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Abstract

The kinematic wave theory, originally proposed by (Lighthill and Whitham, 1955b;

Richards, 1956), has been a good candidate for studying vehicular traffic. In this

dissertation, we study kinematic wave models of network traffic, which are expected

to be theoretically rigorous, numerically reliable, and computationally efficient.

For inhomogeneous links, we reformulate the Lighthill-Whitham-Richards model

into a nonlinear resonant system. In addition to shock and rarefaction waves, standing

(transition) waves appear in the ten basic wave solutions. The solutions are consistent

with those by the supply-demand method (Daganzo, 1995a; Lebacque, 1996).

For merging traffic, we examine existing supply-demand models and, particularly,

distribution schemes. Further, we propose a new distribution scheme, which captures

key merging characteristics and leads to a model that is computationally efficient and

easy to calibrate.

For diverging traffic, we propose an instantaneous kinematic wave model, con-

sisting of nonlinear resonant systems. After studying the seven basic wave solutions,

we show that this model is equivalent to a supply-demand model with modified defi-

nitions of traffic demands.

For traffic with mixed-type vehicles, we show the existence of contact waves.

Using simulations by the developed Godunov method, we demonstrate that First-In-

First-Out (FIFO) principle is observed in this model.
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For network traffic flow, we propose a multi-commodity kinematic wave (MCKW)

model, in which we combine kinematic wave models of different network components

and a commodity-based kinematic wave theory. We also propose an implementation

of the MCKW simulation and carefully design the data structure for network topology,

traffic characteristics, and simulation algorithms. The solutions are consistent with

FIFO principle in the order of a time interval.

For a road network with a single origin-destination (O/D) pair and two routes,

we first demonstrate the formation of an equilibrium state and find multiple equilib-

rium status for different route distributions. We then show the formation of periodic

oscillations and discuss their structure and properties.

Finally, we summarize our work and discuss future research directions.
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Chapter 1

Introduction

1.1 Background

1.1.1 Traffic congestion

As the backbone of the intermodal transportation network in the United States, road

networks - consisting of highways, arterial roads, surface streets, and other kinds of

roadways - connect air, transit, rail, and port facilities and terminals. In particu-

lar, highways carry 90 percent of passenger travel and 72 percent value of freight.

Therefore, the performance of its road networks largely defines the mobility of the

nation and affects economic and social activities in the United States. However, traffic

conditions on road networks in many metropolitan areas are becoming increasingly

congested: in 68 major American urban areas, the percentage of un-congested periods

was two thirds of the whole peak period in 1982, while the percentage drops to one

third in 1997 (Schrank and Lomax, 1999).

In a road network, traffic congestion can be recurrent and non-recurrent. Recur-

rent traffic congestion is generally caused by limited physical infrastructure, increasing

1



CHAPTER 1. INTRODUCTION 2

travel demand, rush hours, and toll booths. Non-recurrent congestion is associated

with accidents, work zones, and weather. Traffic congestion increases travel delay

and fuel consumption and adversely affects safety, mobility, productivity, the human

and natural environment. As a result, increasing delay has seriously damaged the

speed and reliability of road networks, which are vital to emerging industries, like

warehousing and logistics.

It has been a major goal of transportation scientists and engineers to alleviate

traffic congestion. Many strategies have been pursued to achieve this goal. One

method is to expand existing road facilities by adding new roads or lanes, rebuilding

key network components, and enhancing the physical condition of roadways. Another

method is to apply traffic management and operation technologies, including auto-

matic highways, travel demand management, freeway management, incident manage-

ment, emergency response management, weather response management, value pricing,

arterial signal control, on-ramp metering, traveler information, changeable message

signs, and so on.

All these approaches are intended to either increase the capacity of road networks

or reduce their load. Among them, the method of expanding existing road networks

has seen limited use due to huge construction costs and the difficulty of addressing

public and environmental concerns. Therefore, the idea of using existing infrastruc-

ture more efficiently by building Intelligent Transportation Systems (ITS) is a more

preferable option.

1.1.2 The role of traffic models

Whichever of the aforementioned strategies are taken to improve the mobility of

a road network, their success relies on a better understanding of the properties of

congestion and the overall performance of the road network. Widely available sensing,
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information and communication technology has had a major influence in detecting

traffic conditions in a timely manner. However, collecting meaningful traffic data is

not an easy job. Moreover, many management and control decisions are grounded on

an estimate of traffic conditions in the near or long-term future. Thus, it is essential

to accurately estimate traffic conditions in a road network during certain time periods

and understand the evolution pattern of traffic conditions, i.e., the traffic dynamics.

This calls for the development of traffic models.

A traffic model is a function which relates the movement of a vehicle to driver’s

behavior, vehicle type, network characteristics, weather conditions, traffic signals,

guidance information, and interaction with other vehicles. The movement of a vehicle

can be represented by its position at any time, i.e., its trajectory, from which its

speed and acceleration rate can be obtained. Given all vehicles’ trajectories, one

can measure the performance of a road network, e.g., travel time, level of service,

congestion level, etc. As shown in Figure 1.1, traffic models can considered as a

theoretical substitution of a real traffic system.

Besides the constraints in Figure 1.1, traffic models are also subject to both

space and time limitations, i.e., initial traffic conditions and boundary conditions.

Moreover, all traffic models are subject to calibration and validation. In calibration,

parameters in a traffic model are adjusted so that it acts as closely to the real traffic

system as possible. In validation, the output of a traffic model is compared with

observation of real traffic.

The role of traffic models in transportation engineering is two-fold. First, they

provide better understanding of traffic dynamics, in particular the formation and

propagation of traffic congestion. Hence, traffic researchers can use traffic models

to identify possible bottlenecks. Second, they can serve as a simulation platform,

on which different strategies for improving mobility, as shown in Figure 1.1, can be
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Figure 1.1: The definition and role of traffic models in traffic studies

developed and evaluated. For example, in the plan for expanding a road network,

traffic models can be used to simulate proposed expanded networks and help chose the

most cost-effective strategy. For another example, they are also helpful in determining

the best location of tolling booths, which are designed to divert traffic away from busy

roads by charging fees. Finally, traffic models can be used to evaluate previously

implemented strategies.



CHAPTER 1. INTRODUCTION 5

1.1.3 Traffic models and simulation packages

In a vehicular traffic system, a number of trips - defined by their origin/destination,

departure time/arrival time and travel route - interact on the road network and

generate various dynamics and phenomena. To study these traffic phenomena and

the corresponding applications, many traffic models and simulation packages have

been proposed in literature.

From a microscopic point of view, a stream of vehicular traffic is the combination

of the movements of all vehicles. In a microscopic model of traffic, the movement

of each vehicle and interactions between the vehicle pairs are studied. Three types

of microscopic models have been suggested. One approach is the GM family of car-

following models developed in the 1960’s (e.g., (Gazis et al., 1961)). In these models,

the movement of a vehicle is described by an ordinary differential equation in time.

In another approach, known as coupled-map lattice models, a vehicle’s movement is

defined by equations that are discrete in time (Chowdhury et al., 2000). Yet another

approach, cellular automata (CA) models are based on the framework of statistical

physics, in which not only independent variables (space and time) but also descriptive

variables (speed and acceleration) are discrete (Chowdhury et al., 2000).

From a macroscopic point of view, one approach to modeling traffic is to treat

the traffic as it were a gas of interacting particles, in which each particle represents

a vehicle. The resulting model is called a kinetic model of vehicular traffic. Another

approach is to consider traffic flow as a compressible fluid (continuum). Such models

are known as continuum models, or fluid-dynamical models. In continuum models,

the basic characteristics are flow rate q, traffic density ρ, and travel speed v, which are

all functions in time and space. The first-order continuum models are generally called

kinematic wave models, in which traffic dynamics are regarded as a combination of

“kinematic” waves in these quantities.
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Based on the aforementioned theoretical models of vehicular traffic, many simu-

lation packages have been developed; for example, the PASSER series (Texas Trans-

portation Institute (TTI), 1991), TRANSYT (Courage and Wallace, 1991), INTE-

GRATION (Van Aerde and the Transportation Systems Research Group, 1995), DY-

NASMART (Jayakrishnan et al., 1994), NETSIM (Federal Highway Administration,

1998), FRESIM (Smith and Noel, 1995), FREFLO (Payne, 1979), MITSIM (Mas-

sachusetts Institute of Technology, 1999), TRANSIMS (TRANSIMS), and PARAM-

ICS (Cameron and Duncan, 1996). In some simulation packages, however, the under-

lying traffic flow theories lack mathematical rigor, particularly for traffic dynamics at

highway junctions. Furthermore, numerical methods used in some simulations have

not been well justified and may cause numerical instability. Another common draw-

back with many simulation packages is their enormous computational cost. Therefore,

many of these simulation packages have serious limitations in applications. That said,

continuing efforts to develop theoretically rigor, numerically sound, and computation-

ally effective models are still necessary, in particular for applications to dynamic traffic

assignment and other advanced traffic engineering strategies.

1.2 Continuum models

1.2.1 Kinematic wave models

In the kinematic wave models, traffic is viewed as a continuous media and charac-

terized by traffic density (ρ), travel speed (v), and flow-rate (q). The movements

of vehicles on a road network are considered as combinations of kinematic waves in

either of these three quantities.

The different types of kinematic waves are associated with different components
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of a traffic system. For example, on a homogeneous link with uniform conditions

in vehicles, drivers, weather, etc., one can observe two basic waves: decelerating

shock waves, generally seen when lights turn red, and accelerating rarefaction waves,

generally seen when lights turn green. In a traffic system with inhomogeneous links,

merges, diverges, or different vehicle types, more complicated waves can be observed,

such as standing transitional waves, contact waves, and periodic waves.

In kinematic wave models, a hyperbolic conservation law is derived from traffic

conservation:

ρt + qx = 0. (1.1)

A fundamental assumption in kinematic wave models is that the flow-rate q is a

function of the traffic density ρ; i.e., q = Q(ρ), which is called the fundamental

diagram. Hence, v = V (ρ) ≡ Q(ρ)/ρ. Generally, flow-rate is a concave function

in density and retains its maximum, the capacity, at the critical density ρc. When

traffic density is higher than the critical density, it is in the over-critical region and in

the under-critical region, otherwise. The fundamental diagram, or the speed-density

relation, varies with link characteristics, vehicle types, and so on.

Lighthill and Whitham (1955b) and Richards (1956) first proposed and analyzed

kinematic waves on homogeneous links. The corresponding model is known as the

LWR model and is described by a first-order, nonlinear PDE:

ρt + Q(ρ)x = 0. (1.2)

This model is an hyperbolic conservation law, whose Riemann problems 1 can be

analyzed using well developed tools (e.g., Lax, 1972; Smoller, 1983). Analysis shows

1In a Riemann problem, the initial traffic conditions are described by a Heaviside function or

step function.
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that solutions to Equation 1.2, where f(x, ρ) = ρV (ρ), have wave properties analogous

to those of water flow in channels (Lighthill and Whitham, 1955a). In other words,

the Riemann problem consists of either shock or rarefaction waves.

Numerically, the LWR model can be solved with a first-order Godunov method

(Godunov, 1959), in which a link is partitioned into a number of cells, a time dura-

tion into a number of time steps, and traffic conditions in each cell at a time step are

uniform. In a Godunov method, traffic conditions are updated according to the con-

servation equation, Equation 1.2; i.e., during a time interval, the increasing number of

vehicles in a cell are the difference between the in-flow through its upstream boundary

and the out-flow through its downstream boundary. Traditionally (LeVeque, 2002),

flows through cell boundaries are computed from wave solutions of Riemann problems.

As an alternative of the Godunov method, the celebrated supply-demand method

was first proposed in (Daganzo, 1995a; Lebacque, 1996). In this intuitive, engineering

method, the flow through a boundary equals the minimum of the traffic demand of its

upstream cell and the traffic supply of the downstream cell. Here the traffic demand

(Lebacque, 1996), called sending flow in (Daganzo, 1995a), of a cell is defined as its

flow-rate when traffic is under-critical or its capacity when over-critical, and its traffic

supply (Lebacque, 1996), receiving flow in (Daganzo, 1995a), is the capacity when

traffic is under-critical or the flow-rate when under-critical. Since one does not have

to understand wave solutions of Riemann problems, this method has been widely

applied in traffic studies.

Many attempts have been made to model more complicated traffic systems under

the framework of the LWR model. For example, Lighthill and Whitham (1955b)

discussed the kinematic wave theory of traffic dynamics on an inhomogeneous link

with lane-drops or curvatures. Lately, Lebacque (1996) gave a detailed analysis of the

kinematic wave solutions of such a traffic system and summarized the solutions into
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the supply-demand method. In (Daganzo, 1995a), the concepts of sending flow (traffic

supply) and receiving flow (traffic demand) was intuitively extended for simulating

traffic on an inhomogeneous link.

Another attempt is to model traffic dynamics on a highway network, where the

focus is on highway junctions, including merges, diverges, and other intersections.

Holden and Risebro (1995) studied kinematic waves initiated at highway junctions,

by assuming the existence of an optimization problem at each junction and excluding

route choice behavior. Without route choice, this model sees limited applications

in reality. In the network traffic flow model by Kuhne and Michalopoulos (1992),

on-ramps and off-ramps are considered as sources and sinks respectively. Although

including the influence of ramps on mainline freeways, this models omits the other

side: the influence of mainline freeways on ramps. Thus it also has limitations with-

out giving a full picture of traffic dynamics. To capture overall traffic phenomena in

a traffic system, (Daganzo, 1995a; Lebacque, 1996) proposed some discrete models,

in which traffic demands and supplies for cells around an intersection are defined the

same as those for cells inside a link, and route choice behavior and certain optimiza-

tion rules for flows are incorporated in order to determine unique flows through the

intersection. In literature, there have been little progress in analyzing the kinematic

waves initiated at a highway junction considering route choice behavior, mainly due

to the difficulties in formulating them into a system of continuous partial differential

equations as in the LWR model.

In the framework kinematic wave theories, other extensions have been proposed

for addressing different concerns in traffic systems. In (Daganzo, 1997; Daganzo et al.,

1997), traffic on special lanes is investigated. In (Daganzo, 2002), driver behavior

are incorporated. Wong and Wong (2002) discuss differentiated vehicle types. Other

interesting studies can be found in (Vaughan et al., 1984; Newell, 1993, 1999; LeVeque,
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2001; Lebacque, 2003)

Compared to other traffic models, kinematic wave models have the following

appealing features. First, they have inherit compliance with many applications in

large-scale road networks, in which aggregate quantities such as traffic counts, flows,

and space-mean travel speed are more important than characteristics of individual

vehicles. Second, kinematic wave models can generally be written into a system of

hyperbolic partial differential equations, or hyperbolic conservation laws. Thus, one

can better understand the formation and structure of a traffic phenomenon on a road

network through theoretical analysis of these equations. Finally, there exist many

sound, efficient numerical methods for solving hyperbolic conservation laws, and one

can carry out efficient and trustful simulations of large-scale road networks.

1.2.2 Higher-order models

Among many efforts to extend the LWR theory to capture instabilities in practical

traffic flow, one direction leads to higher-order, or nonequilibrium, models. Payne

(1971) and Whitham (1974) introduced a momentum equation to capture the change

in travel speed in addition to the traffic conservation equation, Equation 1.1:

vt + vvx +
c2
0

ρ
ρx =

V (ρ) − v

τ
. (1.3)

Here the constant c0 is the traffic sound speed, the source term V (ρ)−v
τ

is called a

relaxation term, and τ is the relaxation time. With the momentum equation, the

PW model attempts to model driver behavior by accounting for drivers’ anticipation

and inertia. One can show that the LWR model is an asymptotic approximation of

the PW model (Schochet, 1988).

The PW model, as a second-order system of hyperbolic conservation laws with a

source term, can be numerically solved by Godunov methods (Jin and Zhang, 2001b).



CHAPTER 1. INTRODUCTION 11

With simulations it was shown that, in addition to modeling stable traffic like the

LWR model, the PW model is capable of modeling the formation of vehicle clusters

(Jin and Zhang, 2003a). However, the PW model has drawn some criticism since

it allows wave solutions with speed higher than vehicle travel speed and may yield

back-traveling (or negative-speed) results (Daganzo, 1995c).

Another nonequilibrium traffic flow model is due to (Zhang, 1998, 1999, 2000,

2001a). In this model, a modified momentum equation is included,

vt + vvx +
(ρV ′(ρ))2

ρ
ρx =

V (ρ) − v

τ
. (1.4)

This model bears shortcomings similar to the PW model, yet differs from the latter

in that the sound speed c = ρV ′(ρ) varies with respect to traffic density ρ. Moreover,

it is always stable and therefore acts like the LWR model (Li, 2003).

In order to avoid the negative-speed drawbacks of the PW model, Aw and Ras-

cle (2000) identified a number of principles and proposed a satisfactory momentum

equation in the following form:

vt + (v − ρp′(ρ))vx =
V (ρ) − v

τ
, (1.5)

where p(ρ) is a pressure law and is increasing. Further, the Riemann problems were

discussed for the model. However, how p(ρ) is related to driver-behavior was not

specified in their study.

In the same spirit, Zhang (2002) derived a model similar to Aw and Rascle’s

model from a car-following model:

vt + (v + ρV ′(ρ))vx =
V (ρ) − v

τ
, (1.6)

which is in the framework of Equation 1.5 with p(ρ) = −V (ρ). In this model, the

definition of p(ρ) is derived from a car-following model. Both models, Equation 1.5
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and Equation 1.6, no longer admit wave solutions faster than traffic and avoids back-

traveling (Aw and Rascle, 2000; Zhang, 2002). However, they are always stable (Li,

2003) and, therefore, lose the PW model’s ability to simulate unstable traffic and

vehicle clusters.

Also in the framework of Equation 1.5, another model was proposed in (Jiang

et al., 2002) as

vt + (v − c0)vx =
V (ρ) − v

τ
, (1.7)

where the pressure function p(ρ) = c0 ln ρ. Like the PW model, this model is unstable

under some traffic conditions, but yields non-physical solutions when traffic is in

unstable region (Jin and Zhang, 2003d).

More complicated traffic systems, for example, with highway junctions (Liu et al.,

1996; Lee et al., 2000), have been studied with non-equilibrium models, primarily

the PW model. Moreover, several simulation packages are also based on the PW

model. In this dissertation, however, we focus on the LWR model, i.e., the first-order

continuum model.

1.3 Fundamental diagrams

In the kinematic wave models, fundamental diagrams capture constraints on a traffic

system such as road characteristics, vehicle type, driver’s behavior, weather condi-

tions, and traffic rules. Therefore, the success of such models rely on the accuracy of

the fundamental diagram.

One typical relationship that has been observed between flow rate and occupancy

is shown in Figure 1.2 from (Hall et al., 1986). It’s generally assumed that the

equilibrium travel speed V (ρ) is decreasing with respect to traffic density; i.e., V ′(ρ) <

0, and the fundamental diagram Q(ρ) ≡ ρV (ρ) is concave; i.e., Q′′(ρ) < 0.
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Figure 1.2: A typical occupancy-flow rate relationship (Hall et al., 1986)

Due to their importance, many fundamental diagrams have been proposed since

the early era of traffic engineering practice. Some traditional speed-density relations

are listed in Table 1.1.

More recent examples are the following: the triangular fundamental diagram

(Newell, 1993),

V (ρ) =







vf when under-critical,

vf
ρc

ρj−ρc
(

ρj

ρ
− 1) otherwise,

(1.8)

a non-convex fundamental diagram (Kerner and Konhäuser, 1994; Herrmann and
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Functions V (ρ)

Greenshields (1935) vf (1 − ρ/ρj)

Greenberg (1959) v0 ln(ρj/ρ)

Newell (1961) vf

[

1 − exp
(

|cj |

vf
(1 − ρj/ρ)

)]

Underwood (1961) vf exp(−ρ/ρj)

Drake et al. (1967) vf exp

[

−1
2

(

ρ
ρj

)2
]

Pipes (1967) vf

(

1 − ρ
ρj

)n

, n > 1

Table 1.1: Traditional speed-density relationship functions

Kerner, 1998),

V (ρ) = 5.0461
[

(1 + exp{[ρ/ρj − 0.25]/0.06})−1 − 3.72 × 10−6
]

l/τ, (1.9)

and the exponential form (Del Castillo and Benitez, 1995a,b),

V (ρ) = vf

{

1 − exp

[

1 − exp

(

|cj|

vf

(
ρj

ρ
− 1)

)]}

. (1.10)

The aforementioned fundamental diagrams are all continuous functions. In addi-

tion, to capture “two-capacity” phenomena (Banks, 1991), a discontinuous fundamen-

tal diagram in “reverse-lambda” shape has been proposed (e.g., Koshi et al., 1983).

Finally, Daganzo (1997) has proposed a novel, two-regime fundamental diagram for

differentiated road and vehicle types.

In this dissertation, we focus on studying network inhomogeneities such as merges,

diverges, and other junctions. Thus, we will consider continuous fundamental dia-

gram, mostly of the triangular shape.
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1.4 Motivation for the dissertation research

While driving in “stop and go” traffic, many people may have wondered how such

congestion is formed, propagated, and diffused. As we know, the network structure

is an important factor in determining the characteristics of traffic congestion. For

example, congestion generally forms at merging junctions and propagates through

diverges. Therefore, traffic conditions on a road network have to be considered as a

whole.

The kinematic wave theory is a good candidate for studying vehicular traffic dy-

namics due to its theoretical rigor, numerical soundness, and computational efficiency.

However, its potential has yet to be fully explored. Theoretically, there has been lit-

tle progress in finding kinematic waves in network traffic systems since (Lighthill and

Whitham, 1955b; Richards, 1956), and traffic congestion in road networks has not

been well understood in the framework of kinematic waves. Numerically, little atten-

tion is paid to the stability and convergence of solution methods. Computationally,

many simulation models based on kinematic wave theory still keep track of individual

vehicles and lose a part of the kinematic wave models’ efficiency. Due to the afore-

mentioned limitations, kinematic wave theories of network traffic flow have yet to be

improved so that they can be applied in solving practical problems, e.g., in Intelligent

Transportation Systems.

In the framework of kinematic wave theories, we study network traffic dynam-

ics and provide a theoretically rigorous, numerically reliable, and computationally

efficient simulation model for understanding and mitigating congestion in large-scale

road networks. In order to fully explore the advantages of the kinematic wave the-

ory, we consider the following four aspects of traffic modeling in this dissertation.

First, we study traffic dynamics at crucial components of a road network, such as
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link bottlenecks, merges, and diverges, as well as different types of vehicles. In ad-

dition, we consider the dynamics of additive multi-commodity traffic. These studies

will offer a more rigorous understanding of traffic dynamics in terms of kinematic

waves. Second, we discuss systematically with numerical methods for computing

commodity-specified fluxes through junctions in the framework of supply-demand

method (Daganzo, 1995a; Lebacque, 1996). Third, we develop a macroscopic simu-

lation platform of multi-commodity traffic on a road network. Finally, we apply this

simulation model to study traffic on a road network and probe traffic phenomena

related to network topology and route choice behavior.

The structure of this dissertation is as follows. In Chapter 2, we study the

kinematic waves on inhomogeneous links. In Chapter 3, we discuss kinematic wave

models of merging traffic, which are based on the supply-demand method. In Chapter

4, we propose a new kinematic wave theory for diverging traffic. In Chapter 5, we

discuss theoretical and numerical solutions for mixed-type traffic. In Chapter 6, we

develop a the multi-commodity kinematic wave simulation platform for network traffic

flow. In Chapter 7, we apply this simulation model to study some traffic phenomena

in road networks. Finally, we summarize our research results and present future

research plans in Chapter 8.



Chapter 2

Kinematic wave traffic flow model

of inhomogeneous links

2.1 Introduction

The kinematic wave traffic flow model of LWR was introduced by Lighthill and

Whitham (1955b) and Richards (1956) for modeling dense traffic flow on crowded

roads, where the evolution of density ρ(x, t) and flow-rate q(x, t) over time is de-

scribed by equation,

ρt + qx = 0. (2.1)

This equation follows conservation of traffic that vehicles are neither generated nor

destroyed on a road section with no entries and exits.

The conservation equation alone is not sufficient to describe traffic evolution, be-

cause it does not capture the unique character of vehicular flow—drivers slow down

when their front spacing is reduced to affect safety. The LWR model addresses this

issue by assuming a functional relationship between local flow-rate and density, i.e.,

17
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q = f(x, ρ). This flow-density relation, also known as the fundamental diagram of

traffic flow, is often assumed to be concave in ρ and is a function of the local charac-

teristics of a road location, such as the number of lanes, curvature, grades, and speed

limit, as well as vehicle and driver composition. When a piece of roadway is homo-

geneous; i.e., the aforementioned characteristics of the road are uniform throughout

the road section, the fundamental diagram is invariant to location x and the LWR

model becomes

ρt + f(ρ)x = 0. (2.2)

In contrast, if a section of a roadway is inhomogeneous, the LWR model is

ρt + f(x, ρ)x = 0. (2.3)

Here we introduce a more explicit notation, an inhomogeneity factor a(x), into the flux

function f(x, ρ) and obtain the following equivalent LWR model for an inhomogeneous

road

ρt + f(a, ρ)x = 0. (2.4)

This equation is particularly suited for our later analysis of the LWR model for

inhomogeneous roads (We shall hereafter call Equation 2.2 the homogeneous LWR

model and Equation 2.4 the inhomogeneous LWR model).

Both the homogeneous and inhomogeneous LWR models have been studied by

researchers and applied by practitioners in the transportation community. Note that

the homogeneous version Equation 2.2 is nothing more than a scalar conservation

law. Therefore, its wave solutions exist and are unique under the so-called “Lax

entropy condition” (Lax, 1972). These solutions are formed by basic solutions to the

Riemann problem of Equation 2.2, in which the initial conditions jump at a boundary
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and are constant both upstream and downstream of the jump spot. Nevertheless,

because analytical solutions are difficult to obtain for Equation 2.2 with arbitrary

initial/boundary conditions, numerical solutions have to be computed in most cases.

The most often used approximation of Equation 2.2 is perhaps that of Godunov. In

the Godunov method, a roadway is partitioned into a number of cells; and the change

of the number of vehicles in each cell during a time interval is the net inflow of vehicles

from its boundaries. The rate of traffic flowing through a boundary is obtained by

solving a Riemann problem at this boundary. Besides the Godunov method, there

are other types of approximations of the homogeneous LWR model, and some of them

are shown to be variants of Godunov’s method (Lebacque, 1996).

In contrast to the well researched homogeneous LWR model, the inhomogeneous

model is less studied and less understood. Of the few efforts to rigorously solve

the inhomogeneous LWR model, the works of Daganzo (1995a) and Lebacque (1996)

should be mentioned. In his cell transmission model, Daganzo started with a discrete

form of the conservation equation and suggested that the flow through a boundary

connecting two cells of a homogeneous road is the minimum of the “sending flow”

from the upstream cell and the “receiving flow” of the downstream cell. The “sending

flow” is equal to the upstream flow-rate if the upstream traffic is undercritical (UC) or

the capacity of the upstream section if the upstream traffic is overcritical (OC); on the

other hand, the “receiving flow” is equal to the capacity of the downstream section if

the downstream traffic is UC or the downstream flow-rate if the downstream traffic

is OC. In the homogeneous case, the boundary flux computed from the “sending

flow” and the “receiving flow” is the same as that computed from solutions of the

associated Riemann problem. Since the definitions of “sending flow” and “receiving

flow” can be extended to inhomogeneous sections, Daganzo’s method can also be

applied to the inhomogeneous LWR model. Different from Daganzo, Lebacque started
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his method with the solution of the “generalized” Riemann problem for Equation

2.3. In this work, Lebacque came up with some rules for solving the “generalized”

Riemann problem. These rules play the same role as entropy conditions. Moreover,

Lebacque found that the boundary flux obtained from solving the Riemann problem

is consistent with that from Daganzo’s method, and he called Daganzo’s “sending

flow” demand and “receiving flow” supply.

The methods of Daganzo and Lebacque are streamlined versions of Godunov’s

method for the inhomogeneous LWR model. They hinge upon the definitions of the

demand and supply functions, which can be obtained unambiguously when f(a, ρ) is

unimodal. When f(a, ρ) has multiple local maximum, or when the traffic flow model

is of higher order, it is yet to be determined if equivalent demand/supply functions

exist. Thus, these two methods may not be applicable to solve the LWR model that

has multiple critical points on its fundamental diagram, nor higher-order models of

traffic flow, such as the Payne-Whitham (Payne, 1971; Whitham, 1974) model and a

model by (Zhang, 1998, 1999, 2000, 2001a). Note that, however, these higher-order

models for homogeneous roads can still be solved with Godunov’s method (Zhang,

2001a).

In this chapter, we present a new method for solving the Riemann problem for

Equation 2.4, which can be extended to solve higher-order models. By introducing an

additional conservation law for a(x), we consider the inhomogeneous LWR model as

a resonant nonlinear system and study its properties (Section 2.2). We also solve the

Riemann problem for Equation 2.4 and show that the boundary flux at the location

of the inhomogeneity is consistent with the one given by Lebacque and Daganzo for

the same initial condition (Section 2.3). Finally, we demonstrate our method through

solving an initial value problem on a ring road with a bottleneck, and draw some

conclusions from our analyses.
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2.2 Properties of the inhomogeneous LWR model

as a resonant nonlinear system

Instead of directly study the inhomogeneous LWR model described by Equation 2.4,

we augment Equation 2.4 into a system of conservation laws through the introduction

of an additional conservation law at = 0 for the inhomogeneity factor a(x), which leads

to

Ut + F (U)x = 0, (2.5)

where U = (a, ρ), F (U) = (0, f(a, ρ)), x ∈ R, t ≥ 0. Without loss of generality,

we assume the inhomogeneity is the drop/increase of lanes at a particular location,

and write the fundamental diagram as f(a, ρ) = ρV (ρ
a
), where v = V (ρ

a
) is the

speed-density relation. The results obtained hereafter apply to other types of inho-

mogeneities, such as changes in grades.

The inhomogeneous LWR model Equation 2.5 can be linearized as

Ut + ∂F (U)Ux = 0, (2.6)

where the differential ∂F (U) of the flux vector F (U) is

∂F =





0 0

−ρ2

a2 V
′(ρ

a
) V (ρ

a
) + ρ

a
V ′(ρ

a
)



. (2.7)

The two eigenvalues of ∂F are

λ0 = 0, λ1 = V (
ρ

a
) +

ρ

a
V ′(

ρ

a
). (2.8)

The corresponding right eigenvectors are

R0 =





V (ρ
a
) + ρ

a
V ′(ρ

a
)

(ρ
a
)2V ′(ρ

a
)



, R1 =





0

1



,
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and the left eigenvector of ∂f/∂ρ as l1 = 1.

System Equation 2.5 is a non-strictly hyperbolic system, since it can happen that

λ1 = λ0. We consider a traffic state U∗ = (a∗, ρ∗) in this system as critical if

λ1(U∗) = 0; (2.9)

i.e., at critical states, the two wave speeds are the same and system Equation 2.5 is

singular. For a critical traffic state U∗ we also have

∂

∂ρ
λ1(U∗) = fρρ < 0 (2.10)

since flow-rate is concave in traffic density, and

∂

∂a
f(U∗) = −(

ρ

a
)2V ′(

ρ

a
)|U∗

=
ρ

a
V (

ρ

a
)|U∗

> 0. (2.11)

A consequence of properties Equation 2.10 and Equation 2.11 is that the lin-

earized system Equation 2.6 at U∗ has the following normal form





δa

δρ





t

+





0 0

1 0









δa

δρ





x

= 0. (2.12)

System Equation 2.12 has the solution δρ(x, t) = δa′(x)t+ c, and the solution goes to

infinity as t goes to infinity. Therefore Equation 2.12 is a linear resonant system, and

the original inhomogeneous LWR model Equation 2.5 is a nonlinear resonant system.

For Equation 2.5, the smooth curve Γ in U -space formed by all critical states U∗

are named a transition curve. Therefore Γ is defined as

Γ = {U |λ1(U) = 0} .

Since λ1(U) = V (ρ
a
) + ρ

a
V ′(ρ

a
), we obtain

Γ =
{

(a, ρ)|
ρ

a
= α, where α uniquely solves V (α) + αV ′(α) = 0

}

; (2.13)
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i.e., the transition curve for Equation 2.5 is a straight line passing through the origin

in U -space. In Equation 2.13, α is unique since f(a, ρ) is concave in ρ.

The entropy solutions to a nonlinear resonant system are different from those to

a strictly hyperbolic system of conservation laws. Isaacson and Temple (1992) proved

that solutions to the Riemann problem for system Equation 2.5 exist and are unique

with the conditions Equation 2.9-Equation 2.11. Lin et al. (1995) presented solutions

to a scalar nonlinear resonant system, which is similar to our system Equation 2.5

except that f is convex in their study. In the next section we apply those results to

solve the Riemann problem for the inhomogeneous LWR model.

2.3 Solutions to the Riemann problem

In this section we study the wave solutions to the Riemann problem for Equation 2.5

with the following jump initial conditions

U(x, t = 0) =







UL if x < 0

UR if x > 0
, (2.14)

where the initial values of UL, UR are constant. For computational purposes, we are

interested in the average flux at the boundary x = 0 over a time interval ∆t, which

is denoted by f ∗
0 and defined as

f ∗
0 =

1

∆t

∫ ∆t

0

f(U(x = 0, t))dt. (2.15)

The augmented inhomogeneous LWR model Equation 2.5 has two families of basic

wave solutions associated with the two eigenvalues. The solutions whose wave speed is

λ0 are in the 0-family, and the waves are called 0-waves. Similarly the solutions whose

wave speed is λ1 are in the 1-family, and the waves are called 1-waves. The 0-wave is

also called a standing wave since its wave speed is always 0. The 1-wave solutions are
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Figure 2.1: Integral curves

determined by the solutions of the scalar conservation law ρt + f(ā, ρ)x = 0, where ā

is a constant. Corresponding to the two types of wave solutions, the integral curves

of the right eigenvectors R0 and R1 in U -space are called 0- and 1-curves respectively.

Hence the 0-curves are given by f(U)=const, and the 1-curves are given by a =const.

A 0-curve, a 1-curve, and the transition curve Γ passing through a critical state U∗

are shown in Figure 2.1, where a is set as the vertical axis and ρ the horizontal axis.

As shown in Figure 2.1, the 0-curve is convex, and the 1-curve is tangent to the

0-curve at the critical state U∗. The transition curve Γ intersects the 0- and 1-curves
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at U∗, and there is only one critical state on one 0-curve or 1-curve. For any point

U , only one 0-curve and one 1-curve pass it. In Figure 2.1, the states left to the

transition curve are undercritical (UC) since ρ/a < α; and the states right to the

transition curve are overcritical (OC) since ρ/a > α.

The wave solutions to the Riemann problem for Equation 2.5 are combinations of

basic 0-waves and 1-waves. Since Equation 2.5 is a hyperbolic system of conservation

law, its wave solutions must satisfy Lax’s entropy condition that the waves from

left (upstream) to right (downstream) should increase their wave speeds so that they

don’t cross each other. For Equation 2.5 as a resonant nonlinear system, an additional

entropy condition is introduced by Isaacson and Temple,

The standing wave can NOT cross the transition curve Γ. (2.16)

This entropy condition is equivalent to saying that, relative to the apexes of the fun-

damental diagrams, traffic conditions upstream and downstream of inhomogeneities

are on the same side. That is, they should be either both UC or both OC.

With the two entropy conditions, the solutions to the inhomogeneous LWR model

exist and are unique. The wave solutions for UC left state UL are shown in Figure

2.2, and those for OC left state UL are shown in Figure 2.3.

In the remaining part of this section, we discuss wave solutions to the Riemann

problem for Equation 2.5, present the formula for the boundary flux f ∗
0 related to

each type of solution, summarize our results and compare them with those found in

literature.

2.3.1 Solutions of the boundary fluxes

When UL = (aL, ρL) is UC; i.e., ρL/aL < α, where α is defined in Equation 2.13,

we denote the special critical point on standing wave passing UL as U∗. Thus, as
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Figure 2.2: The Riemann problem for UL left of Γ

shown in Figure 2.2, the U -space is partitioned into three regions by DU∗, OU∗

and U∗C, where DU∗ = {(a, ρ)|a = a∗, ρ < ρ∗}, OU∗ = Γ ∩ {0 ≤ ρ ≤ ρ∗} and

U∗C = {(a, ρ)|f(a, ρ) = f(UL), ρ > ρ∗}. Related to different positions of the right

state UR in the U -space, the Riemann problem for Equation 2.5 with initial conditions

Equation 2.14 has the following four types of wave solutions. For each type of solutions

we provide formula for calculating the associated boundary flux f ∗
0 .

Type 1 When UR is in region ABULU∗DA shown in Figure 2.2; i.e.,

f(UR) < f(U∗) = f(UL), ρR/aR < α and aR ≥ a∗, (2.17)
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Figure 2.3: The Riemann problem for UL right of Γ

wave solutions to the Riemann problem are of type 1. These solutions consist

of two basic waves with an intermediate state U1 = (aR, ρ1|f(aR,ρ1)=f(U∗)=f(UL)).

Of these two waves, the left one (UL, U1) is a standing wave, and the right one

(U1, UR) is a rarefaction wave with characteristic velocity λ1(a, ρ) > 0.

From Figure 2.2, we can see that the Riemann problem may admit this type

of solutions when aL > aR or aL ≤ aR; i.e., when the road merges or diverges

at x = 0. Here we present an example of this type of solutions in Figure 2.4,

where the roadway merges at x = 0. In the case when the roadway diverges at
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Figure 2.4: An example for wave solutions of type 1 for Equation 2.5 with initial

conditions Equation 2.14

x = 0, we can find similar solutions.

From Figure 2.4, we obtain the boundary flux f ∗
0 = f(UL) = f(U∗) for wave

solutions of type 1.

Type 2 When UR is in region BULU∗CB shown in Figure 2.2; i.e.,

f(UR) ≥ f(U∗) = f(UL), (2.18)

wave solutions to the Riemann problem are of type 2. These solutions consist



CHAPTER 2. INHOMOGENEOUS LINK MODEL 29

ρ

a

0

Γ

U
*

U
L

t

x
0

t=t
0

ρ

f

f=f(a
L
,ρ
L
)

f=f(a
R
,ρ
R
)

0
x

0

ρ

t=t
0

U
RU

1

ρ
L

ρ
R

ρ
1

U
L

U
1

U
R

Figure 2.5: An example for wave solutions of type 2 for Equation 2.5 with initial

conditions Equation 2.14

of two basic waves with an intermediate state U1 = (aR, ρ1|f(aR,ρ1)=f(U∗)=f(UL)).

Of these two waves, the left (UL, U1) is a standing wave, and the right (U1, UR)

is a shock wave with positive speed σ = f(UR)−f(U∗)
ρR−ρ1

> 0.

From Figure 2.2, we can see that the Riemann problem may admit this type

of solutions when the downstream traffic condition UR is UC or OC, or the

roadway merges or diverges at x = 0. Here we present an example of this type

of solutions in Figure 2.5, where the downstream traffic condition is OC and the
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roadway merges at x = 0. Similar solutions can be found for other situations

that satisfy Equation 2.18.

From Figure 2.5, we obtain the boundary flux f ∗
0 = f(UL) = f(U∗) for wave

solutions of type 2. Here we have the same formula as that for wave solutions

of type 1.

Type 3 When UR is in region OU∗CO shown in Figure 2.2; i.e.,

f(UR) < f(U∗) = f(UL), ρR/aR ≥ α, (2.19)

wave solutions to the Riemann problem are of type 3. These solutions consist

of two basic waves with an intermediate state U1 = (aL, ρ1|f(aL,ρ1)=f(UR)). Of

these two waves, the left one (UL, U1) is a shock wave with negative speed

σ = f(U1)−f(UL)
ρ1−ρL

< 0, and the right one (U1, UR) is a standing wave.

From Figure 2.2, we can see that the Riemann problem may admit this type of

solutions when the roadway merges or diverges at x = 0. Here we present an

example of this type of solutions in Figure 2.6, where the roadway merges at

x = 0. In the case when the roadway diverges at x = 0, similar solutions can

be found.

From Figure 2.6, we obtain the boundary flux f ∗
0 = f(UR) for wave solutions of

type 3.

Type 4 When UR is in region OU∗DO shown in Figure 2.2; i.e.,

f(UR) < f(U∗) = f(UL), ρR/aR < ρ∗/a∗ and aR < a∗, (2.20)

wave solutions to the Riemann problem are of type 4. These solutions consist

of three basic waves with two intermediate states: U1 = (aL, ρ1|f(aL,ρ1)=f(U2))

and U2 = (aR, ρ2|ρ2/aR=α). Of these three waves, the left one (UL, U1) is a shock
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Figure 2.6: An example for wave solutions of type 3 for Equation 2.5 with initial

conditions Equation 2.14

wave with negative speed σ = f(U1)−f(UL)
ρ1−ρL

< 0, the middle one (U1, U2) is a

standing wave with zero speed, and the right one (U2, UR) is a rarefaction wave

with characteristic velocity λ1(a, ρ) > 0.

From Figure 2.2, we can see that this type of solutions are admitted only when

the roadway merges at x = 0. Here we present an example of this type of

solutions in Figure 2.7.

From Figure 2.7, we obtain the boundary flux f ∗
0 = f(U2) for wave solutions of
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Figure 2.7: An example for wave solutions of type 4 for Equation 2.5 with initial

conditions Equation 2.14

type 4.

When UL = (aL, ρL) is OC; i.e., ρL/aL > α, we denote the special critical point on

1-wave curve passing UL as U∗; i.e., U∗ = (aL, ρ∗|ρ∗/aL=α). Thus, as shown in Figure

2.3, the U -space is partitioned into three regions by three curves DU∗ = {a = a∗ =

aL, 0 ≤ ρ ≤ ρ∗}, OU∗ = {0 ≤ a ≤ a∗, ρ = aα} and U∗C = {a ≥ a∗, f(a, ρ) = f(U∗).

Related to different positions of the right state UR in the U -space, the Riemann

problem for Equation 2.5 with initial conditions Equation 2.14 has the following six
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types of wave solutions. For each type of solutions we provide formula for calculating

the associated boundary flux f ∗
0 .

Type 5 When UR resides in region ABU∗DA shown in Figure 2.3; i.e.,

f(UR) < f(U∗), ρR/aR < α and aR ≥ a∗ = aL, (2.21)

wave solutions to the Riemann problem are of type 5. These solutions con-

sist of three basic waves with two intermediate states: U1 = U∗ and U2 =

(aR, ρ2|f(U2)=f(U∗)). Of these three waves, the left one (UL, U1) is a rarefaction

wave with negative characteristic wave velocity λ1(a, ρ), the middle one (U1, U2)

is a standing wave and the right one (U2, UR) is a rarefaction wave with positive

characteristic velocity λ1(a, ρ).

From Figure 2.3, we can see that this type of solutions are admitted only when

the roadway diverges at x = 0. Here we present an example of this type of

solutions in Figure 2.8.

From Figure 2.8, we obtain the boundary flux f ∗
0 = f(U2) for wave solutions of

type 5.

Type 6 When UR resides in region BU∗CB shown in Figure 2.3; i.e.,

f(UR) ≥ f(U∗), (2.22)

solutions to the Riemann problem are of type 6. These solutions consist of three

basic waves with two intermediate states: U1 = U∗ and U2 = (aR, ρ2|f(U2)=f(U∗)).

Of these three waves, the left one (UL, U1) is a rarefaction wave with negative

characteristic velocity λ1(a, ρ), the middle one (U1, U2) is a standing wave and

the right one (U2, UR) is a shock wave with positive speed σ = f(UR)−f(U2)
ρR−ρ2

.
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Figure 2.8: An example for wave solutions of type 5 for Equation 2.5 with initial

conditions Equation 2.14

From Figure 2.3, we can see that this type of solutions may be admitted when

the downstream traffic condition is UC or OC; However, they are admitted only

when the roadway diverges at x = 0. Here we present an example of this type

of solutions in Figure 2.9, where the downstream traffic condition is OC. In the

case when the downstream traffic condition is UC, we can find similar solutions.

From Figure 2.9, we obtain the boundary flux f ∗
0 = f(U2) for this type of wave

solutions. Here we have the same formula as that for wave solutions of type 5.
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Figure 2.9: An example for wave solutions of type 6 for Equation 2.5 with initial

conditions Equation 2.14

Type 7 When UR resides in region CU∗FULEC shown in Figure 2.3; i.e.,

f(UL) ≤ f(UR) < f(U∗) and ρR/aR ≥ α, (2.23)

wave solutions to the Riemann problem are of type 7. These solutions consist of

two basic waves with an intermediate state U1 = (aL, ρ1|f(U1)=f(UR)). Of these

two waves, the left one (UL, U1) is a rarefaction with negative characteristic

velocity λ1(a, ρ), and the right one (U1, UR) is a standing wave.

From Figure 2.3, we can see that the Riemann problem may admit this type of
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Figure 2.10: An example for wave solutions of type 7 for Equation 2.5 with initial

conditions Equation 2.14

solutions when the roadway merges or diverges at x = 0. Here we present an

example of this type of solutions in Figure 2.10, where the roadway diverges at

x = 0. In the case when the roadway merges, we can find similar solutions.

From Figure 2.10, we obtain the boundary flux f ∗
0 = f(UR) for wave solutions

of type 7.
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Figure 2.11: An example for wave solutions of type 8 for Equation 2.5 with initial

conditions Equation 2.14

Type 8 When UR locates in region FULEOF shown in Figure 2.3; i.e.,

f(UR) < f(UL) < f(U∗) and ρR/aR ≥ α, (2.24)

wave solutions to the Riemann problem are of type 8. These solutions consist of

two basic waves with an intermediate state U1 = (aL, ρ1|f(U1)=f(UR)). Of these

two waves, the left one (UL, U1) is a shock with negative speed σ = f(UL)−f(U1)
ρL−ρ1

,

and the right one (U1, UR) is a standing wave.

Like in the previous case, the Riemann problem may admit this type of solutions
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when the roadway merges or diverges at x = 0. Here we present an example of

this type of solutions in Figure 2.11, where the roadway diverges at x = 0. In

the case when the roadway merges, we can find similar solutions.

From Figure 2.11, we obtain the boundary flux f ∗
0 = f(UR) for wave solutions

of type 8. The formula is the same as that for wave solutions of type 7.

Type 9 When UR resides in region DU∗FGD shown in Figure 2.3; i.e.,

f(UL) ≤ f(UR) < f(U∗), ρR/aR < α and aR < a∗ = aL, (2.25)

wave solutions to the Riemann problem are of type 9. These solutions consist

of three basic waves with two intermediate states: U1 = (aL, ρ1|f(U1)=f(U2))

and U2 = (aR, ρ2|ρ2/aR=α). Of these three waves, the left one (UL, U1) is a

rarefaction with negative characteristic velocity λ1(a, ρ), the middle one (U1, U2)

is a standing wave, and the right one (U2, UR) is a rarefaction with positive speed

λ1(a, ρ).

From Figure 2.3, we can see that this type of solutions are admitted only when

the roadway merges at x = 0. Here we present an example of this type of

solutions in Figure 2.12.

From Figure 2.12, we obtain the boundary flux f ∗
0 = f(U2) for wave solutions

of type 9.

Type 10 When UR resides in region GFOG shown in Figure 2.3; i.e.,

f(UR) < f(UL) < f(U∗), ρR/aR < α and aR < a∗ = aL, (2.26)

wave solutions to the Riemann problem are of type 10. These solutions consist

of three basic waves with two intermediate states: U1 = (aL, ρ1|f(U1)=f(U2)) and

U2 = (aR, ρ2|ρ2/aR=α). Of these three waves, the left one (UL, U1) is a shock
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Figure 2.12: An example for wave solutions of type 9 for Equation 2.5 with initial

conditions Equation 2.14

with negative speed, the middle one (U1, U2) is a standing wave, and the right

one (U2, UR) is a rarefaction wave with positive characteristic velocity λ1(a, ρ).

Like in the previous case, this type of solutions are admitted only when the

roadway merges at x = 0. Here we present an example of this type of solutions

in Figure 2.13.

From Figure 2.13, we obtain the boundary flux f ∗
0 = f(U2) for wave solutions

of type 10. Here we have the same formula as that for wave solutions of type 9.
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Figure 2.13: An example for wave solutions of type 10 for Equation 2.5 with initial

conditions Equation 2.14

2.3.2 Summary

In each of the 10 cases discussed above, the boundary flux f ∗
0 is equal to one of

the following four quantities: the upstream flow-rate f(UL), the downstream flow-

rate f(UR), the capacity of the upstream roadway fmax
L and the capacity of the

downstream roadway fmax
R . For wave solutions of type 1 and 2, the boundary flux

is equal to the upstream traffic flow-rate; i.e., f ∗
0 = f(UL). For wave solutions of

type 3, 7 and 8, the boundary flux is equal to the downstream traffic flow-rate; i.e.,
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No. left state UL right state UR f ∗
0

1 UC f(UR) < f(UL), aR > a∗, ρR/aR < α f(UL)

2 UC f(UR) > f(UL) f(UL)

3 UC f(UR) < f(UL), ρR/aR > α f(UR)

4 UC f(UR) < f(UL), ρR/aR < α, aR < a∗ fmax
R

5 OC f(UR) < fmax
L , aR > aL, ρR/aR < α fmax

L

6 OC f(UR) > fmax
L fmax

L

7 OC f(UL) < f(UR) < fmax
L , ρR/aR > α f(UR)

8 OC f(UR) < f(UL), ρR/aR > α f(UR)

9 OC f(UL) < f(UR) < fmax
L , ρR/aR < α, aR < aL fmax

R

10 OC f(UR) < f(UL), ρR/aR < α, aR < aL fmax
R

Table 2.1: Solutions of the boundary fluxes f ∗
0

f ∗
0 = f(UR). For wave solutions of type 4, 9 and 10, the boundary flux is equal to the

capacity of the downstream roadway; i.e., f ∗
0 = fmax

R . For wave solutions of type 5 and

6, the boundary flux is equal to the capacity of the upstream roadway; i.e., f ∗
0 = fmax

L .

In Table 2.1, the boundary fluxes are listed for the 10 types of wave solutions to the

Riemann problem, as well as the conditions when the Riemann problem admit those

solutions.

Note that when aL = aR; i.e., when Equation 2.4 becomes a homogeneous LWR

model, wave solutions and the solutions of the boundary fluxes provided here are the

same as those for the homogeneous LWR model.

Lebacque (1996) studied the Riemann problem of the inhomogeneous LWR for

Equation 2.3. He classified the problem according to two criteria. The first criterion

is to compare capacity of the upstream cell and that of the downstream cell. For the

roadway with variable number of lanes, it is equivalently to compare the number of
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Conditions Solutions by Lebacque Types Our solutions

aL ≤ aR, UL UC, UR UC f(UL) 1 f(UL)

aL ≤ aR, UL UC, UR OC min{f(UL), f(UR)} 2 or 3 f(UL) or f(UR)

aL ≤ aR, UL OC, UR UC fmax
L 5 or 6 fmax

L

aL ≤ aR, UL OC, UR OC min{fmax
L , f(UR)} 6, 7 or 8 fmax

L or f(UR)

aL ≥ aR, UL UC, UR UC min{fmax
R , f(UL) 1 or 4 f(UL), fmax

R

aL ≥ aR, UL UC, UR OC min{f(UL), f(UR)} 2 or 3 f(UL) or f(UR)

aL ≥ aR, UL OC, UR UC fmax
R 9 or 10 fmax

R

aL ≥ aR, UL OC, UR OC f(UR) 7 or 8 f(UR)

Table 2.2: Comparison with Lebacque’s results

lanes of the upstream cell and that of the downstream cell. The second criterion is

to consider whether the upstream and downstream traffic conditions are UC or OC.

With these criteria, he discussed 8 types of waves solutions to the Riemann problem

and obtained the formula for the boundary flux related to each type of solutions. The

conditions for those types of wave solutions as well as the formulas related to those

types of solutions are listed in Table 2.2. Under each of those conditions, the Riemann

problem may admit different types of solutions discussed in Section 2.3.1. The types

of solutions and our related formulas for the boundary flux are also presented in Table

2.2. From this table, we can see that our results are consistent with those provided

by Lebacque, although the Riemann problem is solved through different approaches.

The consistency of our results with existing results can also be shown by intro-

ducing a simple formula for the boundary flux. If we define the upstream demand

as

f ∗
L =







f(UL), ρL/aL < α

fmax
L , ρL/aL ≥ α

(2.27)
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and define the downstream supply as

f ∗
R =







fmax
R , ρR/aR < α

f(UR), ρR/aR ≥ α
(2.28)

then the boundary flux can be simply computed as

f ∗
0 = min{f ∗

L, f∗
R}. (2.29)

Note that f ∗
L = f(U∗). Formula Equation 2.29 was also provided by Daganzo (1995a)

and Lebacque (1996).

2.4 Simulation of traffic flow on a ring road with

a bottleneck

2.4.1 Solution method

The augmented inhomogeneous LWR model, expressed in conservation form Equa-

tion 2.5, can be solved efficiently with Godunov’s method under general initial and

boundary conditions. In Godunov’s method, the roadway is partitioned into N cells

and a duration of time is discretized into M time steps. In a cell i, we approximate

the continuous equation Equation 2.5 with a finite difference equation

Um+1
i − Um

i

∆t
+

F ∗
i−1/2 − F ∗

i+1/2

∆x
= 0, (2.30)

whose component for ρ is

ρm+1
i − ρm

i

∆t
+

f ∗
i−1/2 − f ∗

i+1/2

∆x
= 0, (2.31)

where ρm
i denotes the average of ρ in cell i at time step m, similarly ρm+1

i is the

average at time step m + 1; f ∗
i−1/2 denotes the flux through the upstream boundary
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of cell i, and similarly f ∗
i+1/2 denotes the downstream boundary flux of cell i. In

Equation 2.31, the boundary flux f ∗
i−1/2 is related to solutions to a Riemann problem

for Equation 2.5 with the following initial conditions:

U(x = xi−1/2, t = tm) =







Um
i−1 x < xi−1/2

Um
i x > xi−1/2

, (2.32)

which have been discussed in Section 2.3.

2.4.2 Numerical results

We use the approximation developed earlier to simulate traffic on a ring road. The

length of the ring road is L = 800l = 22.4 km. The simulation time is T = 500τ

= 2500 s = 41.7 min. We partition the road [0, L] into N = 100 cells and the time

interval [0, T ] into K = 500 steps. Hence, the length of each cell is ∆x = 0.224 km

and the length of each time step is ∆t = 5 s. Since |λ∗| ≤ vf = 5l/τ , we find the CFL

(Courant et al., 1928) condition number

max |λ∗|
∆t

∆x
≤ 0.625 < 1.

Moreover, we adopt in this simulation the fundamental diagram used in (Kerner and

Konhäuser, 1994; Herrmann and Kerner, 1998) with the following parameters: the

relaxation time τ = 5 s; the unit length l = 0.028 km; the free flow speed vf = 5.0l/τ

= 0.028 km/s = 100.8 km/h; the jam density of a single lane ρj = 180 veh/km/lane.

The equilibrium speed-density relationship is therefore

v∗(ρ, a(x)) = 5.0461

[

(

1 + exp{[
ρ

a(x)ρj

− 0.25]/0.06}

)−1

− 3.72 × 10−6

]

l/τ,

where a(x) is the number of lanes at location x. The equilibrium functions V (ρ, a(x))

and f(ρ, a(x)) are given in Figure 2.14.
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Figure 2.14: The Kerner-Konhäuser model of speed-density and flow-density relations

The first simulation is about the homogeneous LWR model. Here we assume that

the ring road has single lane everywhere; i.e., a(x) = 1 for any x ∈ [0, L] , and use a

global perturbation as the initial condition

ρ(x, 0) = ρh + ∆ρ0 sin 2πx
L

, x ∈ [0, L],

v(x, 0) = v∗(ρ(x, 0), 1), x ∈ [0, L],
(2.33)

with ρh = 28 veh/km and ∆ρ0 = 3 veh/km (the corresponding initial condition

Equation 2.33 is depicted in Figure 2.15).

The results are shown in Figure 2.16, from which we observe that initially wave
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Figure 2.15: Initial condition Equation 2.33 with ρh = 28 veh/km and ∆ρ0 = 3

veh/km

interactions are strong but gradually the bulge sharpens from behind and expands

from front to form a so-called N -wave that travels around the ring with a nearly fixed

profile.

In the second simulation we created a bottleneck on the ring road with the fol-

lowing lane configuration:

a(x) =







1, x ∈ [320l, 400l),

2, elsewhere .
(2.34)
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Figure 2.16: Solutions of the homogeneous LWR model with initial condition in Figure

2.15

As before, we also use a global perturbation as the initial condition

ρ(x, 0) = a(x)(ρh + ∆ρ0 sin 2πx
L

), x ∈ [0, L],

v(x, 0) = v∗(ρ(x, 0), a(x)), x ∈ [0, L],
(2.35)

with ρh = 28 veh/km/lane and ∆ρ0 = 3 veh/km/lane (the corresponding initial

condition Equation 2.35 is depicted in Figure 2.17).

The results for this simulation are shown in Figure 2.18, and are more interesting.

We observe from this figure that at first flow increases in the bottleneck to make
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Figure 2.17: Initial condition Equation 2.33 with ρh = 28 veh/km/lane and ∆ρ0 = 3

veh/km/lane

the bottleneck saturated, then a queue forms upstream of the bottleneck, whose

tail propagates upstream as a shock. At the same time, traffic emerging from the

bottleneck accelerates in an expansion wave. After a while, all the commotion settles

and an equilibrium state is reached, where a stationary queue forms upstream of

the bottleneck, whose in/out flux equals the capacity of the bottleneck. Similar

situations can be observed in real world bottlenecks, although queues formed at such

bottlenecks rarely reach equilibrium because, unlike in the ring road example, their
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traffic demands change over time. Therefore, we observe queues forming, growing,

and dissipating at locations with lane drops, upward slopes, or tight turns. Sometimes

queues formed at a bottleneck can grow fairly long, to the extent that they entrap

vehicles that do not use the bottleneck. Under such situations, we can implement

various types of control strategies, such as ramp metering, to control the extent of

the bottleneck queues so that they do not block vehicles that wish to exit upstream

of the bottleneck. For this purpose the numerical method presented here can be used

to help model and design effective control.

2.5 Concluding remarks

We studied the inhomogeneous LWR model as a nonlinear resonant system. The non-

linear resonance arises when the two characteristics of the augmented LWR model

coalesce. Critical states and a transitional curve Γ can be defined in the U space

based on the behavior of these characteristics, which are in turn used to solve the

Riemann problem for the inhomogeneous LWR model. It is found that, under the

entropy conditions of Lax and of Isaacson and Temple, there exist ten types of wave

solutions. Formulas for computing the boundary fluxes related to different types of

wave solutions were also obtained. These formulas, after translated into the sup-

ply/demand framework, are found to be consistent with those found in literature.

For problems with general initial/boundary conditions, the method of Godunov was

applied to solve the inhomogeneous model numerically.

The method presented here can be extended easily to model more complicated

situations, such as multiple inhomogeneities. Suppose at location x, there are i =

1, · · · , n types of inhomogeneities, such as changes in number of lanes, grade, and cur-

vature. We introduce an inhomogeneity vector ~a(x) = (a1(x), a2(x), · · · , an(x))T , and
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Figure 2.18: Solutions of the inhomogeneous LWR model with initial condition in

Figure 2.17

express the flow-density function as f(~a(x), ρ). Then the conservation law becomes







ρt + f(~a(x), ρ)x = 0,

~a(x)t = 0,

and this higher-dimensional nonlinear resonant system can be solved in a similar way.

It is worth mentioning that the augmentation approach taken in this chapter also

applies to higher-order traffic flow models for inhomogeneous roads.



Chapter 3

Kinematic wave traffic flow model

of merging traffic

3.1 Introduction

For developing advanced traffic control strategies, dynamic traffic assignment (DTA)

algorithms, and other technologies in Advanced Traffic Management Systems (ATMS)

and Advanced Traveler Information Systems (ATIS), traffic engineers need the assis-

tance of network traffic flow models that can capture system-wide features of traffic

dynamics and are computationally efficient for a network of realistic size. The kine-

matic wave model is a promising candidate for these tasks since it provides a realistic

description of dynamic traffic phenomena in the aggregate level in terms of expansion

and shock waves and as such is highly efficient for simulating traffic dynamics in a

large network.

In the seminal kinematic wave model by Lighthill and Whitham (1955b) and

Richards (1956), a.k.a. the LWR model, how a disturbance in traffic propagates

through a link was thoroughly studied. To model traffic dynamics on a network with

51
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the kinematic wave model, however, one needs to carefully study traffic dynamics at

a merge, a diverge, or other components of a network. The kinematic wave models of

merging traffic have been studied by Daganzo (1995a), Holden and Risebro (1995),

and Lebacque (1996). In the model by Holden and Risebro, traffic flows through a

merge are determined by an optimization problem. However, the physical meaning

and the objective function of the optimization problem are not known or supported

by observations. On the other hand, the models by Daganzo and Lebacque are based

on the definitions of the local traffic supply and demand and can be considered as

reasonable extensions of the kinematic wave model of link traffic flow. In this chapter,

we will examine the latter models so that they can be better understood, more easily

calibrated, and more efficiently applied in simulation.

As we know, the LWR model, in which the evolution of traffic density ρ(x, t), flow-

rate q(x, t), and travel speed v(x, t) is studied in space x and time t, can be written

as a partial differential equation based on the fact of traffic conservation and the

adoption of a fundamental diagram. For the purpose of simulation, the LWR model

is generally written in a discrete form: a link and a duration of time are partitioned

into a number of cells and time steps respectively, and the increment of the number

of vehicles in a cell at each time step equals to the difference between the inflow into

and outflow from that cell during the time step. In the discrete LWR model, to solve

the flow through a boundary (i.e., the inflow into the downstream cell and the outflow

from the upstream cell), two equivalent approaches can be used: in the mathematical

approach, one solves the Riemann problem at that boundary (Lebacque, 1996; Jin and

Zhang, 2003b); in the engineering approach, a.k.a. the supply-demand method, the

supply of the upstream cell and the demand of the downstream cell are computed first

and the boundary flow is taken as their minimum. Here the concepts of supply and

demand were first introduced by Daganzo (1995a), but using the terms of “sending
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flow” and “receiving flow” instead; the terms of “supply” and “demand” were first

used by Lebacque (1996). The definitions of demand and supply are as follows: the

demand of a cell is equal to its flow-rate when the traffic condition is under-critical

(i.e., free flow) and its flow capacity when overcritical (i.e., congested); the supply is

equal to the flow capacity of the cell when the traffic condition is under-critical and

the flow-rate when overcritical.1

For computing flows through a merge, including the outflows from the upstream

cells and the inflow into the downstream cell, Daganzo (1995) extended the supply-

demand method as follows: the outflow from an upstream cell is smaller than or

equal to its demand, the inflow to the downstream cell is smaller than or equal to its

supply, and the inflow is equal to the sum of the outflows in order to preserve traffic

conservation. In this supply-demand method, the inflow is unique since it is equal to

the minimum of the supply and total demand. But the outflow from each upstream

cell may not be unique. Thus one has to find a way to distribute to each upstream

cell a fraction of the total outflow, which is equal to the inflow. Here we call such a

way of determining the distribution fractions the distribution scheme.

Lebacque proposed another extension of the supply-demand method: the supply

of the downstream cell is first distributed as a virtual supply to each upstream cell,

the outflow from each upstream cell is the minimum of its demand and virtual supply,

and the inflow into the downstream cell is equal to the sum of the outflows. Thus the

distribution scheme in Lebacque’s method is used to determine the fractions of virtual

supplies, and is more general since more feasible solutions of flows can be found in

this method.

Both Daganzo and Lebacque provided general formulations of the kinematic wave

1From the definitions of demand and supply, we can see that the flow through a boundary is

bounded by the capacity.
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model of merges. Here, we do not intend to extend these formulations. Rather, we are

interested in the distribution schemes used in these models since a distribution scheme

is the key to uniquely determine flows through a merge. Since in possible applications

of a merge model one wants to obtain unique flows under a given situation, the

distribution schemes are worth a thorough examination.

At a first glance, the determination of distribution fractions seems to be com-

plicated since they may be affected by travelers’ merging behavior, the geometry

of the studied merge, traffic capacities, differences between the upstream cells, traf-

fic conditions, and traffic control. Considering part of these factors, both Daganzo

(1995) and Lebacque (1996) provided some suggestions on the distribution fractions:

Lebacque suggested that the distribution fraction of an upstream cell is proportional

to its number of lanes; Daganzo considered that upstream cells bear different priori-

ties and hence introduced parameters for priorities in his distribution fractions. Both

suggestions have their limitations: Lebacque’s distribution scheme is very coarse and

fails under certain situations, while Daganzo’s scheme becomes very complicated for

a merge with three or more upstream links. Moreover, priorities in Daganzo’s distri-

bution scheme vary with flow levels, which seems to be counter intuitive. Therefore,

we devote this study to the better understanding of various distribution schemes in

a merge model, and propose a new distribution scheme which is well-defined, com-

putationally efficient, and capable of capturing the characteristic differences between

different branches of the merge.

In this chapter, we first review the discrete kinematic wave model of merges

and discuss different formulations of the supply-demand method for computing flows

through a merge (Section 3.2). In Section 3.3.2, after discussing existing distribution

schemes, we propose a simple distribution scheme, which incorporates the “fairness”

condition. In this scheme, the distribution fractions are proportional to traffic de-
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mands of upstream cells. This scheme is shown to work well in simulations due to its

many merits: 1) it is capable of capturing the characteristic differences between up-

stream cells (e.g. the speed difference between the upstream freeway and on-ramps);

2) it is easy to calibrate because additional parameters such as priorities do not need

to be explicitly introduced; and 3) it is computationally efficient. In Section 3.4, we

present an example of two merging flows and demonstrate in numerical simulations

that the discrete kinematic wave merge model incorporating the “fairness” condition

is well-defined and converges in first order. In the conclusion part, we present the

supply-demand method for computing flows through a diverge and a general junction

for single-commodity traffic flow, and discuss related future research.

3.2 The discrete kinematic wave model of merges

with the supply-demand method

In the kinematic wave traffic flow model of a road network with a merge, the LWR

model can be used to describe traffic dynamics of each branch, for which flows through

the merge can be considered as boundary conditions. Thus, in this section, we

first review the discrete LWR model, the definitions of supply and demand, and the

supply-demand method for computing flows through link boundaries. After reviewing

the models of merges under the supply-demand framework by Daganzo (1995) and

Lebacque (1996), we then demonstrate the importance of distribution schemes. At

the end of this section, we will discuss the properties of existing distribution schemes.
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3.2.1 The discrete LWR model in the supply-demand frame-

work

In the LWR model for each branch of a merge, traffic dynamics are governed by a

traffic conservation equation,

ρt + qx = 0, (3.1)

and an equilibrium relationship between ρ and q, also known as the fundamental

diagram,

q = Q(a, ρ), (3.2)

where a(x) is an inhomogeneity factor, depending on road characteristics, e.g., the

number of lanes at x. Since q = ρv, we also have a speed-density relation: v =

V (a, ρ) ≡ Q(a, ρ)/ρ. For vehicular traffic, generally, v is non-increasing and q is

concave in ρ. Examples of empirical models of speed- and flow-density relations can

be found in (Newell, 1993; Kerner and Konhäuser, 1994). Related to the fundamental

diagram, the following definitions are used in this chapter: the maximum flow-rate

at x is called the traffic capacity, and the corresponding density is called the critical

density; traffic flow is overcritical when its density is higher than the critical density,

and under-critical conversely.

From Equation 3.1 and Equation 3.2, the LWR model can be written as

ρt + Q(a, ρ)x = 0, (3.3)

where 0 ≤ ρ ≤ ρj (ρj is the jam density). When a(x) is uniform with respect to

location x, the LWR model is called homogeneous. Otherwise it is called inhomoge-

neous. Both the homogeneous and inhomogeneous models are hyperbolic systems of

conservation laws. Actually the former, which is a strict hyperbolic conservation law
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(Lax, 1972), is a special case of the latter, a non-strictly hyperbolic system of conser-

vation laws and a resonant nonlinear system (Isaacson and Temple, 1992). Therefore,

the following discussions for the inhomogeneous LWR model are valid for any kind of

links.

With jump initial conditions, the LWR model Equation 3.3 is solved by shock

waves, expansion waves, and standing waves. These wave solutions are unique under

the so-called “entropy” conditions. However, solutions of the LWR model with general

initial and boundary conditions can not be expressed in analytical form, which calls

for approximate solutions with numerical methods. One efficient numerical method

for solving Equation 3.3 is due to Godunov (1959). In the Godunov method, the link

is partitioned into N cells, a duration of time is discretized into M time steps, and

the discretization of space and time satisfies the Courant-Friedrichs-Lewy (Courant

et al., 1928) (CFL) condition so that a vehicle is not allowed to cross a cell during a

time interval. Assuming that the spacing ∆x and the time step ∆t are constant, ρm
i

is the average of ρ in the cell i at time step m, q
m+1/2
i−1/2 and q

m+1/2
i+1/2 are the inflow into

and the outflow from cell i from time step m to m + 1 respectively, the LWR model

Equation 3.3 for cell i can be approximated with a finite difference equation:

ρm+1
i − ρm

i

∆t
+

q
m+1/2
i−1/2 − q

m+1/2
i+1/2

∆x
= 0. (3.4)

In Equation 3.4, the flow through the link boundary xi−1/2, i.e., q
m+1/2
i−1/2 , can be

computed in two approaches. One is from the wave solutions of the Riemann problem

for Equation 3.3 with the following initial conditions (Jin and Zhang, 2003b):

U(x = xi−1/2, t = tm) =







Um
i−1 x < xi−1/2

Um
i x > xi−1/2

, (3.5)

where U = (a, ρ). Another is the supply-demand method (Daganzo, 1995a; Lebacque,

1996), in which the flow through a link boundary is the minimum of the traffic demand
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of its upstream cell and the traffic supply of its downstream cell. The two approaches

were shown to be equivalent (Jin and Zhang, 2003b). However, the method of solving

the Riemann problem and the supply-demand method have different fates for studying

traffic dynamics through a merge: there has been no formulation of the Riemann

problem for merging dynamics in literature, but the supply-demand method has been

extended and applied in the discrete kinematic wave models of merges.

In the following, we describe in detail the supply-demand method. Considering

the link boundary at xi−1/2, whose upstream and downstream cells are respectively

denoted by cell i − 1 and cell i, supposing that the traffic densities of the two cells

are ρm
i−1 and ρm

i at time step m, Daganzo (1995) and Lebacque (1996) suggested the

following supply-demand method for computing q
m+1/2
i−1/2 . First, traffic demand of the

cell i − 1 (called “sending flow” by Daganzo), D
m+1/2
i−1 , and traffic supply of the cell

i (called “receiving flow” by Daganzo), S
m+1/2
i , are defined by

D
m+1/2
i−1 =







Qm
i−1, cell i − 1 is under-critical,

Qmax
i−1 , otherwise;

(3.6)

S
m+1/2
i =







Qmax
i , cell i is under-critical,

Qm
i , otherwise;

(3.7)

where Qmax
i is the capacity of cell i, and Qm

i the flow-rate of cell i at time step m.

The demand can be considered as the maximum flow that can be discharged by the

cell i − 1 from time step m to m + 1; the supply S
m+1/2
i is the maximum flow that

can be received by the cell i. Thus, the boundary flow satisfies (all superscripts will

be suppressed hereafter)

qi−1/2 ≤ Di−1,

qi−1/2 ≤ Si.
(3.8)

Note that Equation 3.8 admits multiple solutions. To identify the unique boundary

flow, an additional “optimality” condition, that the actual boundary flow always
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reaches its maximum, is assumed. Hence, the boundary flow can be simply computed

by

qi−1/2 = min{Di−1, Si}. (3.9)

Here the “optimality” condition can be considered as an entropy condition, which

helps to choose a physical solution out of all feasible solutions.

3.2.2 The kinematic wave model of merging traffic in the

supply-demand framework

In this subsection, we review the kinematic wave model of merging traffic in the

supply-demand framework. In this type of models, the supply-demand method is

used to compute flows through a merge. Without loss of generality, we consider

a merge that connects two upstream cells to one down stream cell. Furthermore,

we assume that, at time step m, traffic demands of the two upstream cells and the

traffic supply of the downstream cell are D1, D2, and Sd respectively. We denote the

outflows from the upstream cells by q1 and q2 and the inflow into the downstream

cell by q from time step m to m+1. Then, according to traffic conservation, we have

q = q1 + q2.

The basic assumption in the supply-demand method for computing the flows

through a merge is that the flows, q1, q2, and q, are determined by traffic conditions

D1, D2, Sd, and/or other characteristics of the merge. Another assumption, as in

the supply-demand method for computing the flow through a link boundary, is the

optimality condition. Two types of optimality conditions have been proposed: one is

that the total flow q reaches its maximum, and the other is that both q1 and q2 reaches

their individual maximums. Following the first assumption leads to Daganzo’s merge

model (1995), and following the second leads to Lebacque’s (1996).
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In Daganzo’s supply-demand method, we have the following optimization prob-

lem:

max q = q1 + q2

s.t.

q1 ≤ D1,

q2 ≤ D2,

q1 + q2 ≤ Sd,

q1, q2 ≥ 0,

(3.10)

from which we can find the total flow,

q = min{D1 + D2, Sd}.

However, (q1, q2) may have multiple feasible solutions. This can be shown with Figure

3.1: when Sd ≥ D1+D2, the solution is unique and at point Q; i.e., (q1, q2) = (D1, D2);

but when Sd < D1+D2, the solution can be any point on the line segment AB. For the

latter situation, Daganzo defined two (non-negative) distribution fractions α1 and α2,

which satisfy α1 +α2 = 1 and may be related to D1, D2, Sd, and other characteristics

of the merge. Then, the total flow q is distributed by qi = αiq (i = 1, 2). One example

when Sd < D1 + D2 is depicted in the figure, with given fractions α1 and α2. Figure

3.1 also shows that α1 or α2 are restricted by D1, D2, and Sd. For instance, for Sd

given in the figure, α1 can not be 1.

Lebacque suggested another supply-demand method: the supply of the down-

stream cell is first distributed to the two upstream cells with two fractions α1 and α2,

and it is assumed that the flows q1 and q2 reaches their individual maximums. i.e.,

we can compute the flow qi (i = 1, 2) as the following:

Si = αiSd,

qi = min{Di, Si}.
(3.11)
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Figure 3.1: Feasible solutions in Daganzo’s supply-demand method

The feasible solutions of Lebacque’s method without fixed fractions are shown in

Figure 3.2. As shown, in this model, when Sd ≥ D1 +D2, (q1, q2) can be any point on

D1BQAD2; when Sd < D1+D2, (q1, q2) can be any point on D1BAD2. In Lebacque’s

formulation, therefore, α1 and α2 are not restricted by D1, D2, or Sd, and the total

flow q may not reach its maximum min{D1 + D2, Sd} in this method.

Comparing Daganzo’s and Lebacque’s methods, we can see that: 1) when the frac-

tions are the same, the two methods give the same flows; 2) for given D1, D2, and Sd,

the feasible solution domain of Daganzo’s method is contained by that of Lebacque’s
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Figure 3.2: Feasible solutions in Lebacque’s supply-demand method

since the distribution fractions in Daganzo’s method (but not in Lebacque’s) are

confined by the supplies and the demand.

From the above analysis, we can see that both Daganzo’s and Lebacque’s models

in the supply-demand framework are based on reasonable assumptions, and Lebacque’s

method Equation 3.11 yields a larger set of feasible solutions than Daganzo’s. In

addition, we think that both formulations are clear and general enough to contain

physical solutions. Thus, in this chapter, we do not intend to investigate further the

formulations. Instead, we are interested in the distribution schemes used in these
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models.

The reasons why distribution schemes are worth further, deeper discussions are

as follows. First, we can see from Figure 3.1 and Figure 3.2 that distribution schemes

play a key role in uniquely determining flows through a merge. Thus whether solutions

of flows are physical is highly dependent on the distribution scheme used. Therefore,

in order to apply these models to simulate traffic dynamics at a merge, we need a

better understanding of their distribution schemes. Second, the distribution fractions

can be affected by travelers’ merging behaviors, the geometry of a merge, differences

between the upstream cells, traffic conditions, and possible control strategies imposed

on an on-ramp. On the surface, a distribution scheme that models all these factors

may be extremely complicated. A closer look at various distribution schemes is needed

to find a simple yet physically meaningful one. Third, it is possible that many valid

distribution schemes are available. When this happens, a distribution scheme that is

easy to calibrate and computationally efficient is always preferred.

3.3 Investigation of various distribution schemes

In this section, we take a closer look at various distribution schemes and see how their

distribution fractions are affected by traffic conditions, i.e., D1, D2, and Sd, and other

characteristics of a merge. We start with a review and a discussion on the existing

distribution schemes of Daganzo and Lebacque, then propose a simple distribution

scheme and demonstrate that the supply-demand method incorporating this scheme

is capable of addressing all factors that we concern about.
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3.3.1 Discussion of existing distribution schemes

As we know, different types of links have different characteristics. As a result, even

when an upstream highway and an on-ramp have the same number of lanes and

traffic density, the downstream link usually receives more vehicles from the upstream

highway than from the on-ramp due to differences in design speeds and geometry. For

example, when vehicles queues up on both a L-lane highway and 1-lane on-ramp that

merge together, the ratio of flow from the on-ramp to that from the highway is about

1/(2L − 1) (Daganzo, 1996). From these observations, Daganzo (1995a) suggested

that different upstream links bear different priorities and proposed a distribution

scheme including parameters for priorities.

Figure 3.3 shows how Daganzo’s distribution scheme is defined. In the figure, the

priorities of the highway and the on-ramp are denoted as p1 and p2 (p1 + p2 = 1),

respectively. Here the upstream link u1 is assumed to have higher priority than u2;

i.e., p1/p2 > D1/D2. Then the solution (q1, q2) can be shown to be one of three

cases: i) when Sd ≤ D1/p1; i.e., Sd is x- and y-intercept of line i, the solution

(q1, q2) = (p1Sd, p2Sd) is at point 1; ii) when Sd ∈ (D1/p1, D1 + D2); i.e., Sd is the

x- and y- intercept of line ii, the solution (q1, q2) = (D1, Sd − D1) is at point 2;

iii) when Sd ≥ D1 + D2; i.e., Sd is the x- and y- intercept of line iii, the solution

(q1, q2) = (D1, D2) is at point 3.

Thus in Daganzo’s distribution scheme, we can find that the fraction α1 is defined

as

α1 =



















p1, Sd ≤ D1/p1,

D1

Sd
, D1/p1 < Sd ≤ D1 + D2,

D1

D1+D2
, Sd > D1 + D2;

(3.12)

and α2 = 1−α1. From this definition and Figure 3.3, we can see that the priorities p1

and p2 have to satisfy p2/p1 < D2/D1. i.e., they have to change with respect to traf-
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Figure 3.3: Solutions of flows in Daganzo’s distribution scheme

fic conditions D2 and D1. Therefore, such “priorities” are not uniquely determined

by road characteristics, as one would expect. This property makes this distribution

scheme less attractive. Moreover, even we allow non-constant priorities, the distribu-

tion scheme with fractions defined in Equation 3.12 becomes quite complicated when

considering a merge with more than two upstream links.

Lebacque (1996) suggested another distribution scheme, in which αi equals to the

ratio of the number of lanes of link ui to that of link d. When all branches of a merge

are highways with the same characteristics, and the traffic conditions of upstream
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links are overcritical, the demand of each upstream link is equal to its lane capacity

times the number of lanes. In this case, it is reasonable that outflow from each

upstream link is proportional to the number of lanes; i.e., the distribution scheme

by Lebacque works well. However, when the upstream links are not similar, e.g.,

one is highway and the other on-ramp, the fractions are obviously not proportional

to the number of lanes. Lebacque’s distribution scheme fails in another case when

α1 + α2 > 1 and Si ≤ Di, because it may yield invalid solutions of q = q1 + q2 > Sd.

3.3.2 A simple distribution scheme and its interpretation

Our above analysis has revealed certain drawbacks of the existing distribution schemes,

here we propose a simple distribution scheme, which, as we will see later, removes

these drawbacks yet is capable of capturing characteristics of a merge. In this dis-

tribution scheme, the distribution fractions are only related to the demands D1 and

D2, as defined in Equation 3.13.

α1 = D1

D1+D2
,

α2 = D2

D1+D2
.

(3.13)

As shown in Figure 3.4, combining the distribution scheme Equation 3.13 with models

Equation 3.10 or Equation 3.11, we are able to uniquely determine the flows: the

solution (q1, q2) with this distribution scheme is simply the intersection of q1+q2 = Sd

and q1/q2 = D1/D2 when D1 + D2 ≥ Sd, and the point Q otherwise.

A distribution scheme is in fact equivalent to an additional entropy condition,

which helps identify q1 and q2. Thus we also call the distribution scheme Equation

3.13 the “fairness” condition, because the distribution fractions are proportional to

traffic demands of upstream links; i.e., the upstream cell with more “sending” flow

is given more chances. This “fairness” condition, to some extent, is supported by
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Figure 3.4: Solutions of flows in the simple distribution scheme

observations at crowded merges, e.g., vehicles from an on-ramp generally wait until

there is a big enough gap to merge when traffic is fluid. When many vehicles from the

on-ramp cannot merge and queue up, they may squeeze in and force vehicles from

the upstream mainline freeway to slow down or switch lanes to give way to them

(Kita, 1999). These observations show that vehicles from the upstream cells compete

“fairly” with each other for admission into the downstream cell.

From Equation 3.13, we can see that the distribution scheme is not directly related

to capacities, number of lanes, the difference between upstream links, or control of
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on-ramps. Thus we can say that this distribution scheme uses the fewest parameters.

Therefore, it will be easy to calibrate and efficient to compute. Indeed, it is the

simplest distribution scheme that we can have. Besides, note that the fractions are

independent of the downstream traffic supply Sd, although the flows are related to

Sd. As a mathematical exercise, the following theorem shows the fractions in this

scheme are in fact the only fractions that are independent of Sd.

Theorem 3.3.1 Suppose that the fractions α1 and α2 are independent of the down-

stream supply Sd, then the fractions will be as in Equation 3.13.

Proof. We have q1 = α1q and q2 = α2q. From Equation 3.11, we then obtain

α1q ≤ D1, (3.14)

α2q ≤ D2. (3.15)

Since α1 and α2 are independent of Sd, set Sd = D1 + D2, we obtain q = D1 + D2.

Thus, both Equation 3.14 and Equation 3.15 have to take the “=” sign, and we have

Equation 3.13. �

On the other hand, characteristics of a merge can be indirectly captured in the

simplest distribution scheme Equation 3.13 since capacities, number of lanes, design

speeds, and on-ramp control can be included in the definition of traffic demands,

Equation 3.6. For example, when upstream links have the same per lane capacity and

are congested, Equation 3.13 will give fractions proportional to the number of lanes.

Thus this distribution scheme coincides with Lebacque’s scheme based on the number

of lanes. As to Daganzo’s “priorities”, they are embedded in the simple distribution

scheme as follows: when the freeway and the on-ramp have the same number of lanes

and density, the freeway generally admits higher free flow speed, has higher flow-rate

and higher demand, and therefore has larger outflow that reflects its higher priority.
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In addition, the resultant supply-demand method can be applied to determine flows

through a merge with a controlled on-ramp (Daganzo, 1995a): when the metering rate

of the on-ramp, whose real traffic demand is D2, is r, we can apply the controlled

traffic demand of the on-ramp min{r, D2} in the supply-demand method. Therefore,

although the distribution scheme plays “fairly”, the resultant supply-demand method

of merges can address the characteristics of a merge by incorporating them into the

computation of traffic demands and traffic supply.

From discussions above we can see that, in this simple distribution scheme, char-

acteristics of upstream links, the control of on-ramps, and other properties of a merge

are captured in the definitions of demand and supply. This is why distribution frac-

tions depends only on demands in this scheme. Although demand functions of up-

stream cells are related to many factors and may not be easily obtained, they have

to be found in all supply-demand methods. In this sense, the simple distribution

scheme and, therefore, the supply-demand method with this scheme, are the easiest

to calibrate and the most computationally efficient.

3.3.3 Properties of the discrete kinematic wave model of

merges with the simplest distribution scheme

With the distribution scheme Equation 3.13, the supply-demand method has the

following further properties:

Equivalence of models by Daganzo and Lebacque: With the distribution scheme

Equation 3.13, as shown in Figure 3.4, the solution (q1, q2) will be on the line

segment OQ. We can see that Daganzo’s model Equation 3.10 and Lebacque’s

modelEquation 3.11 are equivalent with these fractions. Both yield the following
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fluxes through the merge:

q = min{D1 + D2, Sd},

q1 = q · D1

D1+D2
,

q2 = q · D2

D1+D2
.

(3.16)

Extensibility: The supply-demand method incorporating the simplest distribution

scheme produces qualitatively similar results for merges with different number of

upstream links. When a merge has U > 2 upstream links, the method Equation

3.16 can be easily extended as

q = min{
∑U

i=1 Di, Sd},

qi = q Di∑U
i=1

Di
, i = 1, · · · , U.

(3.17)

Convergence of the merge model: The discrete LWR model is considered as a

good approximation to the continuous LWR model since it converges as ∆x →

0 while ∆x/∆t is constant. Although analytical convergence analysis of the

merge model with the simplest distribution scheme has not yet been performed,

numerical results in section 3.2 do show that it is convergent in the L1 norm.

Consistency of the merge model with the LWR model: Here we conceptually

consider the consistency of the merge model Equation 3.16 with the LWR model

for a link with multiple lanes. In the LWR model for a multi-lane link, all lanes

are assumed to be identical; i.e., given the same initial and boundary condi-

tions for each lane, flows at the same location on each lane are identical and

the link’s flow-rate or density at a location is simply the number of lanes times

the flow-rate or density at the location of each lane, respectively. i.e., the LWR

model does not model lane-changing and traffic in different lanes is treated as

the same. Therefore a multi-lane link can be considered as an artificial merge:
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for a boundary inside the link, we separate its upstream part into two links with

identical flow characteristics, while keep the downstream part intact. Next we

check if traffic dynamics of this artificial merge is indeed the same as those of

the original link. Assuming the two upstream links of the artificial merge have

N and M lanes, respectively, traffic demand of each lane is D, and traffic sup-

ply of the downstream link is Sd. Since the lanes are identical in the upstream

links, traffic demands for the upstream links are D1 = ND, D2 = MD; from

Equation 3.16, we have

q = min{(N + M)D, Sd},

q1 = q
N

N + M
,

q2 = q
M

N + M
.

Hence, as expected, flow from each upstream lane is min{D, Sd/(N+M)}, which

is the same as the original boundary flow computed from the LWR model.

The above analyses indicate that the merge model with the simplest distribu-

tion scheme is well-defined and qualitatively sound, although the ultimate test of its

validity rests on empirical validation.

3.4 Numerical simulations

In this section, we present our numerical studies of the discrete kinematic wave model

of merges using the simple distribution scheme. Here we apply Godunov’s method

discussed in Subsection 3.2.1 for each link, and the supply-demand method is used to

find flows through link boundaries and merging boundaries. In particular, the simple

distribution scheme is used for computing fluxes through the merge. The resulted

numerical solution method is described as follows: in each cell, Equation 3.4 is used
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to update traffic density; we compute flows through link boundaries with Equation

3.9; flows through a merge are computed from Equation 3.17.

In the numerical studies, we introduce a unit time τ = 5 s and a unit length l =

0.028 km. Here we study a merge formed by a two-lane mainline freeway and a one-

lane on-ramp. The three branches of the merge have the same length, L = 400l = 11.2

km. The upstream mainline freeway, the on-ramp, and the downstream mainline

freeway are labeled as links u1, u2, and d, respectively. The simulation starts from

t = 0 and ends at t = 500τ = 41.7 min. In the following numerical simulations, we

partition each link into N cells and the time interval into K steps, with N/K = 1/10

always; e.g., if N = 50 and K = 500, the cell length is ∆x = 8l and the length of

each time step ∆t = 1τ .

For both the mainline freeway and the on-ramp, we use the triangular funda-

mental diagram; i.e., the flow-density relationships are triangular. For the main-

line freeway, the free flow speed is vf,m =65 mph=5.1877 l/τ ; the jam density is

ρj,m = 2ρj=360 veh/km, where ρj=180 veh/km/lane is the jam density of a single

lane; and the critical density ρc,m = 0.2ρj,m = 0.4ρj=72 veh/km. Therefore, the

speed- and flow-density relationships can be written as follows:

Vm(ρ) =







vf,m, 0 ≤ ρ ≤ ρc,m;

ρc,m

ρj,m−ρc,m

ρj,m−ρ

ρ
vf,m, ρc,m < ρ ≤ ρj,m.

Qm(ρ) = ρVm(ρ) =







vf,mρ, 0 ≤ ρ ≤ ρc,m;

ρc,m

ρj,m−ρc,m
vf,m(ρj,m − ρ), ρc,m < ρ ≤ ρj,m.

For the on-ramp, the free flow speed vf,r =35 mph=2.7934 l/τ ; the jam density is ρj;

and the critical density ρc,r = 0.2ρj. Similarly, we can have the following speed- and

flow-density relationships:

Vr(ρ) =







vf,r, 0 ≤ ρ ≤ ρc,r;

ρc,r

ρj−ρc,r

ρj−ρ

ρ
vf,r, ρc,r < ρ ≤ ρj.
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Figure 3.5: The triangular fundamental diagrams for the mainline freeway and the

on-ramp

Qr(ρ) = ρVr(ρ) =







vf,rρ, 0 ≤ ρ ≤ ρc,r;

ρc,r

ρj−ρc,r
vf,r(ρj − ρ), ρc,r < ρ ≤ ρj.

The above relationships are depicted in Figure 3.5.

Since |λ∗,m| ≤ vf,m = 5.1877l/τ , where λ∗,m(ρ) = Vm(ρ) + ρV ′
m(ρ) is the char-

acteristic speed of Equation 3.3 on the mainline freeway, we find the CFL (Courant

et al., 1928) condition number

|λ∗,m|
∆t

∆x
≤ 0.65 < 1.
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Since the characteristic speed on the on-ramp is smaller than that on the mainline

freeway, the CFL condition is also satisfied for the on-ramp.

3.4.1 Simulation of merging traffic without control

In this subsection, we study the following merging traffic. Initially, the mainline

freeway carries a constant flow: traffic densities on the upstream and downstream

freeway are the same, ρu1
= ρu2

= 0.36ρj, which is under-critical. After time t = 0,

a constant flow with density ρu2
= 0.175ρj arrives at the on-ramp, and the on-ramp

remains uncontrolled. In our simulation, the Riemann boundary condition is imposed

for the upstream boundaries of link u1 and u2 and the downstream boundary of link

d; i.e. the spatial derivatives of traffic density at these boundaries are assumed to be

zero.

After partitioning each of the three links into N = 500 cells and discretizing the

time duration into K = 5000 steps, we obtain simulation results as shown in Figure

3.6. Figure 6(a) illustrates the evolution of traffic density on the freeway upstream

of the merge: at time t = 0τ , traffic density is uniformly at ρA = 0.36ρj; after the

arrival of the on-ramp flow, freeway traffic immediately upstream of the merging

point2 becomes congested and reaches a new state ρB = 0.7394ρj; then a shock wave

forms and travels upstream in a constant speed s1 ≈ −0.61lτ = −7.6 mph. Figure

6(b) shows the evolution of traffic on the freeway downstream of the merge: initially,

traffic density is also uniformly at ρA. After t = 0, traffic immediately downstream of

the merging point reaches capacity flow at density ρC = 0.4ρj, and a contact wave3

appears since ρC and ρA are both on the free-flow side of the triangular fundamental

2Traffic density at the merging point is multiple-valued.
3A contact wave is a flow/density discontinuity traveling at the same speed of traffic on both

sides of it.
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diagram. It travels downstream at the speed s2 = 5.2l/τ = vf,m. Figure 6(c) shows

that a backward shock wave also forms on the on-ramp: traffic upstream of the shock

has density ρD = 0.175ρj and downstream of the shock density ρE = 0.3697ρj. This

shock travels at s3 ≈ −0.25l/τ = −3.1 mph. The shock waves and the contact wave

observed on the three branches are shown in Figure 6(d) on the ρ− q plane, in which

line AB represents the shock wave on the freeway upstream of the merge and the

slope of AB is its speed; line CA represents the contact wave on on the freeway

downstream of the merge and its travel speed is the slope of CA, which is also the

free flow speed; finally line DE represents the shock wave on the on-ramp and the

slope of DE is its travel speed.

Comparing the congested states on the upstream freeway (point B in Figure

3.6(d) ) and that on the on-ramp (point E in Figure 3.6(d)), we have the following

observations: 1) the ratio of the outflows from the upstream branches (freeway: qB =

1.6349ρjl/τ=5933 veh/hr and on-ramp: qE = 0.4402ρjl/τ=1597 veh/hr) are not

proportional to the lane ratio, owing to the different geometric and flow characteristics

of the two upstream branches, as reflected in their respective fundamental diagrams

and 2). as long as the freeway downstream of the merge is not congested, and the

total demand is greater than the total supply at the merging point, traffic states

surrounding the merge, ρB, ρE, and ρC , are constant (i.e., stationary) states regardless

of the initial traffic conditions. This unique characteristics of the merge model with

our suggested distribution scheme offers a way to validate the model and the fairness

assumption.



CHAPTER 3. MERGING TRAFFIC MODEL 76

0 100 200 300 400
0.3

0.4

0.5

0.6

0.7

0.8

x/l

ρ u
1
/ρ

j

(a)

500τ

400τ

300τ

200τ

100τ

0τ
ρ

A

ρ
B

s
1

0 100 200 300 400
0.1

0.2

0.3

0.4

0.5

0.6

x/l

ρ u
2
/ρ

j

(c)

500τ
400τ

300τ

200τ
100τ

0τ
ρ

D

ρ
E

s
3

400 500 600 700 800
0.35

0.36

0.37

0.38

0.39

0.4

0.41

x/l

ρ d
/ρ

j

(b)

75τ50τ25τ

0τ
ρ

A

ρ
C

s
2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

ρ / ρ
j

q
 /
 (

ρ j l
 /
 τ

)

(d)

C 

A 
B 

D E 

Q
m

(ρ) 

Q
r
(ρ) 

Figure 3.6: Simulation of merging traffic without control

3.4.2 Simulation of merging traffic when the on-ramp is con-

trolled

In this subsection, we have the same initial/boundary conditions as in the preceding

subsection, but with the on-ramp controlled by a ramp meter. For simplicity we take

a constant metering rate r = 0.3445ρjl/τ=1250 veh/hr. The simulation results are

shown in Figure 3.7. From Figure 3.7(a), we can see that a backward traveling shock

wave forms on the freeway upstream of the merge, traveling at s1 ≈ −0.33l/τ = −4.1

mph. Traffic densities besides the shock are ρA = 0.36ρj (upstream) and ρB =



CHAPTER 3. MERGING TRAFFIC MODEL 77

0 100 200 300 400
0.3

0.4

0.5

0.6

0.7

0.8

x/l

ρ u
1
/ρ

j

(a)

500τ

400τ

300τ

200τ

100τ

0τ
ρ

A

ρ
B

s
1

0 100 200 300 400
0.1

0.2

0.3

0.4

0.5

0.6

x/l

ρ u
2
/ρ

j

(c)

500τ

400τ

300τ

200τ

100τ

0τ
ρ

D

ρ
E

s
3

400 500 600 700 800
0.35

0.36

0.37

0.38

0.39

0.4

0.41

x/l

ρ d
/ρ

j

(b)

75τ50τ25τ

0τ
ρ

A

ρ
C

s
2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

ρ / ρ
j

q
 /
 (

ρ j l
 /
 τ

)

(d)

A 

C 

B 

D 
E 

r = 0.34447 

Q
m

(ρ) 

Q
r
(ρ) 

Figure 3.7: Simulation of merging traffic with on-ramp control

0.6278ρj (downstream), respectively. Figure 3.7(b) shows the evolution of traffic on

the freeway downstream of the merge, which is identical to the case without ramp

control. From Figure 3.7(c), we can see that a backward traveling shock wave also

forms on the on-ramp, traveling at s3 ≈ −0.48l/τ = −6.0 mph. On the ramp,

traffic densities besides the shock are ρD = 0.175ρj (upstream) and ρE = 0.577ρj

(downstream), respectively. Again, Figure 3.7(d) shows the the initial and congested

states in the ρ − q plane.

We note that with ramp control, the freeway upstream of the merge becomes less
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congested (ρB is lower) while the on-ramp becomes more congested (ρE is higher).

Furthermore, the freeway queue grows slower while the ramp queue grows faster with

ramp control than without. Finally, the ramp control also affects the stationary states

(ρB, ρC , ρE) and the distribution fractions, in favor of discharging higher flow from

the freeway.

3.4.3 Computation of convergence rates

In this subsection we will check the convergence of the merge model with the distri-

bution scheme Equation 3.13, when the on-ramp is not controlled. Here, this is done

by computing convergence rates of traffic density over the whole network.

First, we compare traffic density solutions at time T0 = 500τ for two different

number of cells into which the network is partitioned and obtain their difference.

Denote solutions as (U2N
i )2N

i=1 for 2N cells and (UN
i )N

i=1 for N cells respectively, and

define a difference vector (e2N−N)N
i=1 between these two solutions as

e2N−N
i =

1

2
(U2N

2i−1 + U2N
2i ) − UN

i , i = 1, · · · , N. (3.18)

Then, the relative error with respect to L1-, L2- or L∞-norm can be computed as

ǫ2N−N = ‖ e2N−N ‖. (3.19)

Finally, a convergence rate is obtained when we compare two relative errors:

r = log2(
ǫ2N−N

ǫ4N−2N
). (3.20)

Here the vector of U contains the densities of all three links which are weighted by

the number of lanes of each link.

We will compute convergence rate with the following conditions. For link u1, the
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number of lanes a(u1) = 2, we define its initial condition as

ρ(x, 0) = a(u1)(0.18 + 0.05 sin πx
L

)ρj, x ∈ [0, L],

v(x, 0) = Vm(ρ(x, 0)), x ∈ [0, L].
(3.21)

For link u2, the number of lanes a(u2) = 1, we define its initial condition as

ρ(x, 0) = a(u2)(0.175 + 0.05 sin 2πx
L

)ρj, x ∈ [0, L],

v(x, 0) = Vr(ρ(x, 0)), x ∈ [0, L].
(3.22)

For link d, the number of lanes a(d) = 2, we define its initial condition as

ρ(x, 0) = a(d)(0.18 − 0.05 sin πx
L

)ρj, x ∈ [L, 2L],

v(x, 0) = Vm(ρ(x, 0)), x ∈ [L, 2L].
(3.23)

In addition, we impose the Riemann boundary condition for the upstream boundaries

of link u1 and u2 and the downstream boundary of link d; i.e., ρ has zero derivative

at these boundaries.

From Table 3.1, convergence rates of the merge model with the simple distribution

scheme are of order one in L1 norm. The convergence rate is of order one is expected

because the Godunov method used here is a first-order method, in which traffic density

on a link is approximated by piece-wise constant functions. Unlike the Godunov

discretization of the LWR model, which we know is convergent to the LWR model,

we do not yet know what differential equations the discrete model converges to.

Nevertheless, the numerical convergence analysis gives us comfort in applying the

discrete merge model in the sense that we know the properties of the computed

solutions will not change over discretization scales.

3.5 Discussions

In this chapter, we studied the discrete kinematic wave model of merges in the

supply-demand framework, probed the supply-demand merge models by Daganzo
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ρ/ρj 128-64 Rate 256-128 Rate 512-256 Rate 1024-512

L1 3.31e-03 1.00 1.65e-03 1.00 8.27e-04 1.00 4.13e-04

Table 3.1: Convergence rates of the discrete merge model

and Lebacque, and gained a better understanding of various distribution schemes

in merge models. More importantly, we proposed the simplest distribution scheme,

equivalent to the so-called “fairness” condition, in which the distribution fractions

are proportional to the upstream demands. We demonstrated with both analytical

discussions and numerical studies that the discrete merge model with the simplest

distribution scheme is well-defined.

The simple distribution scheme can also be easily extended to diverges in single-

commodity traffic flow. In reality, a diverge is not simply a reverse of a merge: in

a merge, vehicles advance in the same direction and once they travel into the down-

stream link, their origins no longer affect traffic dynamics; while in a diverge, traffic

dynamics in the upstream link are affected by the combination of vehicles with differ-

ent destinations. However, for single-commodity traffic flows, in which vehicles have

no predefined routes and can choose any downstream links when diverging, we can

have similar supply-demand method for computing fluxes through a diverge: assum-

ing that a diverge has K downstream links, the upstream link and the downstream

links are properly discretized, the traffic demand of the upstream link is Du, and traf-

fic supply of downstream link di (i = 1, · · · , K) is Si, the supply-demand method with

the “fairness” condition, in which the influx into a downstream link is proportional
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to its accommodation Si, can be written as:

q = min{Du,
∑K

i Si},

qi = piq,

pi = Si∑K
i Si

, i = 1, · · · , K,

(3.24)

where qi is influx into the downstream link di.

Further, for a general junction with J upstream links and K downstream links,

we can compute fluxes as

q = min{
∑J

j=1 Dj,
∑K

k=1 Sk},

qu
j = αjq,

qd
k = βkq,

αj =
Dj

∑J
j=1

Dj
, j = 1, · · · , J

βk = Sk∑K
k=1

Sk
, k = 1, · · · , K,

(3.25)

where Dj is the traffic demand of the upstream link uj, Sk is the traffic supply of the

downstream link dk, qu
j is the out-flux from uj, and qd

k the influx into dk. Although

this model may not be proper for realistic traffic flow, it could be helpful for the study

of other unidirectional flows.

With a complete picture of the merge model, we can now simulate how a traffic

disturbance propagates through a merge. In particular, since merges are well rec-

ognized as locations where congestion often initiates (Daganzo, 1999b), this study

will help traffic engineers understand how congestion start and propagate at a merge.

Moreover, with the complete discrete kinematic wave merge model, we are able to

develop and evaluate local ramp metering strategies, e.g., the ALINEA algorithm

(Papageorgiou et al., 1997). In the future, we will be also interested in the limit of

the discrete kinematic wave model with the simple distribution scheme. In particu-

lar, we will be interested in kinematic wave solutions for a general Riemann problem
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of this model. Finally, and more importantly, the supply-demand method and the

“fairness” condition needs to be checked against observed merging phenomena.



Chapter 4

Kinematic wave traffic flow model

of diverging traffic

4.1 Introduction

Diverges have been well recognized as a major type of bottlenecks (Daganzo, 1999b;

Daganzo et al., 1999), where congestion of one downstream branch can propagate

to the upstream branch and further blocks vehicles traveling to other directions.

Observations of diverging traffic (Muñoz and Daganzo, 2002, 2003) have shown that

vehicles to different downstream branches tend to segregate themselves at a point,

called the actual diverging point, as far as 2 km upstream of the physical diverging

point. In addition, traffic upstream of the actual diverging point is in the so-called

“1-pipe” regime in the sense that vehicles that appear at the same time and location

have the same speed even they have different destinations; while between the actual

and physical diverging points traffic is in a “2-pipe” regime, since vehicles to different

directions are separated and travel independently. In certain cases, however, the

actual and physical diverging points may be the same (Newell, 1999). Although it is

83
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an interesting problem to determine the location of an actual diverging point, here

we only intend to study traffic dynamics at an actual diverging point or simply a

highway diverge; i.e., we want to know, under certain traffic conditions, how much

traffic will flow into each downstream branch.

Due to its simplicity in representation and efficiency in computation, the kine-

matic wave theory developed by (Lighthill and Whitham, 1955b; Richards, 1956) has

played an important role in understanding traffic dynamics on road networks. In the

framework of the kinematic wave theory of diverging traffic, there have been two ma-

jor lines of research in the framework of the kinematic wave theory. In the first line

of research, the effect of diverging traffic to the mainline freeway is incorporated by

considering an off-ramp as a sink (Kuhne and Michalopoulos, 1992). In these models,

only part of the interaction between the diverging traffic and the main highway traf-

fic, i.e., the impact of diverging traffic to the mainline traffic, is taken into account.

In addition, the characteristics of sinks are not trivial to obtain. In contrast, in the

second line of research, the complete dynamics at diverges is studied by treating each

branch equally. When vehicles do not have predefined routes and can choose any

downstream branches at a diverge, Holden and Risebro (1995) determined the flow to

each branch by solving an optimization problem, and Jin and Zhang (2003c) proposed

a distribution scheme based on the definitions of traffic supply and demand. For more

realistic situations when vehicles have predefined route choices, Daganzo (1995a) and

Lebacque (1996) proposed the so-called supply-demand method for computing traffic

flows through a diverge. In this method, each branch is partitioned into a number of

cells and a duration of time is discretized into time steps. Then a diverge connects

an upstream cell and a number of downstream cells, and the flow to a downstream

cell during a time period is assumed to be proportional to the fraction of vehicles in

the upstream cell that wish to travel to this downstream cell. In addition, the flows
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to the downstream cells are assumed to reach their maxima subject to the constraint

of traffic demand of the upstream cell and supplies of the downstream cells.

Although the supply-demand method is quite straightforward in computing flows

through a diverge, it fails to provide a system-wide picture of how a small traffic

perturbation on one branch will propagate through the diverge. That is, it gives

no answer to what kind of kinematic waves will initiate in diverging traffic. In this

chapter, we intend to study the kinematic waves (more specifically, the instantaneous

kinematic waves) at a diverge. In our study, we still partition each branch into a

number of cells and discretize a duration of time into some time steps. Then in a

(short) time step1, we compute the in-flow to a downstream branch by holding traffic

conditions of vehicles to the other destinations constant in the upstream cell and, after

obtaining all flows, update traffic conditions in all the upstream and downstream cells.

We can see that, in this theory, dynamics of traffic traveling to different destinations

are first decoupled during a short time period and then combined together in an

alternating manner. With this decoupling, corresponding to each downstream branch,

we can obtain a hyperbolic system of conservation laws, which is independent of

the systems corresponding to the other downstream branches. To the best of our

knowledge, this decoupling approach in solving complicated dynamics of diverging

traffic is the first of its kind in traffic flow.

Moreover, we will show that the decoupled systems are nonlinear resonant sys-

tems in the sense of Isaacson and Temple (1992) and can be solved by combinations

of shock, rarefaction, and standing waves. Here, these waves are considered instan-

taneous since they only exist in a short time interval, and waves corresponding to

different downstream branches interact with each other at the end of each time inter-

1The length of this “short” time step ∆t, theoretically, can be infinitely small and, practically,

can be obtained through a calibration exercise.
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val. Thus, after a long time, the asymptotic kinematic waves arising from diverging

traffic can be totally different from the instantaneous waves. In this chapter, we will

focus on the instantaneous waves arising from each branch, and the interaction be-

tween these waves and the asymptotic kinematic waves will be further studied in a

following chapter.

The rest of this chapter is organized as follows. In Section 4.2, we first formulate

the kinematic wave theory of diverges in the framework of the LWR model, and

introduce the instantaneous kinematic wave theory for dynamics of diverging traffic.

In Section 4.3, we solve in detail for the instantaneous kinematic waves. In Section

4.4, we present a new definition of traffic demand for diverging vehicles and the

supply-demand method based on this new definition. In Section 4.5, we carry out

simulations of the new model for two cases. In Section 4.6, we make our conclusions

and propose some follow-up research.

4.2 A kinematic wave theory for diverges

As we know, in a traffic stream, traffic dynamics can be affected by characteristics such

as vehicle types and destinations, and drivers’ behavior. Here vehicles of the same

characteristics are considered to belong to a commodity. In this study we are only

interested in the impact of vehicles’ destinations on traffic dynamics at a highway

diverge. Therefore, for a diverge with D downstream branches and one upstream

branch, we can differentiate vehicles into D commodities.

Here we consider an ideal diverge: on the upstream branch, traffic is considered

in 1-pipe regime; once through the diverge, vehicles completely segregate. Therefore,

we have a D-commodity flow on the upstream link and a single-commodity flow on

each downstream link, and traffic dynamics on a road network with a diverge consists
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of three parts: dynamics of the single-commodity flow on each downstream branch,

dynamics of the D-commodity flow on the upstream branch, and dynamics at the

diverge. In the following part, after reviewing the kinematic wave models of single-

commodity and D-commodity traffic, we will focus on the study of traffic dynamics

at the diverge.

4.2.1 The kinematic wave theory of single-commodity traffic

flow

For dynamics of single-commodity traffic, the seminal LWR (Lighthill and Whitham,

1955b; Richards, 1956) kinematic wave theory can be applied. In the LWR model for

traffic flow on a long crowded road, two equations are used to describe traffic dynamics

of aggregate quantities such as traffic density ρ, flow-rate q and travel speed v:

Traffic conservation: ρt + qx = 0, (4.1)

Fundamental diagram: q = Q(a, ρ). (4.2)

In Equation 4.2, a(x) is an inhomogeneity factor depending on road characteristics

such as the number of lanes at x. Since q = ρv, we also have a speed-density relation:

v = V (a, ρ) = Q(a, ρ)/ρ; for vehicular traffic, generally, v is nonincreasing and the

equilibrium flow-density relation is assumed to be concave. From Equation 4.1 and

Equation 4.2, the LWR model can be written as

ρt + Q(a, ρ)x = 0. (4.3)

When the road is homogeneous; i.e., a(x) is constant, the LWR model is called ho-

mogeneous; otherwise, when a(x) is dependent on location, Equation 4.3 is called an

inhomogeneous LWR model.



CHAPTER 4. DIVERGING TRAFFIC MODEL 88

The homogeneous LWR model is nothing but a scalar conservation law and has

been well studied both analytically and numerically. It is solved by combinations

of shock and expansion (rarefaction) waves. In contrast, the inhomogeneous LWR

model Equation 4.3 can be considered as a nonlinear resonant system and has an

additional type of kinematic waves - standing waves, which initiate and stay at the

inhomogeneity (Jin and Zhang, 2003b). Therefore, for a single-commodity flow on a

road branch, traffic dynamics can be considered as the evolution of a combination of

shock, rarefaction, and standing waves.

4.2.2 The kinematic wave theory of multi-commodity traffic

flow

For traffic on the upstream link, it is assumed that vehicles with different destinations

have no differences in dynamics; i.e., the speed-density relation is independent of

commodities. Let ρi(x, t), vi(x, t), and qi(x, t) (i = 1, · · · , D) denote, at place x and

time t, the density, speed, and flow-rate of commodity i, respectively. In contrast,

ρ(x, t), v(x, t), and q(x, t) are the aggregate density, speed, and flow-rate. Then we

have (with (x, t) suppressed hereafter)

ρ =
D

∑

i=1

ρi, (4.4)

v = vi = V (a, ρ), i = 1, · · · , D, (4.5)

q =
D

∑

i=1

qi, (4.6)

where q = ρv, qi = ρivi (i = 1, · · · , D), V (a, ρ) is the aggregate speed-density relation.

We also call this kind of multi-commodity traffic as additive. In additive traffic, the

flow of each commodity is called a partial flow and the flow containing all commodities

the total flow.
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Therefore, in additive traffic, dynamics of each partial flow can be written as

(ρi)t + (ρiV (a, ρ))x = 0, i = 1, · · · , D. (4.7)

Note that these D equations are coupled through the aggregate speed-density relation.

By introducing the fraction of vehicles of commodity i, ξi = ρi/ρ, which satisfies
∑D

i=1 ξi = 1, Lebacque (1996) showed that traffic dynamics of additive traffic can also

be written as

ρt + (ρV (a, ρ))x = 0, (4.8)

(ξi)t + V (a, ρ) (ξi)x = 0, i = 1, · · · , D − 1. (4.9)

We can see that the fractions travel in the same speed as vehicles. This shows that the

First-In-First-Out principle is guaranteed in the kinematic wave theory of additive

traffic (Lebacque, 1996). In addition, we can see that, for multi-commodity traffic,

the aggregate traffic dynamics can be described by the (inhomogeneous) LWR model

and is still a combination of shock waves, rarefaction waves, and/or standing waves,

and traffic dynamics of a commodity is of the similar pattern.

4.2.3 A kinematic wave theory of diverging traffic

To model traffic dynamics on a network with a diverge, the harder problem is to

find the number of vehicles traveling from the upstream link to each downstream link

during a time interval. This is an important problem to answer since flows from the

upstream link to the downstream links are the necessary boundary conditions for the

connected links. Here we propose a new approach to finding the approximate flows

through a diverge. This new theory is different from the supply-demand method of

(Daganzo, 1995a; Lebacque, 1996) in that this theory can be analytically solved by a

combination of kinematic waves.
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Like the supply-demand method of (Daganzo, 1995a; Lebacque, 1996), the new

kinematic wave theory is also in a discrete form: we partition each branch into a

number of cells of length ∆x, discretize the time duration into time steps of length

∆t, and assume that the aggregate and partial traffic densities are constant in each

cell at a time step. The discretization of space-time plane in this model is required

to satisfy the CFL condition (Courant et al., 1928), which guarantees that the flows

through the diverge are only dependent on traffic densities in the adjacent cells and

are independent of traffic conditions farther upstream or downstream.

In the discrete model, connected to the diverge with D downstream branches are

an upstream cell and D downstream cells, denoted as downstream cell i (i = 1, · · · , D).

Assume that, at t = 0, partial densities in the upstream cell are ρL
i and the aggregate

density ρL =
∑D

i=1 ρL
i , and density in downstream cell i is ρR

i . With these initial traffic

conditions, we will show how traffic dynamics will evolve from t = 0 till t = ∆t. In

addition, we will be able to compute the in-flow to downstream cell i (i = 1, · · · , D),

qi. Then from traffic conservation, the out-flow from the upstream cell is
∑D

i=1 qi.

With these flows, traffic conditions at the next time step t = ∆t can be obtained.

In this new model, to study the traffic dynamics of commodity i through the

diverge from t = 0 to t = ∆t, we hold partial densities of vehicles of the other

commodities in the upstream cell constant during this time interval. That is, ρL
j ,

where j = 1, · · · , D and j 6= i, are all constant. Here we assume that traffic densities of

commodities other than i are constant during the short time interval. This assumption

is equivalent to saying that the change of traffic conditions of commodity i is, in a

short time interval, independent of traffic dynamics in the other directions. This

assumption appears to be a natural and reasonable way to decouple the interactions

between traffic in different directions. This approach can be considered as an attempt

to answer an important question: how do vehicles of different destinations segregate
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themselves at a diverge?

We set the diverging point at x = 0 and vehicles travel in the positive direction

of x-axis. Thus, x < 0 for the upstream link and x > 0 for the downstream link.

Also, to simplify the notations, we rewrite ρi as ρ and the total traffic densities of

other commodities as k. Therefore, traffic dynamics of vehicles of commodity i in

the upstream cell can be written as ρt + (ρ V (a(x), ρ + k))x = 0 for x < 0, and

ρt + (ρ V (a(x), ρ))x = 0 for x > 0. Since k is held constant during the time interval

[0, ∆t], and k = 0 in downstream cell i, we have the following equation and conditions

for traffic dynamics of commodity i:

ρt + (ρ V (a(x), ρ + k))x = 0, (4.10)

with the following initial traffic conditions

ρ =







ρL x < 0,

ρR x > 0;
t = 0,

k =







kL x < 0,

0 x > 0;
t ∈ [0, ∆t].

(4.11)

Here we extend our x-axis to both positive and negative infinity since, with the CFL

condition, the traffic dynamics only depend on the conditions above.

Thus, Equation 4.10 with Equation 4.11 is a description of traffic dynamics of

commodity i during a short time interval. This new model will be shown to be solved

by instantaneous kinematic waves in the following section.

4.3 The instantaneous kinematic waves

In this section, we discuss the instantaneous kinematic waves of Equation 4.10 with

initial conditions Equation 4.11. For the purpose of exposition, we here assume that
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both the upstream and downstream branches share the same speed-density relation;

i.e., we exclude the road characteristics a(x). We also assume that q is concave and

v non-increasing in ρ ∈ [0, ρj], where ρj is the jam density. With modifications, the

results here are applicable to the case when the upstream and downstream branches

have different characteristics.

Since we assume that k is time independent, we have another conservation equa-

tion: kt = 0. Therefore Equation 4.10 with Equation 4.11 can be rewritten as a 2× 2

system:

ρt + (ρV (ρ + k))x = 0,

kt = 0,
(4.12)

together with initial conditions

ρ(x, t = 0) =







ρL x < 0,

ρR x > 0,

k(x, t = 0) =







kL x < 0,

0 x > 0.

(4.13)

Next, we will show that Equation 4.12 is indeed a nonlinear resonant system

studied by Isaacson and Temple (1992). Consequently, we can use their technique to

solve this system, which describes traffic dynamics of one commodity during a short

time period. Note that here we do not restrict our time domain to be [0, t1]. This

is because Equation 4.12 with Equation 4.13 has self-similar solutions, which means

that the flow f(x = 0, t) is constant for any time t > 0.
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4.3.1 The properties of Equation 4.12 as a nonlinear resonant

system

Denote the state U = (k, ρ), the flux vector F (U) = (0, ρV (ρ + k)), Equation 4.12

can be written as a hyperbolic system of conservation laws:

Ut + F (U)x = 0, (4.14)

where x ∈ (−∞,∞), t ≥ 0. This system can be written in the following form of a

quasi-linear system

Ut + ∂F (U)Ux = 0, (4.15)

where the Jacobian matrix ∂F (U) is

∂F =





0 0

ρV ′(ρ + k) V (ρ + k) + ρV ′(ρ + k)



. (4.16)

Thus the two eigenvalues of ∂F (U) are

λ0 = 0, λ1 = V (ρ + k) + ρV ′(ρ + k),

and their corresponding right eigenvectors are

~R0 =





V (ρ + k) + ρV ′(ρ + k)

−ρV ′(ρ + k)



, ~R0 =





0

1



.

System Equation 4.14 is a non-strictly hyperbolic system, since it may happen

that

λ1(U∗) = λ0(U∗) = 0. (4.17)

When Equation 4.17 is satisfied, we say that traffic state U∗ is partially critical. If

denoting the partial fundamental diagram as Q(ρ; k) = ρV (ρ + k), we can define
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other partial quantities of the commodity that we are interested in, partial capacity

Qmax(k) and partial critical density γ(k), as follows:

Q(ρ; k) ≤ Qmax(k), ∀ρ ∈ [0, ρj − k], (4.18)

Qmax(k) = Q(γ(k); k). (4.19)

Since V ′ ≤ 0 and d2(ρV (ρ))/dρ2 < 0, we have

∂2Q(ρ; k)

∂ρ2
< 0,

∂Q(ρ; k)

∂k
≤ 0;

therefore, Qmax(k) and γ(k) are unique for given k ∈ [0, ρj]. Thus the partially critical

state U∗ = (k∗, ρ∗) = (k∗, γ(k∗)). We call the collection of the partially critical states,

Γ = {U∗|k ∈ [0, rj]}, the transition curve.

Moreover, at a partially critical state U∗, Equation 4.12 is genuinely nonlinear;

i.e.,

∂

∂ρ
λ1(U∗) =

∂2

∂ρ2
(ρV (ρ + k)) < 0, (4.20)

since q = ρV (ρ + k) is concave in ρ, and ∂F (U) is nondegenerate; i.e.,

∂

∂k
(ρ∗V (ρ∗ + k∗)) = ρ∗V

′(ρ∗ + k∗) = −V (ρ∗ + k∗) < 0. (4.21)

With conditions Equation 4.17-Equation 4.21 satisfied, Equation 4.12 is a nonlin-

ear resonant system in the sense of (Isaacson and Temple, 1992), and it is guaranteed

that, in a neighborhood of the state U∗, the Riemann problem for Equation 4.12 with

Equation 4.13 has a unique solution with a canonical structure.
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4.3.2 The instantaneous kinematic waves of Equation 4.12

with Equation 4.13

The Riemann problem for Equation 4.12 with initial conditions Equation 4.13 is

solved by two families of basic waves, associated with the two eigenvalues. The 0-

waves with wave speed λ0 = 0, also called standing waves, are the integral curves of

~R0 in U -space, and therefore are given by Q(ρ; k)=const. Similarly, the 1-waves with

wave speed λ1(U) are integral curves of ~R1 in U -space, and are given by k=const.

As shown in Figure 4.1, the 0-curve is concave and tangent to the 1-curve at the

critical state U∗; states left to the transition wave Γ(k) are undercritical (UC), and

overcritical (OC) right to the transition wave.

Isaacson and Temple (1992) showed that wave solutions to the Riemann problem

are formed by no more than three basic waves, including standing waves, shock waves,

and rarefaction waves, and these waves satisfy two entropy conditions: Lax’s entropy

condition (1972), i.e., that these waves increase their wave speeds from left (upstream)

to right (downstream), and an additional condition that an UC state and an OC state

can not be connected by a standing wave. With these conditions, wave solutions exist

and are unique: when UL is UC, wave solutions in U -space are shown in Figure 4.2,

and in Figure 4.3 when UL is OC. Note that the solutions can also be categorized

according to whether ρR is OC or UC. Also recall that UR always lies on k = 0.

In the remaining part of this subsection, we will discuss the Riemann solutions

of Equation 4.12 with Equation 4.13, and compute the boundary flux q(x = 0, t).

1. When UL is UC; i.e., ρL < γ(kL), we denote the intersection between Q(UL)

and k = 0 by ρ1 and ρ2, where ρ1 ≤ γ(0) ≤ ρ2. Hence, we obtain three types of

solutions when ρR ∈ [0, ρ1], (ρ1, ρ2), or [ρ2, ρj] as shown in Figure 4.2.

Type 1 When ρR ∈ [0, ρ1]; i.e., Q(ρR; 0) ≤ Q(UL) and UR is UC, wave solutions
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Figure 4.1: Integral curves in (ρ, k)-space

to the Riemann problem consist of two basic waves with the intermediate

state, U1 = (ρ1, 0): the left wave (UL, U1) is a standing wave and the right

wave (U1, UR) is a rarefaction wave with characteristic velocity λ1(U) > 0.

As shown in Figure 4.4, the boundary flux q(x = 0, t > 0) = Q(UL).

Type 2 When ρR ∈ (ρ1, ρ2); i.e., Q(ρR; 0) > Q(UL), wave solutions to the Rie-

mann problem consist of two basic waves with the intermediate state,

U1 = (ρ1, 0): the left wave (UL, U1) is a standing wave and the right wave

(U1, UR) is a shock wave with positive wave speed s(U1, UR) = (Q(ρR; 0)−
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Figure 4.2: The Riemann solutions when UL is UC

Q(UL))/(ρR − ρ1). As shown in Figure 4.5, the boundary flux q(x = 0, t >

0) = Q(UL).

Type 3 When ρR ∈ [ρ2, ρj]; i.e., Q(ρR; 0) ≤ Q(UL) and UR is OC, wave solutions

to the Riemann problem consist of two basic waves with the intermediate

state, U1 = (ρ1, ρL) and Q(U1) = Q(ρR; 0): the left wave (UL, U1) is a shock

wave with negative wave speed s(UL, U1) = (Q(UL)−Q(U1))/(ρL−ρ1) and

the right wave (U1, UR) is a standing wave. As shown in Figure 4.6, the

boundary flux q(x = 0, t > 0) = Q(UL).
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Figure 4.3: The Riemann solutions when UL is OC

2. When UL is OC; i.e., ρL > γ(kL), we define U∗ by U∗ ∈ Γ(k) and k∗ = kL.

Therefore, Q(U∗) is the partial capacity Qmax(kL). Denoting the intersection

between Q(ρ; k) = Q(UL) and (ρ ≥ γ(0), k = 0) by ρ0 and the intersections

between Q(ρ; k) = Q(U∗) and k = 0 by ρ1 and ρ2, where ρ1 ≤ γ(0) ≤ ρ2, we

can obtain four types of solutions when ρR ∈ [0, ρ1], (ρ1, ρ2), [ρ2, ρ0], or (ρ0, ρj],

as shown in Figure 4.3.

Type 4 When ρR ∈ [0, ρ1]; i.e., Q(ρR; 0) ≤ Q(U∗) and UR is UC, wave solutions

to the Riemann problem consist of three basic waves with two intermedi-
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Figure 4.4: An example for wave solutions of type 1 for Equation 4.12 with initial

conditions Equation 4.13

ate states, U∗ and U1, where Q(U1) = Q(U∗) and k1 = 0: the left wave

(UL, U∗) is a rarefaction wave with non-positive characteristic velocity, the

center wave (U∗, U1) is a standing wave, and the right wave (U1, UR) is a

rarefaction wave with positive characteristic velocity. As shown in Figure

4.7, the boundary flux q(x = 0, t > 0) = Q(U∗) = Qmax(kL).

Type 5 When ρR ∈ (ρ1, ρ2); i.e., Q(ρR; 0) > Q(U∗), wave solutions to the Riemann

problem consist of three basic waves with two intermediate states, U∗ and
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Figure 4.5: An example for wave solutions of type 2 for Equation 4.12 with initial

conditions Equation 4.13

U1, where Q(U1) = Q(U∗) and k1 = 0: the left wave (UL, U∗) is a rarefaction

wave with non-positive characteristic velocity, the center wave (U∗, U1) is

a standing wave, and the right wave (U1, UR) is a shock wave with positive

speed. As shown in Figure 4.8, the boundary flux q(x = 0, t > 0) =

Q(U∗) = Qmax(kL).

Type 6 When ρR ∈ [ρ2, ρ0]; i.e., Q(UL) ≤ Q(ρR; 0) ≤ Q(U∗) and UR is OC, wave

solutions to the Riemann problem consist of two basic waves with the
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Figure 4.6: An example for wave solutions of type 3 for Equation 4.12 with initial

conditions Equation 4.13

intermediate state U1, where Q(U1) = Q(UR) and k1 = kL: the left wave

(UL, U1) is a rarefaction wave with negative characteristic velocity and

the right wave (U1, UR) is a standing wave. As shown in Figure 4.9, the

boundary flux q(x = 0, t > 0) = Q(UR).

Type 7 When ρR ∈ (ρ0, ρj]; i.e., Q(ρR; 0) < Q(UL) and UR is OC, wave solutions

to the Riemann problem consist of two basic waves with the intermediate

state U1, where Q(U1) = Q(UR) and k1 = kL: the left wave (UL, U1) is a
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Figure 4.7: An example for wave solutions of type 4 for Equation 4.12 with initial

conditions Equation 4.13

shock wave with negative speed and the right wave (U1, UR) is a standing

wave. As shown in Figure 4.10, the boundary flux q(x = 0, t > 0) = Q(UR).
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Figure 4.8: An example for wave solutions of type 5 for Equation 4.12 with initial

conditions Equation 4.13

4.4 The supply-demand method with a new defi-

nition of traffic demand

Based on the discussions in the previous section, we summarize solutions of boundary

flux q(x = 0, t > 0) in Table 4.1.

Further, if we introduce a new definition of partial traffic demand for commodity
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Figure 4.9: An example for wave solutions of type 6 for Equation 4.12 with initial

conditions Equation 4.13

1 in the upstream link as

D(ρL; kL) =







Q(UL) UL is UC

Qmax(kL) otherwise
, (4.22)

the boundary flux q(x = 0, t > 0) can then be computed by

q(x = 0, t > 0) = min{S1, D(ρL; kL)}, (4.23)

where the supply of the downstream link, S1, is the same as in (Daganzo, 1995a;



CHAPTER 4. DIVERGING TRAFFIC MODEL 105

U
L
 o

o

U
1
 

U
R

 ρ 

k Γ(k) 

q 

ρ 

U
L
 

U
1
 

U
R

 

x 0 

t 

t=t
0
 

ρ
L
 

ρ
1
 

ρ
R

 

x 

ρ 

0 

o
U

*
 

o
U

*
 

o
oo

o

t=t
0
 

Figure 4.10: An example for wave solutions of type 7 for Equation 4.12 with initial

conditions Equation 4.13

Lebacque, 1996); i.e.,

S1 =







Q(UR) UR is OC

Qmax(0) otherwise
. (4.24)

The supply-demand method Equation 4.23 can also be used to calculate the

boundary fluxes of other commodities. It yields the same solutions to the Riemann

problem of Equation 4.12 with Equation 4.13 as the analytical solution method.

Moreover, it is much simpler in computation and can be easily extended to the more
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Solution type left state UL right state ρR q(x = 0, t > 0)

1 UC Q(ρR; 0) ≤ Q(UL), ρR < γ(0) Q(UL)

2 UC Q(ρR; 0) > Q(UL) Q(UL)

3 UC Q(ρR; 0) ≤ Q(UL), ρR > γ(0) Q(UR)

4 OC Q(ρR; 0) ≤ Q(UL), ρR > γ(0) Qmax(kL)

5 OC f(UR) < fmax
L , aR > aL, ρR/aR < α Qmax(kL)

6 OC f(UR) > fmax
L Q(UR)

7 OC f(UR) < f(UL), ρR/aR < α, aR < aL Q(UR)

Table 4.1: Solutions of the boundary flux q(x = 0, t > 0)

complicated cases when the upstream and downstream branches have different road

characteristics.

4.5 Numerical simulations

In this section, we carry out numerical simulations of the instantaneous kinematic

wave model presented in this chapter. We will study a small diverging network

consisting of two downstream links and one upstream link: the lengths of three links

are the same, L = 400l = 11.2 km, with unit length l = 0.028 km; one downstream

link, labeled as link d1, has a(d1) = 2 lanes, another downstream link, link d2, has

a(d2) = 1 lane, and the upstream link, link u, has a(u) = 2 lanes. The simulation

starts from t = 0 and ends at t = 500τ = 41.7 min, with unit time τ = 5 s. In the

following simulations, we partition each link into N cells and the time interval into

K steps, with N/K = 1/10 always; e.g., if N = 50 and K = 500, the cell length is

∆x = 8l km and the length of each time step ∆t = 1τ s.

We will use the exponential fundamental diagram (Del Castillo and Benitez,
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Figure 4.11: The Newell model of speed-density and flow-density relations

1995b), and the parameters are given as follows: the free flow speed vf = 5.0l/τ =

0.028 km/s = 100.8 km/h; the jam density of a single lane ρj = 180 veh/km/lane;

the wave velocity for jam traffic cj = −1.0l/τ = -0.0056 km/s = -20.16 km/h; and

the equilibrium speed-density relationship

V (a, ρ) = 5

[

1 − exp

{

1

5
(1 −

aρj

ρ
)

}]

l/τ,

where a(x) is the number of lanes at location x. The equilibrium functions V (a, ρ) and

Q(a, ρ) are shown in Figure 4.11, in which the critical traffic density is α = 0.259aρj.

Here we apply the first-order Godunov method (Godunov, 1959), in which the
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traffic conditions are updated for each cell based on traffic conservation, and boundary

fluxes are computed with the supply-demand method described in Section 4. Since

λ∗ ≤ vf = 5l/τ , we find the CFL condition number

λ∗
∆t

∆x
≤ 0.625 < 1.

Therefore, the first-order Godunov method can solve the instantaneous kinematic

wave model efficiently.

4.5.1 Simulation I: A general case

In this simulation, we study a general case of diverging traffic. Initially, the upstream

branch carries a constant flow with traffic density ρu = 1.1111ρj = 200 veh/km and

the proportion of vehicles traveling to downstream branch d1 is 80%; downstream link

d1 is empty; traffic density on downstream link d2 is ρd2
= 0.5556ρj = 100 veh/km.

In addition, we impose the Neumann boundary conditions on the boundary of this

diverging network; i.e., the spatial derivatives of traffic densities at the boundary are

set to be zero.

With N = 500 and K = 5000, we obtain simulation results as shown in Figure

4.12. Fig. 4.12(a) illustrates the evolution of traffic on the upstream link: at time

t = 0τ , traffic density is uniformly at ρA = 1.11ρj; after the beginning of diverging

process, traffic immediately upstream of the diverging point reaches a new state ρB =

0.69ρj, which keeps propagating on the upstream link; as a result, an expansion wave

forms and travels upstream. Fig.4.12(b) shows the evolution of traffic on downstream

link d1: initially, this link is empty; after t = 0, traffic immediately downstream of the

diverging point reaches state ρC = 0.22ρj; along with the propagation of ρC , on this

link, another expansion wave forms and travels downstream; after around 200τ , traffic

density on this link is uniformly ρC . Fig. 4.12(c) presents the evolution of traffic on
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Figure 4.12: Simulation I: A general case

downstream link d2: initially, traffic density is ρD = 0.56ρj; after vehicles start to

diverge at t = 0, traffic immediately downstream of the diverging point reaches ρE =

0.04ρj; then a shock forms and travels downstream in a constant speed s = 0.38l/τ .

The expansion waves and the shock wave observed on the three branches can be

shown on the ρ − q plane as in Fig. 4.12(d), in which dashed line AB represents the

expansion wave on the upstream link u, dashed line OC represents the expansion wave

on downstream link d1, and solid line DE represents the shock wave on downstream

link d2, whose slope gives the shock speed.
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As shown in Figure 4.12, at the diverging point, there are three traffic states, rep-

resented by B, C, and E in Fig. 4.12(d). Flow rates at these states are qB = 1.09ρjl/τ ,

qC = 0.87ρjl/τ , and qE = 0.22ρjl/τ respectively. We can see that qB = qC + qE. Note

that qB is the outflow of link u, qC inflow to link d1, and qE inflow to link d2. Thus

traffic is conserved at the diverge. Further, qC/qB = 80%, which is the proportion

of vehicles on the upstream link traveling to d1. Therefore, this is consistent with a

general observation that diverging flows are proportionally determined by the compo-

sition of traffic on the upstream link (Papageorgiou, 1990). This property of diverging

flows guarantees that the composition of vehicles on the upstream link never changes

as observed in our simulation.

4.5.2 Simulation II: An extreme case

In this subsection, an extreme case is studied. Initially, like in the previous simulation,

the upstream branch carries a constant flow with traffic density ρu = 1.1111ρj = 200

veh/km, the proportion of vehicles on the upstream link traveling to downstream

branch d1 is 80%, and downstream link d1 is empty. However, traffic on downstream

link d2 is jammed; i.e., ρd2
= ρj = 180 veh/km. Still, we impose the Neumann

boundary conditions on the boundary of the diverging network and have the same

discretization to the three links and the time duration: N = 500 and K = 5000.

Simulation results are shown in Figure 4.13. In this simulation, traffic density

on link d2 is uniformly ρj as expected and not shown. Fig. 4.13(a) demonstrates

traffic evolution on the upstream link u: initially traffic density is ρA = 1.11ρj;

after the beginning of the diverging process, traffic density immediately upstream

of the diverging point reaches the jammed density ρB = 2ρj; then, jammed traffic

propagates upstream as a back-traveling shock at a speed s = −0.92l/τ . Fig. 4.13(b)

shows traffic dynamics on link d1. In this figure, we can observe small spikes of
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Figure 4.13: Simulation II: An extreme case

density, which travel downstream and shrink along time. After around t = 200τ , link

d1 is almost empty as initially. Fig. 4.13(d) presents traffic states on the diverging

network on the ρ− q plane. Here line AB represents the shock wave on the upstream

link, and its slope gives the shock wave speed.

From these figures, we can see that, if a downstream link is blocked, the upstream

link and the other downstream link(s) will be blocked, as expected. However, the

small spikes in Fig. 4.13(b) suggests there is still a small number of vehicles get

out of the upstream link at the very beginning. Although this phenomenon seems
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interesting, the appearing of small spikes in our model is due to numerical error of

finite difference, caused by the finite number of cells, and are expected to disappear

if we partition the links into fine enough cells.

4.6 Discussions

In this chapter, we have introduced a new approach to modeling diverging traffic

dynamics, which is represented by instantaneous kinematic waves. We presented

analytical solutions to these waves and found these solutions are consistent with the

supply-demand method if the traffic demand is modified as in Section 4.4. With

numerical simulations, we assert that this model satisfies two important properties:

(1) diverging flow to a downstream link is proportional to the fraction of vehicles

traveling to this link, and (2) the upstream link is blocked after a downstream link is

blocked.

The instantaneous kinematic wave theory of diverging traffic is different from

existing models since it provides more details on diverging traffic dynamics and sheds

more light at the aggregate level how vehicles segregate themselves at a diverge.

In the follow-up studies, we would like to discuss the convergent kinematic wave

solutions when all branches are partitioned into infinite number of cells. We will also

be interested in finding the location of actual diverging point and how it is related to

traveler’s behavior, the geometry of a diverge, and traffic conditions. Finally we will

test this model with field data and discuss possible applications.



Chapter 5

Kinematic wave traffic flow model

for mixed traffic

5.1 Background

Vehicular traffic on highways often comprises different types of vehicles with vary-

ing driving performances. This heterogeneity affects traffic flow characteristics in

significant ways, a fact that has long been recognized by the transportation engi-

neering profession. For example, in the computation of flow capacity on a highway

or at a signalized intersection, the Highway Capacity Manual recommends a series

of adjustments to take account of the capacity reduction caused by heavy vehicles

(i.e., trucks/buses/recreational vehicles). If one is interested in the effects of heavy

vehicles on traffic flow over space and time, however, the Highway Capacity Manual

procedures are not adequate. For this one needs a dynamic model for mixed traffic.

Mixed traffic can be modeled at three different levels—microscopic, mesoscopic

and macroscopic. It is perhaps most straightforward to model mixed traffic on a

microscopic level—one simply endow, at one extreme, each individual vehicle with

113
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different performance and behavior characteristics. Many commercially available sim-

ulation packages, such as CORSIM, PARAMICS, and VISSIM allow the specification

of multiple vehicle classes. Major challenges arise when one models mixed traffic on

a mesoscopic level, mainly due to the correlation between various probability distri-

butions of vehicular speeds. Nevertheless, a number of mesoscopic models of mixed

traffic have been developed in recent years (Helbing, 1997; Hoogendoorn and Bovy,

2000). Aggregation of mesoscopic models of mixed traffic through expectation op-

erations lead to multi-class traffic flow models in the macroscopic level. There is,

however, another approach to develop macroscopic mixed traffic flow models. This

is the approach of continuum modeling. It is this approach that we shall adopt in

developing a traffic flow model for mixed traffic.

In the continuum description of traffic flow, vehicular traffic is described as a

special kind of fluid that are characterized by its concentration (density, ρ), mean

velocity (v), and vehicle flux (flow rate q), all are functions of space (x) and time

(t). The starting point of any continuum model of traffic flow is the conservation of

vehicles

∂

∂t

∫ x2

x1

ρ(x, t)dx = q(x1, t) − q(x2, t), (5.1)

and the relation between flow, density, and mean velocity q = kv.

Equation 5.1 is an integral form of traffic conservation. When the road segment

[x1, x2] shrinks to a point in space, one obtains the familiar differential form of traffic

conservation:

ρt + qx = 0, or ρt + (ρv)x = 0. (5.2)

If one introduces a relation between vehicle concentration and traffic speed v =

V (ρ), one obtains the classic kinematic wave model developed by Lighthill, Whitham
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(Lighthill and Whitham, 1955b) and Richards (Richards, 1956):

ρt + (ρV (ρ))x = 0, ρV (ρ) ≡ Q(ρ). (5.3)

The classic kinematic wave model of Lighthill and Whitham was formulated for

homogeneous flows on a long crowded road. It does not consider the effects of perfor-

mance differences among different types of vehicles. Recently, Daganzo extended the

theory to treat a freeway system with two types of lanes, special lanes and regular

lanes, and two types of vehicles, priority vehicles and regular vehicles (Daganzo, 1997;

Daganzo et al., 1997; Daganzo, 2002). Priority vehicles are allowed to travel on either

regular lanes or special lanes, whereas regular vehicles can only travel on the regular

lane. The two types of vehicles in Daganzo’s special lane model have different vehicle

performances in free-flow traffic, but are indistinguishable in heavy traffic, where both

types of vehicles travel at the same speed.

In this chapter, we extend the kinematic wave model to vehicular traffic with

a mixture of vehicle types. In the mixed flow each vehicle type is conserved and

travels at the group velocity, but the differences among vehicle types are accounted

for in determining the states of the collective flow. This model can be used to study

traffic evolution on long crowded highways where low performance vehicles entrap

high performance ones. It can also give a more accurate description of the I-pipe

state in Daganzo’s special lane model.

The remaining parts of the chapter are organized as follows. In Section 5.2 we

give the extended KW model and its basic properties. In Section 5.3 we analyze the

Riemann problem for this model. In Section 5.4 we propose a fundamental diagram of

mixed traffic and discuss its properties. In Section 5.5 we provide numerical examples

and in Section 5.6 we conclude the chapter.
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5.2 The extended KW model for mixed traffic

Let us assume that there are i = 1, · · · , n types of vehicles in the traffic stream

(n ≥ 2), each type has concentration ρi(x, t) and velocity vi(x, t). By conservation of

each vehicle type, we have

(ρi)t + (ρivi)x = 0, i = 1, · · · , n; (5.4)

As in the development of the classic KW model, we postulate that equilibrium

relations exist between vehicular speeds and traffic densities:

vi = Vi(ρ1, · · · , ρn), (5.5)

with vi(0) = vfi, the free-flow speed of each vehicle type and ∂ρj
Vi < 0, i =

1, · · · , n; j = 1, · · · , n.

Equations 5.4 and 5.5 are the general governing equations of mixed traffic flow

without special lanes. Note that if one adopts vi = V (
∑n

i=1 ρi), one recovers the I-pipe

state in Daganzo’s special lane model. In this chapter we study a special case of the

general equations for mixed traffic in which we consider two types of vehicles—one

represents passenger cars (ρ1) and the other represents heavy vehicles such as trucks

(ρ2), and two traffic flow regimes—free-flow and congested traffic.

When traffic is light and there are adequate opportunities for passing, different

classes of vehicles would travel at their own free-flow speeds vfi. The traffic flow in

this case can be described by

(ρi)t + vfi(ρi)x = 0, i = 1, 2; (5.6)

By defining ρ =
∑n

i=1 ρi, and vf =
∑n

i=1
ρivfi∑n

i=1
ρi

, we can use

ρt + (ρvf )x = 0, (5.7)
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to approximately model the average behavior of light traffic.

When traffic concentration reaches a critical value ρc, passing opportunities di-

minish and vehicles of lower performance (e.g. trucks) start to entrap vehicles of

higher performance (e.g., passenger cars). Under such conditions it is assumed that

the various classes of vehicles are completely mixed and move at the group velocity

V . That is, mixed traffic flow in this regime is described by

(ρi)t + (ρiV )x = 0, i = 1, 2. (5.8)

Through the definition of a proper average free-flow speed and the selection of a

suitable critical density, we combine Equation 5.6 (for free-flow traffic) and Equation

5.8 (for congested traffic) into one modeling equation:





ρ1

ρ2





t

+





ρ1V (ρ1, ρ2)

ρ2V (ρ1, ρ2)





x

= 0, (5.9)

where

V (ρ1, ρ2) =







∑
2
i=1

ρivfi
∑

2
i=1

ρi
, γ1ρ1 + γ2ρ2 < 1

V∗(ρ1, ρ2), γ1ρ1 + γ2ρ2 ≥ 1
.

Here γ1 and γ2 are parameters that determine the critical density in (ρ1, ρ2) coor-

dinates. V∗ is a two-dimensional speed-density relation for congested traffic. It is

understood that ∂ρi
V∗ < 0, i = 1, 2.

Equation 5.9 is a system of conservation laws with characteristic velocities:

λ1 = V + ρ1V1̇ + ρ2V2̇, λ2 = V (ρ1, ρ2).

Here we used a special notation for partial derivatives of V with respect to ρ1 and ρ2

: ∂ρ1
V ≡ V1̇ and ∂ρ2

V ≡ V2̇. Owing to the nature of V (ρ1, ρ2), we have λ1 ≤ λ2 = V ,

that is, both characteristics travel no faster than average traffic. In fact, the second

characteristic travels at precisely the speed of traffic. When the free-flow speeds of



CHAPTER 5. MIXED TRAFFIC MODEL 118

both types of vehicles are identical, the extended KW model preserves the anisotropic

property of the KW model. Otherwise, the extended model is not anisotropic in light

traffic (the nature of this violation of anisotropy is explained in detail in (Zhang)).

Moreover, it can be shown that

(

ρ2

ρ1

)

t

+ V

(

ρ2

ρ1

)

x

= 0,

from which one obtains d
dt

(

ρ2

ρ1

)

= 0, that is, the level curves of
(

ρ2

ρ1

)

in the t − x

plane coincide with vehicle trajectories. The separation of
(

ρ2

ρ1

)

level curves therefore

implies first-in-first-out traffic flow behavior between vehicle classes.

Furthermore, the corresponding eigenvectors of the flow Jacobian matrix are

r1 =





ρ1

ρ2

1



 , r2 =





−
V
2̇

V
1̇

1





and the Riemann invariants (w, z), defined as ▽w • r1 = 0, ▽z • r2 = 0, are

w =
ρ2

ρ1

, z = V.

They are used here to obtain the expansion wave solutions of a Riemann problem

(see next section. For more details on Riemann problems and Riemann invariants,

refer to (Whitham, 1974)).

It can be shown that the first characteristic field is nonlinear and the second

characteristic field is linearly degenerate. We therefore have both shock and smooth

expansion waves in the first field and contact waves (or slips) in the second field.

We shall derive the expressions for these waves related to Riemann data in the next

section.
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5.3 The Riemann problem and basic wave solu-

tions

In this section we discuss the solutions of the extended KW model, Equation 5.9,

with the following so-called Riemann data:

ρ(x, 0) =







ρl, x < 0

ρr, x > 0
ρ =





ρ1

ρ2



 (5.10)

To solve the above Riemann problem, we first study the right (downstream) states

that can be connected to the left (upstream) states by an elementary wave, i.e., a

smooth expansion (rarefaction) wave, a contact, or a shock (readers are referred to

(LeVeque, 2002) and Aw and Rascle (2000); Zhang (2000, 2002, 2001b) for a more

detailed discussion of Riemann problems related to systems of conservation laws in

general and traffic flow in particular). Throughout the remaining sections, we assume

that vf1 = vf2 = vf . This assumption ensures that our proposed V (ρ1, ρ2) function is

continuous over the entire feasible (ρ1, ρ2) region. The Riemann problem of Equation

5.9 with discontinuous V (ρ1, ρ2) is more involved and will be discussed elsewhere.

Nevertheless, the analysis of the model, Equation 5.9, with vf1 = vf2 = vf still

reveals many key features of mixed traffic flow.

The 1-expansion waves: An upstream state ρl can be connected to a downstream

state ρr by a 1-expansion wave if and only if the downstream state satisfies

w(ρl) = w(ρr), ρl > ρr,

i.e.,

ρl
2

ρl
1

=
ρr

2

ρr
1

. (5.11)

This means that in the ρ−plane the two states are on a ray from the origin. Clearly
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across an expansion wave traffic composition does not change, that is, vehicles observe

the first-in-first-out rule.

The contact waves:

A contact wave is a slip that separates two traffic regions of different traffic

densities and vehicle compositions but the same travel speed. That is,

V (ρl) = V (ρr). (5.12)

In the ρ−plane, all states on a level curve of V (ρ) are connected by a contact wave.

The shock waves:

The shock waves in the extended KW model are given by the jump condition:

s(ρl
1 − ρr

1) = ρl
1V (ρl

1, ρ
l
2) − ρr

1V (ρr
1, ρ

r
2) (5.13)

s(ρl
2 − ρr

2) = ρl
2V (ρl

1, ρ
l
2) − ρr

2V (ρr
1, ρ

r
2) (5.14)

After elimination of s from the equations and some algebraic manipulations one ob-

tains

(ρl
1ρ

r
2 − ρr

1ρ
l
2)(V (ρl

1, ρ
l
2) − V (ρr

1, ρ
r
2)) = 0.

Two possibilities exist: V (ρl
1, ρ

l
2) − V (ρr

1, ρ
r
2) = 0 which gives the contact waves that

we have already discussed, or

ρl
1ρ

r
2 − ρr

1ρ
l
2 = 0, (5.15)

this gives the downstream states ρr that can be connected to the upstream state ρl

by a shock. Note that all these states also fall on a ray originating from the origin

of the ρ−plane. This implies that across a shock vehicle composition also does not

change, that is, vehicles observe first-in-first-out rule. Moreover, we have the following

entropy conditions

ρl < ρr.
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to ensure the stability of the shock.

Now we can state the procedure to solve a Riemann problem for the extended KW

model. Note that for any state ρl, the two curves/lines given by Equations 5.11 and

5.12 divide the feasible ρ−plane into four regions (Figure 5.1). If the downstream state

ρr falls on any of these two curves/lines, it can be connected to the upstream state by

an elementary wave. If it falls on any of the four regions, however, an intermediate

state ρm is generated on the line given by Equation 5.11, which is connected with

the upstream state by a 1-wave (i.e., an expansion or shock wave) and with the

downstream state by a contact (Figure 5.1. Figure 5.2 shows a few examples of

Riemann solutions.

5.4 Fundamental diagrams for mixed traffic

We propose the following ρ − V relation, which can be derived from a car-following

model under steady-state conditions (Zhang and Kim, 2000), to be used in the mixed

traffic flow model.

V =







ρ1vf1+ρ2vf2

ρ1+ρ2
, (l1 + τ1vf1)ρ1 + (l2 + τ2vf2)ρ2 < 1

1−ρ1l1−ρ2l2
ρ1τ1+ρ2τ2

, (l1 + τ1vf1)ρ1 + (l2 + τ2vf2)ρ2 ≥ 1

This fundamental diagram is shown in Figure 5.3.

We call the above relation the extended speed-density relation for the triangular

fundamental diagram. The parameters are: free flow speeds for both types of vehicles

vf1 and vf2, effective vehicle lengths for type-1 and type-2 vehicles l1 and l2, and

response times of type-1 and type-2 vehicles τ1 and τ2. The last two parameters

capture, to a certain degree, the acceleration/deceleration differences between the

two classes of vehicles.

The capacity of mixed flow depends on vehicle composition. For example, in the



CHAPTER 5. MIXED TRAFFIC MODEL 122

ρl

I

I I

I I I

IV

ρr

ρm

ρ
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1-expansion curve/line,

   ρ
2

/ρ
1

=constant

1-shock curve/line , ρ
2

/ρ
1

=constant

contact curve/line, V =constant

Figure 5.1: Phase diagram for determining elementary and simple waves

case of vf1 = vf2 = vf , let ρ2

ρ1
= p < ∞, then the critical densities of the proposed

speed-density relation are

ρ1c =
1

(l1 + pl2) + vf (τ1 + pτ2)
, ρ2c = pρ1c

Note that when p = 0, i.e., there are no type-2 vehicles in the traffic stream, we

recover the critical density for type-1 vehicles

ρ1c =
1

l1 + vfτ1

and when p = ∞, i.e., no type-1 vehicles present in the traffic stream, we can switch
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the positions of p in relation to l’s and τ ’s in the above formulas and replace it with

1
p

= 0. Again we recover the critical density for type-2 vehicles

ρ2c =
1

l2 + vfτ2

For any vehicle mixture (i.e. 0 < p < ∞), the capacity flow is
(

vf

l2+vf τ2
,

vf

l1+vf τ1

)

.

5.5 Numerical solution method and simulations

5.5.1 The Godunov method

We approximate the mixed traffic KW model with the Godunov method (Godunov,

1959):

ρj+1
1,i − ρj

1,i

∆t
+

ρ∗j
1,i+1/2V (ρ∗j

1,i+1/2, ρ
∗j
2,i+1/2) − ρ∗j

1,i−1/2V (ρ∗j
1,i−1/2, ρ

∗j
2,i−1/2)

∆x
= 0,

ρj+1
2,i − ρj

2,i

∆t
+

ρ∗j
2,i+1/2V (ρ∗j

1,i+1/2, ρ
∗j
2,i+1/2) − ρ∗j

2,i−1/2V (ρ∗j
1,i−1/2, ρ

∗j
2,i−1/2)

∆x
= 0,

in which ρj
k,i is the average of ρk over cell i at time tj; i.e., ρj

k,i =
∫ xi+1/2

x=xi−1/2
ρk(x, tj) dx/∆x,

and ρ∗j
k,i−1/2 is the average over time interval [tj, tj+1] at the boundary xi−1/2 between

cells i and i−1; i.e., ρ∗j
k,i−1/2 =

∫ tj+1

t=tj
ρk(xi−1/2, t) dt/∆t. Given (ρ1, ρ2) at tj, we hence

can compute traffic states at the following time tj+1.

In the above equations, the boundary average ρ∗j
k,i−1/2 can be found by solving

the Riemann problem for the extended KW model, Equation 5.9, with the following

initial condition (ρl = (ρj
1,i−1, ρ

j
2,i−1) and ρr = (ρj

1,i, ρ
j
2,i))

ρ =







ρl, if x − xi−1/2 < 0,

ρr, if x − xi−1/2 ≥ 0.

As shown in section 2, the Riemann solutions consist of a shock or rarefaction wave

with an intermediate state ρm and a contact wave. Since all the waves are self-similar,



CHAPTER 5. MIXED TRAFFIC MODEL 124

s given in Equation 5.18 ρ∗j
1,i−1/2 ρ∗j

2,i−1/2

Shock s > 0 ρl
1 ρl

2

s ≤ 0 ρm
1 ρm

2

Table 5.1: Shock wave solutions in mixed traffic

we have ρ∗j
i−1/2=ρ(xi−1/2, t)= const for all t > 0, which is determined by the shock

or rarefaction wave connecting ρl and ρm since the contact wave has non-negative

velocity and is not involved.

From Equations 5.11 and 5.15, we have

ρl
2

ρl
1

=
ρm

2

ρm
1

, (5.16)

and from Equation 5.12

V (ρm) = V (ρr). (5.17)

Combining Equations 5.16 and 5.17, we can find the intermediate state ρm, from

which we can compute ρ∗j
i−1/2 as described in the following cases.

Case 1 When ρl < ρm, they are connected by a shock, and the shock speed is

s =
ρl

1V (ρl
1, ρ

l
2) − ρm

1 V (ρm
1 , ρm

2 )

ρl
1 − ρm

1

. (5.18)

In this case, solutions of ρ∗j
i−1/2 are summarized in the Table 5.1.

Case 2 When ρl > ρm, they are connected by a rarefaction wave, in which the charac-

teristic velocity is λ1(ρ1, ρ2), and λ1(ρ
l) < λ1(ρ

m). If λ1(ρ
l) ≥ 0, ρ∗j

i−1/2 is the

same as the left state ρl; if λ1(ρ
m) ≤ 0, it is the same as the intermediate state

ρm. Otherwise, ρ∗j
i−1/2 satisfies

λ1(ρ
∗j
1,i−1/2, ρ

∗j
2,i−1/2) = 0,

ρ∗j
2,i−1/2/ρ

∗j
1,i−1/2 = ρl

2/ρ
l
1,

(5.19)
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λ1 ρ∗j
1,i−1/2 ρ∗j

2,i−1/2

λ1(ρ
l) ≥ 0 ρl

1 ρl
2

Rarefaction λ1(ρ
m) ≤ 0 ρm

1 ρm
2

o.w. given in Equation 5.19

Table 5.2: Rarefaction wave solutions in mixed traffic

which implies that ρ∗j
i−1/2 maximizes the total flow (ρ1 + ρ2)V (ρ1, ρ2) along the

line ρ2/ρ1 = ρl
2/ρ

l
1.

In this case, therefore, solutions of ρ∗j
i−1/2 are summarized in Table 5.2.

5.5.2 Numerical simulations

In our simulations, we will use the extended triangular fundamental diagram (Figure

5.3), in which the parameter values are: free flow speed for both types of vehicles

vf1 = vf2 = vf = 65 mph = 95.3333 ft/sec, effective vehicle lengths for type-1 and

type-2 vehicles: l1 = 20 ft, l2 = 40 ft, and response times of type-1 and type-2 vehicles:

τ1 = 1.5 s, τ2 = 3 s. Therefore, we have ρ1,jam = 1/l1 = 0.05 veh/ft and ρ2,jam =

1/l2 = 0.025 veh/ft. Moreover, since l1/l2 = τ1/τ2, we have that in the extended

triangular fundamental diagram V (ρ1, ρ2) is a function of ρ1/ρ1,jam +ρ2/ρ2,jam. Thus,

as we will see later, the evolution pattern of travel speed is the same as that of

ρ1/ρ1,jam + ρ2/ρ2,jam.

We will conduct numerical simulations for a ring road, whose length L = 2000l1=40,000

ft, during a time interval from t = 0 to T = 100τ1=150 s. In order to apply

the Godunov method, we partition the ring road into N = 1000 cells with length

∆x = L/N=40 ft, and discretize the time interval to M = N/2 steps with the dura-

tion of each time step ∆t = T/M=0.3 s. Since the CFL condition number (Courant
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et al., 1928)

max{|λ1|, |λ2|}
∆t

∆x
≤ vf

∆t

∆x
= 0.715 < 1,

the Godunov method yields convergent solutions.

For the numerical simulations, we use the following global perturbation as initial

traffic conditions,

ρ1(x, 0) = (0.2 + 0.16 sin(2πx/L))ρ1,jam,

ρ2(x, 0) = (0.15 + 0.1 sin(2πx/L))ρ2,jam,
(5.20)

in which the density of the 1-type vehicles, i.e., has higher average but smaller oscil-

lation.

With these conditions, the solutions of the mixed traffic flow model are depicted

as contour plots and shown in Figure 5.4. The horizontal axis in each of the sub figures

represents space and the vertical axis time. These figures depict the traffic conditions

(speed and density). As shown in the contour plots of v and ρ1/ρ1,jam + ρ2/ρ2,jam,

there are roughly two traffic regions along the ring road initially. In one region

(l1 + τ1vf )ρ1 + (l2 + τ2vf )ρ2 ≥ 1, waves initiated from this region travel backward in

the same speed, which is λ1(ρ1, ρ2) = −(ρ1l1 + ρ2l2)/(ρ1τ1 + ρ2τ2) = −l1/τ1 = −40/3

ft/sec. In another region, (l1 + τ1vf )ρ1 + (l2 + τ2vf )ρ2 < 1, waves initiated from this

region travel forward at free-flow speed. Two waves separate the two regions: an

expansion wave on the left and a shock wave on the right. The shock wave travels

forward initially but eventually travel at −l1/τ1 as traffic density increases to critical

density in the second (free-flow) region. The patterns of the solutions of ρ1 and

ρ2, however, are not the same as that of v because the change of the overall traffic

conditions affect each vehicle class differently.

The contour plot of ρ2/ρ1 is given in Figure 5.5, from which we can see that the

level curves do not intersect. Remembering that the level curves of ρ2/ρ1 coincide with

vehicle trajectories, the solutions shown here indicate that under the given conditions



CHAPTER 5. MIXED TRAFFIC MODEL 127

first-in-first-out rule is respected by the mixed flow model. From this figure we can

also see the expansion and shock waves as they move through traffic, which are marked

by changes in the slopes of the level curves.

5.6 Concluding remarks

In this chapter we extend the Lighthill-Whitham-Richards kinematic wave traffic flow

model to describe traffic with different types of vehicles, where all types of vehicles

are completely mixed and travel at the same group velocity. A study of such a model

with two vehicle classes (e.g., passenger cars and trucks) shows that,when both classes

of traffic have identical free-flow speeds, the model 1) satisfies first-in-first-out rule,

2) is anisotropic, and 3) has the usual shock and expansion waves, and a family of

contact waves. Different compositions of vehicle classes in this model propagate along

contact waves. Such models can be used to study traffic evolution on long crowded

highways where low performance vehicles entrap high performance ones.
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Figure 5.2: Wave solutions to the Riemann problem: Shock + Contact wave (left)

and Expansion wave + Contact wave (right) (In the bottom figures, thick (dashed)

lines are characteristics, and lines with arrows are vehicles’ trajectories.)
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Figure 5.3: The extended triangular fundamental diagram
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Chapter 6

Kinematic wave simulation model

for multi-commodity network

traffic flow

6.1 Introduction

Recurrent or non-recurrent traffic congestion in many major metropolitan areas have

seriously deteriorated the mobility, convenience, and productivity of highway trans-

portation. To tackle the congestion problem, traffic engineers and scientists are facing

a number of challenges, including: 1) the evaluation of the performance of a road

network (e.g. total travel time or the level of service (LOS)), 2) the prediction of

occurrence of incidents, 3) the development of traffic control schemes (e.g. ramp me-

tering) and management strategies (e.g. traffic guidance) in Advanced Transportation

Management and Information Systems (ATMIS) or other Intelligent Transportation

Systems (ITS), and 4) the estimation of traffic demand associated with a given ori-

gin/destination (i.e. O/D information). As we all know, a fundamental and essential

132
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issue in addressing all these challenges is the understanding of traffic dynamics on a

road network, i.e., the evolution of traffic on a road network under initial and bound-

ary conditions, for which traffic flow models of road networks play an important role.

Among many traffic flow models, the kinematic wave models are advantageous

in studying traffic dynamics in a large-scale road network, due to their inherit com-

pliance with ITS applications, theoretical rigor, and computational efficiency. Practi-

cally, people are more interested in aggregate-level traffic conditions such as average

travel speeds, densities, flow-rates, and travel times, which are directly concerned or

can be easily derived in the kinematic wave models. Theoretically, the evolution of

traffic conditions on a link can be studied as hyperbolic conservation laws, given the

fundamental diagram, which defines a functional relationship between density and

flow-rate or travel speed, and traffic conservation, which means that the change of

the number of vehicles in a section in a time interval equals to the number of vehi-

cles entering the section minus the number of vehicles leaving it. Computationally,

the kinematic wave models can be solved with the Godunov method, in which in-

flux and out-flux of a cell can be computed through kinematic wave solutions or the

supply-demand method (Daganzo, 1995a; Lebacque, 1996).

In literature, the following approaches can be considered as typical when modeling

network traffic flow in the framework of kinematic wave theory. First, Vaughan et al.

(1984) studied network traffic flow with two continuous equations: a “local equation”,

which ensures traffic conservation and is consistent with the traditional LWR model on

a link at the aggregate level, and a “history equation”, which computes the trajectory

of each vehicle at the disaggregate level. Since the trajectories of all vehicles are not

always required for many applications, this model tends to waste significant amount of

computational resources. Second, Jayakrishnan (1991) introduced a discrete network

flow model, in which each link is partitioned into a number of cells, vehicles adjacent
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to each other and with the same O/D and path are called a “macroparticle”, and

the position of a macroparticle at each time step is determined by its travel speed

and the cell’s length. However, with the given mechanism, this model may not be

consistent with the LWR model since traffic conservation can be violated. Third,

Daganzo (1995a) introduced a network flow model based on his Cell Transmission

Model (Daganzo, 1994), which is a numerical approximation of the LWR model with

a special fundamental diagram — a triangle. In this discrete model, macroparticles

in the sense of Jayakrishnan (1991) in a cell are ordered according to their waiting

times and moved to the downstream cell when their waiting times are greater than a

threshold minimum waiting time, which is computed from traffic flow at the aggregate

level. However, the determination of the threshold minimum waiting time is quite

tedious. Fourth, in the KWave98 simulation package (Lenonard II, 1998), which is

based on the simplified kinematic wave theory by Newell (1993), vehicles on a link

are considered to be ordered as a queue. Then, with the in-queue and out-queue of

the link determined, one can easily update the link queue. However, in-queues and

out-queues at typical highway junctions such as merges and diverges create difficulties

for this model.

In many applications, such as dynamic traffic assignment (DTA), First-In-First-

Out (FIFO) principle is a key concern. Consequently, all the aforementioned models

order vehicles but in different fashions. Vehicles are ordered according to their trajec-

tories in (Vaughan et al., 1984), locations in (Jayakrishnan, 1991), waiting times in

(Daganzo, 1995a), and positions in a link queue in (Lenonard II, 1998). That is, these

simulation models track either vehicles’ trajectories, or positions, or waiting times,

or queue orders. 1 In these models, therefore, traffic conditions are also considered

1In (Jayakrishnan, 1991), although the introduction of macroparticles save a certain amount of

memory in computation, this saving is diminished when vehicles of different classes are evenly mixed.
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at the vehicle level. As a result, the computational efficiency of the kinematic wave

models is not fully utilized.

In order to fully explore the computational efficiency inherited in the kinematic

wave theory, we propose a new network traffic flow simulation model, in which traffic

dynamics are studied at the aggregate level with commodity specified densities and

flow-rates. Traffic of a commodity has the same characteristics, which can be vehicle

type, destination, path, or any classification criterion. We hereafter refer to this model

as multi-commodity kinematic wave (MCKW) simulation model. In this dissertation

research, we start with a simple traffic system, where vehicles are categorized into

multiple commodities according to their paths and no differentiations are made in

vehicle types, driver classes, or lane types, such as high-occupancy-vehicles (HOV’s)

or HOV lanes. In the MCKW simulation platform, besides link characteristics such as

free flow speed, capacity, and number of lanes, traffic dynamics are highly related to

geometrical characteristics of a road network including link inhomogeneities, merges,

diverges, and other junctions. Although it does not give a complete, detailed picture

of traffic dynamics, this model is still of importance for many applications, in which

the difference in vehicles, drivers, or lanes are negligible not interested or can be

averaged out without major loss of accuracy.

In the MCKW simulation platform, the Godunov-type approximation is applied,

and fluxes through boundaries inside a link and junctions such as merges and diverges

are computed systematically in the framework of the supply-demand method. In addi-

tion, since vehicles are categorized by vehicles’ origins, destinations, and paths, traffic

dynamics are also differentiated for different commodities in the MCKW simulation

platform. We will show that FIFO is observed in the commodity specific kinematic

wave theory.

In the rest of this chapter, we will discuss theories underlying the MCKW model
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in Section 6.2, and the data, network, and program structures in the MCKW model

in Section 6.3. In Section 6.4, we will discuss the process of output from the MCKW

model to obtain interested data of a road network, such as travel times. In Section

6.5, we carry out some numerical simulations of a simple road network. In Section 6.6,

we will draw some conclusions and provide further discussions about the calibration

of the MCKW model.

6.2 Underlying theories of the MCKW simulation

model

In the multi-commodity kinematic wave (MCKW) simulation of network traffic flow,

dynamics of total traffic, i.e., the evolution of traffic conditions of all commodities, are

studied at the aggregate level and governed by the kinematic wave theories. These

theories have been studied in the previous chapters for fundamental network com-

ponents such as inhomogeneous links, merges, and diverges. They provide the un-

derlying algorithms and building blocks for the MCKW simulation platform. At the

disaggregate level, traffic of each commodity in the form of proportions is studied

with its proportion, and First-In-First-Out property on a link will be discussed.

6.2.1 Kinematic wave theories at the aggregate level

In the MCKW model, we use the discrete form of the kinematic wave theories, which

can be obtained through the first-order2 Godunov method (Godunov, 1959) of the

continuous versions. In the discrete form, each link is partitioned into N cells, of

equal length or not, and the time interval is discretized into K time steps. Then, we

2A second-order method was discussed in (Daganzo, 1999a).
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obtain the Godunov-type finite difference equation for total flow in cell i from time

step j to time step j + 1 as follows:

ρj+1
i − ρj

i

∆t
+

f j∗
i−1/2 − f j∗

i+1/2

∆x
= 0, (6.1)

where ∆x is the length of cell i, ∆t is the time from time step j to time step j + 1,

and the choice of ∆t
∆x

is governed by the CFL (Courant et al., 1928) condition. In

Equation 6.1, ρj
i is the average of traffic density ρ in cell i at time step j, similarly

ρj+1
i is the average of ρ at time step j + 1; f j∗

i−1/2 is the flux through the upstream

boundary of cell i from time step j to time step j + 1, and similarly f j∗
i+1/2 is the

downstream boundary flux. Given traffic conditions at time step j, we can calculate

the traffic density in cell i at time step j + 1 as

ρj+1
i = ρj

i +
∆x

∆t
(f j∗

i−1/2 − f j∗
i+1/2). (6.2)

Defining Nj
i = ρj

i∆x as the number of vehicles in cell i at time step j, Nj+1
i =

ρj+1
i ∆x as the number of vehicles at time step j + 1, F j

i−1/2 = f(ρj∗
i−1/2)∆t as the

number of vehicles flowing into cell i from time step j to j + 1, and F j
i+1/2 as the

number of vehicles flowing out of cell i, Equation 6.2 can be written as:

Nj+1
i = Nj

i + F j
i−1/2 − F j

i+1/2, (6.3)

which is in the form of traffic conservation.

Given the initial and boundary conditions, we will use the supply-demand method

(Daganzo, 1995a; Lebacque, 1996) for computing fluxes through cell boundaries:

F j
i−1/2 or f j∗

i−1/2. In a general road network, there are the following types of boundaries:

boundaries inside a link, merges, diverges, and more complicated intersections.

1. When the boundary at xi−1/2 is a boundary inside a link, whose upstream cell

is denoted as u and downstream cell d, we follow the supply-demand method
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discussed in (Daganzo, 1995a; Lebacque, 1996; Jin and Zhang, 2003b). I.e., if

we define the upstream demand as

Du =







Q(Uu), when Uu is under-critical

Qmax
u , when Uu is over-critical

(6.4)

and define the downstream supply as

Sd =







Qmax
d , when Ud is under-critical

Q(Ud), when Ud is over-critical
(6.5)

then the boundary flux can be simply computed as

f j∗
i−1/2 = min{Du, Sd}, (6.6)

where Ud and Uu are traffic conditions including density ρ and road inhomogene-

ity a at jth time step, of the downstream and upstream cells, respectively. As

discussed in (Jin and Zhang, 2003b), this method is consistent with analytical

solutions of the Riemann problem for inhomogeneous roadway.

2. When xi−1/2 is a merging junction with P upstream merging cells, which are

denoted as up (p = 1, · · · , P ), and a downstream cell d. The demand of upstream

cell up, Dp, is defined in Equation 6.4, and the supply of the downstream cell,

Sd, is defined in Equation 6.5. Then, we apply the simplest distribution scheme

(Jin and Zhang, 2003c) and compute the boundary fluxes as

f j∗
i−1/2,d = min{

∑P
p=1 Dp, Sd},

f j∗
i−1/2,up

= q Dp
∑P

p=1
Dp

, p = 1, · · · , P,
(6.7)

where f j∗
i−1/2,d is the in-flow of the downstream cell, and f j∗

i−1/2,up
is the out-flow

of upstream cell up.

In addition, if an upstream cell, e.g. up, is signalized and denote r as the

proportion of green light in a cycle (i.e. green ratio), then we can apply the
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controlled traffic demand of up, min{rQmax
p , Dp}, in the supply-demand method

above (Daganzo, 1995a; Jin and Zhang, 2003c). Note that r can be a continuous

function when considering the average effect or a piece-wise constant function

when the simulation interval ∆t is smaller than a signal cycle.

3. When xi−1/2 is a diverging junction with P downstream cells, which are denoted

as dp (p = 1, · · · , P ), and an upstream cell u. In the model proposed in (Jin

and Zhang, 2002), we introduced a new definition of partial traffic demand of

vehicles traveling to Dp in cell u as follows,

Dp =







Q(ρp; ρ̂p) ρp is UC

Qmax(ρ̂p) otherwise
, (6.8)

where ρ̂p is equal to the density of vehicles not traveling to dp, and at critical

density Q(ρ; ρ̂p) reaches its maximum. The traffic supply for dp, Sp, is defined

by Equation 6.5. Then, the boundary flux to dp, f j∗
i−1/2,dp

, can be computed by

f j∗
i−1/2,dp

= min{Sp, Dp}, (6.9)

and the out-flow of u, f j∗
i−1/2,u, is the sum of these flows,

f j∗
i−1/2,u =

P
∑

p=1

f j∗
i−1/2,dp

. (6.10)

Another model of traffic diverging to D downstream links we will implement in

the MCKW simulation was proposed in (Daganzo, 1995a; Lebacque, 1996):

f j∗
i−1/2,u = minD

d=1{Du, Sd/ξd},

f j∗
i−1/2,d = ξdf

j∗
i−1/2,u, d = 1, · · · , D,

(6.11)

where ξd is the proportion of commodity d in total traffic, and here Du is the

demand of the upstream cell as defined in Equation 6.4.



CHAPTER 6. MULTI-COMMODITY NETWORK TRAFFIC MODEL 140

When vehicles have no predefined route choice and can choose every downstream

link at a diverge, we use the model proposed in (Jin and Zhang, 2003c):

f j∗
i−1/2,u = min{Du,

∑D
d=1 Sd},

f j∗
i−1/2,d = Sd∑D

d=1
Sd

f j∗
i−1/2,u, d = 1, · · · , D.

(6.12)

4. For intersections with two or more upstream and downstream links, we can

combine the merge and diverge models together. Note that only the computa-

tion of demands and supplies may change, and the supply-demand method is

still the same.

For example, when we combine the supply-demand methods in Equation 6.7 and

Equation 6.11 for an intersection with U upstream branches and D downstream

branches, we can compute fluxes by

f j∗
i−1/2 = minD

d=1{
∑U

u=1 Du, Sd/
(∑U

u=1
Duξu,d

∑U
u=1

Du

)

},

f j∗
i−1/2,d =

∑U
u=1

Duξu,d
∑U

u=1
Du

f j∗
i−1/2, d = 1, · · · , D,

f j∗
i−1/2,u = Du∑U

u=1
Du

f j∗
i−1/2, u = 1, · · · , U,

(6.13)

where ξu,d is the proportion of traffic heading downstream link d in upstream link

u, f j∗
i−1/2 is the total flux through the boundary, f j∗

i−1/2,d flux heading downstream

link d, and f j∗
i−1/2,u flux from upstream link u. In this model, the intersection

is considered as a combination of a merge with U upstream branches and a

diverge with D downstream links in the fashion of (Daganzo, 1995a). Note

that the merge model, Equation 6.7, and the diverge model, Equation 6.11, are

specific cases of Equation 6.13.

6.2.2 Commodity-based kinematic wave theories

In the MCKW simulation platform, commodities are differentiated by origin/destination

or path. We assume that a road network has P ′ origin/destination (OD) pairs and P
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paths (P ≥ P ′). When vehicles have predefined paths, we then have a P -commodity

traffic flow on the road network and label vehicles taking pth path as p-commodity.

When vehicles of an O/D have no predefined paths, we have P ′-commodity traffic

flow.

In the kinematic wave theories of multi-commodity traffic, we denote total traffic

density, travel speed, and flow-rate respectively by ρ, v, and q, which are all functions

of location x and time t. In contrast, these quantities for p-commodity vehicles

are ρp, vp, and qp respectively. The fundamental diagram of total traffic defines a

functional relationship between density and travel speed or flow-rate: q = Q(a, ρ)

and v = V (a, ρ) ≡ Q(a, ρ)/ρ, where a(x) stands for road inhomogeneities at location

x such as changes in the number of lanes, curvature, and free flow speed. Further, we

assume traffic on all links is additive in the following sense (Jin and Zhang, 2002):

ρ =
P

∑

p=1

ρp, (6.14)

v = vp = V (a, ρ), p = 1, · · · , P, (6.15)

q =
P

∑

p=1

qp, (6.16)

The kinematic wave theory of additive multi-commodity traffic on a link can be

described by the following theory (Jin and Zhang, 2003b),

ρt + Q(a, ρ)x = 0,

(ρp)t + (ρpV (a, ρ))x = 0, p = 1, · · · , P.
(6.17)

If denoting the local proportion of p-commodity (p = 1, · · · , P ) by ξp = ρp/ρ, we then

have the following advection equations (Lebacque, 1996)

(ξp)t + V (a, ρ)(ξp)x = 0, p = 1, · · · , P. (6.18)

From Equation 6.18, we can see that proportions of all commodities travel forward

in a link along with vehicles in traffic flow, as the change of ξp in material space,
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(ξp)t + V (a, ρ)(ξp)x, equals to zero. This is also true for all kinds of junctions, in par-

ticular diverges, in their supply-demand models in the preceding subsection 3 There-

fore, Equation 6.18 also means that the profile of proportions coincides with vehicles’

trajectories on a link. That is, if two or more commodities initially completely are

divided by an interface, this interface will move forward along with vehicles on both

sides of, and these commodities will never mix. Since each single vehicle can consid-

ered as a commodity, all vehicles’ trajectories keep disjoint in the commodity-based

kinematic wave models. Therefore, FIFO principle is respected in this continuous

model.

In the previous subsection, we studied the discrete kinematic wave theory for total

traffic. Here, we will present the discrete kinematic wave theory for each commodity.

Given traffic conditions of p-commodity at time step j, i.e., ρj
p,i in all cells, we can

calculate the traffic density of p-commodity in cell i at time step j + 1 as

ρj+1
p,i = ρj

p,i +
∆t

∆x
(f j∗

p,i−1/2 − f j∗
p,i+1/2), (6.19)

where f j∗
p,i−1/2 is the in-flux of p-commodity through the upstream boundary of cell i

during time steps j and j + 1, and f j∗
p,i+1/2 out-flux. Furthermore, since the profile of

the proportion of a commodity always travels forward at traffic speed, the proportion

of a commodity in out-flux of cell i compared to all commodities is equal to the

proportion of the commodity in the cell. I.e. (Lebacque, 1996),

f j∗
p,i+1/2 · ρ

j
i = f j∗

i+1/2 · ρ
j
p,i, p = 1, · · · , P. (6.20)

This is true for cells right upstream of merging junctions (Jin and Zhang, 2003c) and

diverging junctions (Papageorgiou, 1990; Daganzo, 1995a; Lebacque, 1996; Jin and

Zhang, 2001a).

3That traffic is anisotropic is believed to regulate this property.
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During time steps j and j + 1 at a boundary xi+1/2, which has U upstream cells

and D downstream cells, if we know the out-flux from upstream cell u (u = 1, · · · , U),

f j∗
p,u,i+1/2 (p = 1, · · · , P ), we can obtain the in-flux of downstream cell d (d = 1, · · · , D),

f j∗
p,d,i+1/2 (p = 1, · · · , D), from traffic conservation in p-commodity:

U
∑

u=1

f j∗
p,u,i+1/2 =

D
∑

d=1

f j∗
p,d,i+1/2. (6.21)

However, when p-commodity vehicles can take more than one downstream cells, we

have
P

∑

p=1

f j∗
p,d,i+1/2 = f j∗

d,i+1/2. (6.22)

Note that, in Equation 6.17, the kinematic wave solutions are determined by those

of total traffic, which are obtained by the first-order convergent Godunov method.

Also from Equation 6.18, we can see that Equation 6.20 yields an up-wind method

for ξp in Equation 6.19. Therefore, the discrete model for the commodity-based

kinematic wave model, Equation 6.17, converges in first order to continuous version,

whose solutions observe FIFO principle. That is, in numerical solutions, error in

travel time of any vehicle is in the order of ∆t. That is, in the MCKW simulation,

FIFO is accurate to the order of ∆t and ∆x. Therefore, when we decrease ∆t, this

approximation becomes more accurate.

6.3 Network structure, data structure, and pro-

gram flow-charts in the MCKW simulation plat-

form

In this section, we will discuss the programming details of the MCKW simulation of

an illustrative road network.
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Figure 6.1: A demonstration road network

6.3.1 Network structure

For the purposes of exposition, a simple traffic network, shown in Figure 6.1, is

considered, and these discussions can be extended to more general road networks.

The road network in Figure 6.1, where the arrows show traffic direction, consists

of one origin/destination (O/D) pair and four links. In this network, there are two

paths. Furthermore, we assume vehicles have predefined paths. 4 Thus, traffic flow

on this road network consists of two commodities.

In the MCKW simulation, origins and destinations have the same data structure

as regular links and are treated as links. For a road network with num origin origins,

num od origins and destinations, and num link links, all links are numbered: origins

from 0 5 to num origin-1, the number of origins; destinations from num origin to

num od-1; and regular links from num od to num links-1. In the sample network, links

are numbered as shown in Figure 6.1.

With these numbers, the paths or commodities are denoted as follows: commodity

4When vehicles have no predefined paths, these discussions are also applicable.
5The numbering starts from 0 rather than 1 according to C/C++ conventions.



CHAPTER 6. MULTI-COMMODITY NETWORK TRAFFIC MODEL 145

0 takes links 0, 2, 3, 5, and 1, and commodity 1 takes links 0, 2, 4, 5, and 1. This

is equivalent to saying that links 0, 2, 5, and 1 carry 0-commodity and 1-commodity

flows, link 3 carries only 0-commodity flow, and link 4 carries only 1-commodity

flow. Further, the network structure and traffic flow direction is represented by the

upstream and downstream links of each link. For example, the upstream links of link

5 and the downstream links of link 2 are links 3 and 4, respectively.

In the MCKW simulation, each link is partitioned into a number of cells. 6 Since

fluxes through cell boundaries are important in computation in the kinematic wave

theories, cell boundaries are also included in the structure of a link. 7 In the MCKW

simulation platform, cells and boundaries are ordered according to traffic direction:

adjacent cells and boundaries are either upstream or downstream to a cell.

In the MCKW simulation, therefore, network can be constructed if we know the

structures of all links, commodities on a link, and the upstream and downstream

links of all links. That is, junctions are not used to store network structure although

they are also numbered in Figure 6.1. The representation of network structure in the

MCKW simulation largely simplifies the data structure, in which only links are used.

6.3.2 Data structure

In the MCKW simulation platform, the structure and characteristics of a road network

and traffic conditions are all represented by links as well as cells and boundaries inside

a link. Therefore, the major data structure is linkType, through which network and

traffic conditions are dealt with, together with sub-structures for cells, cellType,

and boundaries, boundaryType. The data structures are shown in Figure 6.2 and

explained in detail as below.

6Origins and destinations have only one cell.
7Note that there are one more cell boundaries than cells.
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Figure 6.2: Data structure in the MCKW mckw platform
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In Figure 6.2, the data structure for a link, linkType, is shown in the left box.

Its fields are explained as follows:

downCell is an address pointing to the furthest downstream cell of a link.

upCell is an address pointing to the furthest upstream cell of a link.

numCell is the number of cells in a link.

numCommodity is the number of commodities traveling on the link.

commodity [ ] is an array of commodities, whose length is numCommodity. Com-

modities are ordered increasingly for all links.

arrivalCurves [ ] is an array of accumulative flow entering the link. Its length is

numCommodity+1. The first numCommodity entries store the cumulative flows of

corresponding commodities, and the last entry stores total cumulative flow.

departureCurves [ ] is the same as arrivalCurves [ ] except that we consider

exiting flows.

numUpLinks is the number of upstream links adjacent to a link.

upLinks [ ] stores all the adjacent upstream links. Its length is numUpLinks.

numDownLinks is the number of downstream links adjacent to a link.

downLinks [ ] stores all the adjacent downstream links. Its length is numDownLinks.

typeUpJunction denotes the type of the upstream junction incident to a link. Here,

type 0 stands for a linear junction connecting one upstream link and one down-

stream link, type 1 for a merging junction, type 2 for a diverging junction

as described by Equation 6.11, type 3 for a diverging junction by Equation
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6.8-Equation 6.10, and type 4 for a diverging junction by Equation 6.12. For

different types of junctions, traffic flow models are different, as shown in Section

6.2.

typeDownJunction denotes the type of the downstream junction incident to a link.

The definition of junction types are the same as in typeUpJunction.

downBoundary is an address pointing to the furthest downstream boundary of a link.

upBoundary is an address pointing to the furthest upstream boundary of a link.

In these cells, four fields in dark green are pointers with no physical meaning, two

fields in cyan are time-dependent quantities, and the rest in blue represent quantities

that determine network structure and are time invariant.

As exhibited by the top right box of Figure 6.2, cellType, has the following

fields, which characterize a cell.

length is the length of a cell.

numlane is the number of lanes of a cell.

typeFD denotes the type of fundamental diagrams in a cell. Type 0 stands for the

triangular fundamental diagram (Newell, 1993). For other types of fundamental

diagrams, refer to (Del Castillo and Benitez, 1995b; Kerner and Konhäuser,

1994). With the number of lanes considered, we can have the fundamental

diagram for the cell.

ffspeed is the cell free flow speed.

jamdensity is the cell jam density of each lane.
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cridensity is the cell critical density of each lane, at which traffic flow reaches

capacity.

capacity is the cell maximum flow-rate of a lane.

density is the cell total density.

proportion [ ] is an array of proportions of commodities in a cell. Its length is

numCommodity of the corresponding link.

demand is the cell traffic demand during a time interval, as defined in Equation 6.4.

supply is the cell traffic supply, as defined in Equation 6.5.

next is the address pointing to the upstream cell.

As in linkType, the dark green field is a pointer, seven blue fields are for time-

independent quantities, which denote major characteristics of a cell, and four cyan

fields are for time-dependent quantities. Note that the number of lanes, free flow

speed, and, therefore, the critical density and capacity may change when accidents

occur. Besides, if there are signals on the boundaries of a cell, the demand and supply

may be restricted (Daganzo, 1995a; Jin and Zhang, 2003c).

The data structure for cell boundaries, boundaryType, is illustrated by the bot-

tom right box in Figure 6.2 and has the following fields:

flux is the flux through the boundary during a time interval.

proportion [ ] stores the proportions of all commodities in the total flux. Its length

is numCommodity of the corresponding link.

next is the address pointing to the upstream boundary.
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As we can see, both flux and proportion [ ] are time dependent.

In the MCKW simulation, cells and boundaries are ordered in the direction op-

posite to traffic’s. However, it is also straightforward to order them in the traffic

direction. Besides, ordering will not affect computation efficiency significantly.

6.3.3 Program flow-chart

The program flow chart in the MCKW simulation platform is shown in Figure 6.3.

The modules in the program are explained below in the same order as they appear

in the chart.

1. Create network. Network structure and characteristics are created. That is,

we provide values for the blue fields of each link and cell in Figure 6.2. We also

assign all locations of the pointers.

2. Initialize traffic. Traffic density and proportions of all commodities are ini-

tialized for each cell. One typical initialization is to set network empty; i.e.,

traffic density of each cell is zero.

3. Compute supply/demand. Given traffic density of a cell, we are able to

compute traffic demand and supply according to Equation 6.4 and Equation

6.5.

4. Resolve boundary conditions. Several types of boundary conditions can be

used. The first and most important type of boundary conditions is conditions

for origins and destinations. In the MCKW simulation, we use traffic demand,

specified for all commodities, for origins and traffic supply for destinations. This

is different from the boundary conditions used in the previous chapters, where

the Dirichlet, Neumann, and periodic boundary conditions are generally used.
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Figure 6.3: The program flow chart in the MCKW simulation
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However, from those boundary conditions, we can easily compute the supply

and demand according to Equation 6.4 and Equation 6.5. Moreover, these

boundary conditions are different from the O/D flow matrix in dynamic loading

studies in the sense that we cannot determine in-flow, which is also affected

by current traffic conditions on a link incident to an origin. Therefore, with

the same pattern in origin demand, we may have totally different O/D flows.

This observation suggests a criteria for evaluating the level of service of a road

network: the amount of time for loading a number of vehicles. In addition, the

effect of assignment algorithms can be studied through the proportions of origin

demands. Second, signals and accidents are considered as boundary conditions

in the MCKW simulation: signals acting at cell boundaries put a constraint on

supplies of the downstream cells and demands of the upstream cells (Daganzo,

1995a; Jin and Zhang, 2003c), and accidents will change the number of lanes

and free flow speed in a cell. From the discussions above, we can see that the

influence of incidents and accidents can be studied through imposing different

boundary conditions.

5. Compute link flows. From Equation 6.6, we are able to compute fluxes

through boundaries inside a link. From the FIFO principle of traffic flow in the

kinematic wave theories, the proportion of a commodity in fluxes is equal to

that in density in the upstream cells.

6. Compute junction flows. From Equation 6.7, Equation 6.8-Equation 6.10,

Equation 6.11, and Equation 6.12, we can compute fluxes through different

types of junctions. The proportions of different commodities can be obtained

from the FIFO property and traffic conservation of each commodity, Equation

6.21. Since links share junctions, we only need compute junction fluxes for a
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set of links. For example, for the road network in Figure 6.1, we only compute

junction fluxes at the upstream and downstream junctions of links 2 and 5.

7. Update traffic conditions. Traffic densities of all commodities in a cell can

be updated by Equation 6.19. However, one has to be careful when computing

the proportions since total density, as a divider, may be very small. Although

the proportions may not be accurate for very small densities, it rarely matters.

6.4 Cumulative flow, travel time, and other prop-

erties of a road network

In the MCKW simulation, we keep track of the change of traffic densities of all

cells and fluxes through all boundaries. Besides, these quantities are specified for

commodities. In this section, we will discuss how to obtain other traffic information

from these quantities.

6.4.1 Cumulative flow and vehicle identity

Cumulative flow at a boundary xi−1/2 from time t0 to t, N(xi−1/2; [t0, t]), is the total

number of vehicles passing the spot during the time interval. If the flux is f ∗(xi−1/2, s)

at time s, then we have

N(xi−1/2; [t0, t]) =

∫ t

s=t0

f ∗(xi−1/2, s) ds. (6.23)

Correspondingly, the discrete cumulative flow, N(xi−1/2; [J0, J ]), which is from time

steps J0 to J , is defined as

N(xi−1/2; [J0, J ]) =
J−1
∑

j=J0

f j∗
i−1/2 ∆t, (6.24)
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where f j∗
i−1/2 is the flux at xi−1/2 during time steps j and j + 1.

A curve of cumulative flow versus time is also known as a Newell-curve or simply

N-curve (Daganzo, 1994), since Newell (1993) developed a simplified version of the

LWR kinematic wave theory based on this concept.

From the definition of cumulative flow, we can see that an N-curve is non-

decreasing in time. Further, it is increasing when passing flow is not zero.

Although densities and fluxes are quantities at the aggregate level, the MCKW

model is capable of tracking traffic information at the disaggregate level. This can

be done also with cumulative flows: a vehicle passing a cell boundary at a time step

can be labeled by the corresponding cumulative flow. If all cumulative flows are

synchronized; for example, when the initial traffic in a road network is empty, then

the same cumulative flow of a commodity refer to the same vehicle. This fact is due

to the FIFO property in all commodities. 8

Therefore, in the MCKW simulation, with curves of cumulative flows as a bridge

between the aggregate and disaggregate quantities, we are able to keep track of vehicle

trajectories, accurate to the order of ∆x and ∆t, from cumulative flows at all cell

boundaries. Further, with finer partition of each link, we can obtain more detailed

information at the disaggregate level.

6.4.2 Travel time

For a vehicle, which can be identified by its commodity cumulative flow number under

FIFO, its travel time across a link or from the origin to the destination can be inferred

from N-curves. For example, when we know its arrival and departure times to a link

from the corresponding N-curves, we can easily compute its travel time across the

link.

8When type 4 diverge appears, this has to be checked.
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Figure 6.4: Cumulative flows and travel time

This can be demonstrated in Figure 6.4. In this figure, the left curve is the N-

curve at location x1, and the right curve at x2. These two curves are synchronized in

the sense that the vehicles between x1 and x2 at t = 0 are not counted in N(x2; [0, t]).

Therefore, from FIFO, we can see that the N0 vehicle on the left N-curve is the same

as the N0 vehicle on the right N-curve. Then, from the curve, we know that the times

of the N0 passing x1 and x2 are t1 and t2 respectively. Thus, its travel time from x1

to x2 is t2 − t1.

In Figure 6.4, the left N-curve reaches a maximum at some time and stop in-
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creasing after that. This means that no flow passes x1 after that time. The right

N-curve has the same pattern. In such cases, one has to be cautious when computing

travel time for the last vehicle, identified by the maximum cumulative flow, which

corresponds to multiple values in time. Rigorously, therefore, the time for a vehicle

N0 passing a location x, where the N-curve is N(x; [t0, t]), can be defined by

T (N0; x) = min
s
{s|when N(x; [t0, s]) = N0}. (6.25)

Further, the travel time for the N0 vehicle from x1 to x2 is

T (N0; [x1, x2]) = T (N0; x2) − T (N0; x1). (6.26)

With the definition of passing time in Equation 6.25, at x, the vehicle identity N0

has a one-to-one relationship with its passing time T (N0; x). Therefore, the passing

time can be considered as another identity of a vehicle. For a vehicle N0, if we know

its passing time at any location in a road network, we then obtain its trajectory.

From the travel times of individual vehicles, we are able to compute the total

travel time between two locations, in particular between an O/D pair, as follows:

T ([N1, N2]; [x1, x2]) =

N2
∑

M=N1

T (M ; [x1, x2]), (6.27)

where N1 is the first vehicle and N2 the last. We can see that, in Figure 6.4, the total

travel time is equal to the area between the two N-curves. Then the average travel

time for each vehicle will be

T̄ ([N1, N2]; [x1, x2]) ≡
T ([N1, N2]; [x1, x2])

N2 − N1

=

∑N2

M=N1
T (M ; [x1, x2])

N2 − N1

. (6.28)

Moreover, for a road network, we can integrate travel times for all O/D pairs

and, therefore, obtain the total travel time and the average travel time for the whole

road network. These quantities are important indicators of the performance of a road
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network. Besides, we consider the loading time for an amount of flow to be released

from an origin as another performance indicator.

Hence, the MCKW simulation platform can be applied to evaluate traffic manage-

ment and control strategies, such as route assignment and ramp metering algorithms.

These applications will be discussed in the next chapter.

6.5 Numerical simulations

In this section, we investigate the properties of the MCKW simulation model through

numerical simulations. We will show the evolution of traffic and examine the conver-

gence of solutions. In this section, the diverge connecting links 2, 3, and 4 is modeled

by Equation 6.11.

6.5.1 Simulation set-up

For these simulations, the network has the structure as shown in Figure 6.1. In this

network, links 2, 3, and 5 have the same length, 20 miles, and the length of link 4 is

40 miles (not drawn to proportion); link 2 has three lanes, and the other links has

two lanes; all links have the same triangular fundamental diagram (Newell, 1993):

Q(a, ρ) =







vfρ, 0 ≤ ρ ≤ aρc;

ρc

ρj−ρc
vf (aρj − ρ), aρc < ρ ≤ aρj;

(6.29)

where ρ is the total density of all lanes, a the number of lanes, the jam density ρj=180

vpmpl, the critical density ρc=36 vpmpl, the free flow speed vf=65 mph, the capacity

of each lane qc = ρcvf=2340 vphpl, and the corresponding shock wave speed of jam

traffic is cj = −ρc/(ρj − ρc)vf ≈ −17 mph.

Initially, the road network is empty. Boundary conditions are defined as follows.

Traffic supply at the destination is always 2qc. At origin, traffic demand at the origin
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is 3qc during [0, 6.0] and zero after that, and the proportion of commodity 0, which

takes link 3 instead of 4, is always ξ = 70%.

Links 2, 3, and 5 are partitioned into N cells each, and link 4 into 2N cells, with

each cell of the same length, ∆x = 20/N miles. The total simulation time of 8.4

hours is divided into K time steps, with the length of a time step ∆t = 8.4/K. In our

simulations, we set N/K = 1/30. Thus the CFL (Courant et al., 1928) number is no

larger than vf∆t/dx = 0.91, which is valid for Godunov method (Godunov, 1959).

6.5.2 Traffic patterns on the road network

We let N = 400 and K = 12000. Hence ∆x = 0.05 miles=80 meters, and ∆t = 0.0007

hours=2.52 seconds. Here the sizes of road cells and time steps are relatively small,

in order for us to obtain results closer to those of the kinematic wave theories with

the Godunov method.

The contour plots of the solutions are shown in Figure 6.5. From these figures,

we can divide the evolution of traffic dynamics on the road network into three stages.

In the first stage starting from 0, vehicles embark link 2 with the free flow speed,

prevail the link in its critical density 3ρc, and arrive junction 1 at t1 = 20/65 hr. At

the diverge, junction 1, fluxes are computed from Equation 6.11: out-flux of link 2 is

f2,out = min{3qc,
2qc

0.7
,
2qc

0.3
} =

20

7
qc,

which is slightly smaller than the in-flux of link 2, in-flux of link 3 is f3 = 0.7f2 = 2qc,

which is its capacity, and in-flux of link 4 is f4 = 0.3f2 = 6
7
qc, which is less than

half of its capacity. After t1, two streams of free flow form on links 3 and 4, and a

backward travelling shock wave forms on Link 2, and the shock wave speed is

vj = −
1

4
vf .
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Figure 6.5: Contour plots of network traffic flow

At t2 = t1 +20/vf , the first vehicle on link 3 reaches junction 2, which is a merge. At

t2, the first vehicle on link 4 is half way back since the length of link 4 is double of

link 3’s. From the merge traffic flow model, Equation 6.7, we have the in-flux of link

5 as

f5,in = min{2qc, 2qc} = 2qc,

which is also the out-flux of link 3. After t2, the proportion of commodity 0 on link

5 is 1, as we can see on the bottom right figure.

The second stage starts at t3 = t1 + 40/vf = 60/65 hr, when the first vehicle
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on link 4 reaches junction 2. After that, the in-flux of link 5 is still 2qc, but the

proportion of commodity 0 reduces to 0.5714 since commodity 1 also contributes; on

link 3, a new state forms at ρ = 195.4290 vpm, which is over-critical, and a shock

wave travels upstream at the speed of |cj| ≈ 17 mph; on link 4, ρ = 30.8571 vpm,

which is under-critical. At t4 = t3 + 20/|cj| = 140/65 hr, the back-traveling shock on

link 3 hits junction 1, and the traffic supply on link 3 is reduced. Therefore, the out-

flux of link 2 is further reduced, and link 2 becomes more congested, as shown in the

top left picture. This also reduces traffic flow on link 4, and the reduced flow reaches

junction 2 at t5 = t4 + 40/vf = 180/65 hr. After t4, link 3 becomes less congested,

and a rarefaction wave travels backward on it at |cj| ≈ 17 mph; the proportion of

commodity on link 5 gets higher. From the bottom middle figure, we can see that at

t5 = t4 +20/|vj|, traffic density on link 4 swings back a little due to the back traveling

rarefaction on link 3. This shift is transported to junction 2 at t6 = t5 + 40/vf and

oscillates traffic density on link 3 and the proportion of commodity 0 on link 5.

The third stage starts at t7 = 6, when traffic demand from origin subsides to

zero. After that, a shock forms on link 2 and travels forward, and propagates to link

4 and link 3. On link 4 the shock travels at vf , and on link 3 it travels slower. This

is why the proportion of commodity 0 on link 5 becomes 1 before it is emptied.

This simulation indicates that oscillation of traffic conditions can be caused by

network merges and diverges even the initial and boundary conditions are very nice.

The traffic flow pattern on this road network suggests that, if we keep the same

demand from the origin, an equilibrium state will be reached after some time. This

equilibrium state will be further investigated in the following chapter.

The traffic patterns in Figure 6.5 can be partially observed from the top left figure

in Figure 6.6, where the thicker four curves give cumulative flows for commodity 0,

the thinner for commodity 1, and solid, dashed, dotted, and dash-dot curves are for
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Total Number of Vehicles TTT ATT

Commodity 0 23,8585 4.7291×104 1.9822

Commodity 1 10,2251 1.7372×104 1.6989

Table 6.1: Total travel time (TTT) and average travel time (ATT) for two commodi-

ties

cumulative flows at junction 0, 1, 2, and 3, respectively. In the bottom left figure, the

solid lines are cumulative flows of commodity 0 at origin/destination, i.e., junction

0 and 3, the dashed curve is the number of commodity 0 vehicles in the network

at a time, the dashed line shows the average number, the dotted curve is the travel

time of a commodity 0 vehicle identified by its cumulative flow, and the dotted line

is the average travel time. The bottom right figure has the same curves and lines

as the bottom left figure, except that they are for commodity 1. Here travel time of

individual vehicle is computed by Equation 6.26, total travel time by Equation 6.27,

and average travel time by Equation 6.28. Although the formulas were developed

for link travel times, it is valid for a network as long as vehicles of each commodity

observe FIFO principle. Total (TTT) and average (ATT) travel times are listed in

Table 6.1 (unit=hours).

Thus, vehicles that take link 4 on average use shorter time, which is still longer

than the free flow travel time, 80/65 hr. Obviously, if all vehicles at origin decide to

take link 3, the travel time, 60/65 will be the shortest possible travel time between the

origin and destination. Therefore, this assignment fraction, 70%, is not an optimum

one. More detailed analysis of the influence of the assignment fraction on travel times

will be engaged in the following chapter.
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Figure 6.6: N-curves and travel times of each commodity in the road network

6.5.3 Convergence of the MCKW simulation model

In this subsection, we study the convergence of the MCKW simulation platform with

increasing number of cells. Here we use the same road network, initial and boundary

conditions as in the preceding subsection.

As we show in the previous chapters, the discrete forms of kinematic wave theories

converge to their continuous counterparts as we partition each link into finer cells

(Jin and Zhang, 2003c). In those studies, we generally check convergence in terms of

traffic densities. Here we intend to show convergence in average travel times of both
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Commodity 0 N=200 N=400 N=800 N=1600 N=3200

ATT 1.98189893 1.98215215 1.98227240 1.98234941 1.98239377

Error [10−3] 0.2532 0.1202 0.07700 0.0444

Rate 1.074 0.6430 0.7958

Commodity 1 N=200 N=400 N=800 N=1600 3200

ATT 1.69922958 1.69892887 1.69877593 1.69871236 1.69868722

Error [10−3] -0.3007 -0.1529 -0.0636 -0.0251

Rate 0.9755 1.2664 1.3384

Table 6.2: Convergence rates for the MCKW simulation platform

commodities.

Denoting the average travel time of a commodity, T , as a function of the number

of cells, N ; i.e., T = T (N), we can define the relative error, from N to 2N , by

ǫ2N−N = |T (2N) − T (N)|. (6.30)

Then a convergence rate is computed by

r = log2(
ǫ2N−N

ǫ4N−2N
). (6.31)

The convergence rates of the average travel times are given in Table 6.2.

From the table, we can see that average travel times are also convergent in first

order. Note that this convergence is different from the aforementioned traffic condi-

tions converging to certain equilibrium state. Moreover, we can see that the results

with N = 200 is already accurate enough in this case. Since the computation time of

the MCKW simulation platform is quadrupled when N is doubled, in later simula-

tions, we use ∆x = 0.1 mile=160 meters and ∆t = 0.0014 hours= 5.04 seconds with

the same simulation period.
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6.6 Discussions

In this chapter, we proposed the Multi-Commodity Kinematic Wave (MCKW) sim-

ulation model. In this simulation model, we integrated the kinematic wave theories

studied in the previous three chapters to form the foundation of the algorithms, care-

fully discussed commodity-based kinematic wave theories, and presented the data

structure and program structure for implementation. We further demonstrated how

to obtain cumulative flows and travel times from outputs of the MCKW simulation

model. Simulations show that numerical results converge to FIFO solutions although

the FIFO condition is not strictly enforced in the discrete form of commodity-based

kinematic wave theories.

Different from many existing simulation packages, where traffic is tracked down

to vehicle level, the MCKW simulation concerns traffic conditions down to commodity

level. The simulation model is designed for handling very large road networks and can

be applied in studies of Intelligent Transportation Systems, such as dynamic traffic

assignment, dynamic O/D estimation, and so on. However, as pointed out earlier, the

effects of “departure from FIFO” should be carefully considered in these applications.

In the future, the MCKW simulation model can be enhanced in three aspects.

Theoretically, vehicle types and special lanes can be incorporated (Daganzo, 2002),

and nonequilibrium continuum models (Jin and Zhang, 2003d) may also be integrated.

Numerically, parallel algorithms can be applied to improve computational speed since

traffic conditions on different links can be updated simultaneously, and consumption

of computer memory will be checked. Finally, for different applications, we also plan

to design different input/out interfaces. For example, the network structure can be

imported from GIS (Geographic Information System) data, and boundary conditions

and output can be manipulated for different applications.



Chapter 7

Studies of network vehicular traffic

with kinematic wave simulations

7.1 Introduction

As discussed in the preceding chapter, the Multi-Commodity Kinematic Wave (MCKW)

simulation model is based on the kinematic wave theories of traffic dynamics at various

road network components, including link bottlenecks, merges, and diverges. After ve-

hicles are differentiated into commodities by their paths or origin/destination (O/D)

pairs, we can then keep track of the evolution of traffic densities of all commodi-

ties on a road network over time. Further, information of individual vehicles can be

obtained through cumulative flows. Therefore, compared to some other simulation

models based on the kinematic wave theory (e.g., Daganzo (1995a); Vaughan et al.

(1984)), the MCKW simulation is a pure macroscopic simulation program. As such,

the MCKW simulation model is expected to be less costly in computation but ade-

quate for many applications in Advanced Transportation Information Systems (ATIS)

and Advance Transportation Management Systems (ATMS).

165
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In this chapter, we will explore traffic dynamics in a road network with the

MCKW simulation model and its implications in applications. First in Section 7.2,

we are interested in equilibrium states of a road network under a given O/D demand

pattern and the influence of different assignment strategies. Then in Section 7.3,

we study the formation mechanism of periodic oscillations in a network and their

properties.

These simulations are studied on a small, demonstration network, where traffic

dynamics at diverges obey Equation 6.11. The major purpose of these studies is

to show the capabilities of the MCKW simulation model. Moreover, these studies

can be considered as initial steps to the understanding of more complicated traffic

phenomena in a large-scale road network and practical applications.

7.2 Equilibrium states of a road network and pre-

liminary examination of traffic assignment

In Subsection 6.5.2, we show that traffic flow on a road network can reach a certain

pattern after sufficient amount of time. We call these time-invariant traffic patterns

as equilibrium states.

For the equilibrium states, we are interested in the following questions: 1) how

are the equilibrium states related to the boundary conditions? 2) what is the effect of

changing proportions in origin demand? 3) do these equilibrium states have anything

to do with the so-called User Equilibrium States?
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Figure 7.1: Network for studying equilibrium state and traffic assignment

7.2.1 The simulated network

In this section, we study a demonstration network shown in Figure 7.1. In this

network, links 2, 3, and 5 have the same length, 20 miles, and the length of link 4 is

40 miles; link 2 has three lanes, and the other links has two lanes; all links have the

same fundamental diagram:

Q(a, ρ) =







vfρ, 0 ≤ ρ ≤ aρc;

ρc

ρj−ρc
vf (aρj − ρ), aρc < ρ ≤ aρj;

where ρ is the total density of all lanes, a the number of lanes, the jam density

ρj=180 vpmpl, the critical density ρc=36 vpmpl, the free flow speed vf=65 mph, and

the capacity of each lane qc = ρcvf=2340 vphpl.

Initially, the road network is empty. Traffic supply at the destination is always

the capacity of two lanes. For studying equilibrium states, we assume traffic demand

at the origin is always the capacity of link 2, 3qc.

Links 2, 3, and 5 are partitioned into 200 cells each, and link 4 into 400 cells.

Therefore, all cells have the same length, 0.1 miles. The total simulation time of 8.4

hours is divided into 6000 time steps, with the length of a time step ∆t = 0.0014

hours=5.04 seconds. Thus the CFL (Courant et al., 1928) number is no bigger than
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vf∆t/dx = 0.91, which is valid for Godunov method (Godunov, 1959). As we show

in subsection 6.5.3, the simulation results are numerically convergent.

In the following simulations, we will study the equilibrium states and the perfor-

mance of the road network for a proportion of commodity 0, ξ.

7.2.2 Equilibrium states

When ξ = 0.5, and commodity 1 vehicles have the same proportion, 1 − ξ = 0.5,

solutions of traffic dynamics on the road network are shown in Figure 7.2. The traffic

pattern evolves as follows. From t0 = 0 to t1 = 20/65 hr 1 , the first vehicle traverses

link 2 and reaches junction 1, where fluxes can be computed from Equation 6.11 as

f2,out = min{3qc, 2qc/0.5, 2qc/0.5} = 3qc,

f3,in = 1.5qc,

f4,in = 1.5qc,

where subscript in denotes in-flux, and out out-flux. After t1, links 2, 3, and 4 all

carry free flow. At t2 = t1 + 20/65, traffic on link 3 arrives at the merge, junction 2,

where from Equation 6.7 fluxes are the following:

f5,in = min{2qc, 2qc} = 2qc,

f3,out = 2qc,

f4,out = 0.

At t3 = t2 + 20/65, vehicles on link 4 also reaches junction 2, and fluxes become

f5,in = min{2qc + 2qc, 2qc} = 2qc,

f3,out = qc,

f4,out = qc.

1Hereafter, the unit of time is always hour except if otherwise mentioned.
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Thus, after t3, shock waves form on both links 3 and 4 and travel upstream in the

speed of −vf/4. At t4 = t3 + 80/65, the shock wave on link 3 reaches junction 1, and

fluxes become

f2,out = min{3qc, qc/0.5, 2qc/0.5} = 2qc,

f3,in = qc,

f4,in = qc.

After this, link 3 equilibrates at q3 = qc and ρ3 = 1.2ρj, a shock travels backward on

link 2 at vf/4, and a shock travels forward at the free flow speed. At t5 = t4 + 20/65,

the two shock waves on link 4 meet at the middle of the link and form a stable zero-

speed shock wave, where the upstream half is at 0.2ρj and the downstream half at

1.2ρj. After t6 = t4 + 80/65, traffic on link 2 is uniformly at q2 = 2qc and ρ2 = 1.4ρj.

Therefore, the whole road network reaches an equilibrium state after t6. In the

equilibrium state, links 2 and 5 both carry flow-rate 2qc, which is the capacity of

the road network, links 3 and 4 carry flow rate qc corresponding to the proportion

of each commodity. Besides, links 2 and 3 are congested, and link 4 has a zero-

speed shock, which, however, is unstable in the sense that a small oscillation in the

upstream or downstream flow will make the zero-shock disappear. The instability of

this equilibrium state on the road network can also been seen later when we consider

ξ away from 0.5.

When ξ = 0.6, the contour plots of traffic densities on four links are given in

Figure 7.3. The traffic evolution pattern is similar to that in subsection 6.5.2. Here

we directly go into the discussion of the equilibrium state, in which, from Figure 7.3,

we can see that all links carry uniform flows. The equilibrium flow-rate is determined

by the network bottleneck, link 5, and is 2qc. From observations for ξ = 0.5, the equi-

librium density on link 5 is always 0.4ρj, and traffic density on link 2 is 1.4ρj, which
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Figure 7.2: Solutions when ξ = 0.5

is brought by a back-traveling shock wave. Then, determined by traffic proportions,

the flow-rate on links 3 and 4 are 1.2qc and 0.8qc, respectively. The remaining task is

to determine the traffic densities on links 3 and 4.

We denote traffic demand and supply on these links as D3, S3, D4, and S4. Then

(D3, S3) = (1.2qc, 2qc) when link 3 is under-critical, and (D3, S3) = (2qc, 1.2qc) other-

wise. Similarly, (D4, S4) = (0.8qc, 2qc) when link 4 is under-critical, and (D4, S4) =

(2qc, 0.8qc) otherwise. Since at junction 1

f2,out = min{3qc, S3/0.6, S4/0.4} = 2qc,
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Figure 7.3: Solutions when ξ = 0.6

links 3 and 4 cannot be under-critical at the same time. Moreover, since at junction

2

f3,out = D3

D3+D4
2qc = 1.2qc,

f4,out = D4

D3+D4
2qc = 0.8qc,

(7.1)

links 4 cannot be over-critical at the same time. Therefore, the only possible case is

that link 3 is over-critical and link 4 under-critical. Thus, the equilibrium densities

on links 3 and 4 are ρ3 = 1.04ρj and ρ4 = 0.32ρj. The solutions in Figure 7.3 support

these solutions.
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(ρ/ρj, q/qc) 0 ≤ ξ < 0.5 ξ = 0.5 0.5 < ξ ≤ 1

Link 2 (1.4, 2) (1.4, 2) (1.4, 2)

Link 3 (0.4ξ, 2ξ) (1.2, 1) (2 − 1.6ξ, 2ξ)

Link 4 (0.4 + 1.6ξ, 2(1 − ξ)) (0.2, 1) and (1.2, 1) (0.4(1 − ξ), 2(1 − ξ))

Link 5 (0.4, 2) (0.4, 2) (0.4, 2)

Table 7.1: Equilibrium density and flow-rate v.s. ξ

However, D3 = 2qc and D4 = 0.8qc do not satisfy Equation 7.1 exactly. In fact,

there is an intermediate state at the downstream boundary of link 4 (Jin et al., 2002).

At the intermediate state, also under-critical, the demand is D̄4 = 4
3
qc, which satisfies

Equation 7.1, and ρ̄4 = 0.8
3

ρj. This intermediate state, theoretically, only exists at a

point, but is stable since its in-flux and out-flux is equal. This kind of intermediate

state unlikely exists on a single link (Jin and Zhang, 2003b).

When ξ = 0.4, the solutions are shown in Figure 7.4. Although the evolution

process is different from that for ξ = 0.6, the equilibrium state is exactly the same as

before if links 3 and 4 are switched.

For a general proportion ξ ∈ [0, 1], the equilibrium states are listed in Table 7.1.

In this table, we omit the tenuous (unstable) intermediate states, on link 3 when

0 < ξ < 0.5 and on link 4 when 0.5 < ξ < 1.

7.2.3 Travel times at equilibrium states

For equilibrium states of different proportion ξ, Table 7.2 shows travel speed and

travel time on each link as well as average travel times of commodity 0 (ATT0),

commodity 1 (ATT1), and all commodities (ATT = ξATT0 + (1 − ξ)ATT1). In the

table, travel times during the establishment of equilibrium states are not considered.
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Figure 7.4: Solutions when ξ = 0.4

The relationship between these travel times and proportion ξ is illustrated in Figure

7.5.

From the table and figure, we can see the following properties of travel times.

First, the average travel time of all commodities, which can be considered the perfor-

mance function of the whole road network, consists of two pieces of lines and jumps

when ξ = 0.5. This discontinuity asserts the fact that the equilibrium state when

ξ = 0.5 is not stable. Third, the minimum average travel time ATT attains its min-

imum when ξ = 1; i.e., when all vehicles take the shorter path. Third, the travel
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(v/vf , T/hours) 0 ≤ ξ < 0.5 ξ = 0.5 0.5 < ξ ≤ 1

Link 2 (2
7
, 1.0769) (2

7
, 1.0769) (2

7
, 1.0769)

Link 3 (1, 0.3077) (1
6
, 1.8462) ( ξ

5−4ξ
, 20−16ξ

13ξ
)

Link 4 ( 1−ξ
1+4ξ

, 8(1+4ξ)
13(1−ξ)

) (1 or 1
6
, 2.1538) (1, 0.6154)

Link 5 (1, 0.3077) (1, 0.3077) (1, 0.3077)

ATT0 1.6923 3.2308 20−16ξ
13ξ

+1.3846

ATT1
8(1+4ξ)
13(1−ξ)

+1.3846 3.5384 2

ATT 2 + 2.7692ξ 3.3846 3.5385 − 1.8462ξ

Table 7.2: Equilibrium speed and travel times v.s. ξ

times of commodities 0 and 1 are equal when ξ = 5/6. However, ATT is not at its

minimum when ξ = 5/6.

7.2.4 Discussions

In the previous subsections, we examine equilibrium states for the road network in

Figure 7.1 and its performance at these states against the proportion ξ. The de-

termination of ξ is really part of a traffic assignment process. Therefore, this study

provides another angle for checking the user-equilibrium property (Wardrop, 1952).

For this network, it is shown to have two user equilibrium states, one at ξ = 5/6

and the other at ξ = 1, with the latter has smaller path travel times. This is a clear

evidence that the inclusion of physical queues destroys the uniqueness property of

traffic assignment with other commonly used models, in which queues do not take

up space (Wardrop, 1952). Note that, in our discussions, the performance function

is the average path travel time, which is different from the link performance function

used in static traffic assignment studies (Sheffi, 1984).
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Although the connection between equilibrium states from a dynamic point of

view and the user-equilibrium is still premature, these studies shed light on solving

dynamic traffic assignment problems, in which the choice of a proper link performance

function is still in debate (Daganzo, 1995b). From the MCKW simulation, we can

obtain average origin/destination (O/D) travel times under an assignment strategy

and use these travel times to evaluate the strategy. To make the performance function

of an O/D flow more accurate, one can include the loading time at the origin, which

is defined as the average waiting time before a vehicle enters the road network. If
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departure (or loading) flow-rate at the origin is f(t) (t ∈ [0, T ]), then the average

loading time is

LT =

∫ T

t=0
f(t) t dt

∫ T

t=0
f(t) dt

. (7.2)

In the examples above, since the loading flow-rate is the same for all ξ, there is no

difference between the loading times.

7.3 The formation and structure of periodic oscil-

lations in the kinematic wave model of road

networks

In (Jin and Zhang, 2003b) it is shown that there are three types of basic kinematic

waves on a road link: shock (decelerating) waves, rarefaction (accelerating) waves, and

transition (standing) waves. Further, for a single merge or diverge, we still have these

three types of waves on each branch (Jin and Zhang, 2003c; Jin et al., 2002; Jin and

Zhang, 2002, 2001a). In this section, we show with MCKW simulation an interesting

type of solutions, periodic oscillations, which can be observed in real traffic. We show

that these solutions can exist in a small road network with a diverge and a merge and

check their formation and structure against network characteristics.

7.3.1 Network for studying periodic solutions

In this section, we study periodic solutions on a road network shown in Figure 7.6.

In this network, lengths of links 2, 3, 4, and 5 are L2 = 10 miles, L3 = 1 mile, L4 = 2

mile, and L4 = 1 mile, respectively; the number of lanes of these links are 3, 1, 2, and
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Figure 7.6: Network for studying periodic oscillations

2, correspondingly; all links have the same fundamental diagram for each lane:

Q(a, ρ) =







vfρ, 0 ≤ ρ ≤ aρc;

ρc

ρj−ρc
vf (aρj − ρ), aρc < ρ ≤ aρj;

where ρ is the total density of all lanes, a the number of lanes, the jam density

ρj=180 vpmpl, the critical density ρc=36 vpmpl, the free flow speed vf=65 mph, and

the capacity of each lane qc = ρcvf=2340 vphpl.

Initially, the road network is empty. Traffic supply at the destination is always

capacity of two lanes. Here, traffic demand at the origin is always the capacity of link

2, 3qc.

Links 2, 3, 4, and 5 are partitioned into 800, 80, 160, and 80 cells respectively, with

the length of all cells as 0.0125 miles. The total simulation time of 1.4 hours is divided

into 8000 time steps, with the length of a time step ∆t = 1.75−4 hours=0.63 seconds.

Thus the CFL (Courant et al., 1928) number is no bigger than vf∆t/dx = 0.91, which

is valid for Godunov method (Godunov, 1959). As we show in subsection 6.5.3, the

simulation is numerically convergent. Therefore, with this very fine partition of links,

we are able to obtain results closer to theoretical solutions.
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Link 3 under-critical over-critical Link 4 under-critical over-critical

S3 qc q3 S4 2qc q4

D3 ≤ qc qc D4 ≤ 2qc 2qc

Table 7.3: Constraints on equilibrium states

7.3.2 Periodic oscillations

As in the preceding section, we also consider the equilibrium states for a proportion

of commodity 0, ξ. In equilibrium states, at junction 1, we have

f2,out = min{3qc, S3/ξ, S4/(1 − ξ)},

f3,in = ξf2,out,

f4,in = (1 − ξ)f2,out,

(7.3)

and at junction 2

f5,in = min{D3 + D4, 2qc},

f3,out = D3

D3+D4
f5,in,

f4,out = D4

D3+D4
f5,in,

(7.4)

where Di and Si are traffic demand and supply of link i (i = 2, 3, 4, 5) respectively,

D2 = 3qc, and S5 = 2qc. Moreover, we have

f3,in = f3,out,

f4,in = f4,out,
(7.5)

and constraints defined in Table 7.3, where q3 and q4 are flow-rates in the upstream

cells of links 3 and 4.

Since links 3 and 4 are initially empty, S3 = qc and S4 = 2qc. Therefore, when

ξ = 0 or 0.5 ≤ ξ ≤ 1, f2,out ≤ 2qc according to Equation 7.3. Note that the capacity

of link 5 is 2qc. Under this circumstance, solutions are trivial. When 0 < ξ < 0.5,
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from Equation 7.3, we have f2,out > 2qc. This means that at least one of links 3 and

4 has to be over-critical. When both links are over-critical, we have from Equation

7.3-Equation 7.5 and Table 7.3 that ξ = 1
3
. When 0 < ξ < 1

3
, link 4 is congested in

equilibrium state, and the solution pattern is similar to Figure 7.3 and Figure 7.4.

Refer to subsection 7.2.2 for an analysis of the equilibrium states.

For the network in Figure 7.6, interesting solutions occur for 1
3

< ξ < 1
2
, when

link 3 is over-critical and link 4 under-critical. When ξ = 0.45, contour plots of traffic

densities on the four links are shown in Figure 7.7. This figure shows the formation of

periodic solutions as follows: (i) During t0 = 0 and t1 = L3/vf , capacity flow travels

forward on link 2. When the first vehicle reaches junction 1 at t1, we obtain from

Equation 7.3 that f2,out = qc/0.45, f3,in = qc, and f4,in = 11
9
qc. (ii) Thus, after t1, a

back-traveling shock wave forms on link 2, capacity flow travels on link 3, and free flow

travels on link 4. At t2 = t1+L3/vf , the first vehicle on link 3 reaches junction 2. Since

the first commodity-1 vehicle is still half way on link 4, from Equation 7.4, we obtain

f5,in = qc, f3,out = qc, and f4,out = 0. Therefore, there is no change in traffic patterns

on links 2 or 3 at t2. (iii) AT t3 = t1 + L4/vf , vehicles on link 4 reach junction 2.

From Equation 7.4, we have f5,in = 2qc, f3,out = 0.9qc, and f4,out = 1.1qc. (iv) After

t3, a back-traveling shock forms on link 3 and the over-critical traffic state, whose

flow-rate is 0.9qc, propagates upstream. On link 4, there exists a flimsy intermediate

area, which is still under-critical. Thus there is no backward wave on link 4. The

shock wave on link 3 travels at the speed 1
4
vf and hits junction 1 at t4 = t3 + 4L3/vf .

(v) At t4, we have S3 = 0.9qc, which yields from Equation 7.3 that f2,out = 2qc,

f3,in = 0.9qc, and f4,in = 1.1qc. Therefore, a forward shock wave forms on link 4, whose

upstream flow-rate is 1.1qc and downstream flow-rate 11
9
qc. (vi) At t5 = t4 + L4/vf ,

the new traffic state reaches junction 2. Consequently, f3,out = 2/2.1qc > 0.9qc, and

f4,out = 2.2/2.1qc < 1.1qc. Thus the downstream of link 3 becomes less congested, and
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Figure 7.7: Contour plots of periodic oscillations

a rarefaction wave travels upstream. Note that there is no back-traveling wave on link

4. (vii) At t6 = t5+4L3/vf , the rarefaction wave reaches junction 1 and increases out-

flux of link 2, f2,out = 2.1164qc, and f4,in = 1.164qc > 1.1qc. (viii) When the new flow

on link 4 reaches junction 2 at t7 = t6 + L4/vf , link 3 becomes more congested again.

After another time period, (4L3+L4)/vf , link 4 will go back to lower congestion. This

process repeats in a periodic manner with the period T = 2(4L3 + L4)/vf=0.1846

hours. After a number of periods, traffic conditions on links 2, 3, and 4 reach a stable

pattern, a period of which is explained as follows.
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Figure 7.8: Density, flow-rate, and speed at the end of link 2, start of link 3, and

start of link 4

The formation of periodic solutions can also be observed at certain locations,

such as the end of link 2, start of link 3, and start of link 4, as shown in Equation

7.8. From Figure 7.7, we can see that, most of the time, wave speeds on links 2, 3,

and 4 are −1
4
vf , −

1
4
vf , and vf , respectively. Thus, from curves in Figure 7.8, we can

derive traffic pattern at other locations.

In a period, traffic conditions evolve in the following five stages. (i) Assuming the

period starts at t0 = 0 when the downstream of link 3 becomes less congested at ρ̄3,
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which is always over-critical, at t0, link 4 has a smaller density ρ̄4. (ii) At t1 = 4L3/vf ,

traffic density on link 4 starts to increase to ρ̂4. (iii) After t2 = t1 + L4/vf , traffic

density on link 3 increased to ρ̂3. This finishes the half period. (iv) At t3 = t2+4L3/vf ,

traffic density on link 3 decreases to ρ̄3. (v) At t4 = T , traffic density on link 3 gets

back to ρ̂3.

7.3.3 The structure of periodic solutions

In half a period, solutions at the end of link 2, start of link 3, and start of link 4 in

the (ρ, q)-plane are shown in Figure 7.9, in which lines are for fundamental diagrams

and dots for solution data. From the figure, we can see that solutions in each period

is highly symmetric, with transition layer evenly distributed in the (ρ, q)-plane. In

half a period, ρ decreases and approximately satisfies the following equation:

d ρ

d t
= α(ρ − ρ̂)(ρ − ρ̄), (7.6)

where ρ̂ and ρ̄ are the maximum and minimum of ρ respectively, and α is a constant

to be determined, and the other half satisfies

d ρ

d t
= α(ρ̂ − ρ)(ρ − ρ̄), (7.7)

which is increasing.

In a period, the solutions can be approximated by

ρ(t) =











ρ̂ − (ρ̂ − ρ̄)
/

{1 + exp [−α(ρ̂ − ρ̄)(t − T/4)]} when t ∈ [0, T
2
),

ρ̂ − (ρ̂ − ρ̄)
/

{1 + exp [α(ρ̂ − ρ̄)(t − 3T/4)]} when t ∈ [T
2
, T ).

(7.8)

The corresponding v and q are solved by

v(t) =











v̂ − (v̂ − v̄)
/ {

1 + ρ̂
ρ̄
exp [α(ρ̂ − ρ̄)(t − T/4)]

}

when t ∈ [0, T
2
),

v̂ − (v̂ − v̄)
/ {

1 + ρ̂
ρ̄
exp [−α(ρ̂ − ρ̄)(t − 3T/4)]

}

when t ∈ [T
2
, T ),

(7.9)
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Figure 7.9: Periodic solutions at the end of link 2, start of link 3, and start of link 4

in the (ρ, q)-plane

q(t) =











q̄ + (q̂ − q̄)
/

{1 + exp [−α(ρ̂ − ρ̄)(t − T/4)]} when t ∈ [0, T
2
),

q̄ + (q̂ − q̄)
/

{1 + exp [α(ρ̂ − ρ̄)(t − 3T/4)]} when t ∈ [T
2
, T ).

(7.10)

As shown in Figure 7.10, density, flow-rate, and travel speed at the end of link 2 can

be well approximated with α = 500, and the average of q2 in a period is equal to

0.4ρjvf ≈ 2qc. Therefore, this pattern is stable.

Solutions at other locations on link 2, or locations on links 3 and 4 share simi-

lar structure as in Equation 7.8-Equation 7.10, but the phase or amplitude may be
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Figure 7.10: Structure of periodic solutions on link 2

different.

7.3.4 Discussions

From Figure 7.7, we can see that we can observe several periods at the same time

only on link 2, although traffic on links 3 and 4 are also periodic. Therefore, these

periodic waves can be considered to exist on the link upstream to a diverge and a

merge when the proportion satisfies a certain condition. The special road structure,

i.e., a diverge and a merge, can be considered as the generator of periodic solutions.
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We can also see that the period is determined by the length of links between the

diverge and merge. In addition, possible approximation of the periodic solutions are

provided.

This study shows the effect of network structure on traffic dynamics. We expect

more un-revealed solutions patterns exist in more complicated road networks. In the

future, it will also be interesting to study the propagation of periodic solutions in road

networks. It is not hard to check that when traffic demand decreases, the periodic

solutions will disappear.

Since periodic solutions have important negative impact on driver’s behavior and

vehicles’ emission, this study will help to resolve such kind of solutions.

7.4 Conclusions

In this chapter, with the MCKW simulation model, we studied equilibrium states in

a demonstration network and oscillations caused by a special network structure.

In Section 7.2, we showed that traffic dyanmics on a network approach equi-

librium states with constant boundary conditions. Against different combination of

traffic commodities, solutions of equilibrium states and the performance of the road

network were carefully examined. We further discussed possible relationship between

these equilibrium states and the user-equilibrium. Traffic equilibrium states in a road

network can be used pursuing important concepts in many network traffic studies,

such as traffic assignment, origin demand estimation, etc.

In Section 7.3, we revealed the existence of periodic solutions in a road network.

We showed the structure of periodic solutions, whose period is solely dependent on

the network structure. This study shows that, in a road network, special network
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structure may cause stop and go oscillatory waves. 2 The periodic oscillations are

in fact a new type of kinematic waves initiated from simple, jump initial conditions.

From this study, we expect more complicated kinematic waves when more complicated

networks are considered.

Studies in this chapter show that, with the MCKW simulation, we are able to

study more complicated kinematic waves in a road network. This is important for

understanding traffic dynamics as demonstrated that complicated traffic phenomena

can be caused by network topology and O/D demand pattern. However, other factors

may also contribute to stop and go waves in a realistic network.

2Another type of vehicle clusters are shown to exist in higher-order models (Kerner and

Konhäuser, 1994; Jin and Zhang, 2003a).



Chapter 8

Conclusions

8.1 Summary

The original kinematic wave theory, also known as the Lighthill-Whitham-Richards

theory (Lighthill and Whitham, 1955b; Richards, 1956), explains traffic dynamics

of single origin/destination traffic on a linear road with kinematic waves, including

decelerating (shock) waves and accelerating (expansion or rarefaction) waves. In this

dissertation, we study traffic phenomena in a road network within the framework of

kinematic waves. We have theoretically and numerically investigate traffic dynamics

for link inhomogeneities, junctions, and mixed-type vehicles. Furthermore, we have

developed a simulation platform of multi-commodity network traffic and studied some

network traffic phenomena.

The major results of this dissertation are as follows.

1. In Chapter 2, we reformulate the Lighthill-Whitham-Richards model into a non-

linear resonant system for link bottlenecks such as lane-drops. We then show

that there is an additional type of kinematic waves, namely, standing (tran-

sition) waves. A standing wave always stays at the inhomogeneity spot, and

187
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traffic on its both sides has the same flow-rate but different velocities. We

further solve the Riemann problem by ten combinations of shock, rarefaction,

and transition waves. The wave solutions are summarized and shown to be

consistent with solutions by the supply-demand method. Using numerical sim-

ulations, we have also shown how traffic queues up in the region upstream to a

link bottleneck.

2. In Chapter 3, we take a closer look at existing kinematic wave models for merg-

ing traffic within the supply-demand framework. In particular, we study the

distribution scheme, which helps to uniquely determine traffic flow from each

upstream branch to the downstream link. Further, we propose a “fairness” con-

dition, under which the out-flow from each upstream branch is proportional to

its demand. This condition yields the simplest distribution scheme, which is the

only valid distribution independent of downstream conditions. We also show

that it can capture the key characteristics of a merge and leads to a merge model

that is computationally efficient and easy to calibrate. Furthermore, we show

that the new distribution scheme is well-defined and qualitatively sound. With

numerical simulations, we demonstrate that the distribution scheme produce

convergent solutions.

3. In Chapter 4, we propose a new kinematic wave model for highway diverges.

Based on the assumption that, in a short time interval, diverging traffic flows

are independent of each other, dynamics of traffic to a downstream link can be

described by a system of non-strict conservation laws, or a nonlinear resonant

system, whose Riemann problem can be solved by seven types of wave combi-

nations. These waves are called as instantaneous kinematic waves. Further, we

show that this model is equivalent to a supply-demand method with modified
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definitions of traffic demands of diverging traffic. With numerical simulations,

we show that this model is consistent with some existing rules on diverging

traffic.

4. In Chapter 5, we study traffic dynamics with mixed-type vehicles, for which we

find an additional family of kinematic waves, contact waves. We carefully study

the wave solutions of the Riemann problem and develop a Godunov method for

solving the model. Using simulations, we demonstrate how mixed traffic evolves

on a road link and show that the First-In-First-Out (FIFO) principle is always

observed.

5. In Chapter 6, we propose a multi-commodity kinematic wave (MCKW) model of

network traffic flow. In this model, we apply the models studied in the previous

chapters for different network components and classify vehicles into a number

of commodities according to their paths. The proportions of commodities in a

road cell are updated based on the fact that traffic is anisotropic. We then show

that this model yields solutions, whose departure from the FIFO principle is in

the order of a time interval. This model is macroscopic, but is able to provide

individual vehicles’ trajectories and travel times by using cumulative curve. We

also propose an implementation of the MCKW simulation and carefully design

the data structure for network topology, traffic characteristics, and simulation

algorithms. Our numerical simulations demonstrate that the numerical results

converge to FIFO solutions.

6. In Chapter 7, we first study equilibrium states in a road network with a single

origin-destination (O/D) pair and two routes. We demonstrate the formation

of an equilibrium state. After examining the relationship between equilibrium

states and the distribution of vehicles to different routes, we find that multiple
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equilibrium status may exist for the same O/D flow but different route distribu-

tions. We then show the formation of periodic oscillations for certain network

structure and route distributions. The periodic oscillations are in fact a new

type of kinematic wave in a road network. We then discuss their structure and

properties.

The kinematic wave models of network vehicular traffic studied in this disserta-

tion are theoretically rigor, numerically reliable, and computational efficient. These

studies help better understand traffic dynamics in a road network, in particular the

formation and propagation of traffic congestion, and establish a solid foundation for

applications in traffic control and management.

8.2 Future research directions

There are three directions in which we could extend this dissertation research: further

investigation of the kinematic wave theories, enhancement of the MCKW simulation

model, and applications of the MCKW simulation model to solve real-world problems.

8.2.1 Further investigations of the kinematic wave theories

In studies of inhomogeneous links (Chapter 2) and diverges (Chapter 4), the kinematic

wave theories are shown to yield consistent results with the supply-demand method

given proper definitions of traffic supply and demand. That is, the supply-demand

method can be considered as the discrete form of the corresponding continuous kine-

matic wave theory. It is also interesting to directly prove that the discrete model

in the supply-demand method converge to the corresponding kinematic wave theory.

For the inhomogeneous LWR model under jump initial conditions, for example, we

can find solutions by the supply-demand method and obtain a time series for each
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cell. Then will these series get closer to the wave solutions predicted in Chapter 2 as

the length of a time interval keeps decreasing? The answer to this problem will help

to understand the continuous kinematic wave model of merging traffic, whose discrete

model is simple and clear (Chapter 3). In addition, the diverging model (Chapter 4)

is an instantaneous approximation, also in discrete form, whose continuous counter-

part is another interesting topic. One probable alternative approach is to introduce

appropriate fundamental diagram as in (Daganzo, 1997).

The kinematic wave models studied in this dissertation are deterministic. How-

ever, these models can be extended to include randomness in a road network. For

example, non-recurrent traffic congestion is generally caused by accidents or work

zones, which are reflected by a change in the number of lanes. Since the number of

lanes has been included in the models we studied, these stochastic effects could be

considered in the kinematic waves. As another example, weaving effects on traffic

dynamics could also be studied in a similar fashion.

Finally, it is of interest to study kinematic waves that arise from the traffic

dynamics of other traffic systems, such as those with special lanes, special vehicles,

and so on.

8.2.2 Calibration, validation, and enhancement of the MCKW

simulation model

The enhancement of MCKW simulation model will be carried out in three aspects.

First, we can incorporate new kinematic wave theories so that it is capable of simu-

lating traffic systems with more components, such as different types of vehicles and

special lanes. To achieve this, traffic has to be categorized into more commodities,

and more complicated data and program structures are expected. Second, we can
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improve the computational efficiency of the MCKW simulation for large-scale road

networks. In this dissertation, the solution methods, either the supply-demand meth-

ods or the Godunov methods, are of first order. One improvement can be made by

applying higher-order methods in the MCKW model (e.g., Daganzo, 1999a; Colella

and Puckett, 2000), which are more efficient. Another approach is to incorporating

parallel algorithms and more efficient memory management methods. Finally, we

can design the programming of the simulation model in order to satisfy different re-

quirements of different applications. For example, we need very detailed information

when studying traffic dynamics and phenomena, but need less information in traffic

assignment. Thus it will be better to use two different programming structure for

these two applications.

The MCKW simulation model, as other simulation models, is also subject to

calibration and validation with observed traffic dynamics. A conceptual approach is

to calibrate and validate the simulation model first for inhomogeneous links, merges,

and diverges and then for a whole road network. We can check existing databases

or collect data by ourselves in the calibration and validation process. In many data

sets collected by loop detectors, however, volumes (the number of vehicles passing a

detector) are not conserved over a link. This inconsistency will be fatal for calibrating

the kinematic wave models, since the fundamental assumption in these models is

traffic conservation. Thus, it may be necessary to seek advanced measures, such as

vedio-taping or by satellite sensing techniques, to provide the ideal accuracy in data

in these studies.

8.2.3 Applications of the MCKW simulation model

First, using the MCKW simulation model, we can better understand the formation

and characteristics of traffic congestion. This will form a foundation to alleviate it
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by either expansion of infrastructure or traffic control and management.

Second, the MCKW simulation model can be applied in evaluating strategies in

infrastructure expansion and traffic operations and management. For example, we

could develop and evaluate on-ramp metering and arterial signal control algorithms by

using the MCKW model, in which signals have been incorporated in the computation

of traffic demand (see Chapter 3). In addition, in simulation-based dynamic traffic

assignment, the MCKW model can be used as a loading model.

Finally, the MCKW simulation model can be used to estimate the travel demands

in a road network with observed traffic conditions at a number of locations and can

be further applied in regional and transportation plan.
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