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Abstract— We derive the equations of motion for the n-
dimensional Lorentzian sphere (one-sheet hyperboloid) rolling,
without slipping and twisting, over the affine tangent space at
a point. Both manifolds are endowed with semi-Riemannian
metrics, induced by the Lorentzian metric on the embedding
manifold which is the generalized Minkowski space. The kine-
matic equations turn out to be a nonlinear control system
evolving on a connected subgroup of the Poincaré group. The
controls correspond to the choice of the curves along which the
Lorentzian sphere rolls. Controllability of this rolling system
will be proved by showing that the corresponding distribution
is bracket-generating.

I. INTRODUCTION
Motions of systems with nonholonomic constraints can be

found in the work of great mathematicians as Newton, Euler,
Bernoulli and Lagrange. More recently, nonholonomic sys-
tems have attracted much attention in control literature due
to their numerous applications in physics and engineering
problems. For instance, in a robotic system if the controllable
degrees of freedom are less than the total degrees of free-
dom, the system is nonholonomic. Nowadays, the interest
in this area is increasing and one can find references to
potential applications of nonholonomic systems, for instance,
in neurobiology and economics. For a recent survey on non-
holonomic systems we refer to [17].

Nonholonomic constraints are usually analyzed from the
point of view of sub-Riemannian geometry. This is the case
when the constraints define a non-integrable subbundle of the
tangent bundle of a Riemannian manifold (see, for instance,
[1], [12], [11] for work interconnecting sub-Riemannian
geometry and control theory). But, if the manifold is only
equipped with a semi-Riemannian metric (nondegenerate but
not positive definite), we will be in the presence of problems
in sub-semi-Riemannian geometry ([2], [4], [8], [9]).

A pair of n-dimensional Riemannian (or semi-Riemannian
manifolds) rolling on each other without slipping and twist-
ing also form a nonholonomic system posing many theo-
retical challenges and interesting control problems. To better
understand the geometry of this motion, one needs tools from
sub-semi-Riemannian geometry.

Our paper is devoted to studying a particular problem of
sub-semi-Riemannian type and arises from the kinematic
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problem concerning rolling a sphere over its affine tangent
space at a point, when they are both equipped with
a Lorentzian metric (a metric with index 1). Here the
semi-Riemannian manifold is the configuration space
of the mechanical system, and the subbundle is a sub-
semi-Riemannian distribution defined by the constraints
on rolling: no slipping, no twisting. The 2-dimensional
Lorentzian sphere may be represented by the surface
known as the one-sheet hyperboloid. Physical rolling of
this manifold on the affine tangent space at any point is
impossible. Nevertheless, contrary to our intuition, the
notion of rolling makes sense. Rollings are isometries in the
embedding space, in particular preserving length of curves,
satisfying several constraints. Knowing how to perform such
”virtual” motions is important and, in particular, allows
to solve hard problems on certain manifolds by reducing
them to much simpler ones. These rolling notions have
been applied successfully to generate interpolating curves
on manifolds ([5]) and we intend to further research in this
area for the semi-Riemannian case.

In this article, we start with the definition of rolling, an
adaptation of the classical definition for rolling Euclidean
manifolds, as given, for instance, in [15]. The kinematic
equations for rolling the Lorentzian sphere are derived from
the non-slip and non-twist conditions and solved completely
when rolling along geodesics. In the last Section, these
equations are rewritten as a left-invariant control system
evolving on a connected subgroup of the Poincaré group,
and a result on controllability of the kinematic equations is
proven.

II. BASIC FACTS ON SEMI-RIEMANNIAN
MANIFOLDS

A semi-Riemannian manifold is a smooth manifold M
furnished with a metric tensor g (a symmetric nondegenerate
(0, 2) tensor field of constant index). The common value ν of
the index gx at each point x on a semi-Riemannian manifold
M is called the index of M and 0 ≤ ν ≤ dim (M). If
ν = 0, each gx is then a (positive definite) inner product
on TxM and M is a Riemannian manifold. If ν = 1 and
dim (M) ≥ 2, M is a Lorentz manifold.

If (M, g) is a semi-Riemannian manifold and v ∈ TxM ,
then v is spacelike if g(v, v) > 0 or v = 0; v is timelike if
g(v, v) < 0; v is lightlike if g(v, v) = 0 and v 6= 0.

Let M be a submanifold of a semi-Riemannian manifold
(M, g) and ı : M ↪→ M the inclusion map. Then M is a
semi-Riemannian submanifold of M if the pullback metric
g = ı∗(g) is a metric tensor on M . If M is equipped with
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the induced metric g, then ı is an isometric embedding. (In
subsequent sections, we use 〈·, ·〉 as an alternative notation
for g).

Let M be a semi-Riemannian submanifold of M (write
M ⊂ M ), and p ∈ M . Each tangent space TxM is, by
definition, a nondegenerate subspace of TxM . Consequently,
TxM decomposes as a direct sum TxM = TxM ⊕ (TxM)⊥

and (TxM)⊥ is also nondegenerate. Vectors in (TxM)⊥ are
said to be normal to M , while those in TxM are, of course,
tangent to M . Similarly, a vector field Z on M is normal
(respectively tangent) to M provided each value Zx, for
x ∈ M belongs to (TxM)⊥ (respectively TxM ). For more
details on semi-Riemannian geometry we refer to [13].

III. DEFINITION OF ROLLING

For the sake of simplicity, whenever we use the word
”rolling” we mean ”rolling without slipping and twisting”.

The classical definition of rolling, as given in Sharpe [15]
for rolling manifolds embedded in the same Euclidean
space, has been generalized to the situation when the
embedding is on a Riemannian manifold ([10]) or on a
semi-Riemannian manifold ([16]). Intrinsic rolling of two
manifolds, a situation where no embedding is required, has
also been defined in ([3]). Here we adopt the notion of
rolling as it appears in [16]. The most classical of all rolling
motions is that of the 2-dimensional (Euclidean) sphere
S2 rolling on the tangent plane at a point. This motion is
easily visualized because it is physically possible. However,
the notion of rolling doesn’t exclude the situation when the
”moving” manifold crashes into the ”still” manifold. Such is
the case for the one-sheet hyperboloid rolling on the tangent
plane at a point. This may sound awkward, but the study of
rolling maps is important even when rolling is physically
impossible. This derives from the fact that rolling maps are
isometries.

Assume that M and M̂ are isometrically embedded sub-
manifolds of an N -dimensional manifold M endowed with
a semi-Riemannian metric g of signature (p, q), with p+q =
N . A rolling motion is described by the action of the group
G of orientation preserving isometries of M . The action of
G on M is denoted by ◦ and orthogonality is taken with
respect to the semi-Riemannian metric. To understand the
definition bellow, we introduced some notations.

If t 7→ g(t) is a curve in G, x a point in ∈ M , and η
a vector tangent to M , so that there exists a smooth curve
t 7→ y ∈ (−ε, ε)→M such that ẏ(0) = η, then

ġ(t) ◦ x :=
d

dσ
(g(σ) ◦ x)

∣∣∣∣
σ=t

,

(
ġ(t) ◦ g(t)−1

)
◦ x :=

d

dσ
((g(σ) ◦ g(t)−1) ◦ x)

∣∣∣∣
σ=t

,

(
ġ(t) ◦ g(t)−1

)
◦ η :=

d

dσ
((ġ(t) ◦ g(t)−1) ◦ y(σ))

∣∣∣∣
σ=0

.

Definition 3.1: A smooth map

g : [0, τ ]→ G

satisfying the following properties 1)−3), for each t ∈ [0, τ ],
is called a (smooth) rolling of M on M̂ without slipping or
twisting.

1) There is a smooth curve on M , x : [0, τ ] → M , such
that for all t ∈ [0, τ ]

– g(t) ◦ x(t) ∈ M̂ ,
– Tg(t)◦x(t)(g(t) ◦M) = Tg(t)◦x(t)M̂ .
x is called the rolling curve while x̂ defined by x̂(t) :=

g(t) ◦ x(t) is called the development of x on M̂ .
2) – no-slip condition:(

ġ(t) ◦ g(t)−1
)
◦ x̂(t) = 0,

3) – no-twist conditions:

(tangential part):

(ġ(t) ◦ g(t)−1) ◦ Tx̂(t)M̂ ⊂ Tx̂(t)M̂
⊥,

(normal part):

(ġ(t) ◦ g(t)−1) ◦ Tx̂(t)M̂
⊥ ⊂ Tx̂(t)M̂.

In the classical case M is the Euclidean space Rn+1 and
G = SE(n+ 1).

IV. ROLLING THE LORENTZIAN SPHERE

In this section we consider the n-dimensional Lorentzian
sphere Sn1 rolling over the affine tangent space at a point
x0 ∈ Sn1 , both embedded in the Lorentzian manifold Rn+1

1 ,
with Lorentzian scalar product defined as 〈v, w〉J = v>Jw,
where J = diag(In,−I1). The hypersurface Sn1 is also
known as the hyperboloid of one sheet and defined as:

Sn1 =
{
x ∈ Rn+1

1 : 〈x, x〉J = 1
}
.

Rolling motions of the hyperbolic sphere (the hyperboloid
of two sheets) defined as Hn =

{
x ∈ Rn+1

1 : 〈x, x〉J =
−1
}

, have been studied in [7] and [16]. However, although
〈·, ·〉J is indefinite, it turns out that its restriction to tangent
spaces to Hn is positive definite. Thus, contrary to the
present situation, 〈·, ·〉J defines a Riemannian metric on the
hyperbolic sphere.

Before deriving the equations of motion for the rolling, one
needs to introduce some notation and adapt the definition of
rolling to the present situation.

The group of isometries of the embedding space Rn+1
1 is

the Poincaré group (see, for instance, [13]), and the group of
orientation preserving isometries G is the semidirect product
G = SO+(n, 1) n Rn+1

1 , of the restricted Lorentz group
SO+(n, 1), consisting of the connected component con-
taining the identity of the special pseudo-orthogonal group
SO(n, 1), and the Abelian group of translations Rn+1

1 . The

6523



special pseudo-orthogonal group has a matrix representation
by real (n+ 1)× (n+ 1)-matrices:

SO(n, 1) = {X : X>JX = J and detX = 1},

with Lie algebra

so(n, 1) = {Ω : Ω>J = −JΩ}.

Some facts can be easily derived using the definitions of this
Lie group and corresponding Lie algebra, namely

eΩt ∈ SO+(n, 1), ∀Ω ∈ so(n, 1), ∀t ∈ R;

X(t) ∈ SO+(n, 1)⇒ Ẋ(t) = Ω(t)X(t),

for some Ω(t) ∈ so(n, 1).

We next give a characterization of the tangent and normal
spaces to the Lorentzian sphere at a point x0, that will be
very useful later on.

Proposition 4.1:

Tx0S
n
1 =

{
v ∈ Rn+1

1 : v = Ωx0, Ω ∈ so(n, 1)
}

;(
Tx0

Sn1
)⊥

= span{x0}.
Proof: Let V =

{
v ∈ Rn+1

1 : v = Ωx0, Ω ∈ so(n, 1)
}

.
It is clear that V ⊂ Tx0

Sn1 , since the curve γ(t) = eΩtx0 ∈
Sn1 satisfies γ(0) = x0 and γ̇(0) = Ωx0. We now show that
all tangent vectors at x0 are of the form Ωx0. For that, let
γ(t) be an arbitrary smooth curve in Sn1 satisfying γ(0) =
x0. Since all curves in Sn1 result from the action of SO(n, 1),
we may write γ(t) = X(t)x0, where X(t) ∈ SO(n, 1),
X(0) = I . So, γ̇(t) = Ẋ(t)x0 = Ω(t)X(t)x0 = Ω(t)γ(t),
for some Ω(t) ∈ so(n, 1). In particular, at t = 0, γ̇(0) =
Ω(0)x0. So, Tx0

Sn1 ⊂ V . Consequently, Tx0
Sn1 = V .

Now, for the normal space which is 1-dimensional,
it is enough to prove that x0 ∈

(
Tx0

Sn1
)⊥

. Since
〈x0,Ωx0〉J = x>0 JΩx0 = −x>0 Ω>Jx0 and, on the other
hand 〈x0,Ωx0〉J = 〈Ωx0, x0〉J = x>0 Ω>Jx0, the result
follows.

We will see later that integration of the kinematic equa-
tions is not trivial except when the rolling curves are
geodesics. But before getting to that point, we revise some
facts about geodesics on the Lorentzian sphere. Since the
restrictions of the Lorentzian metric 〈·, ·〉J to Sn1 and to
its tangent spaces are indefinite and nondegenerate, the
geodesics are of different causal types.

Geodesics of Minkowski space Rn+1
1 are stationary points

for the functional
1∫
0

〈ẋ(t), ẋ(t)〉J dt. They are solutions of

the corresponding Euler-Lagrange equation ẍ = 0 and
so are straight lines. Geodesics on Sn1 are also stationary
points for the same functional, with the additional constraint
that 〈x(t), x(t)〉J = 1. The equation for geodesics on the
Lorentzian sphere is easily derived to obtain

ẍ− 〈ẍ, x〉Jx = 0. (1)

Thus, geodesics on Sn1 are curves along which the extrinsic
acceleration ẍ(t) belongs to

(
Tx0

Sn1
)⊥

. Since 〈x, x〉J = 1
implies 〈ẋ, x〉J = 0 and therefore 〈ẍ, x〉J = −〈ẋ, ẋ〉J , the
geodesic equation (1) can be written alternatively as

ẍ+ 〈ẋ, ẋ〉Jx = 0. (2)

Proposition 4.2: Let x0 ∈ Sn1 and v ∈ Tx0S
n
1 . Then

(a) If the vector v is timelike, i.e. 〈v, v〉J = −1,

t 7→ γ(t) = x0 cosh(t) + v sinh(t) (3)

is the unique timelike geodesic in Sn1 satisfying γ(0) = x0,
γ̇(0) = v.

(b) If the vector v is spacelike, i.e. 〈v, v〉J = 1,

t 7→ γ(t) = x0 cos(t) + v sin(t) (4)

is the unique spacelike geodesic in Sn1 satisfying γ(0) = x0,
γ̇(0) = v.

(c) If the vector v is lightlike, i.e. 〈v, v〉J = 0,

t 7→ γ(t) = x0 + vt (5)

is the unique lightlike geodesic in Sn1 satisfying γ(0) = x0,
γ̇(0) = v.

Proof: The theory of semi-Riemannian geometry guar-
antees that geodesic starting at x0 with initial velocity v is
locally unique. It can easily be checked that the curves given
by (3)–(5) satisfy the geodesic equation above. Finally, since
〈ẋ, ẋ〉J is an invariant for geodesics, the causal character is
that of the initial velocity vector v.

The following result answers the question: can any two
points x0, x1 in the Lorentzian sphere be joined by a
geodesic? We will see that the answer is yes only if
〈x0, x1〉J > −1 or if 〈x0, x1〉J = −1 and x0 = −x1.

Proposition 4.3: Let x0, x1 be two distinct points in Sn1 .
Then,
(a) If 〈x0, x1〉J > 1, say 〈x0, x1〉J = cosh(θ) for some
θ 6= 0, the timelike geodesic given by

t 7→ γ(t) = x0 cosh(t) +

(
x1 − x0 cosh(θ)

sinh(θ)

)
sinh(t)

satisfies γ(0) = x0, γ(θ) = x1.
(b) If 〈x0, x1〉J = 1, the lightlike geodesic given by

t 7→ γ(t) = x0 + t(x1 − x0)

satisfies γ(0) = x0, γ(θ) = x1.
(c) If 〈x0, x1〉J ∈]− 1, 1[, say 〈x0, x1〉J = cos(θ) for some
θ 6= kπ, (k ∈ Z), the spacelike geodesic given by

t 7→ γ(t) = x0 cos(t) +

(
x1 − x0 cos(θ)

sin(θ)

)
sin(t)

satisfies γ(0) = x0, γ(θ) = x1.
(d) If 〈x0, x1〉J = −1 and x1 = −x0, any spacelike geodesic
given by

t 7→ γ(t) = x0 cos(t) + v sin(t)
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satisfies γ(0) = x0, γ(π) = x1.
(e) If 〈x0, x1〉J ≤ −1 and x1 6= −x0, then x0 can not be
joined to x1 by a geodesic. However, they can be joined by
a broken geodesic.

Proof: The proof of the first four statements follows
easily from some computations using the results contained in
Proposition 4.2. In particular, if we assume that there exists
a geodesic joining x0 (at t = 0) to x1 (at t = θ) (there
are three possibilities only), the following observations are
useful. If this geodesic is timelike, it follows from (3) that
〈x0, x1〉J = 〈x0, γ(θ)〉J = cosh(θ) > 1. Similarly, if the
geodesic is spacelike, it follows from (4) that 〈x0, x1〉J =
〈x0, γ(θ)〉J = cos(θ) ∈ [−1, 1]. Hence, if cos(θ) = −1
then x1 = −x0 and if cos(θ) = 1 then x1 = x0 (impos-
sible). Finally, if the geodesic is lightlike, (5) implies that
〈x0, x1〉J = 〈x0, γ(θ)〉J = 1.

It is clear from here that, under the conditions in (e), the
points x0 and x1 can not be joined by a geodesic. Moreover,
when 〈x0, x1〉J ≤ −1 and x1 6= −x0, 〈x0,−x1〉J ≥ 1 and,
according to (b) and (c), x0 and −x1 can be joined by a
lightlike geodesic. But, by (d), −x1 and x1 can be joined by
a spacelike geodesic. So, x0 and x1 may be joined by a curve
with is the concatenation of a lightlike geodesic (joining x0

to −x1) and a spacelike geodesic (joining −x1 to x1).

We now turn our attention towards rolling Sn1 over the
affine tangent space at x0 ∈ Sn1 , defined as

T aff
x0
Sn1 =

{
x ∈ Rn+1 : x = x0 + Ωx0, Ω ∈ so(n, 1)

}
.

Remark 4.1: Contrary to the rolling of the Euclidean
sphere or the hyperbolic sphere, where there is only one
point of contact between the manifold and the affine tangent
space at any point, here the two rolling manifolds always
intersect along light-like geodesics. More precisely,

T aff
x0
Sn1 ∩ Sn1 = {x0 + Ωx0 : 〈Ωx0,Ωx0〉J = 0}.

To see this, assume that x0 ∈ Sn1 and x = x0 + Ωx0 ∈
T aff
x0
Sn1 ∩ Sn1 . So, we must have 〈x, x〉J = 1. But

〈x, x〉J = 〈x0, x0〉J + 2〈x0,Ωx0〉J + 〈Ωx0,Ωx0〉J .

According to Proposition 4.1, x0 ∈ Sn1 ∩ (Tx0
Sn1 )⊥ and

Ωx0 ∈ Tx0S
n
1 , so the first term above is equal to 1 and the

second term is equal to 0. So, we must have 〈Ωx0,Ωx0〉J =
0, and clearly Ωx0 runs over the set of lightlike geodesics
(5) when Ω runs over so(n, 1).

This can be visualized for the 2-dimensional one-sheet hy-
perboloid (see Fig.1). As already mentioned earlier, physical
rolling is impossible, but we will proceed for the kinematic
equations of ”virtual” rolling.

A. KINEMATIC EQUATIONS FOR ROLLING Sn1

We recall that a rolling is a curve in G = SO+(n, 1) n
Rn+1

1 . For convenience we represent elements in this Lie
group as pairs (R, s), with R ∈ SO+(n, 1), s ∈ Rn+1

1 . (I, 0)
is the identity and the group operations are defined by

(R1, s1)(R2, s2) = (R1R2, R1s2 + s1),

Fig. 1. S2
1 and its tangent plane at a point.

(R, s)−1 = (R−1,−R−1s).

The following theorem is the analogue for the Lorentzian
sphere of results for the Euclidean sphere (as, for instance, in
[5]) and for the hyperbolic sphere (as, for instance, in [16]).

Theorem 4.1: Let x0 be an arbitrary point in Sn1 and
t 7→ u(t) ∈ Rn+1

1 a piecewise smooth function satisfying
〈u(t), x0〉J = 0. If R ∈ SO+(n, 1), s ∈ Rn+1

1 is the solution
of

Ṙ(t) = R(t)
(
u(t)x>0 − x0u

>(t)
)
J,

ṡ(t) = u(t),
(6)

satisfying the initial condition R(0) = I , s(0) = 0, then
t 7→ g(t) = (R−1(t), s(t)) ∈ SO0(n, 1) n Rn+1

1 is a rolling
map (in the sense of definition 3.1) of Sn1 over its affine
tangent space at x0, with rolling curve t 7→ x(t) = R(t)x0.
Consequently, (6) are the Kinematic equations for the rolling
motion.

Proof: First of all, we show that the statement makes
sense.
- The rolling curve t 7→ x(t) = R(t)x0 ∈ Sn1 since, for any
R ∈ SO0(n, 1),

〈Rx0, Rx0〉J = x>0 R
>JRx0 = x>0 Jx0 = 〈x0, x0〉J = 1.

- All curves in Sn1 starting at x0 are of that form, because
SO+(n, 1) acts transitively on Sn1 .
- The first equation in (6) makes sense, due to the fact that
the matrix u(t)x>0 − x0u

>(t) is skew-symmetric, and so,
when multiplied by J belongs to so(n, 1).
- Finally, we explain why we need the restriction
〈u(t), x0〉J = 0. According to the definition 3.1, the develo-
pment curve t 7→ x̂(t) is defined by

x̂(t) = g(t)◦x(t) = R−1(t)x(t)+s(t) = x0+s(t) ∈ T aff
x0
Sn1 .

Consequently, s(t), ṡ(t) and u(t) all belong to Tx0S
n
1 . So,

we must have 〈u(t), x0〉J = 0.

We are now in condition to show that the no-slip and
no-twist conditions are satisfied.

The no-slip condition is verified as follows:

R−1(t)Ṙ(t)(x̂(t)− s(t))− ṡ(t) =
(
u(t)x>0 − x0u

>(t)
)
Jx0

−u(t) = u(t)x>0 Jx0 − x0u
>(t)Jx0 − u(t) = 0.
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The no-twist conditions are:

R−1(t)Ṙ(t)(kx0) ∈ Tx0S
n
1 ,∀k ∈ R;

R−1(t)Ṙ(t)(Ωx0) ∈ (Tx0
Sn1 )⊥,∀Ω ∈ so(n, 1).

The first inclusion is straightforward. For the second we need
to observe that 〈x0,Ωx0〉J = 〈x0, JΩx0〉 = 0, since JΩ is
skew-symmetric. So,

R−1(t)Ṙ(t)(Ωx0) =
(
−u(t)x>0 + x0u

>(t)
)
JΩx0

= −u(t)x>0 JΩx0 + x0u
>(t)JΩx0

= −u(t) 〈x0,Ωx0〉J + x0 〈u(t),Ωx0〉J
= x0 〈u(t),Ωx0〉J ,

.

Since the expression x0 〈u(t),Ωx0〉J is the product of a
scalar function by x0, the proof is complete.

In order to characterize the solutions of the kinematic
equations, let us concentrate on the coefficient matrix of the
first equation in (6).

Proposition 4.4: Let A(t) :=
(
u(t)x>0 − x0u

>(t)
)
J, and

w(t) := 〈u(t), u(t)〉J . Then, the following properties hold
for any j ∈ N.

A4j−3(t) = w(t)j−1A(t),
A4j−2(t) = w(t)j−1A2(t),
A4j−1(t) = −w(t)j−1A(t),
A4j(t) = −w(t)j−1A2(t).

Proof: The proof is straightforward if taken in consid-
eration that 〈x0, x0〉J = 1 and 〈u(t), x0〉J = 0.

Corollary 4.1: If u(t) = u is a constant vector satisfying
〈u(t), x0〉J = 0, the solution of the kinematic equations (6),
with the initial conditions R(0) = I , s(0) = 0, is

R(t) = exp(At), s(t) = ut.

Moreover, the rolling curve x(t) = exp(At)x0 and its
development x̂(t) = x0 + s(t) are geodesics on Sn1 and T aff

x0

respectively, having the same causality as the vector u.
Proof: The first part is obvious. For the second part,

without loss of generality we my normalize the vector u and
consider the three possible situations:
• 〈u, u〉J = 1. Using Proposition 4.4, we can write

exp(At) = I + sin(t)A+ (1 + cos(t))A2.

But, in this case, Ax0 = u, A2x0 = −x0. Therefore, the
rolling curve is given by

x(t) = exp(At)x0 = x0 cos(t) + u sin(t)

while its development is

x̂(t) = x0 + s(t) = x0 + ut.

These geodesics satisfy ẋ(0) = ˙x̂(0) = u, so they are
spacelike.
• 〈u, u〉J = −1. Now,

exp(At) = I + sinh(t)A− (1 + cosh(t))A2.

In this case, Ax0 = u, A2x0 = x0. Therefore, the rolling
curve is given by

x(t) = exp(At)x0 = x0 cosh(t) + u sinh(t)

and its development is

x̂(t) = x0 + s(t) = x0 + ut.

These geodesics satisfy ẋ(0) = ˙x̂(0) = u, so they are
timelike.
• 〈u, u〉J = 0. Then A2j−1 = A2j = 0 for j > 2, so

exp(At) = I + tA+ t2/2A2.

In this case Ax0 = u, A2x0 = 0, so

x(t) = exp(At)x0 = x0 +ut, x̂(t) = x0 +s(t) = x0 +ut.

In this case the geodesics coincide, ẋ(0) = ˙̂x(0) = u, and
they are lightlike.

Remark 4.2: The calculations done here support the well
know facts that the group SO+(n, 1) acts transitively on Sn1
and the geodesics in the Lorentzian sphere result from the
action of this group.

V. CONTROLLABILITY
From the discussion in the last section, it is clear that the

choice of a rolling curve is equivalent to choosing a particular
function u(t). So, in terms of coordinates x1, . . . , xn+1, in
Rn+1

1 , we can treat u = [ u1 u2 . . . un+1 ]> ⊂ Rn+1

as a control vector and the kinematic equation (6) becomes
a control system with states (R, s). Thus, it makes sense to
study the controllability of this system.

Without loss of generality, we may assume that

x0 = [ 1 0 . . . 0 ]> ∈ Sn1 .

So, T aff
x0
Sn1 and Tx0

Sn1 are, respectively, the hyperplanes
{x1 = 1} and {x1 = 0}, u = [ 0 u2 . . . un+1 ]>,
s = [ 0 s2 . . . sn+1 ]>, and the matrix A in (6) reduces
to

A =


0 −u2 · · · −un un+1

u2

...
un

un+1

0

 .
The proof of controllability of the kinematic equations fol-
lows the same arguments as those used in [18] for the Eu-
clidean sphere. First we rewrite the control system (kinematic
equation (6)) in a more convenient form in order to be able
to apply available results for controllability on Lie groups.
Following an idea from [14], for the kinematics of rolling
the S2 sphere, we identify the states (R, s) with a single
matrix

X =


R 0

0

1 s2 · · · sn+1

0
...
0

I

 ,
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so that (6) is equivalent to the following system evolving on
the connected Lie group G = SO+(n, 1)× Rn:

Ẋ(t) = X(t)B(t), (7)

where

B =


A 0

0

0 u2 · · · un+1

0
...
0

0

 .
To simplify notations, let Ei,j denote the matrices whose
(i, j) entries are equal to δij , Ai,j := Ei,j − Ej,i are skew-
symmetric matrices, and Bi,j := Ei,j + Ej,i are symmetric
matrices. For k = 2, . . . , n, define

Ak := −A1,k + En+k,n+k+1,

An+1 := B1,n+1 + En+2,2n+2.

Then, the control system (7) may be written as

Ẋ(t) = X(t)

(
n+1∑
i=2

ui(t)Ai

)
.

This is a left invariant control system, without drift,
evolving on a connected Lie group G. And according to well
known results (see, for instance, the pioneer work [6] or the
more recent [14]), the system is controllable if and only if the
control vector fields are bracket generating. For the present
situation, proving controllability of the kinematic equations
on G = SO+(n, 1)×Rn amounts to show that the smallest
Lie algebra containing A2, . . . , An+1 is the Lie algebra of
G, L = so(n, 1)⊕ Rn.

Lemma 5.1: The smallest Lie algebra containing Ai, i =
2, . . . , n+ 1, is L = so(n, 1)⊕ Rn.

Proof: It is enough to show that every element in the
canonical basis of L,

B = {Ai,j , 1 6 i < j 6 n} ∪ {Bi,n+1, 1 6 i 6 n}

∪{En+2,n+j , 3 6 j 6 n+ 2},
(8)

can be obtained as linear combinations of the matrices
Ai, i = 2, . . . , n + 1, and their Lie brackets. Computing
commutators, one gets:

Ai,j = −[Ai, Aj ], 2 6 i < j 6 n.

Bi,n+1 = [Ai, An+1], 2 6 i 6 n.

A1,i = [An+1, Bi,n+1] =
[
An+1, [Ai, An+1]

]
, 2 6 i 6 n.

B1,n+1 = [A1,2, B2,n+1]
=
[
[An+1, [A2, An+1]], [A2, An+1]

]
.

En+2,n+j = Aj−1 +A1,j−1 = Aj−1

+
[
An+1, [An+1, Aj−1]

]
, 3 6 j 6 n+ 1

En+2,2n+2 = An+1 −B1,n+1 = An+1

+
[
[An+1, [A2, An+1]], [A2, An+1]

]
.

This concludes the proof.

Notice that the bracket generating property here is of
constant step 4.

Thus, we have proven the following main result about
controllability.

Theorem 5.1: The control system (7) (or, equivalently, the
kinematic equation (6)), describing the rolling of Sn1 over its
affine tangent space, is controllable on G = SO+(n, 1)×Rn.

VI. CONCLUSIONS
We derived the kinematic equations for rolling, without

slipping and without twisting, the Lorentzian sphere over its
affine tangent space at a point, both embedded in the gener-
alized Minkowski space. We also showed how the kinematic
equations can be rewritten as a left-invariant control system
evolving on a connected Lie group, and proved controllability
of this system.
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