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Abstract: The attitude closed-loop control of the parallel platform in the working space needs to
determine the relationship between the pose of the top moving platform and the length of each
mechanical arm, that is, the kinematics problem of the parallel platform. In this study, the kinematics
model of the six-degree-of-freedom parallel platform was established. The kinematics forward
solution algorithm based on Newton–Raphson iteration was studied. The kinematics forward
solution method usually adopts a numerical solution, which often needs multiple iterations, and the
algorithm has a poor real-time performance. In order to improve the real-time performance of the
parallel platform control system, a multivariate polynomial regression kinematics forward solution
algorithm is proposed in this paper. Moreover, by combining the multivariate polynomial regression
with the Newton iterative method, we obtained an efficient solution algorithm with controllable
solution accuracy. The effectiveness of the proposed method was verified by simulation tests and
physical tests.

Keywords: parallel platform; multivariate polynomial regression; Newton iterative; kinematics

1. Introduction

Multi-degree-of-freedom parallel platforms are widely used in intelligent manufac-
turing and industrial production, and the research on parallel platforms has also been
a research hotspot in recent years. Among them, the dynamics of the parallel platform
studies the relationship between the force on the moving platform and the force on each
manipulator [1]. Commonly used dynamic modeling methods for parallel platforms in-
clude Newton–Euler method [2], Lagrange method [3], spiral theory and virtual work
principle [4–6], etc. The dynamic model can be used to design the inverse dynamics con-
troller of the parallel platform, so as to improve the transient, dynamic, and steady-state
performance of the parallel platform [7–9].

The movement of the parallel platform in space is realized by changing the length of
the six groups of parallel manipulator arms, which is an indirect control [10]. In order to
realize arbitrary adjustment of the pose of the parallel platform, it is necessary to establish
a mapping relationship between the pose of the parallel platform and the length of each
manipulator, that is, a kinematics problem. The kinematics problem of the parallel platform
consists of two problems of forward kinematics and inverse kinematics [11,12]. At present,
there are many solutions for the kinematics solution of the parallel platform. Guo et al.
proposed a control scheme for a five-degree-of-freedom parallel platform based on neural
network technology [13]. Abadi et al. present various solutions in Real-Time Solving
of Kinematics Problems in Parallel Mechanisms [14–16]. Among them, the kinematics
forward solution has a large amount of computation, which makes it difficult to carry out
real-time control of the parallel platform in the workspace. In order to avoid this problem,
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the expected trajectory of the parallel platform in the workspace is usually mapped to the
joint space of the manipulator through the inverse kinematics solution. Then, in the joint
space, the closed-loop control of the length of the manipulator is performed according
to the mapping value, thereby indirectly realizing the trajectory tracking of the parallel
platform. However, there are the following deficiencies in such a control method [17–19]:

(1) The movement trajectory of each robot arm is calculated by interpolation before
movement. For the situation that has deviated from the preset trajectory, no correction
can be made, and the control accuracy is not high.

(2) During the movement of the parallel platform, the convergence speed of each robot
arm is different. The length closed-loop control of each manipulator independently
according to the mapping value will lead to large process errors in the platform shake
and working space.

(3) It is difficult to realize the speed control of the parallel platform in the working space.

Therefore, this study proposes a kinematics forward solution algorithm based on
multivariate polynomial regression to address the difficulty caused by the fact that the
kinematics forward solution has a large amount of computation. The optimization goal of
controllable solution accuracy and high efficiency is achieved. Through the comparison
of simulation experiments, it is concluded that the multivariate polynomial regression
method can guarantee the accuracy. The calculation time consumption and the number of
iterations is far less than the conclusion of the traditional Newton iterative algorithm.

2. Materials and Methods
2.1. Kinematic Modeling

To study the kinematics of the parallel platform, it is necessary to establish a math-
ematical model of the parallel platform. Mathematically abstract the physical system of
the parallel platform and use three-dimensional space vectors to describe each component.
The six-degree-of-freedom platform studied in this paper is based on the Stewart–Gough
platform, so it is referred to as Stewart–Gough in the following [20].

The Stewart–Gough parallel platform is mainly composed of three parts: the bottom
static platform, six sets of parallel mechanical arms, and the top dynamic platform. The
mechanical arm is connected to the dynamic and static platforms through the structure of
universal joints. The six-degree-of-freedom attitude of the parallel platform in the working
space refers to the xyz coordinates of the center of mass of the top moving platform in
three-dimensional space. Moreover, the pitch angle (α) around the x-axis, the roll angle
(β) around the y-axis, and the yaw angle (γ) around the z-axis are three rotation angles,
expressed as [x, y, z, α, β, γ]T in vector.

In this study, the RPY angle method was used to represent the rotational motion of the
moving platform around the axis. The rotation operators RX(α), RY(β), and RZ(γ) were
used to represent the rotation of the moving platform by an angle of α around the x-axis,
the angle of β around the y-axis, and the angle of γ around the z-axis. The rotation operator
of the parallel platform satisfies Equation (1) [21]:

RX(α) =

1 0 0
0 cosα −sinα
0 sinα cosα


RY(β) =

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ


RZ(γ) =

cosγ −sinγ 0
sinγ cosγ 0

0 0 1


(1)

When the moving platform rotates around multiple axes simultaneously in the
workspace, matrix multiplication is performed in the order of RZ(γ), RY(β), and RX(α).
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Constitute the rotation matrix RXYZ(α, β, γ). If sin is abbreviated as s and cos is abbreviated
as c, then we can obtain Equation (2):

RXYZ(α, β, γ) =

cγcβ cγsβsα− sγcα cγsβcα + sγsα
sγcβ sγsβsα + cγcα sγsβcα− cγsα
−sβ cβsα cβcα

 (2)

In order to study the kinematics relationship of the parallel platform, the mechanical
structure of the parallel platform is abstracted mathematically, and the spatial geometric
model is established. With the center of mass, O, of the static platform at the bottom of the
parallel platform as the origin, a space Cartesian coordinate system, Oxyz, is established.
With the center of mass, P, of the top moving platform as the origin, a space rectangular
coordinate system, Px′y′z′, is established. Simplify the mechanical structure of each me-
chanical arm of the parallel platform and the upper and lower platforms. Establish the
parallel platform space geometric model in MATLAB, as shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 19 
 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑅 (𝛼) = 1 0 00 𝑐𝑜𝑠 𝛼 − 𝑠𝑖𝑛 𝛼0 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼𝑅 (𝛽) = 𝑐𝑜𝑠 𝛽 0 𝑠𝑖𝑛 𝛽0 1 0− 𝑠𝑖𝑛 𝛽 0 𝑐𝑜𝑠 𝛽𝑅 (𝛾) = 𝑐𝑜𝑠 𝛾 − 𝑠𝑖𝑛 𝛾 0𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝛾 00 0 1

 (1)

When the moving platform rotates around multiple axes simultaneously in the 
workspace, matrix multiplication is performed in the order of 𝑅 (𝛾), 𝑅 (𝛽), and 𝑅 (𝛼). 
Constitute the rotation matrix 𝑅 (𝛼, 𝛽, 𝛾) . If sin is abbreviated as s and cos is 
abbreviated as c, then we can obtain Equation (2): 

𝑅 (𝛼, 𝛽, 𝛾) = 𝑐 𝛾 𝑐 𝛽 𝑐 𝛾 𝑠 𝛽 𝑠 𝛼 − 𝑠 𝛾 𝑐 𝛼 𝑐 𝛾 𝑠 𝛽 𝑐 𝛼 + 𝑠 𝛾 𝑠 𝛼𝑠 𝛾 𝑐 𝛽 𝑠 𝛾 𝑠 𝛽 𝑠 𝛼 + 𝑐 𝛾 𝑐 𝛼 𝑠 𝛾 𝑠 𝛽 𝑐 𝛼 − 𝑐 𝛾 𝑠 𝛼− 𝑠 𝛽 𝑐 𝛽 𝑠 𝛼 𝑐 𝛽 𝑐 𝛼  (2)

In order to study the kinematics relationship of the parallel platform, the mechanical 
structure of the parallel platform is abstracted mathematically, and the spatial geometric 
model is established. With the center of mass, 𝑂, of the static platform at the bottom of 
the parallel platform as the origin, a space Cartesian coordinate system, 𝑂𝑥𝑦𝑧 , is 
established. With the center of mass, 𝑃, of the top moving platform as the origin, a space 
rectangular coordinate system, 𝑃𝑥 𝑦 𝑧 , is established. Simplify the mechanical structure 
of each mechanical arm of the parallel platform and the upper and lower platforms. 
Establish the parallel platform space geometric model in MATLAB, as shown in Figure 1. 

 
Figure 1. Space geometric model of parallel platform. 

A1 to A6 in Figure 1 are the connection points between the bottom static platform 
and each parallel manipulator arm. B1 to B6 are the connection points between the top 
moving platform and each group of parallel mechanical arms. The six connection points 
B1 to B6 of the top moving platform and the mechanical arm are on the same circumscribed 
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centers of the circumscribed circles of the moving platform and the static platform coincide. 
Figure 2 shows the top view of the parallel platform in the initial zero state. 

Figure 1. Space geometric model of parallel platform.

A1 to A6 in Figure 1 are the connection points between the bottom static platform and
each parallel manipulator arm. B1 to B6 are the connection points between the top moving
platform and each group of parallel mechanical arms. The six connection points B1 to B6 of
the top moving platform and the mechanical arm are on the same circumscribed circle. The
six connection points A1 to A6 of the bottom static platform are on the same circumscribed
circle. In the initial zero state, the six robotic arms are of equal length, and the centers of
the circumscribed circles of the moving platform and the static platform coincide. Figure 2
shows the top view of the parallel platform in the initial zero state.
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Figure 2. Top view of the parallel platform in zero state.

2.2. Dataset

Table 1 shows the coordinate parameters of the connection points of each parallel
manipulator arm, the moving platform, and the static platform at the initial position.

Table 1. Physical motor parameters.

Coordinate Points px (mm) py (mm) pz (mm)

A1 −25 184 52.5
A2 25 184 52.5
A3 171.85 −70.35 52.5
A4 146.85 −113.65 52.5
A5 −146.85 −113.65 52.5
A6 −171.85 −70.35 52.5
B1 −84.01 74.49 325.4
B2 84.01 74.49 325.4
B3 106.51 35.51 325.4
B4 22.50 −110 325.4
B5 −22.50 −110 325.4
B6 −106.51 35.51 325.4

To reduce the impact of operating system multitask scheduling and task-switching
time on the algorithm calculation time-consuming evaluation, this experiment used a large
sample batch calculation method to evaluate the algorithm time-consuming evaluation.
Each independent sample consists of two parts, input and output. The output is the six-
degree-of-freedom attitude of the parallel platform workspace, which is randomly selected
on a specific closed subinterval, using the Monte Carlo method. We then performed
kinematic inverse solution on the output attitude data. The lengths of six groups of parallel
manipulators were obtained as the input information of this sample. When the algorithm
was executed, the length information of the mechanical arm of each sample was input,
and the kinematics forward solution algorithm was executed. Moreover, we compared the
output information obtained by the algorithm with the output information of the sample to
find the absolute error |e(Xtar −Xk)|.

Before the execution of the MPR (Multivariate Polynomial Regression) algorithm, all
polynomial coefficients need to be solved offline. Therefore, the selected sample set needs
to be composed of two parts: the training sample set and the test sample set. Among
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them, the training sample set needs to contain at least 1554 linearly independent sample
points. Use the Monte Carlo method to randomly select 100,000 sample points of attitudes
in the closed subspace [x± 10 mm, y± 10 mm, z± 10 mm, α± 10◦, β± 10◦, γ± 10◦] of
the workspace. Moreover, through the inverse kinematics solution, the length of the
manipulator corresponding to each sample point is obtained as the first training sam-
ple set (Test Set 1). In the same sample space, 10,000 sample points are selected as
the first test sample set. In order to verify that the Newton iterative algorithm and the
MPR algorithm have global convergence, using the same method, in the closed subspace
[x± 40 mm, y± 40 mm, z± 40 mm, α± 40◦, β± 40◦, γ± 40◦] of the workspace, randomly
select 100,000 sample points to form the second training sample set (Test Set 2). Then, in
the same sample space, select 10,000 sample points to form the second test sample set.

2.3. Parallel Platform Jacobian Matrix

The Jacobian matrix is of great significance in the parallel platform system, it shows
the relationship between the speed change between the moving platform and each group of
manipulators in the parallel platform system [22,23]. Based on the space geometry model of
the parallel platform, the Jacobian matrix of the parallel platform can be deduced. Note that
the position vector of the center of mass, P, of the moving platform relative to the center of
mass, O, of the static platform is p, and the velocity vector corresponding to the translation
of the center of mass of the moving platform is vp. Note that the angular velocity of the
moving platform around the center of mass is w. Note that the position vector between the
centroid O of the static platform and the connection point, Ai, at the lower end of each robot
arm is pAi

. The angular velocity of each mechanical arm around point Ai is wi. Note that
the position vector between the centroid O of the static platform and the connection point
Bi at the upper end of the manipulator arm is pBi

. When the mechanical arm moves, the
velocity vector corresponding to Bi is vBi . According to the spatial geometric model of the
parallel platform shown in Figure 1, the length of each manipulator arm can be expressed
as Equation (3):

lini = pBi
− pAi

(3)

By deriving both sides of Equation (3) with respect to time simultaneously, we can
obtain Equation (4):

.
lini + li(wi × ni) = vBi (4)

Since the angular velocity, wi, of the manipulator around Ai is always orthogonal to
the unit direction vector, ni, of the manipulator, multiplying both sides of Equation (4) by
ni at the same time can eliminate the second half of the left side of the equation. We can
obtain the relationship between the length-change speed of the mechanical arm and the
speed (vBi ) at point Bi, as shown in Equation (5):

.
li = vT

Bi
ni (5)

According to the spatial geometric model in Figure 1, the motion velocity of point Bi
on the moving platform can be expressed by the translation of the center of mass of the
moving platform and the rotation around the center of mass, as shown in Equation (6):

vBi = vp + w× pBi
(6)

Substitute Equation (6) into Equation (5). The relationship between the length change
speed of each mechanical arm and the center-of-mass velocity and angular velocity of the
moving platform can be obtained, as shown in Equation (7):

.
li = vp + w× pBi

Tni (7)

According to Equation (7), the same equations are listed for the six groups of ma-
nipulators and written in matrix form. The relationship expressions between the length
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change rate of each manipulator and the center-of-mass velocity and angular velocity of
the moving platform can be obtained, as shown in Equation (8):


.

l1
...
.

l6

 =


nT

1

(
pB1
× n1

)T

...
...

nT
6

(
pB6
× n6

)T


(

vp
w

)
(8)

Write Equation (8) as a simplified expression between the length change speed of
each mechanical arm and the center-of-mass velocity and angular velocity of the moving
platform, and Equation (9) can be obtained:

.
L = J

.
X (9)

In Equation (9), J is the Jacobian matrix between the moving platform and the manipulator.

2.4. Forward Solution Algorithm of Newton–Raphson Kinematics

The Newton–Raphson method is an approximate solution method proposed by New-
ton and Raphson in the 17th century to find the root of a nonlinear function [24]. Its core
idea is to solve iteratively based on the first-order Taylor expansion of the function f (x) to
be solved, as shown in Equation (10):

xn+1 = xn −
f(xn)

f′(xn)
(10)

In Equation (10), f is the function to be solved, and xn is the solution at the nth step.
After the Newton iterative method gives the initial solution X_0, the next approximate
solution, x1, can be obtained through f (x0) and its first derivative. By analogy, gradually
make f (xn) converge to zero.

With the development of computer technology, Newton’s iterative method has become
a general and effective method for solving nonlinear equations. At the same time, it is also
a classic numerical solution for the forward kinematics solution of parallel platforms [25].
In order to apply the Newton iterative method to the solution of the forward kinematics
solution of the parallel platform, it is necessary to obtain the iterative formula of the parallel
platform. Suppose we have a set of robotic-arm-length data, Ltar = [l1, l2, l3, l4, l5, l6]

T . The
corresponding pose data on the parallel platform workspace are Xtar = [x, y, z, α, β, γ]T .
Denote the parallel platform kinematics inverse solution operator as G. At Xk, the error
between the length of the mechanical arm obtained by the inverse kinematics solution
and the given length, Ltar, is E(Xk). Therefore, the error E(Xtar) is zero when the parallel
platform is at Xtar, as shown in Equation (11):

E(Xtar) = G(Xtar)− Ltar = 0 (11)

In Equation (11), the first-order Taylor expansion of E(Xtar) at Xk can help us obtain
Equation (12):

E(Xtar) = E(Xk) + E′(Xk)(Xtar − Xk) + o(Xtar − Xk) (12)

In Equation (12), E′(Xk) is the Jacobian matrix, J, when the moving platform and the
manipulator are at Xk. Discard the high-order infinitesimal term for Equation (12). The
combination Equation (11) can be arranged to obtain the relational expression (13) between
the target pose, Xtar, and the current pose, Xk:

Xtar ≈ Xk + J−1(Ltar − G(Xk)) (13)
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Using the idea of Newton’s iterative method, the initial pose, X0, of the moving
platform is given. Continuously and iteratively approximate Xtar, and then the iterative
formula of step k + 1 of the moving platform is Equation (14):

Xk+1 = Xk + J−1(Ltar − G(Xk)) (14)

It can be seen from Equation (14) that this algorithm takes advantage of the fact that
the forward kinematics solution of the parallel platform is difficult, but the kinematics
inverse solution is simple. Therefore, it is a classical numerical solution for the forward
kinematics solution of the parallel platform.

2.5. Kinematics forward Solution Algorithm Based on Multivariate Polynomial Regression

Through the analysis of the solution process of the Newton iterative algorithm, it is
not difficult to find that this method requires multiple iterations, and each iteration needs to
complete the 6-order Jacobian matrix inversion operation. Therefore, the Newton iterative
algorithm has a huge amount of calculation when solving the forward kinematics solution
of the parallel platform. It has a great influence on the real-time performance of the parallel
platform control system. In addition, the convergence of Newton’s iterative method is
also affected by the selection of initial values. A poor initial value will further increase the
number of iterations of the kinematics positive solution of the Newton iterative algorithm
and even fail to converge in extreme cases. In order to improve the real-time performance
of the control system, this paper proposes a kinematics forward solution algorithm based
on MPR [26].

Polynomial regression is a type of regression analysis in statistics. The expression
form of a polynomial of degree, n, is shown in Equation (15):

y = a0 + a1x + a2x2 + a3x3 + · · · · · ·+ anxn (15)

In Equation (15), a0, a1, · · · · · · an are all constant values.
According to the Weierstrass polynomial approximation theorem, any continuous

function, f (x), on the closed interval [a, b] can be expressed as a uniformly convergent
limit of a polynomial sequence { fn(x)} [27]. To have an intuitive understanding of this
theoretical thought, in MATLAB, use the cubic polynomial regression curve and the quintic
polynomial regression curve to approximate the sin function curve; the effect is shown in
Figure 3.

It can be seen from Figure 3 that the fitting error of the fitted curve to the discrete sin
data points decreases significantly as the polynomial degree increases. In line with the
theoretical basis of polynomial regression, based on the theoretical basis of polynomial
regression, this paper proposes to use the MPR method to complete the approximation
of the forward solution operator of parallel platform kinematics. Then we propose using
the obtained approximation function to complete the numerical solution of the kinematics
forward solution.

From the spatial geometric model of the parallel platform, it can be seen that the
relationship between the moving platform and each group of manipulators is a continuous
change. It meets the requirements of the continuous function in the theorem. After the
working range is limited to the closed sub-range reachable by the parallel platform, the
establishment condition of the polynomial approximation theorem can be fully satisfied.
Take the six-variable cubic polynomial regression algorithm as an example [28]. According
to the input–output relationship of the kinematics positive solution of the parallel platform,
the six-dimensional cubic polynomial can be expressed as Equation (16):

X =
6

∑
i=1

6

∑
j=1

6

∑
k=1

Aijkliljlk +
6

∑
m=1

6

∑
n=1

Bmnlmln +
6

∑
p=1

CPlP + D (16)
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In Equation (16), X is the posture to be solved in a certain dimension; li represents
the length of the input i-th group of robotic arms; Aijk, Bmn, Cp, and D are the polynomial
coefficients to be solved; Aijk is the cubic coefficient of li; Bmn is the quadratic term coefficient
of li; Cp is the coefficient of the linear term of li; and D is the constant coefficient.
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In order to improve the efficiency of the MPR algorithm, the MPR algorithm is com-
pleted by offline training + online calculation. The offline training process is the process of
solving the polynomial regression coefficients. It can be seen from Equation (16) that, for
each degree of freedom of the parallel platform, there are 63 + 62 + 6 + 1 = 259 polynomial
coefficients to be solved in the hexagram cubic polynomial. Therefore, for all six degrees of
freedom in the parallel platform, there are a total of 259 × 6 = 1554 polynomial coefficients
to be solved. In order to realize the complete solution of all polynomial coefficients, at least
1554 sets of linearly independent input and output data need to be given. If and only if
1554 sets of linearly independent input and output data are given, the polynomial regres-
sion equations are positive definite, and the unique solution of polynomial coefficients can
be obtained.

More than 1554 sets of linearly independent input and output data will make the equa-
tion overdetermined. At this time, the polynomial regression equation has no solution, but
there is a minimum norm least-squares solution. Due to the serious overfitting phenomenon
of the positive definite equation, the error for the training sample is 0, but the error for
the random test sample is often large. In order to make the polynomial function have a
better generalization performance, the MPR parameters are solved by using the method of
overdetermined equations to find the least norm least-squares solution. There are n groups
of training sample points that are uniformly distributed in the selected parameter space.
The equation for polynomial parameter solving using least squares is Equation (17):

p =
(

XTX
)+

XTY (17)

In Equation (17), p is a polynomial regression parameter with one degree of freedom,
and the dimension is 259. X is the vectorized robotic arm length data in n groups of training
samples, and its dimension is n× 259. Due to the high probability of XTX being singular
in the case of large samples, the matrix is irreversible; thus, use the + operator to find its
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pseudo-inverse. Y is the actual value of the degree of freedom to be solved in n groups of
training samples, and the dimension is n× 1.

When using MPR to solve it, the underfitting phenomenon will occur if the polynomial
degree is selected to be too low. This makes the polynomial function unable to approach
the kinematics positive solution operator very well, and the solution error is relatively large.
If the degree of polynomial is too high, the time complexity of the algorithm will increase
exponentially. Therefore, the balance between calculation amount and calculation accuracy
should be considered in the selection of the polynomial degree.

2.6. MPR-NR Algorithm Design

The MPR-NR algorithm uses the MPR algorithm to initially locate the kinematics
positive solution. Reduce the distance between the initial attitude and the target attitude
in the NR algorithm. Then use the NR algorithm to iteratively solve the kinematics
positive solution that meets the requirements according to the accuracy requirements. The
algorithm flow of using the MPR-NR algorithm for the kinematics forward solution is
shown in Figure 4.
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It can be seen from Figure 4 that when the result calculated by the MPR algorithm
for the first time meets the set accuracy, the Newton iteration process will not be entered.
If the solution accuracy of the MPR algorithm does not meet the requirements, iterative
optimization will be carried out through the Newton iterative algorithm, and finally the
accuracy will be improved to the accuracy required by the system. Therefore, the goal
of controllable precision can be achieved in this way. On the other hand, the number of
iterations for Newton iterative solution is related to the distance between the initial attitude
and the target attitude. Given a better initial solution through the MPR algorithm, the
number of iterations can be reduced, and the time-consuming solution can be shortened.

3. Results
3.1. Single Algorithm Simulation

In order to verify the correctness of the Newton iteration and polynomial regression
algorithms, and to conduct a comparative test on the performance of the algorithms, the m
language script code is written on the MATLAB platform for simulation experiments. The
experimental platform is Windows 10 system, the CPU is i7-8750H 2.2 GHz, and the RAM
is 16 GB single-channel DDR4 memory at 2666 MHz.

The initial value of the Newton iterative algorithm is set to the initial attitude of the
parallel platform [0, 0, 0, 0, 0, 0]T . Set the stop condition of the Newton iterative algorithm

as the number of iterations exceeds 10, or the Euclidean distance,
√
[E(Xk)]

2, between the
length of the manipulator obtained from the inverse solution of the attitude after the kth
iteration and the length of the given manipulator is less than 0.001. The parameters of
the MPR algorithm are set to two cases of the six-element quadratic polynomial and the
six-element cubic polynomial. Before using the MPR algorithm for kinematics positive
solution, the polynomial coefficients of MPR are solved using the training sample set in the
same closed subspace as the test sample set. Write the least-squares method code according
to Equation (17). The minimum norm least-squares solution of the MPR coefficients
is obtained by using the length attitude data of the training sample set, and the MPR
kinematics positive solution is completed using the obtained parameters. The kinematics
positive solutions of the first test sample set and the second test sample set were performed
using Newton iterative algorithm, six-variable quadratic polynomial regression (MPR2),
and six-variate cubic polynomial regression (MPR3) algorithms respectively. Record the
total time-consuming and average absolute error of 10,000 solutions. The test results are
shown in Table 2.

Table 2. Comparison of Newton iteration method and polynomial regression algorithm.

Algorithm Dataset Kinematics Positive Solution Mean Absolute Error E[|e(Xtar−Xk)|] Time

Newton iteration
Test Set 1

[
0.3 0.2 1.7 0.4 0.4 0.2

]
× 10−5 1.144

Test Set 2
[
0.3 0.1 0.6 0.05 0.05 0.03

]
× 10−3 1.815

MPR2
Test Set 1

[
3.4 1.7 2.8 0.4 0.5 0.2

]
× 10−4 0.169

Test Set 2
[
2.2 1.0 1.8 0.2 0.3 0.1

]
× 10−2 0.164

MPR3
Test Set 1

[
1.8 1.9 2.6 0.3 0.2 0.2

]
× 10−5 0.287

Test Set 2
[
5.1 3.5 6.4 0.6 0.5 0.3

]
× 10−3 0.272

The first three columns of the average absolute error in Table 2 are the solution errors
of the rotation angles of the x-axis, y-axis, and z-axis, respectively, and the unit is radian.
The last three columns are the displacement solution errors of the x-axis, y-axis, and z-axis,
respectively, in meters. The solution time unit is seconds.

It can be seen from Table 2 that both the Newton iterative algorithm and the MPR
algorithm can successfully complete the solution of the positive kinematics solution of the
parallel platform. The average single solution time of an algorithm is defined as the total
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time consumed by the same algorithm in two sample sets divided by the total number of
samples, as shown in Equation (18):

Average time f or a single solution =
Computation time o f sample set 1 + calculation time o f sample set 2

Number o f samples in sample set 1 + number o f samples in sample set 2
(18)

According to Equation (18) and the data in Table 2, the average single solution time of
the Newton iterative algorithm is calculated to be about 148 microseconds. The average
single solution time of MPR2 is about 17 microseconds. The average single solution time of
MPR3 is about 28 microseconds.

Comparing the solution time of MPR2 and MPR3, it can be seen that, with the increase
of the polynomial degree, the calculation time consumption of a single solution is signifi-
cantly improved. Compared with the Newton iterative algorithm, it can be seen that MPR
has a significant advantage in solution efficiency. The solution time of MPR2 in the small
space Test Set 1 is about 14.7% of Newton iteration, and the solution time of MPR3 with
higher solution accuracy is only 25.1% of Newton iteration.

Comparing the time consumption of MPR to solve Test Set 1 and Test Set 2, it can
be seen that another characteristic of the MPR algorithm is that it will not significantly
increase the calculation time consumption as the solution range increases. This is because
the forward solution algorithm of MPR kinematics is composed of a fixed number of
multiplications and additions. Therefore, the calculation time of the same algorithm for
Test Set 1 and Test Set 2 does not change much. When comparing the calculation time
consumption of Newton iterative algorithm in Test Set 1 and Test Set 2, the following
conclusions can be drawn. The calculation time of the Newton iterative algorithm to solve
Test Set 2 is significantly higher than that of Test Set 1, which increases from 1.144 s to
1.815 s. This is because Test Set 2 has a larger spatial range, so the deviation between the
initial value and the target attitude is also greater. The Newton iterative algorithm requires
a corresponding increase in the number of iterations, which eventually leads to an increase
in calculation time.

In terms of solution accuracy, when comparing the Newton iterative algorithm and
the MPR algorithm, it can be seen that the solution accuracy of the Newton iterative
algorithm is better than that of the two MPR algorithms. Moreover, the Newton iterative

algorithm can set more iterations and a smaller
√
[E(Xk)]

2 by changing the stop condition
to meet the higher precision requirements. The calculation result of the MPR algorithm is
only determined by the algorithm itself and the polynomial coefficients. The polynomial
coefficients are calculated offline, so the solution accuracy cannot be improved by changing
the parameters of the algorithm itself. When comparing the performance of the MPR
algorithm in Test Set 1 and Test Set 2, it can be seen that the accuracy of the MPR algorithm
decreases by two orders of magnitude as the sample space increases. MPR2 achieved an
average angular error of 0.95◦ and an average displacement error of 2 mm in Test Set 2.
In contrast, MPR3 in Test Set 2 has an average angular error of 0.1◦ and an average
displacement error of 0.5 mm. By comparing the data of MPR2 and MPR3, it can be
seen that, with the increase of the polynomial degree, the accuracy of the solution was
significantly improved. In theory, increasing the polynomial degree of the MPR algorithm
can obtain higher solution accuracy. However, with the increase of polynomial coefficients,
the amount of calculation for kinematics solution shows a geometric progression. As a
result, the advantage of MPR in real-time performance over Newton iterative algorithm
is reduced. Therefore, the strategy of increasing the solution accuracy by increasing
polynomial coefficients is not sustainable.

Through the simulation experiment, it is found that the Newton iteration method has
high solution accuracy, and the polynomial regression solution time is short. In order to
achieve a balance between the solution time and solution accuracy, the advantages of con-
trollable solution accuracy of the Newton iterative algorithm and controllable calculation
time of the MPR algorithm are utilized at the same time. This paper proposes a kinematics
positive solution optimization algorithm (multivariate polynomial regression/Newton–
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Raphson iteration, MPR-NR) that uses a combination of polynomial regression and Newton
iteration. By combining the advantages of the two algorithms, the forward kinematics
solution of the system can reduce the time consumed by the solution under the premise of
meeting the accuracy requirements.

3.2. MPR-NR Algorithm Simulation

The following experiments were set up to verify that the new method can operate
normally according to theoretical expectations. The six-variate quadratic polynomial
regression + Newton iterative method (MPR2-NR) and the six-variate cubic polynomial
regression + Newton iterative method (MPR3-NR) were used to solve the kinematics
positive solution for the same training set and test set. Moreover, compared with the results
obtained by the Newton iterative algorithm, the solution accuracy, the calculation time
consumption, and the total number of iterations were compared. The results are shown
in Table 3.

Table 3. Comparison between Newton iteration method and MPR-NR algorithm.

Algorithm Dataset Kinematics Positive Solution Mean Absolute
Error E[|e(Xtar−Xk)|]

Time Iterations

Newton iteration
Test Set 1

[
3.2 2.7 12.5 3.2 3.0 1.4

]
× 10−5 1.144 26,710

Test Set 2
[
0.3 0.1 0.6 0.05 0.05 0.03

]
× 10−3 1.815 41,664

MPR2-NR
Test Set 1

[
3.4 1.7 2.8 0.4 0.5 0.2

]
× 10−4 0.296 0

Test Set 2
[
0.3 0.1 0.6 0.05 0.05 0.03

]
× 10−3 1.284 26,019

MPR3-NR
Test Set 1

[
1.8 1.9 2.7 0.3 0.2 0.2

]
× 10−5 0.407 0

Test Set 2
[
0.4 0.3 0.7 0.07 0.07 0.04

]
× 10−3 1.162 16,998

It can be seen from Table 3 that, in the two sets of test sets, the calculation accuracy
of MPR3-NR is at the same level as that of Newton iteration. The MPR2-NR algorithm
is an order of magnitude weaker than the other two algorithms in Test Set 1. Using the
calculation method of Equation (18), we can obtain an average single solution time of about
148 microseconds for the Newton iterative algorithm. The average single solution time of
the MPR2-NR algorithm is about 79 microseconds. The average single solution time of the
MPR3-NR algorithm is about 78 microseconds.

For Test Set 1, it can be seen that the number of Newton iterations for both MPR2-NR
and MPR3-NR is 0. This phenomenon shows that, in Test Set 1, the accuracy of the MPR
algorithm met the system requirements, and there is no Newton iteration process. At this
time, compared with the MPR algorithm, the MPR-NR algorithm has one more inverse
kinematics solution and the judgment of the accuracy of the solution. Therefore, compared
with the corresponding MPR algorithm in Table 2, the average single calculation time of
the MPR-NR algorithm is increased by 12 microseconds. For Test Set 2, MPR3-NR takes
more time to solve than MPR2-NR when performing a polynomial regression procedure.
However, MPR3-NR gives a better initial solution X_0 than MPR2-NR, making the average
number of Newton iterations of MPR3-NR 0.78 times less than MPR2-NR. Therefore, the
total solution time of the algorithm is that MPR3-NR is slightly better than MPR2-NR.

The following conclusions can be drawn by comparing the number of Newton iter-
ations of the Newton iteration algorithm and the MPR-NR algorithm. After adding the
initial solution calculation of polynomial regression, the method of using the Newton
iterative algorithm for kinematics forward solution has a better efficiency than directly
using the Newton iterative algorithm, and the accuracy can be maintained at the same
level. Conclusions can be drawn from the experimental results. The MPR-NR algorithm
can guarantee the same accuracy as the Newton iterative algorithm and greatly reduce the
solution time, as is consistent with the theoretical analysis conclusion.

In order to further explore the accuracy controllability of the Newton iteration algo-
rithm and the MPR-NR algorithm, the relationship between the algorithm solution accuracy
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and the Newton iteration stop condition is obtained. We designed algorithmic accuracy
experiments. Assume that the Euclidean distance between the numerical solution of the

algorithm and the target attitude is D(Xk) =
√
(Xk − Xtar)

T(Xk − Xtar). Let the stop con-

dition be the Euclidean distance, D(Lk) =
√
[E(Xk)]

2 =
√
[G(Xk)− Ltar]

T [G(Xk)− Ltar],
between the length of each group of manipulators after the kinematics forward solution X_k
of the k-th iteration and the given length of each group of manipulators. Experiment on Test

Set 2. The relationship between the iteration stop condition,
√
[E(Xk)]

2, of the MPR-NR
and Newton iterative algorithm and the solution accuracy and number of iterations of the
kinematics forward solution is shown in Table 4.

Table 4. Relationship between iteration stop conditions and solution accuracy and number
of iterations.

D(Lk) Newton Algorithm D(Xk)
Average Number of

Iterations MPR-NR D(Xk)
Average Number of

Iterations

1 × 10−3 7.00 × 10−4 4.16 1.20 × 10−3 1.70
1 × 10−4 7.59 × 10−5 5.53 7.19 × 10−5 3.18
1 × 10−5 7.81 × 10−6 6.91 7.74 × 10−6 4.50
1 × 10−6 7.96 × 10−7 8.31 7.93 × 10−7 5.89
1 × 10−7 8.01 × 10−8 9.71 8.07 × 10−8 7.28
1 × 10−8 7.99 × 10−9 11.12 8.09 × 10−9 8.69
1 × 10−9 7.99 × 10−10 12.53 8.01 × 10−10 10.10
1 × 10−10 8.03 × 10−11 13.94 7.98 × 10−11 11.51

It can be seen from Table 4 that, with the improvement of the accuracy of the stop
condition, D(Lk), the accuracy of the kinematics forward solution of the Newton iterative
algorithm and the MPR-NR algorithm also increases accordingly. The precision controlla-
bility of the Newton iteration algorithm and MPR-NR is illustrated. When comparing the
kinematics forward solution accuracy D(Xk) of the MPR-NR algorithm and the Newton
iterative algorithm, we can see that the solution accuracy of the two algorithms is at the
same level.

By comparing the number of iterations of the MPR-NR algorithm and the Newton
iterative algorithm, we can obtain the following conclusions. Since the initial solution X_0
of MPR-NR is better than the Newton iteration algorithm, the average number of iterations
is 2.41 times less than that of the Newton iteration algorithm. The relationship between
D(Lk) and D(Xk) and the number of iterations is shown in Figure 5.

Both D(Lk) and D(Xk) in Figure 5a are logarithmic images with base 10. It can be seen
from Figure 5a that log10D(Lk) and log10D(Xk) of the two algorithms present a positive
linear relationship. Therefore, every time the stop condition, D(Lk), increases by an order
of magnitude, the accuracy of the kinematics positive solution, D(Xk), also increases by
an order of magnitude. It can be seen from Figure 5b that log10D(Lk) has a negative linear
relationship with the number of iterations of the two algorithms, and the slopes of the
two algorithms are similar. Therefore, it can be considered that in the second test sample
set, the MPR process in the MPR-NR algorithm is equivalent to completing 2.41 Newton
iterative algorithms.
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3.3. Physical Test

In order to further verify the correctness and stability of the MPR-NR algorithm
running in the parallel platform system, a kinematics positive solution experiment based on
the physical platform was designed in this research. For parallel platforms, the kinematics
inverse solution is relatively simple. The parallel platform can be moved to a specified
attitude by adjusting the length of each group of robotic arms to achieve a closed-loop
attitude. The experimental process is designed as follows: The parallel platform is adjusted
to the specified attitude in the workspace through the attitude closed-loop control method.
Record the arm length information fed back by each servo driver when reaching the
target attitude. The length information of the manipulator is imported into the MPR-NR
algorithm of the MATLAB platform to calculate the kinematics positive solution. Compare
the calculation results with the attitude of the parallel platform physical setting. Through
this method, the closed loop from the attitude of the parallel platform to the length of
each group of manipulators and then to the attitude of the algorithm simulation can be
completed. Then compare the attitude of the parallel platform calculated by the MPR-
NR kinematics forward solution algorithm with the attitude of the real object. It can be
confirmed whether the algorithm can run as theoretically expected. The experimental
process is shown in Figure 6.
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In the host computer of the parallel platform control center, set the target attitude of
the parallel platform in the workspace as

[
0◦ 0◦ 5◦ 12 mm −4 mm 40 mm

]
. The

unit of displacement in the MATLAB algorithm is meter, and the unit of angle is radian.
Therefore, unit conversion is required when comparing parameters. The converted target
attitude value is

[
0 0 0.0870 0.012 −0.004 0.040

]
. Click the run button in the host

computer and wait for each driver to complete the length adjustment of the mechanical
arm. Make the parallel platform run to the set target attitude. The length information of
each robot arm when the upper computer of the control center performs in the closed-loop
attitude is shown in Figure 7.
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It can be seen from Figure 7 that when the parallel platform performs joint closed-
loop control and moves to the end point, the lengths of the six sets of robotic arms are[
339.5 336.5 336.6 329.2 345.1 334.5

]
. Input the length information of each group

of manipulators into MATLAB. Using the MPR-NR algorithm to complete the kinematics
forward solution, the attitude of the parallel platform corresponding to the length value of
the group of manipulators can be obtained. The reference values of the pose parameters
and the calculated values obtained by the MPR-NR algorithm are shown in Table 5.

Table 5. Attitude parameter reference value and MPR-NR algorithm calculation value.

Attitude Parameter Reference Value Calculation Value

α 0 −1.68 × 10−4

β 0 5.83 × 10−5

γ 0.0870 0.0896
x 0.0120 0.0120
y −0.0040 −0.0040
z 0.0400 0.0398
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Comparing the attitude reference value in Table 5 with the attitude calculation value
data obtained by the MPR-NR algorithm, it can be seen that the calculation result of the
algorithm has a small gap with the set reference attitude. It can be shown that the operation
of the MPR-NR algorithm is in line with expectations. The algorithm can successfully
complete the calculation of the forward kinematics solution of the parallel platform. Ac-
cording to the experimental process in Figure 6, select 10 attitude data points in the parallel
platform control center to test the error of the MPR-NR forward solution algorithm. The
result is shown in Figure 8.
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It can be seen from Figure 8 that the angle error is in the order of 10−3, and the
displacement error is in the order of 10−4. Therefore, the correctness of the operation of the
MPR-NR algorithm can be proved. The main reason for the error is that the length value of
the robotic arm shown in Figure 7 retains only one decimal place after the decimal point,
resulting in a truncation error.

Based on the Eigen open-source matrix operation library, the MPR-NR algorithm is
implemented in C++ code under the Qt platform. The code was successfully deployed
to the host computer of the parallel platform control center. Use the MPR-NR algorithm
to calculate the attitude of the parallel platform. The attitude closed-loop task in the
workspace of the parallel platform runs normally, which further proves the stability and
reliability of the algorithm.

4. Discussion and Conclusions

In this study, a spatial geometric model was established for a six-degree-of-freedom
parallel platform. The Jacobian matrix of the parallel platform was further studied, and
the forward solution algorithm of Newton iterative kinematics was deduced. In order to
improve the real-time performance of the forward motion solution of the parallel platform,



Appl. Sci. 2023, 13, 3082 17 of 18

a kinematics forward solution algorithm based on multivariate polynomial regression
(MPR) was proposed.

Through simulation experiments, the following conclusions can be drawn: The MPR
algorithm has the characteristics of fast solution speed and controllable calculation time
but uncontrollable solution accuracy. The MPR algorithm has a certain accuracy, but with
the expansion of the sample space, the accuracy drops significantly, and so it cannot meet
the high-precision control requirements. The MPR algorithm can improve the solution
accuracy by increasing the degree of polynomials, but the calculation amount will increase
geometrically. On the basis of the above, this paper combines the advantages of the two
algorithms and further combines the two algorithms into a polynomial regression-Newton
iterative algorithm (MPR-NR). The MPR-NR algorithm uses the MPR algorithm to obtain a
preliminary solution and then uses the Newton iteration method to improve the solution
accuracy. The simulation proves that the MPR-NR algorithm can greatly reduce the number
of iterations and improve the real-time performance of the algorithm while maintaining
the same accuracy as the Newton iterative algorithm. Finally, the MPR-NR is deployed
to the host computer of the control center to verify the correctness and stability of the
new algorithm.

In this research, the kinematics of the parallel platform was deeply studied, and the
space geometry model of the parallel platform was established. On this basis, the inverse
kinematics solution of the parallel platform was analyzed and solved. The forward solution
algorithm of Jacobian matrix and Newton iterative kinematics of the parallel platform was
realized. In the study, we proposed a multivariate polynomial regression (MPR) kinematics
forward solution algorithm. Aiming at the shortcomings of the above algorithms, an
algorithm combining multivariate polynomial regression and Newton iteration method
(MPR-NR) was proposed. The proposed algorithm has controllable solution accuracy and
high efficiency. Through the comparison of simulation experiments, it is concluded that the
calculation time and iteration times of the MPR-NR method are much smaller than that
of the Newton iterative algorithm under the premise of ensuring accuracy. The feasibility
and correctness of the algorithm in the host computer of the control center are verified by
physical tests. Finally, the MPR-NR algorithm was successfully transplanted to the host
computer of the parallel platform control center.
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