paths, we generated the PDF in two different ways:
(1) Assigning the small Gaussian to each sample path and averaging them; (2) computing the
mean and covariance from the paths and approximating the PDF by a Gaussian function with
the computed mean and covariance. The PDFs were used for path planning of the kinematic
cart. We also applied the shifted Gaussian method to the flexible needle to obtain the PDF and
solved the path planning problem.

Detail techniques are also provided on applications of quantifying the small or large errors in
orientational sensing, such as gyroscopes. This new computational tool provide us an efficient
and robust density estimator on rotational groups.
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Fig. 1.

The kinematic cart: (a) definition of variables; (b) the CAPM library robot from our lab as an
example of a mobile manipulator with cart as the base.
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Fig. 2.

Path planning for the kinematic cart using IURs and harmonic analysis: (a) Cart path for the
goal, (x, y, θ) = (2, 0.5, π/4) (b) Cart path for the goal, (x, y, θ) = (1.6, 1.6, π/3).
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Fig. 3.

Path planning for the kinematic cart using the shifted Gaussian: (a) Cart path for the goal, (x,
y, θ) = (2.5, 0.2, 0); (b) Cart path for the goal, (x, y, θ) = (2.0, 1.4, π/3).
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Fig. 4.

Path planning for the kinematic cart using many sample paths: (a) Cart path for the goal, (x,
y, θ) = (1.6, 1.6, π/3) (b) Cart path for the goal, (x, y, θ) = (1.6, 1.6, π/3), the obstacle position
= (0.75, 0.75) and the obstacle radius = 0.25.
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Fig. 5.

Path planning for the kinematic cart using many sample path: (a) Cart path for the goal, (x, y,
θ) = (2, 0.5, π/4) (b) Cart path for the goal, (x, y, θ) = (2, 0.5, π/4), the obstacle position = (1,
0) and the obstacle radius = 0.25.
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Fig. 6.

Path planning for the kinematic cart by many sample paths. The mean and the covariance from
the paths are used for a Gaussian function: (a) Cart path for the goal, (x, y, θ) = (1.6, 1.6, π/3)
(b) Cart path for the goal, (x, y, θ) = (1.6, 1.6, π/3), the obstacle position = (0.5, 0.5) and the
obstacle radius = 0.25.
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Fig. 7.

The definition of parameters and frames in the nonholonomic needle model.83
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Fig. 8.

Path generation using concentrated shifted Gaussian distribution: κ = 0.05, λ1 = 0.08, and λ2

= 0.08.
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Fig. 9.

Gyroscope Hardware.
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Fig. 10.

Error plot for covariance in small errors case.
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Fig. 11.

Error plots for large errors.
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