Kinematics of Overhanging Slopes in Discontinuous Rock
Michael Tsesarsky, Ph.D."; and Yossef H. Hatzor, Ph.D., M.ASCE?

Abstract: The kinematics of overhanging rock slopes and the mechanical constraints associated with this specific slope geometry were
studied. Investigation of the problem began with a generalized rigid body analysis and was followed by a numerical discontinuous
deformation analysis, both of which were performed in two dimensions. It was found that eccentric loading and hence the development
of tensile stresses at the base of overhanging rock slopes control their stability. Global slope instability, which is typically manifested in
a forward rotation failure mode, may ensue if a through-going vertical discontinuity, typically referred to as “tension crack,” transects the
slope at the back. The transition from stable to unstable configurations depends on the distance between the tension crack and the toe of
the slope. On the basis of the analysis, a simple threefold stability classification—stable, conditionally stable, and unstable—is proposed.
In addition, geometrical guidelines, based on standard field mapping data, for the above stability classification are provided. Finally, the
optimal reinforcement strategy for overhanging slopes is explored. The stability of overhanging slopes is determined by their eccentricity
ratio, defined by the ratio between the base (B) and top (L) lengths: e,=B/L. It was found that an overhanging slope with eccentricity ratio
of ¢,<<0.38 is unstable and requires reinforcement. With an eccentricity ratio between 0.38 <e,<<0.62, the slope is considered condition-
ally stable against toppling failure, and reinforcement should be considered if the geometry approaches the lower bound eccentricity of
0.38. A comparison of full and partial face reinforcement schemes showed that full face reinforcement is preferable. The findings of this
study were demonstrated by using an illustrative case study in which the stability of a 34 m high overhanging slope in a highly

discontinuous rock mass was studied and an optimal rock bolt reinforcement scheme was designed.
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Introduction

Rotational instabilities in rock slopes are generally attributed to
the intersection of steeply inclined and gently dipping disconti-
nuities, forming columns of massive rock blocks resting on a
basal detachment surface (Fig. 1). If these columns lean against
the rock, “back slumping” may occur (Kieffer 1998; Wittke 1965)
[Fig. 1(a)]. If, on the other hand, these columns lean toward the
excavation space, toppling may occur (Goodman and Bray 1976).

Adikahry et al. (1997), following Goodman and Bray (1976)
and Evans (1981), stated that the principal types of toppling fail-
ure modes are block, flexural, mixed mode block-flexural, and
secondary toppling. Furthermore, they stated that research of top-
pling failures has historically focused on block toppling, which is
a failure mode associated with sliding and toppling of rock col-
umns along a preexisting basal plane formed by a discontinuity
dipping into the excavation. Little attention has been directed to-
ward understanding the mechanisms of other failure modes or to
the fact that, in practice, most toppling analyses (regardless of the
actual mode) are undertaken using the classical method developed
by Goodman and Bray (1976) for block toppling.
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The classical Goodman and Bray toppling analysis assumes
that any single slab tends to overhang and is supported only by
the passive resistance offered by its down-slope neighbors. Insta-
bility arises when the overturning moments, taken at the toe of a
slab, are greater than the resisting moments. The underlying as-
sumption in this approach is that rock slabs overhang due to their
position on an inclined plane, the basal plane [Fig. 1(b)]. This
assumption leads to the notion that there is a critical inclination
angle for the basal plane, beyond which rotational instabilities
occur. If the inclination of the basal plane is less than critical, the
slope is considered safe against rotational failures. This approach,
however, may not be suitable for failure mechanisms distinctly
different from the commonly assumed block toppling mechanism.

An alternative view of this problem is that of eccentrically
loaded sections. For a slender block resting on an inclined plane,
the self-weight resultant can be decomposed into two compo-
nents: normal and parallel to the inclined plane (Fig. 2). The
normal component makes an angle s with the centerline of the
block such that the load is eccentric. When the resultant lies out-
side the middle third of the rectangular section, eccentric loading
will induce bending moments and consequently tensile stresses
across the base. Since the base is typically a preexisting discon-
tinuity of negligible tensile strength, such eccentric loading will
result in opening across the discontinuity. The eccentricity of
loading is a function of block slenderness and base inclination,
h/b and s of the Goodman and Bray solution, respectively. The
area of the section within which the action of the weight resultant
does not induce bending moments at the base will be termed
hereafter as the structural kernel of the section.

Similar loading conditions exist when the face of a slope over-
hangs over its toe (Fig. 3), such that the loading resultant is
shifted from the centerline (Fig. 4). As discussed above in discon-

1122 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / AUGUST 2009

Downloaded 27 Oct 2009 to 132.68.130.115. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



a. Back Slumping

Fig. 1. Slender blocks on incline, typical geometry for rotational
instabilities: (a) back slumping; (b) toppling (after Goodman and
Kieffer 2000)

tinuous rock masses, which cannot resist tensile stresses, eccen-
tric loading will induce opening across the discontinuities. The
size and location of the section’s kernel in overhanging slopes is
determined by their face height (k) and inclination (o). A neces-
sary condition for the forward rotational mode is the presence of
a detachment plane, or tension crack, at the back of the overhang-
ing slope. Such a detachment plane may be assumed if the rock
mass is transected by vertical joints, either through the presence
of high persistence tension cracks or by coalescence of less per-
vasive vertical joints and elimination of rock bridges (see Fig. 3).
For this particular geometry, toppling may occur even when the
basal discontinuities are horizontal and the block forming joints
are vertical. Such slope geometries are common in sedimentary
rock masses and are typically found in both natural and artificial
environments, e.g., in hard-rock river banks where water flow
erodes the base of the bank (Haviv et al. 2006), along coastal
bluffs, and in quarried benches.

In this paper, an investigation of the kinematics of overhang-
ing rock slopes and the structural constraints associated with this
specific slope geometry is described. First a generalized rigid
body analysis taking geometrical constraints into consideration is
discussed, and thereafter a two-dimensional (2D) discontinuous
deformation analysis (DDA) is presented; the DDA also accounts
for the effects of secondary discontinuities. In addition, the DDA
analysis is used for studying and dimensioning possible support
schemes. The findings of both analyses are demonstrated by pre-
senting an illustrative case study.

Geometric and Mechanical Considerations

In the discussion below, the following notation is used: slope
height &, base length B, and face inclination angle « (see Fig. 3
for notation). The horizontal coordinate of the center of mass Xy
is given by

Fig. 2. Slender block on incline (after Goodman and Bray 1976).
Shaded zone is section kernel.
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Fig. 3. Geometry and notations of overhanging rock face
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If the gravitational resultant acts within the section’s kernel,
i.e., B/2<Xcy<2B/3, then the base is under compression, al-
though not uniform [Fig. 4(a)]. If Xy >2B/3 then the resultant
action is applied outside the kernel, and bending moments will
induce partial tension at the base [Fig. 4(b)]. Taking moments
about the toe of the slope shows that as long as the resultant plots
within the base of the slope, i.e., Xcp < B, the slope is safe against
forward rotation. Note, however, that when the resultant line of
action approaches B even slight horizontal perturbation, for ex-
ample, due to external vibrations of seismic or blasting origin,
may induce rotational instability. Once the resultant plots outside
the base, the entire mass is unstable, and forward rotation is in-
evitable [Fig. 4(c)]. The unstable mass rotates about point O
along a circular arch of a radius B [e.g., arch AA’ in Fig. 4(c)],
thus precluding reactions between the stable rock face and the
back of the rotating mass. This will hold true only for gravita-
tional loading; external perturbations, such as earthquake-induced
horizontal accelerations, can possibly add a horizontal reaction,
which with respect to point O will add an overturning moment.
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Fig. 4. Stress distribution at base of overhanging section: (a) centroid
of mass within kernel; (b) centroid of mass external to kernel; and (c)
rigid body diagram of forward rotating overhanging slope
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Fig. 5. Position of mass centroid (X¢y/B) as function of eccentricity
ratio (e,)

The eccentricity of loading can be assessed using the follow-
ing geometric index: e,=B/L, where L=B+h/tan a.. A plot of the
relative position of the center of mass Xcy/B, obtained analyti-
cally as a function of slope eccentricity ratio e,—for slope heights
of 35, 50, and 75 m and face angles of 85, 80, 70, and 65°—is
presented in Fig. 5. A power law best describes the trend for Xy
with respect to the eccentricity ratio e, (Fig. 5). On the basis of
the obtained relationship the following limiting er values can be
defined: for e,>0.62, the block is safe; for 0.38 <e,<<0.62, the
base of the block is partially in tension and possibly unsafe
against toppling; and finally for e,<<0.38, toppling is inevitable.
The ratio e,=0.38 is therefore defined as the critical eccentricity
ratio e, .. On the basis on the critical eccentricity ratio, a critical
base depth (B,), beyond which rotation is impermissible by vir-
tue of kinematics, may be defined. To find B, in terms of the
obtainable field quantities 7 and «, the substitution L=B_;
+h/tan « is used and the equation is solved for B,

h

Bajy=—""""" 2
T 1.6315 - tan @

The critical base depth B, is plotted in Fig. 6 as a function of
slope height h for different values of slope face inclination. In-
spection of Fig. 6 reveals that in subvertical slopes, i.e., a=85°,
the critical detachment plane is near the face of the slope; for
example, B.;=4 m for 7=70 m. For lower face inclinations,
however, the critical detachment plane will be deeper within the
rock mass; for example, B;=17 m at /=70 m and a=70°. This
observation explains the stability of steep and high rock slopes,
even if eccentrically loaded failure is limited to the vicinity of the
face and stable equilibrium is attained after a limited loss of rock
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Fig. 6. Critical depth (B, of detachment plane as function of slope
height (k) and face inclination angle («)

mass. Based on Fig. 6, a simple “rule of thumb” is suggested for
the critical distance between the tension crack and the toe

85°5_0L>} o 3)

The critical depth of the detachment plane is 5% of the slope
height for a face inclination of 85°, rising by 5% for each 5°
decrease of slope inclination.

With the distance to the critical tension crack being known, the
length of the anchors may be designed such that the presence of
the detachment plane becomes insignificant from a kinematical
standpoint. By ensuring sufficient anchor length, the resultant can
be made to plot inside the section kernel, thus eliminating rota-
tional instabilities and the development of tensile stresses across
the base of the slope.

Bﬂn={005+005~<

Overhanging Slope Stability in Discontinuous Rock
Masses

Discontinuous rock masses have negligible resistance to tensile
loads and therefore opening across the discontinuities is inevi-
table wherever tensile stresses are expected to develop in the
discontinuous rock mass. In this paper, discontinuous deformation
is modeled by using an implicit discrete element method—the
DDA (Shi 1993).

Essentials of DDA Method

DDA is a discrete element method formulated using the minimum
potential energy principal. DDA formulation of the blocks closely
resembles the definition of a finite-element (FE) mesh. Here, a FE
type problem is solved in which all elements are physically iso-
lated blocks, bounded by preexisting discontinuities.

The displacements (u, v) at any point (x, y) in a block can be
related in two dimensions to six displacement variables

[Dl] = (MO Vo Ty & & ’YXy)T (4)

where (u,v,)=rigid body translations of a specific point (x,, ;)
within a block; (ry)=rotation angle of the block with a rotation
center at (xg, yo); and &,, €,, and -y, =normal and shear strains of
the block. For a two-dimensional formulation of DDA, the center
of rotation (x,, y,) coincides with block centroid (x,, y.). Shi
(1993) showed that the complete first-order approximation of
block displacement takes the following form:

() =[T][D]]
v

:[1 0 ~(y=y) x=x) 0

(v =02
01 (x—xp) 0 ﬁDJ

()’ - yo) (x - xo)/2
(5)

This equation enables the calculation of displacements at any
point (x, y) in the block when the displacements are given at the
center of rotation and when the strains are known. By adopting
first-order displacement approximation, each block is considered
as a homogenously deformable (constant strain) element.

The local equations of equilibrium are derived using FE-style
potential energy minimization, where individual blocks form a
system of blocks through contacts between blocks and displace-
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ment constraints that are imposed on a single block. For a block
system defined by n blocks, the simultaneous equilibrium equa-
tions are

K“ Kln Dl F'1
: : =\ : (or[K{D}={F} (6)
F

Knl Knn n

D

n

where K;; (i,j=1,2,...,n)=submatrices defined by the interac-
tions of blocks i and j; D;=displacement variables submatrix; and
F;=loading submatrix. In total, the number of displacement un-
knowns is the sum of the degrees of freedom of all the blocks.

The solution to the system of Eq. (4) is constrained by
inequalities associated with block kinematics: the no
penetration—no tension condition between blocks. The kinematic
constraints on the system are imposed using the penalty method.
The minimum energy solution is one with no tension or penetra-
tion. When the system converges to an equilibrium state, the en-
ergy of the contact forces is balanced by the penetration energy,
resulting in inevitable, but very small, penetrations. The energy of
the penetrations is used to calculate the contact forces, which are,
in turn, used to calculate the frictional forces along the interfaces
between blocks. Shear displacement along the interfaces is mod-
eled using the Coulomb—Mohr failure criterion

Time integration is performed using an implicit, stepwise lin-
ear scheme, which is similar to the Newmark method, with the
collocation parameters B:% and y=1.

Since its introduction, the DDA has been validated by a num-
ber of researchers using different techniques and for various en-
gineering applications. A thorough review of the validation efforts
is presented in McLaughlin and Doolin (2006).

Stability of Free Standing Overhanging Slopes

In this investigation, three slope heights, 35, 50, and 75 m are
studied, where for each geometry, the eccentricity ratio e, (
=B/L), is varied between 0.3 and 0.65. The modeled rock mass
consists of a set of horizontal beds and a set of vertical joints, the
intersection of which forms a blocky rock mass (Fig. 3). The
aspect ratio of the individual blocks comprising the rock mass is
set to S;/Sp>2, where S; and Sz=mean joint and bed spacing,
respectively. Comprehensive numerical analyses reveal that for
the slope geometries studied the rotational mode of failure is in-
dependent of the block aspect ratio, as long as S;/Sz=1. For
smaller block aspect ratios, the mode of failure changes from
mostly uniform rotation to falling of individual rock blocks, cul-
minating in face raveling. The following intact rock parameters
are used as input for numerical modeling: dry unit weight of
25 kN/m?, Young’s y modulus of 70 GPa, and a Poisson ratio of
0.25. The shear strength of the discontinuities is assumed purely
frictional, with a peak friction angle of 41°. These values were
chosen so as to represent a stiff sedimentary rock mass with clean,
planar, and persistent discontinuities.

DDA time histories for the displacements at the tip of the slope
are presented in Fig. 7 as a function of the eccentricity ratio e,
(=B/L) for a slope height of 50 m. For ¢,<0.4, the slope is
unstable, as is evident from the ongoing deformation, whereas for
e,>0.5, the slope attains equilibrium after some initial deforma-
tion. The same trend was obtained for 35 and 70 m high slopes
(results not shown here). Based on DDA, it can be concluded that
the global stability of an overhanging rock slope is not affected by
the presence of horizontal beds and vertical joints, provided that
the shear strength along the discontinuities is not exceeded during
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Fig. 7. DDA calculated time histories of slope tip displacement (d)
as function of eccentricity ratio e,(=B/L) for slope height of 50 m

forward rotation. Thus, the “rule of thumb” [Eq. (3)] can be as-
sumed valid for horizontally bedded and vertically jointed rock
masses as well.

Reinforcement of Overhanging Rock Slopes

Discontinuous rock reinforcement can be modeled in DDA using
spring elements (Shi 1993; Yeung 1993) of given stiffness and
length to simulate the action of grouted rock bolts, dowels, or
cable bolts. An example of rock bolt reinforcement modeling in
the highly discontinuous rock slope foundations of King Herdod’s
palace at Masada was presented by Hatzor et al. (2004) for dy-
namic loading. Here, two different reinforcement schemes for
overhanging rock slopes under static loading are considered: (1)
full face support; and (2) partial face support up to a critical face
height /. In both cases, individual bolt length is adjusted such
that the static end of each bolt is fixed beyond B, thus elimi-
nating the mechanical significance of the tension crack at the
back.

Generally, bolt stiffness is given by: k=AE/Lp, where A
=cross-sectional area of the bolt element; E=Young’s modulus of
the structural steel; and Lg=bolt length. For purposes of clarity,
our results are presented in terms of an equivalent bolt diameter
&( "), where in fact in the DDA model the stiffness of each bolt
element is adjusted according to the actual element length used in
each specific location.

In the partial face reinforcement scheme (2), reinforcement is
applied from the bottom up such that the eccentricity ratio (e,
=B/L) of the remaining unsupported part of the overhanging
block increases. Consider, for example, a slope with an initially
critical eccentricity ratio e, .=0.38. Without support, this block
will undergo toppling. By installing reinforcement from the bot-
tom up, the eccentricity ratio gradually increases from a critical
value to some safer value, because the lower supported portion of
the block is assumed fixed. At a certain reinforcement height,
designated here as A, the eccentricity ratio will eventually reach
the stable value of e,=0.62. Apparently, no further reinforcement
should be necessary above that height. &, is readily found by Eq.
(2) and the specific geometry of the problem at hand (see Fig. 8).

DDA forward modeling results for a 50 m high overhanging
slope with an initial eccentricity ratio of e,=0.4 are presented in
Figs. 9(a and b). Fig. 9(a) presents a plot of the displacement
vector of the face tip (Fig. 3) for the two reinforcement schemes
both with the same bolt spacing s=4 m, and diameter =3 in. In
all simulations, a Young’s modulus of 210 GPa is assumed for
steel. The dashed lines represent the upper and lower displace-

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / AUGUST 2009/ 1125

Downloaded 27 Oct 2009 to 132.68.130.115. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



Rock Bolt

hcrz't / o

) B [

7 2l

Fig. 8. Rock face reinforcement nomenclature

ment boundaries for unsupported slopes with eccentricity ratios of
0.4 and 0.65, respectively. Tip displacement with partial and full
face support are marked by open diamonds and plus symbols,
respectively. It is clearly evident that by supporting the slope up
to h.; the displacement of the tip is restricted to values typical to
stable geometries. Furthermore, by supporting the entire face, no
significant reduction in tip displacement is observed. Similar re-
sults (not shown here) were obtained for different bolt stiffness
and spacing values. These results may indicate that partial support
up to A, should suffice in overhanging slopes.
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Fig. 9. DDA calculations of reinforced rock face: (a) displacement
time histories; (b) bolt tensional forces; for slope height of 50 m and
eccentricity ratio of e,=0.4; h.;=face support up to critical height;
h=full face support; s=bolt spacing; ¢p=Dbolt equivalent diameter

To determine whether partial face support is indeed advanta-
geous in overhanging slopes, the tensile loads developed in each
reinforcing element (F,) are considered. Tensile load distribution
in the reinforcement elements for different support schemes are
presented in Fig. 9(b). If partial support versus full face support
schemes are considered for the same bolt spacing and diameter,
then the full-face reinforcement scheme yields a maximum bolt
tension of F;,=570 kN at the bolt located below the tip of the
slope, 44 m above the toe, whereas for partial face support a
maximum load of F,=1,050 kN is developed at %, 28 m above
the toe of the slope. For comparison, at the same bolt location
(28 m above the toe), the full face support scheme reduces the
bolt load by a factor of three. Doubling the number of bolts in the
partial face reinforcement scheme and reducing bolt spacing to
s=2 m only slightly reduces bolt load distribution: the maximum
bolt force in this configuration is F,=820 kN for the bolt installed
at hcrit'

In summary, if tip displacement alone is considered, then par-
tial face reinforcement may seem adequate. However, when bolt
load distribution is considered, the full-face support scheme
seems to require lower individual bolt capacities, thus increasing
the factor of safety against failure in individual bolts.

Case Study

In this section the stability of a quarried overhanging rock slope is
studied and the applicability of the theoretical findings described
above is demonstrated.

The studied overhang was formed due to quarrying activities
in the early 1950s in Haifa, Israel. The general bearing of the cliff
is SSW to azimuth 185°, but local variations in strike form large
overhangs. Poor quarrying practices coupled with river bed ero-
sion at the base of the cliff gave rise to large overhangs along the
rim of the slope. Field observations at the top of the slope re-
vealed open cracks, which strike parallel to the face, possibly
suggesting ongoing slope deformation, particularly in areas where
the cliff overhangs. A particular cross section, a 34 m high slope,
the upper third of which extrudes some 11 m beyond the toe,
constitutes the focus of this study (Fig. 10).

Rock Mass Characteristics

The rock is comprised of a bedded dolostone sequence. Bed
thickness ranges between 5 and 150 cm. The rock mass is
transected by four sets of subvertical joints. The strike of three
sets is oblique to the face of the cliff, whereas the strike of the
fourth is parallel to the excavation face. Mean orientation, dip,
and spacing of discontinuities are presented in Table 1. The joints
exhibit fresh, unaltered and uneven surfaces with a typical joint
roughness coefficient value of 13. The joint wall compressive
(JCS) strength is estimated at JCS=40 MPa (Schmidt hardness of
31). A residual friction angle of 37° is assumed for discontinuities
based on tilt tests performed on saw-cut dolstone samples.

The subvertical joints are of limited persistence, while bedding
planes are of “infinite” extent (Fig. 11). Since the face parallel
joints are expected to have the most significant affect on overall
cliff stability, they are modeled, similar to bedding, as infinite
planes. The face parallel joint set (J5 in Table 1) was detected on
both sides of the slope segment studied, but naturally it cannot be
detected in scan line surveys performed directly on the exposure.
The face parallel set, where observed, seems to be very persistent,
and in places openings across this joint set reach several tens of
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Fig. 10. Critical section of cliff studied

centimeters, indicating possible forward rotation of the entire
slopes; this is in contrast to the other joint sets that terminate
against bedding planes and do not exhibit any opening or shear
deformation.

Key-Block Analysis

The key-block analysis is based on block theory (BT) introduced
by Goodman and Shi (1985). BT is a topological analysis in-
tended to identify the removable blocks within the rock mass
augmented by limit equilibrium (LE) analysis for each removable
block. The implementation of BT is geometrical, utilizing stereo-
graphic projection methods. First, the removable blocks are iden-
tified using Shi’s theorem (Goodman and Shi 1985); each block is
defined by a joint pyramid (JP) formed by the intersection of
preexisting discontinuities and a free face (either natural or engi-
neered); and then a three-dimensional LE based on the solution of
Londe et al. (1970) is applied, and the factor of safety is com-
puted for each of the removable blocks.

Hatzor and Feintuch (2005) proved that the probability of
more than three joints (representative of three principal joint sets)
passing through the same intersection in a jointed rock mass is
zero. Therefore, the JP of interest consists of an intersection of

Table 1. Principal Joint Sets

Dip Dip direction Spacing
Joint set @) ) (m)
J1 7 272 0.8
2 87 054 0.6
13 88 184 0.9
J4 90 146 0.6
I5 90° 90° ?

“Inferred from field observations.

Fig. 11. Partial view of cliff studied; (inset): typical rock mass struc-
ture

three different joints. JPs of higher order are not likely to occur in
the rock mass. Since there are four individual joint sets in the rock
mass that participate in removable block formation, four different
joint intersections, each with three different joint sets, should be
considered for key-block analysis, the results of which are shown
in Table 2.

LE analyses for each removable JP indicates that joint inter-
sections 1, 2, and 3 yield a removable JP with very low factors of
safety against sliding. The removable JP formed by joint intersec-
tion 3 has no mode and can therefore be excluded from further
considerations. By using stereographic projection, it can be
shown that each of the three removable JPs that have a low factor
of safety has one line of intersection that plots very near the free
surface. Such removable key blocks have been named “nonhaz-
ardous” (Hatzor 1993; Hatzor and Feintuch 2005), because, al-
though removable, the volume of the block will be very small and
consequently the associated risk minimal. This conclusion is sup-
ported by field evidence, where very few slender molds of failed
key blocks were mapped along the face. Furthermore, by virtue of
geometrical considerations, toppling of individual key blocks may
also be ignored. Therefore, individual key-block failures, either in
sliding or toppling mode, can be ruled out. The detected openings
in the field across face-parallel tensile cracks may, however,
imply that rotational instability of the entire overhanging slope
block may presently be active.

Influence of Eccentric Loading on Global Slope
Stability

The overhanging slope geometry results in eccentric gravity load-
ing, as discussed in previous sections. The existence of persistent
tensile cracks at the back of the slope enables forward slope ro-
tation, due to the lack of tensile strength across the discontinui-
ties. The size and location of the section’s kernel, and the

Table 2. Block Theory Analysis Results

Joint

intersection Joint sets Removable JP  Failure mode FE.S. ($=37°)
1 JiJoJ3 100 14 0.18

2 JiJoJy 100 Ly 0.04

3 J1J3Jy 010 No mode —

4 JrJ3Jy 010 Iy 0.04
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Fig. 12. DDA boundary domain of cliff studied with rock bolts

expected amount of rotation, are determined by the depth of the
vertical tension crack and the height and the eccentricity ratio of
the overhanging slope. As shown above, critical eccentricity is
obtained when ¢,< 0.4, which by virtue of Eq. (3) implies a ten-
sile detachment joint at a depth of 8 m from the toe for the speci-
fied cliff geometry.

A slope reinforcement scheme is designed to accommodate
eccentricity ratios lower than critical, down to e¢,=0.3, such that it
will be capable of resisting overturning moments induced by ten-
sile detachment planes that may exist at a depth of 5 m from the
toe. Based on the results of the reinforcement analysis above, a
bolt spacing pattern of s=4 m is modeled for the entire height of
the slope (Fig. 12). DDA displacements of slope tip and bolt loads
are plotted in Figs. 13(a and b), respectively. It was found that
complete slope stabilization is obtained with bolt diameter of ¢
=2 in. and above using the bolting pattern shown in Fig. 12. With
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Fig. 13. DDA results for reinforced face of cliff studied: (a) displace-
ment time histories of slope tip; (b) bolt forces

a bolt diameter of ¢=1 in. slope displacements are never arrested,
and the cliff is rendered unsafe. The maximum loads that develop
in the bolts are 237 and 309 kN for bolt diameters of 2 and 3 in.,
respectively, which is well below the yield load of 500 kN as-
sumed for twin strand cable bolts (Stillborg 1994).

Discussion

In this paper, the stability of overhanging rock slopes is studied
using analytical geometry and numerical discontinuous deforma-
tion analysis. The stability of overhanging rock slopes is con-
trolled primarily by two geometrical factors: (1) the presence of a
vertical detachment plane behind the rock face; and (2) the eccen-
tricity ratio of the slope determined by face geometry. While the
face geometry can be measured readily in the field, the exact
location of the detachment plane behind the face can only be
assumed. It is, therefore, the location of the detachment plane that
controls the global stability of overhanging rock slopes. As such,
we consider it to be the prime factor of concern during stability
analysis and support design.

The analyses presented are limited to a simple rock mass struc-
ture comprised of horizontal beds with vertical joints. Introducing
bed and joint inclination will not affect the overall stability analy-
sis as long as the friction angle along beds is not exceeded and the
joint pyramids formed by the intersection of beds and joints form
nonhazardous blocks (Hatzor and Feintuch 2005). In the presence
of slender blocks, face raveling may be encountered, and when
the basal planes are inclined, block toppling or block slumping
(Goodman and Kieffer 2000) may be encountered. The eccentric-
ity of loading, the location of the kernel, and consequently, the
rotational instability are determined by the ratio between the slope
base length B (or distance from toe to detachment plane) and the
length of the top surface L (Fig. 3). These two geometrical quan-
tities are interrelated through height £ and face inclination a, such
that L=B+h/tan . The eccentricity of loading can also be de-
fined by the ratio between the position of the center of mass Xqy
and the base length B as follows:

1. When Xy /B=0.5, the section is concentrically loaded, and
the slope is stable;

2. When 0.5<Xcy/B<0.66, the section is eccentrically
loaded. But the line of action of the gravitational resultant is
within the section kernel—the slope may be considered safe,
but local tensile deformations are expected behind the toe;

3. When 0.66 <Xy/B<1, the section is eccentrically loaded,
and the line of action is beyond the sections kernel—analysis
is required to determine global slope stability; and

4. When X/B> 1, the line of action plots outside the section,
and global forward rotation is inevitable.

As a general rule, it is found that overhanging slopes can be
assumed stable when the eccentricity ratio e=B/L> 0.4. This rule
is confirmed by both kinematical and DDA analyses. This result
was also confirmed by the FE method (FEM) analysis for a con-
tinuous two-dimensional section using STRAP 2D (Tsesarsky et
al. 2005). It is interesting to note that for similar face geometries
both DDA and FEM predict similar face displacements when no
joints are modeled in DDA. Introduction of joints increases DDA
displacements by an order of magnitude with respect to FE
method results for a continuous body. However, the developed
mode of failure remains unchanged. The discrepancies between
the calculated displacements in the two methods are due to the
governing constitutive relations implemented in each method.
While in the continuous FE tensile stresses due to eccentric loads
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are compensated for by vertical displacements at the base, in the
discontinuous DDA these tensile stresses are compensated for by
vertical displacements across bedding planes throughout the sec-
tion height. The net displacement in DDA is the sum of individual
displacements across all bedding planes in the mesh.

It was determined that optimal reinforcement in overhanging
slopes should cover the entire height of the face. Reinforcing only
the lower section of the face, for example, up to the critical
height, where the eccentricity of loading is reduced to acceptable
values, yields high bolt loads, which in some cases may exceed
commercially available bolt capacities. Full face support yields
lower individual bolt loads, typically by a factor of three for bolts
at the same height. It can, therefore, be concluded that the appar-
ent advantage of an economical reinforcement scheme is under-
mined by the relatively high demand on bolt capacity, which may
ultimately result in unsatisfactory performance over time.

Conclusions

The stability of overhanging rock slopes is determined by the

eccentricity of loading and kinematical feasibility. The eccentric-

ity of loading is defined here using the eccentricity ratio e,

=B/L, where B=distance from slope toe to the tensile crack at the

back; and L=B+h tan(a)=length of the top surface determined

by the slope height (%) and face inclination (a).

The following guidelines for stability evaluation and support
design are proposed:

1. An overhanging slope with an eccentricity ratio of e¢,>0.62
is safe against toppling failure;

2. An overhanging slope with an eccentricity ratio of 0.38
<e,<0.62 is conditionally stable against toppling failure;
support measures should be considered when approaching
eccentricity ratio of 0.4;

3. An overhanging slope with eccentricity ratio of ¢,<<0.38 is
unstable against toppling failure; support should be installed
immediately;

4. A support scheme for overhanging slope should be designed
such that the eccentricity of loading X,/ B is lowered to an
acceptable minimum;

5. Full face support of the overhanging slope is recommended
to reduce bolt loads to acceptable design values; and

6. DDA analysis shows that the overall stability of overhanging
slopes is not compromised by the presence of horizontal beds
and vertical joints.
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