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1. Introduction

The kinematics of a robot are completely described by the Forward solution. the Reverse solution, the
Jacobian and the inverse Jacobian. ‘This paper deseribes the derivation of the kinematics of the CMU-
DDArm I robot.

The Forward solution is a 4 by 4 matrix that specifics the position and orientation of the end cffcctor with
respect to the basc frame. This solution is denoted by the T, matrix and is a function of the six joint variables
only 3]. Wc normally know where We want to move the manipulator in terms of rhe T, matrix and it is
dcsircd to obtain the joint coordinates in order to make the move. The transformation relating the I matrix
to the values of the joint coordinates is called the Reversc solution. 'The Forward arid the Reverse solutions

are derived in Scctions 3 arid 4 respectively,

Differential relationships are important to a manipulator in many ways. The transformation relating the
differential changes in the joint coordinates to the differential changcs in the world coordinates is called the
Jacobianand is specified by a 6 by 6 matrix. The Jacobian of the DDArm Il is derived in Scction 5.

2. Assignment of Coordinate Frames

The coordinate frames for each link on DDArm [l have been assigned according to the Denavit and
Hartenberg convention (1] and are depicted in Figure 1 The link parameters of the a&m are shown in Table 1
These parameters arc used as an input to the ARM program [2] and the A matricesand the Forward solution

generated

3. The Forward solution
The relationship between successive frares »-/ and n (assigned according to the Denavit and Hartenberg
convention) can be cstablished by the following relationship:

¢ rotate about z,_,, an angle, 4;
« translate along z_, a distance, d;
o translate along rotated x _ , a length a,;;

+ rotate about x , the twist angle a,;

The product of the above four homogeneous transformations relates the coordinate frame of link n to the
coordinate frame of link #-/ and is called the A matrix. ThiS is represented as,

A, = Rot(z,8) Trans(0,0,d) Trans(a,0,0) Rot(x,a)

The matrices A, through A, arccomputed using the lirk parameters listed N Table 1 These are:
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Multplying (1) through (0). we obtain the description of the end effector of the manipulator with respect

to the base frame.

T6 = A l1\2/\3/\4/\5/\6 N
The column vectors of the T matrix arc givcii as:
[ C4S155¢ + C12C384Ss ~ C12CeS3Ss — CsCeS1284 + C12C3C4CsC
~ C12CaSp + C3512848s — C4512538s + C1aCsCSq + C3CCsCoShy
T=I) = $184Ss +C3CeSs +CyCsCeSy
0
(8)
[ CiS12Cs + C12C384Cs +C13S6S53Ss + CsSsS128s — C12C3C4CsSs
= CaCiC + 535125586 + C6S12C3S4 — C1aCsS6S4 — C3C4CsS6S12
Tel"1(2]= $154Cs — C3S¢Ss — C4CsS6S3
0
9
C12CsSy — 5128,S5 + C12C3CSs
$13CsS + CaSeSs + S12CsCaSs
Tl *)[3] = —C3Cs +C.S5Ss
' 0
(10)
aCy + 3Gy — dyCrpS; +dsdy,
S 81 + 215 —deS1pS; — diCpy
s(*1[3]= dy +dC;

1

Equations (8)-(11)specify the four column vectors of the T, matrix and hence the Forward solution of(ifg
manipulator is completely determined. The Reverse solution of the manipulator is derived in the next

section.

4. The Reverse solution
We usually know the moves of the end-effector in terms of the T matrices and it is required to obtain the

values of the joint variables corresponding to a given T, matrix. The closed-form analytical expressions for
the joint variables, in terms of the elements of the T, matrix,is obtained by isolating each variable by
pre-multiplication by a number of the transforms in 7.

Let the given T, matrix be specified &s:
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Figure 3-1: Link Coordinates of DDArm II (at the home position).
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The Icft-hand-side of (12) is complctely specitied by (8)-(11). (12)
() solution for 4,

Comparing the (3.4) clements on both sidcs of (12) we obtain the following cquation:
p, = d1 + d4C3.
. Solving for C, and S, the following expressions are obtained:
P — dl
C =——
>T da

and
s, =Hi-Chu.

Figure 4-1: Physical Interpretation of Multiple Solutionsfor 8,

Therefore the two values of 8, are:

b, = atan2(S,,C,)

or
05, = atan2(-5,,C,) = -4,

The two values of 8, correspond 1 the elbow out and elbow in positions of the manipulator are arc depicted
i Figure 2. The correct value of 8, E selected from the above two values based on some criteria. In the
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present program the correct value is sclected by the user hy specifying efbow out or elbow in.
(h) solution for 02:

Comparing the (1.4) elements of (12) we get

-4,Cp,S; T a,Cp, Ta,C, HdS), =p, (13)
and comparing (2.4) clcmcnts of (12)we get

48,8, ta,8,, Tas,-d,C), = (14)
Now let -d,S, = d', and a, + a2 =d. Thcreforc, (13)and (14) rcducc to

d'c, + a C + c13s12 (15)

dS + a S d3C12 (16)

Squaring (15) and (16) and addlng, we obtain
b +p, —d? —a? —dy?
281

d'C2 +d;S, = =Ap

Upon substitutingd = rS andd, = Cy ,in the above equation, We obtain the expression for 8,

8, —athW] atanZ[d%]

The two values of 8, correspond to the right and /eft shoulder configurations of the manipulator and are
depicted in Figure 3. The correctvaluc of 8, must be selected based on some criteria. In the present program
the user selects this value by specifying the right-shoulderor /efi-shoulder configuration.
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Figure4-2: Physical Interpretation of Multiple Solutionsfor 8,.

(c) solution for 4, :

Multiplying (4)by S, and (5) by -C,,, we obtain:
PSS —PyCi2 =a1S; +4ds

Upon substitutingp, = 1Cqp and P, = IS w,in the above cquation. the expression for 4, is obtained as:

3132 +d3 Py
-8, + atan2[—
P —(a$, +d3)z)°'5] 2 Tan [Px]

6, = atan2( (
The two values for 8, correspond to the left and right shoulder configurations. Having chosen the correct
value of 8., the value of 4, is unique.

(d) solution for 8,: Having obtained the values of §,.6, and 8, it now remains to find the values of 4,6,
and 8, Premultiplying both sidcs of (1) by (°T)™ we get

°T)'Tg = “T,.

In cxpandcd form the above cquation is written as:

CiG GSyy § _ S4Sg + C4CsCs CsSs —CiCsSg CsSs 0
- Sy Cn 0 _ = CySg +CsCeSs — CyCs —CsS4S¢ S4Ss 0 ‘
~CpSy =SS Cy _|T6 = SsCs ~ 5556 dg 0 |

( o o1} | 0 0 0 1
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Comparing the (3.3) clements on both sides of (17) we obtain: (17)
-C]2$3;lx - S]BSy'ly + C3al = -C5
or
C,=CpSa T S8, -Cpa,
Comparing the (1.3) and (2,3) clements on both sidcsof (17)
C4S5 :CuC;ax +CSS|22:\). +S3a'z =A
$4Ss = —Spya, +Cpa, =B (18)
Squaring and adding (18) and (19)we obtain the cxprcssion for S, as (19)

S 2(A? 4 B

Evaluating 8, using the double argumentatan2 function the following two expressions are obtained:
651 = acanZ(SS,CS)
or
052 = ang(-SS,CS).

As in the case of 8, and g, the correct value of 8, is chosen based on some criterion. In the present case
this is selected by the user.

(e) solution for 8,:
Upon comparing the (1.3) and (2.3) elements on both sidcs of (17) we get:
C,Ss =C,C, TCS 3, T35a,

S“S5 = -Suax + Cuay.

Therefore,
64 :atan2(84SS,C4SS) if 05) 0

or
e =0, tn if 6<0

The manipulator becomes degenerate when 8, = 0.

(0 solution for 4,
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Upon comparing the (3.1) and (3.2) clements on both sides of (17), the following cquations arc obtained
C(’S5 = -CDS}nx - SuS}n_V + C3u/
-5655 = 'ClszOx - SuS}oy + ¢3oz.
s = atan2( — S;sS,S5Cs) if 4> 0

Og =05 +n if 9< 0

When 8, = 0 the manipulator is degenerate and only the sum of (9, + &) is important. At this point one
of the angles is given an arbitrary value (usually the present value) and the other computed accordingly.

(g) Solution for 8, and 8, when 8, =0 -

When 8, = 0.C, = 1 Comparing the (1.1) of (1.2) elements on both sides of (6) wc get
sin(d, - 8) = Cy,Cy0, TC;8y50 530, =A

and

cos(d, -85 =Cp,Cyn T CSpn + 5,0 =B

Thus the value of (4, - 8 ) B

0,8, = aan(A,B)

At this point 8, or 8, & given an arbitrary value (usually the present value) and the other computed
accordingly.

The analytical expressions For the six joints of the DDAm II are outlined in paragraphs (a)-(g). The
multiple solutions For joints 2, 3 and 5 give ri%e to 8 sets of Reverse solutions. These are represented
diagrammatically in Figure 4.

5. The Jacobian

In a manipulator, differential changes in position and orientation of T, are caused by differential changes
(dg,) in the joint coordinates. The transformation relating the differential changes in the joint coordinates to
the differential changes in the T, frame is called the Jacobian (a 6 x 6 matrix). Each column of the Jacobian
corresponds to a differential translation and rotation vector corresponding to the differential change in each

joint coordinate.

The elements of the 6 column vectors of the Jacobian mamx are:
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Figure 4-3: Graph Depicting Multiple Sets of Reverse Solutions

= (- CCeS 1,84 + Cy5)586 + CpCC,CiC4 + C1pCi8,5¢

- C1pCeSiSpyl + (CiC,CCS,, + C35155,54 -

C.S,,5,S

63125355 + C1,C4CS, - CpC,Sepxls

57674

dyy = (CsS6S1554 + CyS1,Ce - C1aCiCyCsSs + C1aCi8,C

+ C,,S¢S;SJpyl + (- C,C,CSS), + C,5,,8,C¢ +

S.S

63125355 - C13CsS6S, - C1oCyCelpxl;

12 = € 838,55 + CpaCiC, S, + CppCSy oyl
+(C4C,8,,5; + CiS138; + CppS,Sopxl; -

= C,CS, + 5,8,5 + C,CCSy;

Ix
by, =~ C;S¢Sq + €S5S, - C4CS5,Sg

8, =Gl + G880

dy = (CiSS¢ CCeS8, - CiCS5Ss T C.CS,S

+C,C,C,CCopy2 t (-C,C,S T C,C.CS, - CS,S,S,

+C,8,8,8¢ T C,C,CC.S,)px2;
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dyy =HC8.C, T CSSS, T CCS S+ CCS,C
-C,C,C,C 8 2 T (-C,C,C, - C,CS, S, + S,S,8,Ss

+C,8,5,C, - C,C,CS,S,)px:

dzz = -('523455 + C2C5S3 t C2C3C455)py2 + (CZS-tSS + CSS2S3 +
C4C,S,5,)px2;
6, =C,CS, +S,8,S, + C,C,.CcS:

8,, =-C;8S, TCS;8,-C,CS,Sq;

2y

§,, =-C,Cs T CS;8g;

o
|

uw = (G338 + C5,5 + C;C,CCopy3 + (C,CSs + S,5,5, +

C4C5C653)px3;
dy, = 565,55 + C;3,C - CC,CS9pY3 + (C5,S; + S,8,C5-
C,CSSpx3:
d;, = {CS, + C,C,Spy3 + (-C,C; + C,5,5px3:
8, = C,S- C,CSy:

8y, = C,Cs + CS5,8;

6, =-S S
d,, =0;
d4y =0
d,, =0;
84 = CeSs:
8, =SS
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dg, =0
dSy =0;
dg, = 0
§, =S¢
85y = Cg
§;, =0
dg, = 0;
d6y =0;
d62 =0;
b = 0
66y =0;
o, =1L
where,

px; = -d,C},S, + a,Cy, +3,C, + d,S;,
Py = "4;S158; + 2,5, + 38, - 4Cpy
px, = 3,C, - 4,C,5; + 45,

PYy = 2,8, 448,83 4,Cy

PX, = -d4S3

py; = d4C3.

6 January 1986
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A MATRIX PARAMETER

link variable g a
1 9, 9, 0°
2 9, 4, 90°
3 4, .0 -90°
4 4, 4, 90°
5 b 9 90°
6 b, b 0°

Table 1

6 January 1986
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