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Kinematics of Continuum Robots
With Constant Curvature Bending
and Extension Capabilities
Continuum robots are becoming increasingly popular due to the capabilities they offer,
especially when operating in cluttered environments, where their dexterity, maneuver-
ability, and compliance represent a significant advantage. The subset of continuum
robots that also belong to the soft robots category has seen rapid development in recent
years, showing great promise. However, despite the significant attention received by
these devices, various aspects of their kinematics remain unresolved, limiting their adop-
tion and obscuring their potential. In this paper, the kinematics of continuum robots with
the ability to bend and extend are studied, and analytical, closed-form solutions to both
the direct and inverse kinematics are presented. The results obtained expose the redun-
dancies of these devices, which are subsequently explored. The solution to the inverse
kinematics derived here is shown to provide an analytical, closed-form expression
describing the curve associated with these redundancies, which is also presented and
analyzed. A condition on the reachable end-effector poses for robots with six actuation
degrees-of-freedom (DOFs) is then distilled. The kinematics of robot layouts with over
six actuation DOFs are subsequently considered. Finally, simulated results of the inverse
kinematics are provided, verifying the study. [DOI: 10.1115/1.4041739]

1 Introduction

Robots composed of sections that bend continuously along their
elastic structure can be classified as continuum robots [1]. The
field of continuum robots has received significant attention over
the past decade, both in terms of theoretical research and practical
applications [2]. This is not least because of the advantages they
offer in manipulation, dexterity, and locomotion inside cluttered
environments.

Soft robots are commonly defined as devices with a low-
stiffness elastic structure [3], a field that currently shows great
promise [4]. A significant overlap exists between continuum
robots and soft robots, which renders the study of robots belong-
ing to both categories highly relevant. These robots are generally
actuated by means of a pressurized fluid. The flexible micro-
actuator (FMA) [5,6] was among the pioneering concepts in this
class of robots, and its layout remains relevant nowadays. Since it
was first proposed [7], a myriad of robots with designs inspired by
it have been developed, e.g., see Refs. [8–12]. However, the
development of soft, continuum robots is not limited to FMA-type
devices. Noticeable examples of alternative designs include
robotic manipulators [13,14], assistive wearable devices [15,16],
the OctArm robot [17,18] with the corresponding MiniOct input
device for teleoperation [19], a miniature actuator [20], actuators
similar to fingers [21], or Pneunets [22].

The capability of bending and extending is common in soft,
continuum robots actuated by a pressurized fluid. This provides
the robots with dexterity that, in specific applications, can surpass
that of traditional serial manipulators. However, solutions to the
kinematics problems, and particularly the inverse kinematics, are
necessary to determine and exploit these robots’ full potential.

The kinematics can be decoupled in a robot-specific mapping,
between actuator space and configuration space, and a robot-
independent mapping, between actuator space and task space, as
proposed in Ref. [1]. This paper focuses on the robot-independent

mapping for robots composed of sections that can both elongate
and bend with constant curvature, such as the device illustrated in
Fig. 1. The kinematics problem considering the capability of both
elongating and bending represents a general and therefore relevant
kinematics problem in soft and continuum robots, which applies
to a variety of robots including FMA-type devices [5], or tendon-
driven devices with extensible backbone [23–25].

Various studies of the kinematics of continuum and soft robots
exist in the literature [1], although the inverse kinematics for a
specified end-effector pose remains an open problem. A relatively
complete formulation of the kinematics is presented in Ref. [26],
although it does not provide a closed-form solution to the inverse
kinematics. A modal approach that allows numerical calculation
of the inverse kinematics is proposed in Refs. [27] and [28], and is
extended in Ref. [29]. However, these approaches rely on approxi-
mations of the robot geometry that do not match the common con-
stant curvature bending kinematics. An algorithm to calculate the
inverse kinematics of the distal end position is introduced in Ref.
[30], but it does not account for the tip orientation and does not
provide closed-form solutions. Various approaches to solving the
inverse kinematic control problem have been developed using the
robot Jacobian, where Refs. [31] and [32] are recent examples.
However, these require some computational time that can vary
depending on the end-effector pose, especially when redundancies
exist, and they present issues with singularities. Furthermore,
these approaches based on the Jacobian lack insight into the kine-
matics, which complicates subsequent path planning and control.
Formulations of both the robot-specific and robot-independent
mappings are presented in Ref. [33]. However, closed-form solu-
tions to the inverse kinematics are not available, and a numerical
approximation is used. In Ref. [34], the self-motion of two-
dimensional continuum manipulators is analyzed, but closed-form
solutions to the inverse kinematics are not derived, and the
research cannot be extrapolated to a three-dimensional (3D) sce-
nario. An adaptation of the Denavit–Hartenberg parameters is
described in Ref. [35], but it does not yield a closed-form solution
to the inverse kinematics. An analytical kinematic formulation is
proposed in Ref. [36] for a two-dimensional application, although
it cannot be extrapolated to 3D. In Ref. [37], a closed-form solu-
tion to the inverse kinematics for a specified end-effector position
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in 3D is presented, but the approach is not applicable to solve the
problem of a specified end-effector pose; hence, it cannot be used
in general.

In this paper, the kinematics of soft, continuum robots com-
posed of sections with piecewise constant curvature bending and
extending capabilities are studied, and analytical, closed-form sol-
utions to the direct and inverse kinematics are presented. The
analysis is focused on devices composed of serially stacked sec-
tions operating in 3D space since they represent the most relevant
type of robots. The solution to the inverse kinematics is derived in
closed-form thanks to a novel approach that relies on quaternions
to describe the rotations associated with the robot’s sections. This,
combined with a strategy inspired by the Paden–Kahan subpro-
blems [38] that involves dividing the problem into parts of
reduced complexity, yields a particularly simple formulation of
the inverse kinematics, which can be treated analytically, leading
to explicit solutions. It should be noted that quaternions have been
previously used to study different aspects of continuum robots. In
Refs. [39] and [40], quaternions are used for the mechanical mod-
eling of elastic rods, and a similar approach is applied in Ref. [41]
to study the dynamics of soft robotic manipulators. Quaternions
are also used in Ref. [42] to develop efficient finite element meth-
ods applicable to continuum rods that can also expand radially. In
addition, quaternions can be used to reliably integrate orientation
along the arc length of continuum robots [43,44], and they are
used in Ref. [45] to develop efficient numerical solutions to the
kinematics of continuum robots. However, to the best of these
authors’ knowledge, the work presented here is the first instance
where quaternions are used to derive closed-form solutions to the
full robot kinematics.

A set of relevant considerations that arise from the central study
of kinematics are also discussed in this paper. The number of
DOFs at the distal end of the robot is analyzed using the direct
kinematics Jacobian, and redundancies are identified. The solution

to the inverse kinematics is then shown to be a curve that corre-
sponds to such redundancy, and is also obtained in closed form. A
condition on the reachable end-effector poses with a six actuation
DOFs robot is distilled from the derivation, and it is related to the
discussion on the robot’s DOFs. This discussion also shows that a
robot with nine actuation DOFs is required to achieve six end-
effector DOFs, and therefore the kinematics of robots with nine
actuation DOFs are also analyzed. It should be noted that the
work presented in this paper, including the closed-form solutions
to the full robot kinematics, is for continuum robots made of sec-
tions that can bend and extend, providing 3DOFs per section. The
current work cannot be directly generalized to continuum robots
made of inextensible sections (sections with two bending DOFs).

The paper is structured as follows: The kinematic problem is
outlined in Sec. 2, where nomenclature is also defined. The direct
kinematics are presented in Sec. 3, together with a discussion on
the end-effector DOFs corresponding to robots with six and nine
actuation DOFs. The analysis of the inverse kinematics is pre-
sented in Sec. 4, leading to the derivation of closed-form solu-
tions. In addition, the implications of such solutions are discussed
in the same section, including the redundancies of the solution,
the condition on reachable poses, and the analysis of robots with
nine actuation DOFs. Finally, simulations of the robot configura-
tion corresponding to the kinematic solutions are plotted in Sec. 5,
leading to the conclusion of the paper in Sec. 6.

2 Problem Formulation

The kinematics of a robot concern the study of the relation
between the configuration of the robot end-effector, which can be
described by gt � SE(3) when operating in a 3D workspace, and
the robot joint configuration, which can be described by
h 2 Q � Rn, where n denotes the dimensions of the configuration
space. The direct kinematics correspond to the study of the

Fig. 1 Illustration of a robot configuration corresponding to the inverse kine-
matics solution for a specified end-effector pose, in a robot composed of two
sections with a total of six actuation degrees-of-freedom (DOFs)
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function g: Q ! SE(3). The inverse kinematics concern the study
of the solution to

g hð Þ ¼ gt (1)

for h� Q, where gt is a specified end-effector configuration inside
the workspace.

The kinematic study presented in this paper considers a contin-
uum robot composed of a set of serially stacked sections, each of
which can be individually controlled to bend in any direction in
3D space and also extend, providing 3DOFs. The deformation
modes of the sections represent the foundation for the kinematic
study of any continuum robot. Here, the sections are assumed to
bend as constant curvature arcs, and the extension DOF is
assumed to be independent of the bending, following the same cir-
cumference arc of the selected bending. It is also assumed that
attachments between any two sections present negligible length,
and that adjacent arcs are tangential.

The geometry of the robots considered here can therefore be
described by a set of circumference arcs stacked serially, which
correspond to the robot’s sections. Each section can be character-
ized by three independent variables. The kinematic mapping g(h)
thus corresponds to n/3 subsequent transformations associated
with constant curvature arcs.

This robot layout together with these of assumptions on bend-
ing modes satisfactorily model FMA-type robots [5], which origi-
nally motivated this work. However, the kinematic study reported
here is not only limited to an FMA-type robot; it applies to all
robots that can be approximated by the aforementioned bending
and extension modes, which can correspond to a variety of devi-
ces, such as [23,24]. It should be noted that the deformation
modes considered in this work are selected according to their rele-
vance. Robots composed of 3DOF sections that bend as circum-
ference arcs and also extend represent a relevant part of the soft,
continuum robots introduced in Sec. 1. In addition, the kinematics
considered here provide a foundation for the kinematics of devices
with other deformation modes. The kinematics, however, are not
simplified by the deformation modes considered in this work, and
they differ from the kinematics of traditional multilinkage robots,
calling for a novel approach.

The primary aim in the operation of the serial robots considered
in this paper is to control the robot’s end-effector pose, commonly
for manipulation purposes. Operation in SE(3) generally requires
near 6DOFs at the end effector. Considering that the devices stud-
ied here offer three actuation DOFs per section, the kinematics of
robots composed of two sections represent the most relevant prob-
lem, and are the focus of this paper. The main objective in the
study reported here is the kinematics to attain a desired end-
effector pose. The solution to the inverse kinematics of a robot
with n¼ 6 involves determining the two tangential arcs required
to reach a desired gt. The solution to such a problem is not simple,
as will be seen in Secs. 3 and 4, requiring an innovative deriva-
tion. The analysis of the direct and inverse kinematics also shows
that g(h) is neither injective nor surjective; hence, configuration
spaces with dimension n> 6 are also considered.

3 Direct Kinematics

Various derivations of the direct kinematics of a continuum
robot exist in the literature, e.g., see Ref. [1]. However, the spe-
cific variables used to describe the robot h � Q strongly influence
the complexity of the mapping g(h).

The most suitable description of the robot is discussed in the
Sec. 3.1. The direct kinematics are then derived in Sec. 3.2, and
the corresponding Jacobian is studied in Sec. 3.3 to determine the
DOFs of different robot layouts.

3.1 Robot Description. The configuration of the continuum
robot is completely determined when the configuration of all its
sections is specified. The description of the sections is crucial to

formulate the kinematics in a simple form, and thus be able to
derive closed-form solutions.

There are two main section descriptions that are used in this
work, which complement in different parts of the analysis. Both
of them are relative to a reference frame, defined as {F}, situated
at the section’s base, as shown in Fig. 2.

The first description employs ri, which is a scalar correspond-
ing to the Euclidean distance between section i’s base and tip, fi,
which is the angle between the vector of the section tip position
and the kF axis of {F}, and /i, which is the angle between the pro-
jection of the section on the iF, jF plane and the iF axis of {F}, as
shown in Fig. 2. It should be noted that the definitions of section
base and tip are arbitrary, and interchangeable. This section
description represents a compromise in the complexity of the
transformations corresponding to translation and rotation, and is
used for the derivation of the direct kinematics.

The second description employs the Cartesian coordinates of

the tip of a section, defined as xFi ; y
F
i ; z

F
i , relative to a reference

frame at its base {F}, as shown in Fig. 2, where the subscripts in

xFi ; y
F
i ; z

F
i indicate the section index, i, and the superscripts the ref-

erence frame, {F}. As in the previous description, the section base
and tip are selected arbitrarily, and can be interchanged in each
analysis, as applied in Sec. 4. It should be noted that the position
of the reference frame used in the definition of the variables

xFi ; y
F
i ; z

F
i determines the side of the section corresponding to the

base. This second description simplifies the translation transfor-
mation, but generally complicates the rotation transformation.
This description is used in the inverse kinematics derivation in
Sec. 4, where its advantages become apparent.

It should be noted that both section descriptions are directly
related. For example, ri, fi, /i can be obtained as a function of
xFi ; y

F
i ; z

F
i using

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xFi
� �2

þ yFi
� �2

þ zFi
� �2

q

fi ¼ arccos
zFi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xFi
� �2

þ yFi
� �2

þ zFi
� �2

q

/i ¼ arctan
yFi
xFi

(2)

The bending and extension of a section are coupled in both of
these descriptions. A given set of values of ri, fi, /i generally
implies both bending and extension of the section. Equally, a set

Fig. 2 Diagram of one section of the robot (yellow), with the
different variables corresponding to the first section descrip-

tion (ri, fi, /i), and the second section description (xF
i ;y

F
i ; z

F
i ),

as well as the reference frame at the base of the section {F}, the
rotation vector wi, and rotation angle qi
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of values of xFi ; y
F
i ; z

F
i generally involves both bending and exten-

sion of section i. Furthermore, section motions that involve varia-
tions in only one of the variables ri, fi or x

F
i ; y

F
i ; z

F
i generally lead

to variations in both bending and extension. Similarly, variations
in only bending or extension generally involve coupled variations
in ri, fi, /i or x

F
i ; y

F
i ; z

F
i .

The decoupled bending and extension of a section can be deter-
mined from ri, fi, /i using the fact that the triangle shown in blue
in Fig. 2 is isosceles, together with trigonometric relations. The
resulting expression is

bi ¼
2 sin fi

ri

li ¼
firi

sin fi

(3)

where the bending curvature of the section is bi, the arc length of
the extended section is li, and the direction of bending is simply
determined by /i. Similarly, for a set of xFi ; y

F
i ; z

F
i , the bending

and extension of a section are determined by

bi¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xFi
� �2

þ yFi
� �2

q

xFi
� �2

þ yFi
� �2

þ zFi
� �2

li¼arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xFi
� �2

þ yFi
� �2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xFi
� �2

þ yFi
� �2

þ zFi
� �2

q

0

B

@

1

C

A

xFi
� �2

þ yFi
� �2

þ zFi
� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xFi
� �2

þ yFi
� �2

q

/i¼arctan
yFi
xFi

(4)

As can be seen from Eq. (3), the section description ri, fi, /i

yields a relatively simple decoupling of bending and extension,
whereas the decoupling in Eq. (4) involves additional complexity.
Equations (3) and (4) also elucidate the specific variations in
bending and extension of a section for variations in ri, fi, /i

or xFi ; y
F
i ; z

F
i . In addition, the equations show that, for fixed bend-

ing or extension, the possible values of ri, fi, /i or x
F
i ; y

F
i ; z

F
i are

determined by nonlinear relations with a certain degree of
complexity.

Robot section descriptions where bending and extension are
directly decoupled in different variables are also possible. For
example, using bi, li, /i, bending is directly determined by bi and
/i, and extension by the total length li. However, these descrip-
tions complicate the formulation of the kinematics, rendering the

subsequent study of the direct kinematics impractical, and the der-
ivation of the inverse kinematics practically inviable. In addition,
the use of these descriptions does not provide specific advantages
in the study of the kinematics, and the specific bending and exten-
sion of sections can be obtained from the results obtained with the
other section descriptions using Eqs. (3) and (4). Hence, the sec-

tion descriptions used in this work are either ri, fi, /i or x
F
i ; y

F
i ; z

F
i .

The complete robot configuration is determined by the multiple
individual sections described using either of the descriptions
above.

3.2 Direct Kinematics Derivation. The direct kinematics
mapping of the continuum robot can be obtained by subsequently
applying the transformations corresponding to its serially stacked
sections. Here, the sections are described using ri, fi, /i. The ori-
entation of the end effector is described using ZYZ Euler angles,
as introduced at the latter part of this subsection, since it yields a
simpler formulation of the direct kinematics that facilitates the
subsequent Jacobian-based analysis of DOFs.

The position of the distal end of a section i relative to reference
frame {F} is defined as pFi . This position pFi corresponds to the
translation associated with section i, and can be determined as a
function of ri, fi, /i as

pFi ¼ ri sin fi cos/i;ri sin fi sin/i;ri cos fi½ � (5)

The formulation of the rotation corresponding to the orientation at
the tip of section i relative to {F}, defined as Ri, requires some
preliminary consideration. The rotation axis corresponding to Ri

is perpendicular to the section’s bending plane, and therefore
always lies in plane iF, jF in Fig. 2. The rotation axis can thus be
expressed in {F} as

wi ¼ �sin/i; cos/i; 0½ � (6)

The rotation angle associated with section i, defined as qi, can be
obtained as a function of fi considering trigonometric relations.
Since the triangle shown in blue in Fig. 2 is isosceles, then

qi ¼ 2fi (7)

Using Rodrigues’ formula [38], Ri can then be directly obtained
as a function of fi and /i using Eqs. (6) and (7). Thus, the homo-
geneous transformation associated with a section Ti can be
obtained as a function of ri, fi, /i from Ri and p

F
i , as

Ti ¼

s/ið Þ
2 1� c2fið Þ þ c2fi s/i

c/i
c2fi � 1ð Þ c/i

s2fi risfic/i

s/i
c/i

c2fi � 1ð Þ c/ið Þ
2 1� c2fið Þ þ c2fi s/i

s2fi risfis/i

�c/i
s2fi �s/i

s2fi c2fi ricfi
0 0 0 1

2

6

6

6

4

3

7

7

7

5

(8)

where cx and sx denote cosx and sinx, respectively. The total
transformation of a robot composed of n/3 sections between its
distal and proximal ends then is

Tt ¼
Y

n=3

i¼1

Ti (9)

which is a function of ri, fi, /i for i¼ 1,…, n/3.
The orientation of the robot’s distal end can also be described

using ZYZ Euler angles a, b, c, which is useful for the analysis of

DOFs in 3.3. These ZYZ Euler angles can be obtained as a func-
tion of the robot configuration from the rotational component of
Eq. (9), e.g., see Ref. [38], as

a ¼ a tan 2
Tt23

sinb
;
Tt13

sin b

� �

b ¼ a tan 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2
t31

þ T2
t32

q

;Tt33

� �

c ¼ a tan 2
Tt32

sinb
;�

Tt31

sinb

� �

(10)
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for sinb 6¼ 0, and where Ttij denotes the components of Tt. Thus,
a, b, and c can be directly obtained as a function of ri, fi, /i for
i¼ 1,…, n/3 from Eq. (10) with the Ttij determined from Eq. (9)
combined with Eq. (8).

Defining a reference frame at the robot’s proximal end as {G},
which coincides with reference frame {F} of the first robot sec-
tion, the position of the robot’s distal end relative to {G} can be
denoted by pGt . The expression of pGt as a function of the robot
configuration can also be directly obtained from Tt (determined
using Eq. (9) combined with Eq. (8)). It corresponds to the first
three terms in the fourth column of Tt.

The direct kinematics can thus be determined by the distal end
pose, defined by a, b, c, and pGt , obtained as a function of the
robot configuration ri, fi, /i for i¼ 1,…, n/3, as described in the
last two paragraphs.

3.3 Degrees of Freedom Analysis. The DOFs at the distal
end of robots composed of two and three sections, which offer six
and nine actuation DOFs from their sections, respectively, are
considered in this subsection. It should be noted that in this analy-
sis, the DOFs refer to the end-effector pose, and not to the possi-
bility of continuous deformation of the robot sections in infinitely
different ways. The robot sections are considered to provide three
actuation DOFs each, as previously described in Sec. 2.

The DOFs at the end effector can be determined by studying
the Jacobian J corresponding to the differentiation of the direct
kinematics, i.e., differentiation of a, b, c, and pGt , with respect to
ri, fi, /i for i¼ 1,…, n/3. The expression is not reproduced here
since it has a significant extension, which makes it impractical to
write explicitly. However, it can be calculated using a symbolic
toolbox, such as the Symbolic Math ToolboxTM of MATLAB

(Mathworks Inc., Natick, MA), as implemented in this work.
By studying the rank of the Jacobian for a robot with n¼ 6, this

is found to be 5. One degree of redundancy therefore exists. This
result is also obtained in Sec. 4 using a different derivation, where
the redundancy is also elucidated. The redundancy, however, dif-
fers from that in traditional multi-link robots since the kinematics
are fundamentally different, and therefore a geometric analogy is
not available. The fact that a robot with n¼ 6 provides 5DOFs at
the end effector also implies a constraint on the reachable end-
effector poses, which is derived in Sec. 4.4.

Interestingly, the end-effector orientation is the concatenation
of the rotations associated with the robot sections, as expressed in
Eq. (9). The rotation associated with a robot section with a given
bending and extension can also be achieved with zero extension
and a different, specific bending of the section. This bending can
be directly determined from Eq. (3) by imposing the section rota-
tion angle qi¼ 2fi and the li corresponding to zero extension, and
determining the ri and corresponding bi. Therefore, an end-
effector orientation reached using both bending and extension can

also be reached using only bending of the sections, with zero
extension, which enables decoupling both types of actuation in
this instance. Conversely, any end-effector orientation cannot be
reached by only selecting the extension of the sections for a given
bending, as a robot with n¼ 6 only has 2DOFs corresponding to
extension.

A robot with n¼ 9 provides 6DOFs at the distal end. This result
can be obtained by studying the rank of the corresponding Jaco-
bian, following an analogous procedure to that described for a
two-section robot. A three-section robot therefore provides the
ability to reach any pose in 3D space, as well as three degrees of
redundancy that can be used, for instance, to avoid an obstacle.

4 Inverse Kinematics

The closed-form solution to the inverse kinematics problem is
presented in this section. This involves determining the configura-
tion of the two arcs composing a robot with n¼ 6 to reach a speci-
fied end-effector pose. Despite the apparent simplicity of the
problem, its solution is not trivial. Attempts to solve Eq. (1) with
g(h) formulated as in Sec. 3 do not yield closed-form solutions.
Instead, an alternative approach is required.

The approach proposed here is conceptually illustrated in
Fig. 3. It involves considering the orientation at the point of junc-
tion between the two sections, which can be defined as pGm relative
to the robot’s proximal end, as a result of the transformations
associated with the sections from the robot’s proximal and distal
ends. For an arbitrary position of pGm, the approaches from both
ends generally lead to different orientations. By imposing that
both orientations coincide, a set of conditions emerge, which con-
stitute the inverse kinematics problem.

4.1 Inverse Kinematics Formulation. Simplicity in the con-
ditions constituting the inverse kinematics problem is crucial to
enable the derivation of a closed-form solution. The use of Euler
angles to describe the end-effector orientation is not suitable in
the case of the inverse kinematics, as it complicates significantly
the problem formulation, rendering it practically intractable.
Instead, in this instance, orientation is described using quatern-
ions, which are better suited to address the inverse kinematics
problem. In addition, the robot sections are described using the
second description introduced in Sec. 3.1, which employs
xFi ; y

F
i ; z

F
i (Fig. 2). The combination of quaternions and this section

description enables the derivation of the closed-form solutions to
the inverse kinematics reported in Secs. 4.1, 4.2, 4.4, and 4.5. A
key challenge is finding the relative orientation between the ends
of a section as a function of xFi ; y

F
i ; z

F
i .

The rotation associated with a general section i is determined
by an axis wi and an angle qi, as discussed in Sec. 3.2. The orien-
tation at the section tip can be expressed by a unit quaternion qi

Fig. 3 Conceptual approach to the inverse kinematics solution. The rotations
associated with a robot composed of two sections, which are defined by quatern-
ions, are illustrated. The point of junction pG

m, and the reference frames {G} and {T}
are also included.
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relative to a reference frame at the base of the section {F}, which
is

qi ¼ cos
qi
2
þ wii sin

qi
2
iF þ wij sin

qi
2
jF þ wik sin

qi
2
kF (11)

where iF, jF, and kF are the unit vectors of the {F} frame, and wii,
wij, and wik denote the three components of wi. It should be noted
that wik is zero, as previously introduced in Eq. (6), and therefore
the orientation of the section tip corresponds to a rotation of {F}
about an axis that lies in the iF and jF plane. The rotation axis wi

is perpendicular to the plane of bending of section i. Thus, the ori-
entation at the tip of section i described by quaternion qi in Eq.
(11) corresponds to a zero twist configuration of section i from a
continuum body perspective. Quaternion qi then correctly repre-
sents the full orientation at the tip of section i relative to {F} in an
actual continuum robot.

It should be noted that in this work we obtain qi in Eq. (11)
directly as the total rotation from frame {F} to the orientation at
the tip of section i. This approach differs from the three successive
rotations commonly used in the literature [1] to find the orienta-
tion at the tip of section i. Still, our approach leads to an equal
resulting orientation at the tip of section i, and is more straightfor-
ward when using quaternions.

Obtaining qi as a simple function of xFi ; y
F
i ; z

F
i requires some

consideration. First, by using the identity in the scalar product
between the vector corresponding to the position of the section’s
tip xFi ; y

F
i ; z

F
i

� �

and the unit vector kF,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xFi
� �2

þ yFi
� �2

þ zFi
� �2

q

kkFk cos
qi
2
¼ 0; 0; 1½ � � xFi ; y

F
i ; z

F
i

� �

(12)

the cos qi=2ð Þ can be obtained as a simple function of xFi ; y
F
i ; z

F
i .

Then, by using the vector product identity for the same vectors
xFi ; y

F
i ; z

F
i

� �

and kF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xFi
� �2

þ yFi
� �2

þ zFi
� �2

q

kkFk sin
qi
2
¼ k xFi ; y

F
i ; z

F
i

� �

� kFk (13)

the sin qi=2ð Þ can be obtained as a function of xFi ; y
F
i ; z

F
i .

The normalized wi as a function of x
F
i ; y

F
i ; z

F
i can be obtained as

wi ¼
kF � xFi ; y

F
i ; z

F
i

� �

kkF � xFi ; y
F
i ; z

F
i

� �

k
¼

�yFi ; x
F
i ; 0

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xFi
� �2

þ yFi
� �2

q (14)

Finally, by combining Eqs. (12)–(14), qi can be obtained as a
function of xFi ; y

F
i ; z

F
i as

qi ¼
zFi � yFi i

F þ xFi j
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xFi
� �2

þ yFi
� �2

þ zFi
� �2

q (15)

The simplicity of Eq. (15) enables the subsequent derivation of a
closed-form solution to the inverse kinematics.

Considering a robot with n¼ 6, as illustrated in Fig. 4 by plot-
ting the centerline of the robot’s sections, the reference frame at
the robot’s proximal end is {G}. Another reference frame at the
robot’s distal end can be denoted by {T}. The orientation of {T} is
defined so that it coincides with {G} when the robot is in a
straight configuration. The orientation of the robot’s end effector
relative to {G} can be defined as

qt ¼ jþ kiG þ ljG þ �kG (16)

and the corresponding rotation matrix is denoted by Rt.
The configuration of the proximal section (Sec. 1) can be

described by the position of its distal end xG1 ; y
G
1 ; z

G
1 relative to

{G}. This distal end of Sec. 1 is the same as the point of junction
between both sections pGm, and thus the Cartesian coordinates

xG1 ; y
G
1 ; z

G
1 correspond to the three components of pGm. The orienta-

tion at the distal end of Sec. 1 can then be determined using
Eq. (15) as

q1 ¼
zG1 � yG1 i

G þ xG1 j
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xG1
� �2

þ yG1
� �2

þ zG1
� �2

q (17)

The configuration of the distal section (Sec. 2) can be described
by the position of its proximal end xT2 ; y

T
2 ; z

T
2 , relative to {T}. The

proximal end of Sec. 2 is pTm, which is the same point in space as
pGm, but here it is expressed relative to {T}. Thus, in this case, the
proximal end of Sec. 2 acts as the tip of the section, and the base
of Sec. 2 lies at the origin of {T} (Fig. 4). The rotation q�1

2 corre-
sponding to the second section, which is relative to the robot’s dis-
tal end reference frame, can therefore be expressed as a function
of xT2 ; y

T
2 ; z

T
2 as

q�1
2 ¼

zT2 � yT2 i
T þ xT2 j

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xT2
� �2

þ yT2
� �2

þ zT2
� �2

q (18)

It should be noted that the rotation q�1
2 corresponds to a section

that begins at the robot’s distal end in a direction opposite to the
kT axis of {T}. Still, expression (18) remains valid due to geomet-
ric symmetry.

Fig. 4 Reference frames in inverse kinematics solution for a

n5 6 robot, with end-effector position at pG
t 5 ½2:64;0:92;

20:26� ½a:u:� and orientation qt 5 0:8710:13iG20:27jG10:40kG .
The centerline of the first section is plotted in cyan, and the
centerline of the second section in magenta, and four lines fol-
lowing the outer surface of both sections of continuum body
separated circumferentially at 90 degrees are plotted in red,
green, blue and yellow. Reference frame {G} at the robot’s proxi-
mal end is depicted in turquoise, reference frame {T} at the
specified end-effector pose is depicted in purple, and the pose
resulting from the robot configuration is shown in dashed
green, with an exact overlap.
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The vectors xG1 ; y
G
1 ; z

G
1

� �

and xT2 ; y
T
2 ; z

T
2

� �

both indicate the posi-
tion of the point of junction between the two robot sections rela-
tive to {G} and {T}, respectively. Reference frames {T} and {G}

are related through a translation pGt and a rotation R�1
t . The com-

ponents of R�1
t can be denoted by R�1

t;ij , which correspond to row i

and column j. These components of R�1
t are given by the specified

end-effector pose. Thus, vectors xG1 ; y
G
1 ; z

G
1

� �

and xT2 ; y
T
2 ; z

T
2

� �

are

also directly related for a specified end-effector pose. The relation
can be expressed as

xT2

yT2

zT2

2

6

6

4

3

7

7

5

¼

R�1
t;11 R�1

t;12 R�1
t;13

R�1
t;21 R�1

t;22 R�1
t;23

R�1
t;31 R�1

t;32 R�1
t;33

2

6

6

6

4

3

7

7

7

5

pGti � xG1

pGtj � yG1

pGtk � zG1

2

6

6

4

3

7

7

5

(19)

where pGti ; p
G
tj ; and pGtk denote the three components of pGt .

The rotation q�1
2 in Eq. (18) can then be expressed as a function

of xG1 ; y
G
1 ; z

G
1 using Eq. (19). Thus, for any position of pGm, the

resulting orientation when approached from the robot’s proximal

and distal ends can be expressed by q1 xG1 ; y
G
1 ; z

G
1

� �

and

q�1
2 xG1 ; y

G
1 ; z

G
1

� �

, respectively.

In the robot configuration corresponding to the inverse kinemat-
ics solution, Eq. (9) must be satisfied. Hence, the concatenation of
rotations must satisfy

qt ¼ q1q2 (20)

Defining q�1
t as the inverse of qt, Eq. (20) can be reordered as

q�1
2 ¼ q�1

t q1 (21)

which is a function of xG1 ; y
G
1 ; z

G
1 , as well as the end-effector pose,

from Eqs. (17) and (18) combined with Eq. (19). The quaternion
components of Eq. (21) define the inverse kinematics problem.

4.2 Inverse Kinematics Solution. The solution to Eq. (21)
is the solution to the inverse kinematics. In the subsequent

presentation, x, y, and z are used to indicate xG1 ; y
G
1 ; and z

G
1 . Substi-

tuting Eqs. (17) and (18) into Eq. (21) and using the change of
variable Eq. (19), the following conditions emerge:

kxþ lyþ �z ¼ 0 (22a)

�
�lxþ kyþ jz

h3 � d� pGt
� � ¼

kdk

kd� pGt k
(22b)

�
�xþ jy� kz

h2 � d� pGt
� � ¼

kdk

kd� pGt k
(22c)

�
jx� �yþ lz

h1 � d� pGt
� � ¼

kdk

kd� pGt k
(22d)

where d¼ [x, y, z], and h1 ¼ R�1
t;11;R

�1
t;12;R

�1
t;13

h i

;

h2 ¼ R�1
t;21;R

�1
t;22;R

�1
t;23

h i

; h3 ¼ R�1
t;31;R

�1
t;32;R

�1
t;33

h i

, which corre-

spond to the rows of R�1
t . The components of R�1

t are determined

by the specified end-effector orientation, and are thus directly
related to qt. It should be noted that the main nonlinearities in Eq.
(22) arise from the exponentials related to the moduli on the right
hand side.

The equations in the system (22) are not independent. Different
approaches to solving it are possible. This work proposes that
(22a) be used, as well as the difference between Eqs. (22b) and
(22c). From Eq. (22a)

y ¼ �
kxþ �z

l
(23)

Substituting Eq. (23) into the difference between Eqs. (22b) and
(22c), a second-order polynomial equation relating x and z is
obtained

c4x
2 þ c3z

2 þ c2xzþ c1xþ c0z ¼ 0 (24)

where

c4 ¼ �lR�1
t;21 � �R�1

t;31 þ
kR�1

t;22 � jR�1
t;32

	 


k2

l2
�

�lR�1
t;22 þ kR�1

t;21 � �R�1
t;32 � jR�1

t;31

	 


k

l

c3 ¼
kR�1

t;22 � jR�1
t;32

	 


�2

l2
þ jR�1

t;23 þ kR�1
t;33 �

kR�1
t;23 þ jR�1

t;22 � jR�1
t;33 þ kR�1

t;32

	 


�

l

c2 ¼
2�k kR�1

t;22 � jR�1
t;32

	 


l2
�

�lR�1
t;22 þ kR�1

t;21 � �R�1
t;32 � jR�1

t;31

	 


�

l
� lR�1

t;23

þjR�1
t;21 � �R�1

t;33 þ kR�1
t;31 �

k kR�1
t;23 þ jR�1

t;22 � jR�1
t;33 þ kR�1

t;32

	 


l

c1 ¼ lR�1
t;21 þ �R�1

t;31

	 


pGti þ lR�1
t;22 þ �R�1

t;32

	 


pGtj þ lR�1
t;23 þ �R�1

t;33

	 


pGtk

�
k jR�1

t;31 � kR�1
t;21

	 


pGti þ jR�1
t;32 � kR�1

t;22

	 


pGtj þ jR�1
t;33 � kR�1

t;23

	 


pGtk

	 


l

c0 ¼
� jR�1

t;31p
G
ti þ jR�1

t;32p
G
tj þ jR�1

t;33p
G
tk � kR�1

t;21p
G
ti � kR�1

t;22p
G
tj � kR�1

t;23p
G
tk

	 


l

�jR�1
t;21p

G
ti � jR�1

t;22p
G
tj � jR�1

t;23p
G
tk � kR�1

t;31p
G
ti � kR�1

t;32p
G
tj � kR�1

t;33p
G
tk

(25)
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The analytical, closed-form solution to Eq. (22) can then be
obtained for x

x ¼
� c2zþ c1ð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2zþ c1ð Þ2 � 4c4 c3z2 þ c0zð Þ
q

2 c4ð Þ
(26)

which is the solution to the inverse kinematics problem in combi-
nation with Eq. (23), as a function of z, which acts as a parameter.
The points x, y, and z correspond to the point of junction between
the two sections, pGm, and completely defines the configuration of
each of the two robot sections. This solution can also be expressed
with the more conventional variables ri, fi, and /i using the
change of variable (5) for the proximal section, and by using an
analogous relation with the change of variables (19) for the distal
section.

The solution to the inverse kinematics is therefore a curve in
3D space of the possible positions of the point of junction pGm.
This solution can be expressed as

x ¼ f1 pGt ;qt; z
� �

y ¼ f2 pGt ;qt; z
� � (27)

where the curve is parametrized by z as in Eq. (26). This corre-
sponds to a degree of redundancy in the robot space, which is dis-
cussed in Sec. 4.3.

The solution to the inverse kinematics derived here always
exists for any gt inside the robot’s workspace, and is not affected
by singularities. The solution is expressed in closed form by Eqs.
(26) and (23) for the general case l 6¼ 0. For the particular case
l¼ 0, the solution is determined by substituting the relation
between x and z determined by Eq. (22a) with l¼ 0 into the dif-
ference between Eqs. (22b) and (22c), in an analogous manner as
described previously in this section but for the simpler case,
l¼ 0. The resulting expression is equivalent to Eq. (26).

The fact that the solution is derived in closed form implies that
it is straightforward to implement in practice, requiring a negligi-
ble computational time. In addition, the solution applies to any
reachable gt without any additional complexity. The closed-form
solution can then be used in the design of control laws and path
planning algorithms. The derivation of the inverse kinematics
solution in closed form also elucidates a kinematic redundancy,

which enables one to select the most desirable robot configuration
for each gt, as described in Sec. 4.3.

4.3 Redundancy in Inverse Kinematics. The direct kinemat-
ics analysis of Sec. 3.3 indicates a degree of redundancy in a robot
with six actuation DOFs operating in SE(3). This is verified and
elucidated by the solution to the inverse kinematics system (22).
For a specified gt inside the workspace, there exist an infinite
number of solutions for the point of junction between the two
robot sections [x, y, z] that allow gt to be reached, which deter-
mine the robot’s self-motion.

These solutions define on a curve, determined by Eqs. (23) and
(26), as a function of the parameter z. This curve lies on a plane
determined by k, l, and �, and is elliptical in geometry.

An example of such an ellipse is plotted in orange in Fig. 5 for

a gt at pGt ¼ �0:14; 5:28; 1:02½ � a:u:½ � position, and qt ¼

0:1þ 0:36iG � 0:17jG þ 0:91kG orientation. The different points
on the orange curve are possible positions of the point of junction

pGm, and thus correspond to different extension and bending of the

robot sections. Two robot configurations corresponding to the
inverse kinematics solution for the same specified gt and different

positions of pGm on the orange curve of possible solutions are also

plotted in Fig. 5 to help illustrate the kinematic redundancy. The
two configurations correspond to different extension and bending
of the sections, but reach the same gt. The most desirable robot
configuration to reach a gt can therefore be selected, which ena-
bles avoiding collisions between the robot and obstacles in the
environment, and respecting the physical constraints on extension
and bending of the sections.

4.4 Condition on End-Effector Configuration. An alterna-
tive, relevant reordering of Eq. (20) is

q1 ¼ qtq
�1
2 (28)

Expressing the terms in Eq. (28) as explicit functions of x, y, z,
and the end-effector pose by using Eqs. (17)–(19), a set of equa-
tions equivalent to Eq. (22) is obtained as

kh1 � d� pGt
� �

þ lh2 � d� pGt
� �

þ �h3 � d� pGt
� �

¼ 0 (29a)

Fig. 5 Curve corresponding to the loci of the distal end of the first section, for an
n5 6 robot with end-effector position at pG

t 5 ½20:14;5:28; 1:02� ½a:u:� and orienta-
tion qt 5 0:110:36iG20:17jG10:91kG. Two of the possible robot configurations to
reach this specified end-effector pose are also shown, with the distal end of the
first section at two of the possible locations on the curve.
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lh1 � d� pGt
� �

� kh2 � d� pGt
� �

þ jh3 � d� pGt
� �

¼ �z
kd� pGt k

kdk

(29b)

�h1 � d� pGt
� �

� jh2 � d� pGt
� �

� kh3 � d� pGt
� �

¼ y
kd� pGt k

kdk

(29c)

jh1 � d� pGt
� �

þ �h2 � d� pGt
� �

� lh3 � d� pGt
� �

¼ �x
kd� pGt k

kdk

(29d)

It should be noted that the left hand side of the system of Eq. (29)
is linear.

Since systems (22) and (29) are equivalent, the constituting
equations must be concurrently satisfied. Equations (22a) and
(29a) correspond to two parallel planes. However, they are not
necessarily coincident, as this depends on the desired end-effector
pose. Thus, the poses gt that simultaneously satisfy Eqs. (22a) and
(29a) constitute the reachable end-effector configurations.

Comparing Eqs. (22a) and (29a), and after manipulation, the
condition determining the reachable end-effector configurations
can be distilled as

kpGti þ lpGtj þ �pGtk ¼ 0 (30)

Equation (30) indicates that the position of the robot’s end-
effector must be on a plane determined by k, l, �, which is the
same plane where the distal end of the proximal section, pGm, must
be. Interestingly, condition (30) does not constrain j. The condi-
tion on the reachable end-effector configurations can also be
expressed in terms of the ZYZ Euler angles by transforming k, l,
� into a, b, c, e.g., as in Ref. [46].

Thus, by selecting five variables to specify the desired end-
effector pose, one of which must correspond to j or its equivalent
in Euler angles, condition (30) can be then used to obtain the sixth

variable, thereby completely defining the robot’s end-effector
pose. The inverse kinematics solution can be subsequently deter-
mined, as described in Sec. 4.2.

4.5 Higher Dimensional Robot Configurations. The discus-
sion in Secs. 4.2, 4.3, and 4.4 shows that a robot with n¼ 6 pro-
vides 5DOFs at the end-effector. In order to achieve 6DOFs at the
end effector, an additional robot section is required, as justified in
Sec. 3.3, resulting in a robot with n¼ 9. The generalization of the
work to robots with n¼ 9 is outlined in this subsection.

Considering a robot composed of three sections, a reference
frame {B} can be defined, which coincides with the robot’s proxi-
mal end. The configuration of the proximal section can be
described by xB0 ; y

B
0 ; z

B
0 , which correspond to the position of the

proximal section’s distal end relative to {B}. The orientation of
the proximal section’s distal end relative to {B} can be expressed
by a quaternion using Eq. (15) as

q0 ¼
zB0 � yB0 i

B þ xB0 j
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xB0
� �2

þ yB0
� �2

þ zB0
� �2

q (31)

A reference frame can then be defined at the distal end of the
proximal section fG0g, the position and orientation of which are a
function of xB0 ; y

B
0 ; z

B
0 .

The pose of the robot’s end effector relative to {B} can be

denoted by pBs and qs. The orientation of the robot’s end-effector

relative to fG0g, which can be defined as q0s, can then be obtained

as a function of xB0 ; y
B
0 ; z

B
0 and qs as

q0s ¼ q�1
0 qs (32)

The robot’s end-effector position relative to fG0g, which can be

denoted by pG0s , can also be obtained as a function of the proximal

section’s configuration and pBs by using the translation xB0 ; y
B
0 ; z

B
0

� �

and the rotation associated with q�1
0 , see Ref. [38], yielding

pG0s ¼

pBsi zB0
� �2

þ xB0
� �2

	 


þ xB0 pBsjy
B
0 � 2pBskz

B
0 þ zB0

� �2
� yB0
� �2

þ xB0
� �2

	 


pBsj zB0
� �2

� yB0
� �2

	 


þ yB0 2pBskz
B
0 þ pBsix

B
0 � 3 zB0

� �2
� xB0
� �2

� yB0
� �2

	 


pBsk zB0
� �2

� yB0
� �2

� xB0
� �2

	 


þ zB0 2pBsix
B
0 � 2pBsjy

B
0 þ 3 yB0

� �2
� zB0
� �2

	 


2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

(33)

where pBsi; p
B
sj; p

B
sk are the three components of pBs .

The kinematics subproblem corresponding to the two distal sec-
tions of the robot implies a condition on the reachable pG0s ; q0s, elu-
cidated in Eq. (30). Instead, the three-section robot allows 6DOFs
at the end-effector. Using Eqs. (32) and (33), condition (30) corre-
sponding to the two distal sections can be translated into a condi-
tion on xB0 ; y

B
0 ; z

B
0 for a given pBs and qs.

The inverse kinematics subproblem for the two distal sections
can then be solved using Eq. (27), for a pose specified by pG0s and
q0s, which now satisfies Eq. (30). Substitution of expressions Eqs.
(32) and (33) into the pG0s and q0s of such solution Eq. (27) pro-
vides the general solution to the inverse kinematics of the com-
plete robot as a function of xB0 ; y

B
0 ; z

B
0 , which in turn are related by

the aforementioned condition.
Thus, the three-section robot allows for the complete control of

the end-effector pose inside the workspace, and three degrees of
redundancy. In a typical scenario, one of them can correspond to

the two distal sections, and the other two may correspond to the
proximal section.

5 Simulations

The robot configurations corresponding to the inverse kinemat-
ics solution in different scenarios are simulated in this section for
robots with n¼ 6 in order to help illustrate the results obtained.
The simulations also provide a verification of the work presented
in this paper, and show the behavior of continuum robots with
bending and extension capabilities in some representative cases.

The configuration of a robot with a specified end-effector pose

pGt ¼ 2:64; 0:92;�0:26½ � a:u:½ � and qt ¼ 0:87þ 0:13iG � 0:27jG

þ0:40kG is illustrated in Fig. 4 with a plot of the centerline of the
robot’s sections, together with four lines that follow the outer con-
tour of the continuum robot, showing that this does not undergo
any twist and that its torsional alignment is correct. The end-
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Fig. 6 Set of inverse kinematics solutions corresponding to a robot with n5 6, for a specified
end-effector at pG

t 5 ½2:64; 0:92;20:26� ½a:u:� and qt 5 0:8710:13iG20:27jG10:40kG

Fig. 7 Four inverse kinematics solutions corresponding to the motion of an

n56 robot with end-effector poses at pG
t1 5 ½22;2;2:97� ½a:u:� and qt1

5 0:7310:31iG20:39jG10:47kG ; pG
t2 5 ½22; 2; 3:30� ½a:u:� and qt2 5 0:7310:29iG

20:44jG 10:44kG ; pG
t3 5 ½22; 2;3:64� ½a:u:� and qt3 5 0:7310:27iG20:48jG10:41kG ,

and pG
t4 5 ½22; 2;3:97� ½a:u:� and qt4 5 0:7310:24iG20:51jG10:38kG
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effector pose is selected to satisfy Eq. (30). The solution is calcu-
lated using Eqs. (23) and (26), with an arbitrary value of z¼�3.
The coordinates of the point of junction between the two sections

pGm are found to be x¼ 1.40, y¼�3.80, z¼�3 [a.u.]. Using Eqs.

(2) and (19), the variables directly describing the two sections can
be obtained as r1¼ 5.04, f1¼ 2.21, /1¼�1.22, r2¼ 5.60,
f2¼ 1.00, /2¼�0.58. As can be seen in Fig. 4, the tangency of
the arcs is respected, and the resulting robot end-effector pose
matches the specified pose exactly.

The robot configuration shown in Fig. 4 is a solution to the
inverse kinematics, but it requires significant room to maneuver,
which may not be available when operating in confined environ-
ments. In this regard, different possible robot configurations for the
same end-effector pose, which correspond to the redundancy pre-
sented in Sec. 4.3, are plotted in Fig. 6. These highlight the capabil-
ity provided by the inverse kinematics solution to select the most
suitable robot configuration to reach a desired end-effector pose.

Finally, four robot configurations corresponding to the robot
moving vertically and with an end-effector orientation changing
gradually are plotted in Fig. 7, with pose values specified in the
figure caption. All four end-effector poses satisfy Eq. (30), and the
corresponding robot configurations are determined using the
inverse kinematics solution (26), (23), with appropriate z values to
prevent excessive bending or extension of the sections. As can be
seen in Fig. 7, these robot configurations result in a smooth
motion of the robot, which illustrates the suitability of the inverse
kinematics solution in determining appropriate robot configura-
tions to execute a desired motion.

6 Conclusion

The direct and inverse kinematics of continuum robots with con-
stant curvature bending and extending capabilities can be solved in
closed form using the approach proposed in this paper. The problem
description is determinant in the complexity of the kinematic map-
pings. The use of quaternions enables the derivation of the closed-
from solution to the inverse kinematics presented in this work. The
kinematic analysis required to obtain these solutions also produces
additional results, which are of interest. Among the most prominent
of these is the fact that a manipulator with six actuation DOFs is
only capable of 5DOFs at the end effector. This redundancy is trans-
lated as a curve corresponding to the inverse kinematics solution,
which can be expressed in closed form as described in this paper. A
condition on the reachable end-effector poses using a robot with six
actuation DOFs therefore exists, which is also drawn from the analy-
sis presented in this paper. The kinematic solutions derived for a
robot with six actuation DOFs can also be used to determine the
solution to the inverse kinematics of a higher order system necessary
to reach 6DOFs at the end effector, as outlined in this work. Finally,
the simulated solutions presented here show a variety of robot con-
figurations available to reach a desired end-effector pose, illustrating
the possibility of selecting suitable configurations for different sce-
narios. It should be noted that this work is for continuum robots
made of sections that can both bend and extend. This current work
cannot be directly generalized to continuum robots made of inexten-
sible sections (sections with two bending DOFs).
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Nomenclature

a, b, c ¼ ZYZ Euler angles denoting orientation of the robot
end-effector, primarily used in direct kinematics

d ¼ differential increment
fi ¼ angle between vector from base to tip of section i

and vector tangential to section i at its base
h ¼ generic variable denoting an actuation degree of

freedom
j, k, l, � ¼ individual components of quaternion qt

qi ¼ angle of rotation associated to section i
ri ¼ Euclidean distance between the base and tip of

section i
/i ¼ angle between the projection of section i on the

plane perpendicular to its base and the iF axis of
frame {F} at the section base, defining the direction
of bending

bi ¼ bending curvature of section i
{B} ¼ reference frame B situated at the proximal end of a

three-section robot
d ¼ vector equal to [x, y, z]

f1, f2 ¼ functions defining the inverse kinematics solution
parametrized by z

{F} ¼ reference frame F situated at the base of a specified
robot section

g ¼ mapping between actuation degrees of freedom and
end-effector pose, used conceptually

gt ¼ end-effector pose, with gt � SE(3)
{G} ¼ reference frame G situated at the proximal end of a

two-section robot
fG0g ¼ reference frame G situated at the distal end of the

first section in a three-section robot
h1, h2, h3 ¼ vectors corresponding to the first, second and third

rows of R�1
t , respectively

i ¼ robot section index, commonly used as a subscript
iF, jF, kF ¼ unit vectors corresponding to frame {F}

J ¼ robot Jacobian corresponding to the differentiation
of the end-effector pose, a, b, c and pGt , with respect
to the actuation DOFs ri, fi, /i, for i¼ 1,…, n/3

J0 ¼ robot Jacobian corresponding to the differentiation
of tan a; tanb; tan c and pGt , with respect to
ri, fi, /i, for i¼ 1,…, n/3

li ¼ total arc length of extended section i
n ¼ number of actuation degrees of freedom

pBs ¼ vector denoting the position of the robot end-
effector relative to frame {B}, used in three-section
robots

pFi ¼ vector denoting the position of the tip of section i
relative to reference frame {F}

pGm ¼ vector denoting the position of the point of junction
between two sections in a robot with n¼ 6

pGt ¼ vector denoting the position of the robot end-
effector relative to reference frame {G}

pBsi; p
B
sj; p

B
sk ¼ individual components of vector pBs

pGti ; p
G
tj ; p

G
tk ¼ individual components of vector pGt
qi ¼ unit quaternion corresponding to the rotation asso-

ciated to section i, primarily used in inverse
kinematics

qt ¼ unit quaternion denoting to the orientation of the
robot distal end

qs ¼ unit quaternion corresponding to the end-effector
orientation relative to the robot base, for three-
section robots

q�1
i ¼ inverse of quaternion qi
q0s ¼ unit quaternion corresponding to the end-effector

orientation relative to frame fG0g, for three-section
robots

Ri ¼ matrix of rotation associated to section i
Rt ¼ rotation matrix denoting the orientation of the robot

distal end relative to the robot base
R�1

t ¼ inverse of Rt

R�1
t;ij ¼ individual components of R�1

t corresponding to
row i and column j
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Ti ¼ homogeneous transformation associated to section i
Tt ¼ total transformation of a robot between proximal

and distal ends
Ttij ¼ individual component of matrix Tt corresponding to

the element in row i and column j
{T} ¼ reference frame T situated at the robot distal end
wi ¼ vector denoting rotation axis associated to section i

wii, wij, wik ¼ individual components of rotation axis vector asso-
ciated to section i

x, y, z ¼ simplified notation for xG1 ; y
G
1 ; z

G
1 , which denotes the

Cartesian coordinates of the tip of Sec. 1 relative to
frame {G}

xFi ; y
F
i ; z

F
i ¼ Cartesian coordinates of the tip of section i, relative

to reference frame {F}
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