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ABSTRACT

Aims. We aim at a detailed description of the kinematic properties of the old, (several Gyrs) late-type CO-absorption star population
among the Galactic centre (GC) cluster stars. This cluster is composed of a central supermassive black hole (Sgr A*) and a self-
gravitating system of stars. Understanding its kinematics thus offers the opportunity to understand the dynamical interaction between
a central point mass and the surrounding stars in general, especially in view of understanding other galactic nuclei.
Methods. We applied AO-assisted, near-infrared imaging and integral-field spectroscopy using the instruments NAOS/CONICA and
SINFONI at the VLT. We obtained proper motions for 5445 stars, 3D velocities for 664 stars, and acceleration limits (in the sky plane)
for 750 stars. Global kinematic properties were analysed using velocity and velocity dispersion distributions, phase-space maps, two-
point correlation functions, and the Jeans equation.
Results. We detect for the first time significant cluster rotation in the sense of the general Galactic rotation in proper motions. Out of
the 3D velocity dispersion, we derive an improved statistical parallax for the GC of R0 = 8.07 ± 0.32stat ± 0.13sys kpc. The distribution
of 3D stellar speeds can be approximated by local Maxwellian distributions. Kinematic modelling provides deprojected 3D kinematic
parameters, including the mass profile of the cluster. We find an upper limit of 4% for the amplitude of fluctuations in the phase-space
distribution of the cluster stars compared to a uniform, spherical model cluster. Using upper limits on accelerations, we constrain
the minimum line-of-sight distances from the plane of Sgr A* of five stars located within the innermost few (projected) arcsec. The
stars within 0.7′′ radius from the star group IRS13E do not co-move with this group, making it unlikely that IRS13E is the core of
a substantial star cluster. Overall, the GC late-type cluster is described well as a uniform, isotropic, rotating, dynamically relaxed,
phase-mixed system.
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1. Introduction

The dynamical properties of the Galactic centre (GC) star clus-
ter, which hosts the radio source and supermassive black hole
(SMBH) Sagittarius A* (Sgr A*), have been subject to inten-
sive research for about two decades. Due to strong interstellar
extinction (AV ≈ 30) the GC stars can be observed only in the
infrared; most of the work in this field is based on near-infrared
(NIR) data ranging from H to L bands (1.5−4 µm; see Fig. 1 for
an example).

Initially, the central question of this research was whether
the GC indeed hosts a central SMBH (e.g. Lynden-Bell & Rees
1971), which was discussed even before the discovery of the
radio point source Sgr A* (Balick & Brown 1974). Based on
statistical arguments using the observed velocity dispersions,
it was possible to show in the late 1980s and early 1990s
that a central pointlike mass of a few million solar masses
was present. Additionally, increasingly better estimates of the
distance to the GC became possible (McGinn et al. 1989;
Krabbe et al. 1995; Eckart & Genzel 1997; Ghez et al. 1998;
Genzel et al. 1996, 1997, 2000).

⋆ Based on observations at the Very Large Telescope (VLT) of the
European Southern Observatory (ESO), Cerro Paranal, Chile.

With improved data quality, especially due to the establish-
ment of speckle imaging and adaptive optics (AO) assisted imag-
ing and spectroscopy, as well as longer observation time lines,
more direct tests of the central mass were executed. These efforts
led to the observation of Keplerian star orbits in the immediate
vicinity (≈0.5′′ or ≈4000 AU) of Sgr A* which allowed a direct
geometric determination of the mass M• of and the distance R0
to the central SMBH (Schödel et al. 2002, 2003; Ghez et al.
2003, 2005, 2008; Eisenhauer et al. 2003a, 2005). Throughout
this paper, we adopt a canonical distance R0 = 8 kpc and a
distance-scaled mass M• = (4.1±0.4)× 106 × (R0/8 kpc)2.3 M⊙.
The scaled mass is taken from Eisenhauer et al. (2005). Initially,
Eisenhauer et al. (2005) derived a distance R0 = 7.62± 0.32 kpc.
A recent re-analysis of the data by Gillessen et al. (2008) showed
that systematic errors are present in the data which had been ne-
glected in earlier works (also Ghez et al. 2008). In total, the un-
certainty on R0 is ≈0.4 kpc (the 0.32 kpc quoted by Eisenhauer
et al. 2005 are the statistical error). We therefore decided to stick
to the canonical distance of 8.0 kpc. For this GC distance the
image scale is 1 arcsec ≃ 39 mpc ≃ 8000 AU in position and
1 mas/yr ≃ 38 km s−1 in velocity.

In addition to these advances, a dynamically complex struc-
ture of the central cluster on scales of ≈1−10′′ emerged. It
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Fig. 1. K-band mosaic of the Galactic centre cluster obtained in March 2007; coordinates are RA and Dec in arcsec relative to Sgr A*. This image
covers a FOV of ≈1.5 × 1.5 pc. The contrast was enhanced by applying unsharp masking. The position of Sgr A* is marked with a cross in the
image centre. The dotted line crossing the image indicates the Galactic plane. Stars with names are SiO maser stars used for defining an astrometric
reference frame.

was possible to show that the cluster is composed of two main
populations: (1) a population of dynamically relaxed, evolved,
old (several Gyr), spherically distributed late-type CO absorp-
tion line stars; and (2) a relatively small population of young
(≈6 Myr) OB- and Wolf-Rayet-stars, located in the central arc-
second and in two disks centered on Sgr A* (Genzel et al. 2003;
Paumard et al. 2006; Maness et al. 2007).

As most, if not all, nearby galactic systems contain central
SMBHs (e.g. Ferrarese & Ford 2005, and references therein),
analyzing the Galactic centre system enhances the understand-
ing of galaxy cores in general. Stellar dynamics is an important
tool for the analysis of the central masses (see, e.g., Kormendy
& Bender 1999; Bender et al. 2005, for the case of M 31). In
contrast to other galactic nuclei, the centre of the Milky Way
can be observed on physical scales small enough to observe ac-
celerations of individual stars within a reasonable (few years)

amount of time. Thus the GC is a unique laboratory for studying
the dynamical interaction of a SMBH with its immediate stellar
environment.

In this article we focus on the properties of the population
of evolved late type, CO absorption stars. We present the as yet
most precise kinematical analysis of the central star cluster. This
work is based on proper motions and radial velocities extracted
from diffraction limited imaging and spectroscopy data obtained
from 2002 to 2007.

This paper is organized as follows. In Sect. 2, we summa-
rize the data acquisition and reduction. Section 3 describes the
extraction of stellar positions and proper motions from imaging
data. Section 4 gives an overview on the collection of line-of-
sight velocities from integral-field spectroscopy data. In Sect. 5,
we present our findings and discuss them. Section 6 summarizes
our results and conclusions.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810191&pdf_id=1
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2. Observations and data processing

2.1. Imaging

This work is based on observations with the 8-m-UT4 (Yepun)
of the ESO-VLT on Cerro Paranal, Chile. For obtaining imaging
data we used the detector system NAOS/CONICA (NACO for
short) consisting of the AO system NAOS (Rousset et al. 2003)
and the 1024 × 1024-pixel NIR camera CONICA (Hartung et al.
2003).

2.1.1. Data reduction

We obtained 10 data sets in H and K bands with a pixel scale
of 27 mas/pixel (large scale) covering 6 epochs (May 2002,
May 2003, June 2004, May 2005, April 2006, March 2007). In
this mode each image covers a field of view (FOV) of 28 × 28′′.
During each observation the camera pointing was shifted such
that the FOV is ≈40′′ × 40′′ for a typical data set, centered on
Sgr A*.

We executed a much larger number of observations using a
smaller pixel scale of 13 mas/pixel (small scale), thus resulting in
an image FOV of 14′′ × 14′′ and, again using shifted pointings,
typical observation FOVs of 20′′ × 20′′. In total we obtained
42 H and K band image sets, 5 to 10 per year with a roughly
monthly sampling.

To all images we applied sky-subtraction, bad-pixel and flat-
field correction. In order to obtain the best possible signal-to-
noise ratios and maximum FOV coverages in single maps, we
combined all good-quality images obtained in the same night
into mosaics.

2.1.2. Geometric distortion

In order to avoid systematic alignment errors when mosaicking
single images, we corrected the individual frames for the geo-
metric distortion of the CONICA imager. As there is no publicly
available description of the instrumental distortion properties of
NACO, we extracted the necessary parameters from our data. We
modelled the distortion correction using the radially symmetric
standard ansatz

r = r′(1 − βr′2) (1)

with

r = x − xC and r′ = x′ − xC

(e.g. Jähne 2005)1. Here x and x′ are the true and distorted image
coordinates respectively, β is a parameter describing the strength
of the grid curvature, and xC ≡ (xC , yC) is the zero point of the
distortion on the detector. Details of the modelling procedures
are given in the Appendix.

In case of the large scale (27 mas/pixel) images we found

xC ≃ 577 ... 629 pixels

yC ≃ 775 ... 823 pixels

β ≃ 2.97 ... 3.40 × 10−9 pixels−2.

1 See also the electronic manual of the public Gemini North Galactic
Center Demonstration Science Data Set for an application on GC imag-
ing data.

For the small scale (13 mas/pixel) images the parameters were

xC ≃ 573 ... 839 pixels

yC ≃ 629 ... 948 pixels

β ≃ 2.06 ... 13.27 × 10−10 pixels−2.

For the small scale images the distortion is marginally signifi-
cant and therefore hard to measure, as evident in the wide range
of values found for the curvature β. Nevertheless, it is possible
to state qualitatively that for the large scale images (β ≈ 3 ×
10−9 pixels−2) the distortion is clearly stronger than for the small
scale images (β ≈ 5 × 10−10 pixels−2).

2.1.3. Image registration and mosaicking

After extracting the distortion parameters, we registered all sin-
gle frames with respect to a common coordinate grid to ensure
alignment to sub-pixel accuracy. After correcting for geometric
distortion, no systematic effects of spatial higher-order should
remain. In such a case, the image registration can be described
by spatial first-order transformations

x′ = a0 + a1x + a2y (2)

y′ = b0 + b1x + b2y (3)

which cover translations, rotations, scalings, and shears.
The image registration process consists of two main steps.

Firstly, we define one master image (usually the first image of
a set) as a zero point. We pick a set of bright stars with coordi-
nates {x0

ref} serving as reference.
Secondly, we find for each image the transformation Tm

which transforms the coordinates of the reference stars measured
in image m to the coordinates measured in the zero image:

Tm : {xm
ref} −→ {x

0
ref}. (4)

The final mosaic results from computing for each pixel in im-
age m its new position in the mosaic grid (corresponding to im-
age 0) by applying Tm. For the transformations we solved the
overdetermined sets of equations by means of least-squares fits.
We used the routines by Montenbruck & Pfleger (1989) imple-
mented in the MPE data analysis software package DPUSER2.
For each image, the flux values of its pixels were then interpo-
lated to the corresponding mosaic pixels.

Comparing the typical residual alignment errors before and
after distortion correction and registration (Fig. 2) shows clearly
the improvement in mosaic quality. While simple shift-and-add
leads to inaccuracies as high as some tenths of a pixel, the distor-
tion correction alone provides a strong improvement. When tak-
ing into account the grid curvature only, systematic first-order
effects (shifts, rotations, and shear) are left. After registering
the images, the typical residual errors (pairwise between image
overlap areas) are of the order ≈0.05 pixels, corresponding to
≈1.4 mas (large scale) and ≈0.7 mas (small scale), respectively.

2.2. Spectroscopy

For obtaining spectroscopic data we used SINFONI, a combina-
tion of the integral field spectrometer SPIFFI (Eisenhauer et al.
2003b,c) and the adaptive optics system MACAO (Bonnet et al.
2003, 2004).

2 Developed by Thomas Ott; http://www.mpe.mpg.de/~ott/
dpuser/history.html

http://www.mpe.mpg.de/~ott/dpuser/history.html
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Fig. 2. Residual image alignment errors before and after distortion cor-
rection and image registration, comparing the overlap area (right hand
half of the first image of the data set) of two 27 mas/pixel scale K band
images obtained in March 2007. Arrows mark absolute values (1 unit =
2 milli-pixels) and directions of residuals, δx (δy) are the rms of residu-
als in x (y). Top panel: sub-pixel accurate shift-and-add only. Central
panel: after correcting for geometric distortion, before registration.
Bottom panel: after distortion correction and registration.

SINFONI’s data output consists of cubes. The cubes have
two spatial axes with dimensions of 64 and 32 pixels respectively
and one spectral axis of 2048 pixels length.

Depending on the plate scale, individual cubes covered re-
gions of 0.8 × 0.8′′, 3.2 × 3.2′′, or 8 × 8′′; the latter was used in
seeing-limited mode only. The spectra covered either the K band
(with a spectral resolution of R = 4500) or the band range H +K
(R = 2500).

SINFONI shows a substantial geometric distortion. This dis-
tortion can be parametrized as a 2-dimensional second-order
polynomial. We applied the publicly available distortion param-
eters for correction of our data.

After sky subtraction, bad-pixel-, and flat-field-correction,
the wavelength scale was calibrated. This calibration used emis-
sion line gas lamps and was finetuned on the atmospheric
OH lines. Atmospheric absorption features were removed by di-
viding by the spectrum of a calibration star.

3. Astrometry

3.1. Source selection

In order to determine positions and proper motions for as many
stars as possible, we first constructed a source list from a high-
quality large scale K band mosaic with ≈40 × 40′′ FOV obtained
in May 2005 (epoch 2005.36). In this image we identified and
listed all stars above a given significance threshold using the al-
gorithm FIND (Stetson 1987). This algorithm searches an image
for positive brightness perturbations and identifies them as stars,
if their sharpness and roundness parameters are located within
given limits.

Out of the list of all detected sources we excluded those over-
lapping (i.e. separated by less than ≈2 FWHMs/≈130 mas) with
neighbouring stars and thus unusable for precise astrometry. The
list of remaining “good” stars contains 6037 objects down to
magnitudes of K ≈ 18. For all sources the diffraction-limited
cores were fit as 2-dimensional elliptical Gaussian brightness
distributions.

This procedure of source selection leaves us with a spatial
source distribution which is very different from the physical stel-
lar surface density. Due to the restrictions outlined in the previ-
ous paragraphs, the sample distribution shows an approximately
constant surface density (≈4 sources/arcsec2) across the entire
FOV. This does not harm the analysis of kinematic parameters
(velocities, velocity dispersions) because there is no bias in ve-
locities. However, in the later stages of this analysis we analyse
spatially de-projected parameters such as 3D dispersions. As the
outcome of this de-projection crucially depends on the assumed
3D source distribution, we make use of earlier analyses of the
2D and 3D star distributions (Genzel et al. 1996, 2000, 2003;
Mouawad et al. 2005; Schödel et al. 2007).

In each individual mosaic n the master list stars were
re-identified and their detector positions {Xn} were fit with
2-dimensional elliptical Gaussian profiles. The formal detec-
tor position accuracies were typically (mode of histogram)
≈0.025 pixels (per coordinate) in both plate scales, i.e.
≈0.68 (0.33) mas in the large (small) plate scale.

3.2. Astrometric coordinates

In order to convert the image positions of the source list stars into
absolute astrometric coordinates, we initially use a reference set
of 9 SiO maser stars located in the FOV. For these stars abso-
lute positions and motions are known from radio observations

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810191&pdf_id=2
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Fig. 3. Statistical uncertainty of absolute radio reference frame coordinates as a function of position due to transformation errors, separately for
RA (left hand panel) and Dec (right hand panel). The contour values are given in units of milli-arcseconds. Across the field of view the errors vary
in the range 1.2 ... 5 mas. The contours mirror the alignment of the reference stars in the sky plane (see Fig. 1).

(Reid et al. 2007). They are bright sources in both radio and
NIR, and are therefore well-suited for cross-calibration.

Although there are no simultaneous observations in the
two wavelength regimes, there are radio position measurements
from both before and after the epoch of the NIR reference
image. The astrometric positions of the SiO maser stars at
epoch 2005.36, {x0

maser}, can then be obtained by interpolation
(see Reid et al. 2007 for details). Using the NIR image detector
positions {X0

maser}, we find a transformation

TA : {X0
maser} −→ {x0

maser}. (5)

By applying TA, we calculate astrometric (reference epoch) po-
sitions {x0} for all 6037 stars:

{X0} −→ TA

(

{X0}
)

= {x0}. (6)

The absolute accuracies of these coordinates vary in the range
1.2 ... 5 mas depending on position (see Fig. 3 for a contour
map); details can be found in the Appendix.

Unfortunately, in our NIR data no absolute astrometric ref-
erence source is available and the SiO maser stars are present
only in some of the large scale (27 mas/pix) images. We there-
fore defined a relative astrometric reference frame tied to an
ensemble of ≈560 well-behaved (meaning bright and well sep-
arated from neighbouring sources) stars with astrometric posi-
tions {x0

ref} ⊂ {x
0}. For each image n we use the corresponding

detector positions {Xn
ref} to compute a linear transformation

Tn : {Xn
ref} −→ {x

0
ref}. (7)

In this step we assume that our reference star ensemble {x0
ref} is at

rest in average, i.e. 〈{x0
ref}〉 = 〈{x

n
ref}〉. We note that our procedure

is very similar to the local-transformation approach outlined by
Anderson et al. (2006). The transformation Tn is used to calcu-
late the astrometric positions of all stars via

{Xn} −→ Tn ({Xn}) = {xn}. (8)

In the small scale (13 mas/pix) images, typically only ≈100 of
the reference stars are present. This means that we only have
relatively small subsets {Xn

small} ⊂ {X
n
ref} at hand for calibra-

tion. Therefore we first analyse the large scale (27 mas/pix) im-
ages and compute proper motions for all reference stars (see also
Sect. 3.3). With the proper motions at hand, we compute for each
image n the expected astrometric positions {xn

small} via linear in-
terpolation. From this we find the (1st order) transformation

Tn′ : {Xn
small} −→ {x

n
small} (9)

which leads to the astrometric positions of all stars via

{Xn} −→ Tn′ ({Xn}) = {xn}. (10)

This procedure ensures that the small scale images are tied to the
reference frame of the large scale images.

3.3. Proper motions

We computed stellar proper motions vxy by fitting linear func-
tions to astrometric star positions x vs. time t:

x(t) = vxyt + x(0). (11)

In order to determine proper errors for the stellar velocities, we
applied outlier rejection and error rescaling to the data. The typ-
ical (mode of histogram) measurement error of a star position is
≈0.9 mas for both image scales. The timeline of observations is
five years. The number of epochs is 10 for the large (27 mas/pix)
scale and 42 for the small (13 mas/pix) scale imaging
data.

In total we were able to extract proper motions for 5548 stars
located in the large scale fields; out of these, 755 sources were
additionally covered by the small scale images. Typical (mode of
histogram) statistical proper motion accuracies are ≈0.18 mas/yr
per coordinate for the large scale data sets and ≈0.1 mas/yr

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810191&pdf_id=3
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Fig. 4. Histograms of proper motion errors. Top panel: large pixel scale
(27 mas/pix). Bottom panel: small pixel scale (13 mas/yr). The distri-
butions peak at ≈0.18 mas/yr in case of the large pixel scale and at
≈0.1 mas/yr in case of the small pixel scale, corresponding to 6.8 km s−1

and 3.8 km s−1 respectively.

per coordinate for the small scale fields. This corresponds to
≈6.8 km s−1 and ≈3.8 km s−1, respectively. The error distribu-
tions are presented in Fig. 4.

We focused on the behaviour of the late-type population
of stars which is expected to be dynamically relaxed (Genzel
et al. 2003). Therefore we excluded 103 spectroscopically iden-
tified early-type stars which are known to mainly move in disks
(Paumard et al. 2006); this reduced the number of 2D velocity
stars from 5548 to 5445. One should however note that prob-
ably some more, so far unidentified, early-type stars are still
included in our proper motion sample (under investigation by
Bartko et al., in prep.).

An additional, systematic uncertainty is introduced by the
relative astrometric reference frame. This frame is based on stars
with proper motions known only a posteriori and with respect
to the star cluster. Thus a systematic motion of the reference
frame is possible. Using the average number of applicable large
scale image reference stars, which is 433, and the rms velocity
of the reference stars (3.6 mas/yr or 137 km s−1), we estimate
this systematic uncertainty (standard error) to be 0.17 mas/yr or
6.4 km s−1.

Fig. 5. Histogram of statistical errors in line-of-sight velocity for
664 stars. The distribution peaks at ≈7 km s−1.

4. Radial velocities

4.1. Source selection

We extracted spectra of late-type CO absorption stars from the
SINFONI cubes. For each star we selected source and back-
ground pixels by hand. Background pixels were selected from
pixels surrounding the source pixels. A corrected star spectrum
results from subtracting the average of the background pixels
from the average of the source pixels. This operation is necessary
in order to take into account incomplete sky subtraction, nebular
contamination, and flux spillover from neighbouring sources.

Due to the small FOV of SINFONI (8′′ × 8′′ at most), our
target area (central ≈40′′ × 40′′) is covered only partially; see
Paumard et al. (2006) for a detailed overview, especially their
Fig. 1. Additionally, the various data sets show different pixel
scales, Strehl ratios, and photometric completenesses. This in-
complete coverage of the star cluster is a serious limit for 3D
de-projection and kinematic phase-space analysis of the data.

4.2. Velocity fitting

We extracted stellar radial velocities by correlating the observed
spectra with a theoretical template spectrum (e.g. Tonry & Davis
1979). The model spectrum of a CO star obtained from the
MARCS stellar model-atmosphere and flux library (Gustafsson
et al. 2003) served as template. Main model parameters were
temperature Teff = 4250 K, gravitational acceleration log g =
0 [cm/s2], micro-turbulence velocity vturb = 2 km s−1, and so-
lar metallicities. The model parameters – especially Teff – were
selected in order to fit the most numerous stars in our sample,
which are red clump stars (Maness et al. 2007).

As we were especially interested in the behaviour of evolved
late-type stars, we focused our analysis on the CO bandhead
lines in the wavelength range ≈2.28...2.37 µm. If the maximum
correlation was lower than 0.55, the computed velocity was re-
jected as unreliable. We chose this threshold experimentally after
checking the spectra by eye. All velocities were corrected to the
local standard of rest using the standard IAU solar motion (see,
e.g., Kerr & Lynden-Bell 1986, and references therein).

In total we extracted radial velocities for 664 late-type stars.
Typical statistical velocity accuracies are ≈7 km s−1; their dis-
tribution is presented in Fig. 5. Additionally, a systematic un-
certainty is introduced by the selection of the model spectrum

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810191&pdf_id=4
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Fig. 6. K magnitude distributions of all 5445 (non early-type) proper
motion stars (black curve) and the 664 3D velocity stars (grey curve).
Please note the different binnings. The distributions peak in the range
K ≈ 15...16; this is the regime of the Red Clump stars. For K > 16, the
completeness quickly decreases.

parameters. From a comparison of several model spectra, we es-
timate this systematic error to be ≈5 km s−1. Figure 6 shows the
K magnitude distribution of the 5445 proper motion stars and
the 664 stars with radial velocities.

5. Results and discussion

5.1. Isotropy and rotation

With proper motions for 5445 stars and 3D-velocity vectors for
664 stars, we extracted the dynamical properties of the clus-
ter. Our data provide information for projected distances from
Sgr A* up to about 27 arcsec. As a first step we computed veloc-
ity dispersions along all coordinate directions.

In order to calculate these parameters we used the method by
Hargreaves et al. (1994). For each coordinate axis q, this algo-
rithm computes the average velocity 〈vq〉 and the velocity disper-
sion σq for a given ensemble of stars using the iterative scheme

〈vq〉 =
∑

i wi · vq,i
∑

i wi

(12)

σ2
q =

∑

i[(vq,i − 〈vq〉)2 − δ2
q,i

] · w2
q,i

∑

i w
2
q,i

(13)

with vq,i being the q component of the velocity of star i, δq,i be-
ing the respective error, and wq,i = 1/(δ2

q,i
+ σ2

q) being the star’s
weight. In general, not more than three iterations are necessary
to obtain stable results; we usually used five. The respective sta-
tistical errors are

δ〈vq〉 =

√

σ2
q + 〈δ2

q,i
〉

N
(14)

δσq =
σ2

q + 〈δ2
q,i
〉

σq

√
2N

· (15)

N is the number of stars, 〈δ2
q,i
〉 is the mean squared statistical

velocity error per star. For the case 〈δ2
q,i
〉 ≪ σ2

q this simplifies to

δ〈vq〉 ≃ σq/
√

N and δσq ≃ σq/
√

2N.

Fig. 7. Modulations in stellar proper motions. Shown here is the number
of stars vs. angle of the proper motion vectors. The angle is defined as
atan2(vx , vy) and counted from north to east. Black points with error bars
are the data; horizontal error bars mark the full bin widths, vertical error
bars are Poisson

√
N errors. This diagram tests the preferential orien-

tations of proper motion vectors on sky. The vertical dashed grey lines
mark the location of the Galactic plane (+27.1◦ and counter-direction).
A cosine fit to the data (grey curve) finds a phase φ = +30 ± 5◦, in
agreement with the orientation of the Galaxy.

For the two velocity dispersions in RA (labelled x) and
Dec (labelled y) using all 5445 proper motion stars we found
the values

σx = 2.668 ± 0.027 mas/yr

σy = 2.824 ± 0.028 mas/yr

implying that the dispersions in RA and Dec are signicantly dif-
ferent (by about 4σ).

To check the amount and geometric structure of a possible
anisotropy in the proper motion vectors we tested their preferen-
tial orientations on sky. For each star we computed the angle ψ =
atan2(vx, vy) which is counted from north to east3. The resulting
histogram is shown in Fig. 7. In case of isotropy the distribution
would be flat. The histogram, however, shows a highly signifi-
cant cosine-like pattern. This pattern is consistent with the sig-
nature of a rotating disk seen edge-on, but also with an intrinsic
anisotropy in random motions. Fitting this pattern with a cosine
profile reveals a phase of +30 ± 5◦, which is in agreement with
the plane of the Milky Way located at +27.1◦ (J2000).

The distribution shown in Fig. 7 shows the presence and
orientation of a rotation and/or anisotropy pattern, but not its
strength in terms of velocities or velocity dispersions. In order
to quantify the modulation of the proper motion distribution, we
used the following ansatz: for a given principal coordinate axis
we computed the velocity dispersions parallel (σ‖) and perpen-
dicular (σ⊥) to this axis using all available proper motions. Then
we calculated the difference in squares of these two dispersions,
∆σ2 = σ2

‖ − σ
2
⊥. By rotating the principal axis stepwise on sky,

we obtained ∆σ2 as a function of the angle. The resulting curve,
here using a step size of 5◦, is shown in the top panel of Fig. 8.
Since for all data points the same set of proper motions is used,
the points are correlated. Using a cosine fit to describe the data,
we find an amplitude of ∆σ2

max = 2.00 ± 0.21 (mas/yr)2.

3 Where atan2 is the quadrant-preserving arctangent.
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Fig. 8. Signatures of rotation and/or anisotropy in proper motions and
radial velocities. Top panel: angle on sky (counted from N to E) vs.
difference in square dispersions ∆σ2 = σ2

‖ −σ
2
⊥. Here σ‖ (σ⊥) is the ve-

locity dispersion parallel (perpendicular) to a given principal axis which
is rotated stepwise. The black dots and the black curve show the ob-
served modulation, dashed black curves mark the 1-σ uncertainty range.
Vertical grey dashed lines mark the position of the Galactic plane, the
horizontal grey dashed line is the zero level of ∆σ2. The modulation has
an amplitude of ∆σ2

max = 2.00 ± 0.21 (mas/yr)2. Bottom panel: average
radial velocities 〈vz〉 vs. Galactic longitude l. Black points are the data,
error bars along the l axis mark the full bin sizes, error bars in velocity
direction are 1-σ-errors. Grey dashed lines mark the zero levels of l and
〈vz〉. As the number of stars is smaller for l < 0, errors are larger in this
range. A linear fit to the data (continuous black line) obtains a rotation
velocity of 1.4 ± 0.4 km s−1/arcsec.

As shown above, the geometry of the cluster kinematics is in
good agreement with the orientation of the Galaxy. Thus rel-
ative Galactic coordinates l, b are a more natural coordinate
system than ecliptic coordinates α, δ. In the following discus-
sion we will therefore preferentially focus on coordinates and
velocities transformed into relative Galactic coordinates, using
(l, b)Sgr A∗ = (0, 0).

In stellar line-of-sight velocities, rotation in the sense of gen-
eral Galactic rotation was previously reported (McGinn et al.
1989; Genzel et al. 1996, and references therein). Therefore we
computed for our 664 radial velocity stars (which form a subset
of the proper motion stars) the average stellar radial velocities in
given l bins. The resulting pattern is shown in the bottom panel
of Fig. 8. Using a linear fit to describe the data points, we find
the velocities to be zero within the errors (4.8 km s−1) at l = 0,

Fig. 9. Histograms of proper motions in l and b of all proper motion
stars. Error bars mark the Poisson errors. Dotted lines represent the
respective best-fitting Gaussians. Average velocities 〈vl,b〉 and velocity
dispersions σl,b are given in the plot. Whereas the b velocities appear to
be normally distributed, the l velocities show a clear rotation pattern.

positive (i.e. receding from the observer) towards positive
Galactic longitudes, and negative (i.e. approaching the observer)
towards negative l, as expected. This does however not imply
that the physical (projected) rotation profile actually follows a
linear relation; given the limited accuracies of the data, using
a more complex rotation model is not justified. Keeping this in
mind, we find a rotation velocity of 1.42 ± 0.36 km s−1/arcsec.
This corresponds to a 4-σ-detection of the Galactic rotation in
radial velocities for | l |≤24 arcsec.

The velocity distributions in l and b for all 5445 proper mo-
tion stars are shown in Fig. 9 together with the respective best-
fitting Gaussian profiles. The velocities in b appear to be nor-
mally distributed. In contrast, the histogram of the l velocities
shows clear broadening and flattening. The pattern can be ap-
proximately described as a convolution of a Gaussian with width
σb and two δ-peaks located at roughly ±2.5 mas/yr. This corre-
sponds to the edge-on view through a system rotating with a
fixed rotation velocity of ≈2.5 mas/yr. However, this number is
an averaged and projected value and affected by the finite FOV;
therefore it must not be read as the physical rotation velocity. We
will discuss this quantitatively in Sect. 5.3.

5.2. Distribution of stellar 3D speeds

Analysing the distribution of the stars’ 3D speeds v3D allows one
to test wheteher the cluster is dynamically relaxed. In case of the
nuclear cluster, the velocity dispersion scales with the projected
distance from Sgr A*, r, like σ ∝ r−0.5. As we do not have a
detailed dynamical model at hand, we approximate the expected
3D speed distribution as a superposition of local (meaning in
r bins) Maxwellian distributions.

In order to test the distribution of the GC star speeds, we
analysed 664 stars with known 3D velocities. For each star we
computed a bias-corrected4 3D speed

v3D =

√

v2x + v
2
y + v

2
z − δv2x − δv2y − δv2z (16)

4 Velocity squares are limited to values ≥0. Therefore the statistical
velocity errors systematically shift the results towards higher values.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810191&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810191&pdf_id=9


S. Trippe et al.: Kinematics of the old stellar population at the Galactic centre 427

Fig. 10. Distribution of stellar speeds for all 3D velocity stars. Points
with error bars are data; errors in star numbers are Poisson errors, er-
rors in vmark the full bin widths. The continuous grey line corresponds
to a superposition of Maxwellian distributions for local velocity dis-
persions σ3D(r); this line is not a fit to the data. Observed and model
distributions are in good agreement; we find χ2

red = 1.16.

where vx,y,z are the velocities (in km s−1, assuming R0 = 8 kpc;
see Sect. 1, 5.5) and δvx,y,z are the respective statistical errors.

In a separate step, we calculated 3D velocity dispersions via

σ3D(r) =
√

σ2
x(r) + σ2

y(r) + σ2
z (r). (17)

This σ3D is actually the sum of projected velocity dispersions,
meaning it is an approximation for the true 3D dispersion. The
average dispersion for all stars is 〈σ3D〉 = 179 ± 5 km s−1. For
our analysis, we grouped our stars in r bins of 3 arcsec width.
This bin size ensures that at least 20 stars are located in each bin.
For each bin we computed the observed 3D dispersion according
to Eq. (17) and from this (and the number of stars in the bin) a
Maxwellian profile. The combined profile for all 664 stars is the
superposition of all individual Maxwellians.

Observed and theoretical distributions are compared in
Fig. 10. A reduced-χ2 test finds χ2

red = 1.16, indicating a good
agreement. This tells us that our simple model indeed is –
within errors – a reasonable approximation of the true speed
distribution.

Although there is good agreement between the prediction of
this model and the data, it is possible that there are few high-
velocity stars which are inconsistent with the global distribution
(in terms of our Maxwellian approximation). We therefore ex-
amined the number of stars with v3D(r) > 2σ3D(r). From inte-
grating a Maxwellian, we expect this to be the case for a fraction
of 0.0074 of the stars in a given ensemble, i.e. this should be the
case only for a very small number of stars. In one case, we find
2 out of the 61 stars located in the respective bin showing such
high velocities where 0.45 are expected. Using a Monte Carlo
test (with 10 000 realizations) operating on a Maxwellian distri-
bution for 61 stars, we find the probability for two stars having
v23D(r) > 4σ2

3D(r) to be 7.6% (corresponding to a Gaussian sig-
nificance of 1.8σ) – suggesting this excess is not significant. All
stars in our sample are thus compatible with Maxwellian statis-
tics. We therefore conclude that our ensemble of CO stars is con-
sistent we being a uniform, dynamically relaxed system.

This result helps put the high speed of the SiO maser star
IRS 9 (cf. Fig. 1) recently discussed by Reid et al. (2007)

Table 1. Properties of the high velocity star S111. Coordinates x, y are
given in arcsec, velocities v are given in km s−1. Errors are statistical.

Parameter Value Error
xa –1.127 0.001
ya –0.936 0.001
r 1.464 0.001
vx –121 5
vy –308 5
vz –739 5
v3D 810 9
v<∞ 788 40b

a Position fit for reference epoch 2005.36; b error (statistical + system-
atic) due to uncertainties of M• and R0.

into context. They found a 3D speed of ≈370 km s−1 for this
star located 0.33 pc away from Sgr A*. They concluded that
IRS 9 is too fast to be bound to the mass enclosed within its
radial position from Sgr A*. From our analysis (see Fig. 10)
one can see that IRS 9 has a high, but not excessive 3D ve-
locity with respect to the global speed distribution. As we find
11 out of 664 (i.e. 1.7%) stars with speeds above 358 km s−1 (i.e.
v23D > 4〈σ2

3D〉), detecting one out of 15 as in the Reid et al. (2007)
sample does not appear exceptional.

We however find one more star with a very high speed of
v3D = 810 ± 9 km s−1. This speed exceeds by far the range of the
statistical distribution shown in Fig. 10. Gillessen et al. (2008)
identify this star – labeled S111 – as a member of the S-star
cluster. Table 1 summarizes the properties of S111.

The projected distance r gives a lower limit for the physical
3D distance R. From this we compute the highest speed possible
for a star which is still bound to the black hole:

v<∞ =

√

2GM•

r
· (18)

Hence we see that S111 might be not bound to Sgr A*. This is in
agreement with the findings by Gillessen et al. (2008) who con-
clude that S111’s orbit around Sgr A* might be hyperbolic. It is
however possible that S111 is still bound to the GC star cluster
if (a) it follows a highly eccentric orbit and (b) we happen to
observe it close to its pericentre. In this case, the stellar mass en-
closed by the star’s orbit can be (together with Sgr A*) sufficient
to bind the star to the cluster. For a more detailed outline of this
scenario, see Reid et al. (2007).

S111’s high velocity might point towards dynamical inter-
actions different from normal two-body relaxation processes in
a near-thermal stellar population. In a recent analysis, Perets
et al. (2007) point out that the presence of so-called massive per-
turbers (mainly giant molecular clouds) in the GC region might
lead to a substantial number of close encounters between binary
stars and Sgr A*. Such three-body interactions can result in bi-
nary disruption with one of the stars being ejected from the GC
with a speed up to several thousand km s−1 (Hills 1988).

This scenario is of interest especially in view of Galactic hy-
pervelocity stars (HVS) which have speeds higher than the es-
cape speed of the Milky Way (although this is not the case for
S111 itself). Right now, 16 of these stars with GC distances in
the range ≈30...130 kpc are known (Brown et al. 2005, 2007;
Edelmann et al. 2005; Hirsch et al. 2005; Brown et al. 2008).
These stars are assumed to have been ejected from the Galactic
centre according to the mechanism proposed by Hills (1988), al-
though Przybilla et al. (2008) and Bonanos et al. (2008) recently
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Fig. 11. Velocity dispersion profiles. Top panel: proper motion disper-
sions. Squares with error bars are observed velocity dispersions σl,b vs.
projected distance from Sgr A* r. Continuous lines mark the best-fitting
cluster model assuming a spherical, rotating system (please see the text
for details). Bottom panel: observed radial velocity dispersions. As the
number of 3D velocity stars is about nine times smaller than the num-
ber of 2D velocity stars, the profile is sampled sparsely compared to the
proper motion dispersion profile.

concluded that one of these stars actually originates from the
Large Magellanic Cloud.

In summary, we can conclude the following: (1) the distribu-
tion of the stellar 3D speeds confirms the locally relaxed nature
of the GC late type cluster. (2) We might have found one high-
velocity star unbound to Sgr A*.

5.3. Kinematic modelling

The large number of proper motions we have at hand allow us
to compute a densely sampled velocity dispersion profile. We
calculated the velocity dispersions σl,b as functions of projected
distance from Sgr A* r for r < 27”. The resulting distributions
are shown in Fig. 11 (along with the corresponding profile for
σz). Within the errors, both profiles (σl,b) decrease monotoni-
cally with increasing projected distance. With increasing r, the
two profiles diverge due to rotation and possibly anisotropy.

Additional information is provided by the rotation profile
〈vz〉(l) obtained from radial velocity data. For |l| ≤ 24′′ we make
use of our SINFONI results (see Fig. 8, bottom panel). We also

Fig. 12. Average radial velocity vs. Galactic longitude l as derived from
our modelling (continuous grey line). For comparison, the observed val-
ues (black data points with error bars) are given. The data are from our
work and from McGinn et al. (1989).

included data from McGinn et al. (1989) covering the range
|l| = 45...85′′; see Fig. 12 for an overview. In the following dis-
cussion we neglect the fact that 〈vz〉(l) was not measured exactly
at b = 0 but in a strip |b| <∼ 10′′; we found that this has no signif-
icant impact.

In order to quantify the cluster’s dynamical properties we
simultaneously analysed the proper motion dispersion and ro-
tation profiles. We used an edge-on rotating, spherical stellar
system as a model. We fit the model parameters to the data by
means of a χ2 minimization. Coordinates l, b, z are Galactic lon-
gitude, Galactic latitude, and l.o.s. axis respectively. Our model
contains spherical coordinates R, θ, φ; these are the 3D distance
from Sgr A*, the zenith angle (with θ = 0 (π) being (anti)parallel
to the b axis, θ = π/2 being parallel to the l axis), and the azimuth
angle respectively. The projected 2D distance from Sgr A* is de-
noted by r.

For our model fit we solve the equations

Σ(r)σ2
b(r) = 2

∫ ∞

r

σ2
b(R)

ρ(R)R
√

R2 − r2
dR (19)

Σ(r)σ2
l (r) = 2

∫ ∞

r

[

σ2
l (R) + ṽφ(R)2

(

1 − r2

R2

)]

ρ(R)R
√

R2 − r2
dR (20)

Σ(r = |l|)vz(|l|) = 2
∫ ∞

r=|l|
vφ(R, θ = π/2)

r

R

ρ(R)R
√

R2 − r2
dR (21)

with

Σ(r) = 2
∫ ∞

r

ρ(R)
R

√
R2 − r2

dR. (22)

Σ(r) is the cluster’s stellar surface mass density in the sky plane
(not the one of the sample population; see the discussion in
Sect. 3.1), ρ(R) is the 3D stellar volume mass density, σl,b(R) is
the intrinsic velocity dispersion, and vφ(R, θ) is the rotation speed
(e.g. Wilson 1975; Binney & Tremaine 1987; Gerhard 1994;
Genzel et al. 1996, 2000).
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In the integrations we use the parametrized functions

vφ(R, θ) = vr
R sin θ

√

R2 sin2 θ + η2

(23)

ṽφ(R) =
1
π

∫ π

0
v(R, θ)dθ (24)

ρ(R) =
ρ0

1 + (R/Rb)2
(25)

σ2
b(R) = σ2

0(R/Rz)
2α + σ2

∞,b (26)

σ2
l (R) = σ2

0(R/Rz)
2α + σ2

∞,l. (27)

In this parametrization, ρ(R) is given as a powerlaw sphere pro-
file with break radius Rb; σl,b(R) is given as a superposition of a
powerlaw dispersion profile and a – possibly anisotropic – con-
stant floor dispersion at infinite distances σ∞,l,b. The rotation ve-
locity is described by a profile rising from 0 to an asymptotic
speed vr with a characteristic scale η.

We selected the parametrization of the density profile ac-
cording to the results from observations of stellar number counts
and K-band surface brightness distributions5 (Launhardt et al.
2002; Genzel et al. 2003; Mouawad et al. 2005; Schödel et al.
2007). However, the characteristic scale η is not well constrained
by the observations; reported values range from ≈6′′ (Launhardt
et al. 2002) to ≈10′′ (Genzel et al. 2003). Therefore we intro-
duce η as a fit parameter into our model because it is not a priori
clear that the η which fits best the kinematics is the same as the
density profile break radius.

Since for our purposes the normalization factors ρ0, Rz

(Eqs. (25)−(27)) are arbitrary, we fixed them to 1. It is well-
known that the cluster is dominated by the point mass Sgr A*;
we therefore selected a Keplerian profile for the velocity disper-
sion, i.e. α = −0.5.

In summary, we fit for the 6 fit parameters {σ0, σ∞,b, σ∞,l,
Rb, vr, η}. We used the Mathematica FindMinimum6 routine to fit
the model to the observed dispersion profiles σl,b(r). From the
best-fitting model we found

σ0 = 359 ± 30 km s−1

σ∞,b = 54.2 ± 8.0 km s−1

σ∞,l = 55.4 ± 8.8 km s−1

Rb = 8.9 ± 3.5 arcsec

vr = 189 ± 38 km s−1

η = 109 ± 44 arcsec.

Parameter errors are statistical (68% confidence level, ∆χ2 =

7.17). The fact that some of these errors are relatively large mir-
rors correlations between parameters. We find χ2

red ≡ χ
2/F =

0.79; F = 61 is the number of degrees of freedom. This shows a
good agreement between model and observational data. The re-
sulting model profiles are presented in Figs. 11, 12 together with
the corresponding data.

5 In this discussion, we assume a constant mass-to-light ratio.
6 Wolfram Research, Inc., Champaign, IL, USA.

Fig. 13. Stellar surface mass density Σ vs. projected distance r from
Sgr A* for the model cluster.

We can now draw several conclusions. The main assump-
tions our model is based on, especially stellar density profile and
velocity dispersion profiles, actually allow for a reasonable fit
(χ2

red
<∼ 1). We can thus be confident that our model description

is sufficiently complete. Our result Rb ≈ 9′′ is in good agree-
ment with the observations of the density distribution. Figure 13
shows the stellar surface density as found by our modelling. The
different scalings (mass densities vs. observed number densities)
aside, this profile is in good agreement with the earlier observa-
tions discussed above.

As σ∞,l = σ∞,b within the errors, the nuclear cluster can be
described as an isotropic system.

Until now, our discussion was focused on the kinematic de-
scription of the nuclear cluster. In the following, we will draw
dynamical conclusions.

Since we have analytic parametrizations for the stellar den-
sity profile (Eq. (25)), dispersion profile (Eqs. (26), (27)), and
rotation profile (Eqs. (23), (24)) at hand, we can compute the
mass profile of the cluster. For a spherical, isotropic, rotating
system, the mass distribution is given by the Jeans equation via

GM(R) = −Rσ2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

d log ρ
d log R

+
d logσ2

d log R
−
v2φ

σ2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

R

(28)

(e.g. Binney & Tremaine 1987). This relation allows us to com-
pute the enclosed mass as a function of R. A non-zero value at
R = 0 should correspond to a central point mass, in our case the
mass of Sgr A*.

In Fig. 14 we show the results found when inserting our best-
fitting model parameters (black curves). Contrary to the known
value M• ≃ 4 × 106 M⊙ (Schödel et al. 2002, 2003; Ghez et al.
2003, 2005, 2008; Eisenhauer et al. 2005; Gillessen et al. 2008),
the total enclosed mass drops down to M(R → 0) ≃ 1.2 ×
106 M⊙. The formal statistical 1σ uncertainty of this value is
≈15%, meaning the discrepancy is systematic.

This inconsistency in the behaviour of Jeans equation mass
profiles in star cluster cores was already noted by Kormendy
& Richstone (1995). They conclude that a good sensitivity
to central point masses is given only in the case of steep
(d logρ/d log R <∼ −2) density profiles. If the central core of a
stellar system is resolved (leading to d logρ/d log R ≈ 0 for
R → 0), the enclosed mass drops systematically compared
to measurements using the large-scale, “intrinsic” slope of the
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Fig. 14. Enclosed mass vs. distance from Sgr A* calculated via the
Jeans equation for 1′′ < R < 100′′ . The continuous black curve is the
mass profile using our best-fitting model density profile with break ra-
dius Rb = 8.9′′. The continuous grey line shows the profile obtained
when neglecting the flattening of the density profile towards small R,
i.e. assuming Rb = 0. The corresponding dashed curves are the stellar
mass profiles obtained by subtracting the central point masses (i.e. the
values found at R = 0). The scale is 1 pc ≡ 25.8′′.

density profile. This behaviour is obvious from Eq. (28). We
therefore might interpret our findings as due to a “resolution ef-
fect”. This is especially interesting in view of the fact that the
central few arcseconds of the nuclear cluster are dominated by
a different stellar population. Whereas we analyse the proper-
ties of CO late-type stars, towards small R an increasing fraction
of the stars belongs to a population of young early-type stars.
Therefore the intrinsic slope of the density profile in the central
part of the cluster is not obvious at all.

In order to check the influence of this “resolution effect”, we
repeated our calculations neglecting the flattening of the density
profile towards the cluster centre, i.e. assuming Rb = 0. The re-
sulting mass profiles are shown in Fig. 14 (grey curves). Here we
indeed find M(R → 0) ≃ 3.6 × 106 M⊙, in agreement with the
mass of Sgr A* (within the errors). For R > 1 pc, the discrep-
ancy between the profiles vanishes. However, we do not con-
clude from this that we have found the true mass of the central
SMBH by applying the proper assumption. Instead, the range of
results should be read as the systematic uncertainty intrinsic to
this type of mass estimates. This means that the Jeans profile
ansatz allows us to derive the correct order of magnitude (a few
106 M⊙ in our case) of the central point mass, but with a factor
≈2 systematic uncertainty.

In any case (Rb = 8.9′′ or Rb = 0), we can derive the en-
closed stellar masses M∗(R) by subtracting the corresponding
central point masses. The resulting profiles are given in Fig. 14
(black and grey dashed curves). Within the systematic uncertain-
ties, the profiles begin at M∗(R = 1′′) ≃ 4 × 104 M⊙ and rise to
M∗(R = 100′′) ≃ 2.3 × 107 M⊙. Although this is just consistent
with earlier studies (e.g. Lindqvist et al. 1992; Ghez et al. 1998;
Genzel et al. 1996, 2000, and references therein), our masses are
systematically higher by factors ≈1.5. This is due to the fact that
we find a faster rotation of the cluster than the aforementioned
works. For the same reason, we find a somewhat smaller sphere
of influence (meaning the radius where M∗(R) = M•; Alexander
2005) for Sgr A* which is ≈1.5 pc (instead of ≈3 pc; Alexander
2005).

In order to calibrate the Σ-axis of Fig. 13, we adopted the
following approach. We use Eq. (28) to compute the enclosed
mass M(R) at a reference distance R which is large enough to
avoid the range where the mass profile shows substantial uncer-
tainties but still within the range covered by data (see Fig. 12).
We picked R = 47”. For this R, the expressions given in the (· · ·)
part of Eq. (28) are ≈−1.9, ≈−0.5, and ≈1.0, respectively. From
this we find M(R = 47′′) ≃ 8.3 × 106 M⊙. Subtracting the contri-
bution by Sgr A* (M• ≃ 4 × 106 M⊙) leaves us with an enclosed
stellar mass M∗(R = 47′′) ≃ 4.3 × 106 M⊙. With this value, we
obtain ρ0 ≃ 2.1 × 106 M⊙/pc3 (see Eq. (25)).

5.4. Phase-space distributions

As shown in Sects. 5.1−5.3, the observed part of the GC star
cluster can approximately be described as a spherical rotator
with normally distributed random stellar velocities. It is, how-
ever, not clear if the observed stars kinematically indeed form
a single system. A well-known example for kinematic segrega-
tion in the GC is the dichotomy between isotropically distributed
old late-type stars and young early-type stars arranged in disks
(Genzel et al. 2003; Paumard et al. 2006).

A common way to characterize a stellar system is the use
of phase-space maps (e.g. Ibata et al. 2001; Yanny et al. 2003;
Martinez-Delgado et al. 2004; Seabroke & Gilmore 2007).
Applying this method to our data, we construct a variety of
phase-space diagrams. The resulting distributions are presented
in Figs. 15 and 16. Qualitatively, there appears to be no substruc-
ture or grouping. In the vz-l-diagram the data are biased towards
positive l. This is an observational artefact as SINFONI spectra
were preferentially obtained north of Sgr A*7, roughly corre-
sponding to l > 0.

The phase-space maps also mirror the influence of global
rotation and anisotropy discussed in the previous subsections.
These effects show up as a broadening of the vl-vs.-coordinate
distributions along the velocity axes compared to the respective
distributions for vb. However, one can hardly recognize the rota-
tion pattern from the vz-l plot as the random scatter of the data
points (i.e. the dispersion) is much larger than the modulation in
the velocity average (cf. Fig. 8, bottom panel).

In order to quantify the presence (or absence) of phase-space
substructure, we made use of the two-point correlation function
(TPCF)

ξ(s) =
nR

nD

DD(s)
DR(s)

− 1 (29)

(Davis & Peebles 1983). For a given distance s, DD(s) is the
number of pairwise distances between observed stars (also re-
ferred to as the data-data distances) located in the corresponding
distance bin. DR(s) is the number of pairwise distances between
the observed stars and the members of a comparison ensemble,
usually a random, uniform one (thus DR(s) is also referred to as
the data-random distances). nD (nR) is the total number of data-
data (data-random) distances. By definition, ξ(s) is located in the
range [−1;+∞]; ξ(s) = 0 corresponds to full agreement between
observed ensemble and comparison ensemble.

We computed the TPCF for all 5445 proper motion stars.
Since, in phase-space, the distance parameter s mixes positions
and velocities, we used a normalized 4D distance

s =
√

(∆l/x0)2 + (∆b/x0)2 + (∆vl/v0)2 + (∆vb/v0)2. (30)

7 Because SINFONI’s AO guide star is located ≈17′′ north of Sgr A*.
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Fig. 15. Velocity-coordinate phase-space maps. Velocities in the sky plane vl,b include all 5445 proper motion stars; line-of-sight velocities vz are
given for 664 stars. The scale is 1 mas/yr ≡ 37.9 km s−1. Compared to the vb, the vl distributions are broadened (in velocity) due to the global
rotation. The vz are biased towards positive l as SINFONI spectra were collected mainly north of Sgr A*. These global properties aside, the
diagrams show no obvious patterns or sub-structures.

Here x0, v0 are (a priori arbitrary) constant distances and ve-
locities; ∆ denotes the difference in the given coordinate.
In order to match the phase-space dimensions of the clus-
ter (cf. Figs. 15, 16), we chose x0 = 1 pc = 25.8′′, v0 =
400 km s−1 = 10.55 mas/yr (with R0 = 8 kpc). Thus s = 1
corresponds to the half side length of a “phase space unit cell”.

As a first step, we computed the TPCF using a ran-
dom, uniformly distributed comparison ensemble. The resulting

distribution is shown in Fig. 17 (left hand panel). It mirrors the
obvious clustering of phase-space points around (l, b, vl, vb) =
(0, 0, 0, 0) shown in Figs. 15, 16. The point where the profile
crosses the ξ(s) = 0 line can be identified as a characteristic
phase-space radius of the cluster; this radius is sc ≃ 1.05.

As a second step, we computed the TPCF using a Monte
Carlo model of the cluster. This model is a random realiza-
tion of the kinematic model solution described in the previous
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Fig. 16. Velocity-velocity phase-space maps. The distribution of vl vs. vb is given twice, once for all 5445 proper motion stars (top left) in mas/yr,
once for all 664 3D motion stars (top right) in km s−1. The scale is 1 mas/yr ≡ 37.9 km s−1. In analogy to Fig. 15, the global rotation shows up
as a broadening of the vl,z distributions with respect to vb (see also Figs. 9, 18). These global properties aside, there is no obvious substructure or
grouping.

section. We extracted model data by applying an “on-sky” se-
lection mask simulating the actual imaging observations and the
selection of stars (FOV, minimum star-star distances). These val-
ues were inserted into the TPCF calculation.

The right hand panel of Fig. 17 shows the resulting ξ(s) pro-
file. In general, data and model are in very good agreement, de-
viations are typically of the order <1% (from ξ(s) + 1 = 1).
The largest deviations from data-model equality, about 4%, oc-
cur at s ≈ 0.15. Such a signal at small s corresponds to a slight
excess of stars with small pairwise phase-space distances com-
pared to the model distribution. This would mean that either
(1) the model distribution slightly underestimates the number
of stars with small s or (2) the cluster contains a small excess
(with respect to a random sample) population of stars moving

coherently. However, in either case it is safe to conclude that
our – quite simple – kinematic model indeed reproduces the ob-
served projected phase-space distribution of the GC cluster.

We did not include stellar radial velocities in the TPCF anal-
ysis. The spectra were extracted from 24 separate SINFONI
data sets with different FOVs, pointings, pixel scales, integra-
tion times, spectral ranges, PSFs, and limiting magnitudes (see
Sect. 4.1). This prevented a consistent reconstruction of the ob-
servation/selection mask, thus excluding the reliable extraction
of a model cluster.

In total, we can conclude that the GC star cluster is a uni-
form, well phase-mixed system. This is in good agreement
with the age estimate for the cluster. Maness et al. (2007) find
constant star formation for >12 Gyr, meaning that most stars
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Fig. 17. 4D two-point correlation functions for all proper motion stars. The normalized distance s is defined via s2 = (∆l/x0)2 + (∆b/x0)2 +

(∆vl/v0)2+ (∆vb/v0)2; x0, v0 are constants. Please note the different ξ(s) axis scales. Left hand panel: measured phase-space distances compared to a
uniform random distribution. The profile mirrors the obvious clustering of phase-space points around (l, b, vl, vb) = (0, 0, 0, 0) shown in Figs. 15, 16.
Right hand panel: measured phase-space distances compared to a Monte-Carlo model of the GC cluster. Deviations from the uniform rotator model
cluster do not exceed ≈0.04.

are older than ≈109 yr, the cluster’s two-body relaxation time
(Alexander 2005). In the following, we will discuss how our
findings might help to constrain the dynamical history of the nu-
clear cluster. The most important question here is: if the GC clus-
ter experienced the infall of another stellar system (e.g., a small
star cluster), would we be able to detect corresponding kinematic
traces in our data?

This discussion ties in with the debate on the origin of
the young (≈6 Myr) early-type stars located in two disks cen-
tered on Sgr A*, for which two mechanisms have been pro-
posed: in situ star formation (e.g. Levin & Beloborodov 2003;
Goodman 2003) or infall of a star cluster (e.g. Gerhard 2001;
McMillan & Portegies Zwart 2003). In their analysis, Paumard
et al. (2006) conclude that the initial mass of an infalling clus-
ter is limited to ≈17 000 M⊙ for the more massive disk. In
contrast, the inpiraling-cluster-scenario requires initial cluster
masses >105 M⊙. From this, Paumard et al. (2006) conclude that
the inpiraling-cluster-scenario is highly unlikely.

On the one hand, the limited number of data points (in phase
space) sets a lower limit on the numbers of stars involved in or
affected by such an event. Events involving only a small frac-
tion of the stellar population would be masked by Poisson noise
and residual methodological uncertainties. For somewhat larger
events, the cluster returns to a relaxed, (quasi) equilibrium state
within about one two-body relaxation time; this time is about
1 Gyr (Alexander 2005). However, phase-mixing (e.g. Binney &
Tremaine 1987) might erase the phase-space signature of any in-
fall event already within few dynamical times (tdyn ≈ 105 yr for
the GC cluster; Alexander 2005)

On the other hand, violent relaxation (Lynden-Bell 1967;
for a recent review, see Bindoni & Secco 2008, and references
therein) sets an upper limit on the amount of a dynamical distor-
tion we could detect. In case of the infall of a massive object (in
the order of the mass of the nuclear cluster), the cluster returns to
a relaxed, (quasi) equilibrium state within about one dynamical
time. This means that we would miss infalls of massive objects
longer ago than few 105 years anyway.

To summarize this discussion: we do not detect obvious kine-
matic signatures of an infall event. This indicates that there has
been no major distortion of the GC cluster at least within the
last few 105 years. At this stage we are not able to quantify our

statement further. We do expect, however, that a more detailed
analysis, possibly in combination with dynamical modelling,
will make the phase-space distribution analysis a valuable tool
for characterising the kinematics of the GC cluster.

5.5. Statistical parallax of the Galactic centre

The availability of 3-dimensional velocity vectors for several
hundred stars allows the computation of the distance to the
Galactic centre R0 using the statistical parallax. If the stellar ve-
locities are distributed isotropically, then the three velocity dis-
persions σx, σy, σz are equal. As σx, σy are measured in angular
units (mas/yr) whereasσz is measured in physical units (km s−1),
the distance scale can be derived directly.

As discussed in the previous sections, in case of the GC clus-
ter the global isotropy is broken by rotation. For the three veloc-
ity dispersions in l, b, and z of our 664 3D velocity stars we find
the values

σl = 2.928 ± 0.082 mas/yr

σb = 2.531 ± 0.071 mas/yr

σz = 102.3 ± 2.8 km s−1.

The respective distributions are shown in Fig. 18. Our value for
σz is in excellent agreement with the value of 100.9 ± 7.7 km s−1

found by Figer et al. (2003) who analysed a smaller sample of
85 CO absorption line stars (recently, Zhu et al. 2008, confirmed
this result).

In order to calculate a consistent distance estimate, we need
to take into account two effects:

(1) The cluster is rotating in the b = 0 plane. We therefore use
the assumption that the nuclear cluster is an axisymmetric
elliptical system with respect to the b axis. This means that
σl and σz (but not σb and σz) can be compared in order to
calculate the statistical parallax.
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Fig. 18. Histograms of proper motions in l and b (top panel) and of ra-
dial velocities (bottom panel) including all stars with measured 3D ve-
locities. The dotted curve in the bottom panel corresponds to the best-
fitting Gaussian profile. Error bars mark the Poisson errors. In both plots
the respective average velocities 〈vl,b,z〉 and velocity dispersions σl,b,z are
given.

(2) We need to include projection effects which affect the impact
of rotation. Whereas the observedσl is given by Eq. (20), the
observed σz is given by the relation

Σ(r)σ2
z (r) = 2

∫ ∞

r

(

σ2
l (R) + ṽ(R)2 r2

R2

)

ρ(R)R
√

R2 − r2
dR. (31)

This relation differs from Eq. (20) in the geometry factor multi-
plied with ṽ2(R); especially, this factor implies that σl > σz in
projection for a finite FOV. The use of σl(R) to calculate σz(r) is
due to the assumption of axisymmetry.

From a comparison of Eqs. (20) and (31) we obtain a projec-
tion correction factor

k =
σl(r→ FOV)
σz(r → FOV)

≥ 1. (32)

Here σl,z(r → FOV) are the projected velocity dispersions of
the entire sample calculated in identical units (either mas/yr or
km s−1). The case k = 1 corresponds to an infinite FOV; for
FOVs covering only the central part of the cluster, k > 1. From
this relation we obtain the effective velocity dispersion in z,

σ′z = kσz = σl (33)

where the second equality is given by the assumption of axisym-
metry. From our calculations we derive k = 1.095, leading to

σ′z = 112.0 ± 3.1 km s−1.

Comparison of σl and σ′z leads to R0 = 8.07 ± 0.32 kpc.
The error quoted above is the statistical uncertainty.

Additionally, systematic errors are introduced by selecting spe-
cific rotation profiles, (an)isotropic dispersion profiles, stellar
density distributions, and other kinematic parametrizations (see
Sect. 5.3). From testing a variety of model parametrizations, we
find a systematic error of 0.13 kpc.

All in all, we derive a statistical parallax for the nuclear clus-
ter of

R0 = 8.07 ± 0.32stat ± 0.13sys kpc.

This result is in full agreement with those obtained from the
observations of Keplerian stellar orbits around Sgr A* (e.g.
Eisenhauer et al. 2005; Lu et al. 2006). The most recent val-
ues are given by Gillessen et al. (2008) who find R0 = 8.14 ±
0.15stat ± 0.32sys kpc and by Ghez et al. (2008) who find R0 =

8.0 ± 0.6stat+sys kpc.
Our result also agrees with distance values obtained by

earlier statistical parallax measurements, which were 7.9 ±
0.9stat kpc (Genzel et al. 2000) and, more recently, 7.1 ±
0.7stat kpc (Eisenhauer et al. 2003a). In the aforementioned ex-
periments the systematic difference between the dispersions in l
and b directions was masked by larger statistical uncertainties;
therefore, the influence of cluster rotation was not recognized.

Other experiments are based on precision stellar photom-
etry (e.g. Paczynski & Stanek 1998; McNamara et al. 2000).
Recent results have been R0 = 7.52 ± 0.10stat ± 0.35sys kpc by
Nishiyama et al. (2006) and R0 = 7.94 ± 0.37stat ± 0.26sys kpc
by Groenewegen et al. (2008). All these results are in full agree-
ment with our value.

Another method used to derive R0 is the spatial distribution
of globular clusters in the Milky Way. In a recent analysis, Bica
et al. (2006) examined a sample of 116 clusters and derived
R0 = 7.2 ± 0.3stat kpc. Within errors, this is only marginally
in agreement with our findings; but when taking into account
that Bica et al. (2006) do not provide an estimate for the system-
atic uncertainty of their method, this deviation is not significant
either.

In total, we can conclude the following: (1) the statistical par-
allax is a valuable independent method for deriving R0. (2) Our
value and recent measurements based on different approaches
(stellar orbits, stellar photometry, distribution of globular clus-
ters) are in good agreement.

5.6. Acceleration upper limits

The strong influence of Sgr A* allows the description of the in-
nermost part (few arcsec) of the cluster as a system of massless
test particles moving around a point mass on Keplerian orbits.
Indeed, orbits located in the innermost ≈0.5′′ – in the so-called
“S-star” group – have been observed now for several years with-
out detecting any significant deviation from a point mass po-
tential (Eisenhauer et al. 2005; Lu et al. 2006; Gillessen et al.
2008; Ghez et al. 2008). When using the very accurate proper
motions obtained from the small scale images (typical uncertain-
ties ≈4 km s−1, see Fig. 4), it is possible to detect (or exclude)
accelerations in stellar motion as far out as several arcseconds in
projected distance.

In this section and Sect. 5.7 we analyse all available stars
regardless of their spectral type. We can do this because we
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treat stars individually. Global statistical properties like isotropy,
which are affected by the non-relaxed early-type population, do
not influence this analysis.

In order to obtain acceleration limits we analysed the proper
motions of stars in the small scale fields within ±7′′ in RA and
Dec from Sgr A*. All star positions were transformed into co-
ordinates radial (q‖) and tangential (q⊥) to their average position
vector. In analogy to the determination of proper motions we fit
the star positions q = (q‖, q⊥) vs. time t as parabolas of the form

q(t) = ut2 + vt + w. (34)

Obviously, this approach delivers the (constant) stellar accelera-
tions a (via a = 2u); v and w correspond to velocities and posi-
tions at t = 0 respectively.

Whether a given star shows a significant acceleration de-
pends on the goodness-of-fit of the two physically realistic mod-
els, which are (1) a linear proper motion, and (2) an accelerated
parabolic motion pointing towards Sgr A* (i.e. a significantly
non-zero value for a‖). For both models the respective reduced χ2

(hereafter χ2
lin for the linear, χ2

acc for the accelerated case) is
computed.

In order to decide if the difference between the two models
is significant we make use of the fact that the quantity

f =
χ2

lin

χ2
acc

(35)

follows an F-distribution and can thus be examined using an
F-test (e.g. Müller 1975; Lehn & Wegmann 1982). For a given
significance level S ∈ [0, 1] and the case of a one-tailed test (e.g.
Snedecor & Cochran 1989) the difference is considered to be
significant if f > Fm,n,1−s; here m, n are the respective degrees of
freedom, s = 1 − S is the false alarm probability. For the typical
case m = n+ 1 = 35 we find F35,34,0.99 = 2.25 for S = 0.99. This
means that a 99% confidence detection of non-linear motion re-
quires f > 2.25.

Our analysis included a total of 755 stars. For five of them
significant (using a 99% confidence limit) accelerations were de-
tected. Three stars were S -stars with known orbits. Two more
were false positives whose centroids were systematically dis-
placed towards bright neighbouring sources. Due to the high
crowding in the innermost arcseconds of the field most of the
S -stars known to follow Keplerian orbits had to be excluded
from this automated analysis and therefore do not contribute.

For the remaining 750 sources, acceleration upper limits
are given. Upper limits with a 99% confidence (2.58σ) are de-
fined as

ā‖ = |a‖| + 2.58 × δa‖. (36)

Here |a‖| is the amount of radial acceleration computed accord-
ing to Eq. (34) and δa‖ its 1σ error8. Figure 19 shows the re-
sulting limits vs. projected distances. For comparison, we show
the acceleration a star would experience if its projected distance
were equal to its physical distance. A few limits (5 out of 750)
fall below the theoretical line; in these cases, the physical dis-
tances need to be larger than the projected distances.

An acceleration upper limit constrains the minimum physical
distance Rmin of a star. We can compare this number with the

8 Even if a star does not show significant acceleration, a parabolic fit
finds a (usually non-zero) result for the 2nd-order term and a corre-
sponding fit error. These values we use here.

Fig. 19. Acceleration upper limits (99% confidence level) vs. projected
distance r from Sgr A*. Dots mark measured values. The continuous
line corresponds to the acceleration a star would experience if its phys-
ical distance from Sgr A* would equal its projected distance. The dis-
tance scale is 1 pc ≡ 25.8′′. This sample includes 750 of 755 analysed
stars. Stars below the line have a physical distance that is necessarily
larger than the projected distance.

Table 2. Minimum distance from the plane of Sgr A*, |z|min, vs. pro-
jected radius r for five stars with Rmin > r. The values are based on
2.58σ (99% confidence level) acceleration upper limits. Only stars with
r < 0.024 pc are sufficiently constrained; see Fig. 19.

Star ID r [mpc] |z|min [mpc]
823 19.2 12.9
832 23.2 8.6
1333 20.1 6.4
1760 19.4 7.3
3439 23.5 14.5

star’s sky-projected 2D distance r. Starting from the amount of
sky-projected acceleration

a2D =
GM

R3
r (37)

and replacing a2D by ā‖ we obtain

R >

(

GM

ā‖
r

)1/3

≡ Rmin (38)

where R is the physical 3D distance from Sgr A*. If Rmin > r
for a star, we can derive its minimum distance from the plane of
Sgr A* along the line of sight

|z|min =

√

R2
min − r2. (39)

In our case, we have five stars with Rmin > r for which we can
derive the corresponding |z|min; all have r < 0.024 pc. The result-
ing distribution is presented in Table 2; the largest distance we
find is |z|min ≈ 0.015 pc.

Given the good accuracies of the stellar proper motions (few
km s−1), the large values for the acceleration limits (tens of
km s−1/yr; see Fig. 19) might not be obvious. However, this is

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810191&pdf_id=19


436 S. Trippe et al.: Kinematics of the old stellar population at the Galactic centre

given by the fact that both velocities and accelerations are de-
rived from position measurements. Whereas the statistical error
of a velocity measurement scales like

δv ∝ δq × t−1, (40)

the statistical error of an acceleration measurement scales like

δa ∝ δq × t−2 (41)

with δq being the typical position measurement uncertainty, t be-
ing the total time covered by data. From this, we see that on
the one hand a timeline of five years is sufficient for precision
proper motion measurements. On the other hand, the same time-
line of five years is not yet sufficient to constrain the z coordi-
nate of more than a handful of stars. However, as δa ∝ t−2, al-
ready a moderate extension of the timeline leads to a substantial
improvement.

From this we can draw important conclusions affecting fu-
ture analyses and observing strategies. (1) Future works should
include earlier data. For the GC, we have data at hand start-
ing as early as 1992, taken with the SHARP I speckle imag-
ing camera at the ESO-NTT (e.g. Genzel et al. 1996). For the
case of the S -stars orbiting Sgr A*, this dataset has been used
with great success (Schödel et al. 2003; Gillessen et al. 2008).
(2) Continued NACO observation of the nuclear cluster will pro-
vide valuable new insights. Therefore the monitoring of the clus-
ter should be continued.

5.7. The star group IRS13E

An object of special interest is the star group IRS13E, located
3′′ west and 1.5′′ south of Sgr A*. This object consists of three
bright (H ≈ 13) main components concentrated within a re-
gion of about 0.2′′ radius. They surround fainter objects which
are probably blends of several point sources. Paumard et al.
(2006) found a significant stellar density excess in the imme-
diate vicinity (0.7′′) of the three main stars and identified the
IRS13E group as a star cluster. Based on stability arguments with
respect to the tidal field of Sgr A*, the possibility that IRS13E
hosts an intermediate-mass black hole was previously discussed
by Maillard et al. (2004).

In order to examine this scenario in more detail, we tested
whether stars within a radius of 0.7′′ are kinematically connected
with the three central sources. We extracted proper motions for
the three main components and an additional 17 stars with mag-
nitudes down to H ≈ 19.5 (for a similar analysis using the proper
motions of another set of stars, see Schödel et al. 2005). In the
following, we call the three main stars “set A” and the 17 field
stars “set B”. As the target area is too crowded to be fully cov-
ered by the automatic procedures described in Sect. 3, we ex-
tracted image positions manually. We applied the PSF fitting
routine StarFinder by Diolaiti et al. (2000) and checked the inter-
epoch source identifications by eye. Our analysis included seven
very good H and K-band small scale images obtained between
2002 and 2007.

The main results are summarized in Fig. 20. The top panel
shows all stellar proper motions with respect to the standard as-
trometric reference frame tied to the GC cluster, i.e. co-moving
with the GC cluster (see Sect. 3). The bottom panel of this fig-
ure shows the same proper motions in a reference frame co-
moving with set A, using the average motion of set A as the
zero-point. In the latter case, almost all stars show a motion di-
rected from west to east, as if IRS13E were moving through a
separate, non-co-moving foreground/background population. In

Fig. 20. Proper motion maps for the IRS13E group. Filled circles are
stars, circle diameters are proportional to the 0.25th power of H-band
fluxes. Coordinates are α, δ in arcsec relative to Sgr A*; please note the
shift in α. Arrows are proper motions, 1 unit in length corresponds to
10 mas/yr. Boxes around arrow heads indicate the 1-σ velocity uncer-
tainties. Top panel: proper motions co-moving with the GC cluster as
defined in Sect. 3. Bottom panel: proper motions co-moving with the
central three brightest stars. A streaming motion of the three bright-
est stars relative to a foreground/background population can be seen.
Apparently, only a small fraction, if any, of the examined stars are
bound to the IRS13E group.

α (or x) direction, the average motion (co-moving with set A)
of set B is 〈vx〉 = 7.1 ± 1.3 mas/yr, wheras the velocity disper-
sion is σx = 5.3 ± 0.9 mas/yr. In δ (or y), we find 〈vy〉 = 0.6 ±
0.9 mas/yr, σy = 3.7 ± 0.7 mas/yr. These numbers show a clear
streaming of the three main stars with respect to the 17 field
stars.

For their analysis, Paumard et al. (2006, see especially their
Fig. 9) used stellar number counts in the IRS13E region down
to magnitudes H = 20.4. They compared the surface densities
inside (Σ<) and outside (Σ>) a projected radius of p = 0.68′′
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from the centre of set A. Counting all H < 20.4 stars they found

Σ< = 31.7 ± 4.7 arcsec−2

Σ> = 13.1 ± 1.2 arcsec−2.

This corresponds to a 4.3σ excess of stars within p. Using a
more conservative limit of H < 19.4, the resulting densities are

Σ< = 17.9 ± 3.5 arcsec−2

Σ> = 7.9 ± 0.9 arcsec−2

corresponding to a 2.8σ excess of stars within p. All errors given
for numbers and densities are Poisson errors. The total number
of H < 19.4 stars located within p is 26. This magnitude cut cor-
responds (within the errors) to the magnitude limit of our set B.

We used the kinematic information obtained for the set B
stars to follow up on the surface density analysis by Paumard
et al. (2006). We recalculated the surface density of H <
19.4 stars, but excluded stars which are too fast with respect to
set A. The star selection was done in two steps. First, we com-
puted the 2D velocity dispersion of the three set A stars. This
dispersion was σA = 1.9 ± 0.8 mas/yr.

Then we computed the bias-corrected 2D speeds v2D of the
set B stars relative to set A (reference frame co-moving with
set A). We identified all set B stars (a) located within p and (b)
showing v2D > 3σA. For these stars we assumed that they cannot
be physically connected to the set A stars.

We found nine stars satisfying criteria (a) and (b). Excluding
them from the sample of Paumard et al. (2006) reduces the
number of H < 19.4 stars located within p from 26 to 17.
Recalculating the surface density leads to

Σ< = 11.7 ± 2.8 arcsec−2.

The difference of densities inside and outside p then becomes

∆Σ = Σ< − Σ> = 3.8 ± 3.0 arcsec−2

corresponding to a significance of 1.3σ for a deviation from
zero. We therefore do not see a significant excess of H < 19.4
stars within p.

We can conclude that our kinematic analysis seriously weak-
ens the scenario proposing that IRS13E is the core of a substan-
tial star cluster.

6. Conclusions

In this article we analysed and discussed the kinematic prop-
erties of the Galactic centre CO absorption line star cluster.
This work is based on adaptive optics assisted diffraction-limited
near-infrared imaging and integral-field spectroscopy. We col-
lected proper motions for 5445 stars, 3D velocities for 664 stars,
and acceleration limits for 750 stars. Our analysis led to the fol-
lowing main results:

1. The cluster shows a global rotation in the sense of general
Galactic rotation.

2. The stellar 3D speed distributions can be locally approxi-
mated by Maxwellians. This confirms the relaxed nature of
the CO star cluster.

3. We find one high-velocity star with a 3D speed v3D = 810 ±
9 km s−1 which might be unbound. It might have been ejected
from the cluster by three-body interactions with SgrA*.

4. We obtain a deprojected 3D description of the cluster
kinematics. We fit the observed velocity dispersion pro-
files σl,b(r) and the rotation curve 〈vz〉(l). The data are de-
scribed well by assuming a ρ(R) ∝ R−2 sphere density profile
and global rotation. From the model solution, we extract the
cluster’s mass profile out to M∗ ≃ 2.3 × 107 M⊙ at R ≃ 4 pc.

5. The two-point correlation function of the stellar 4D phase-
space positions agrees with that of a uniform isotropic ro-
tator within 4%. We find no obvious indication for phase-
space subtructure like star streams. From this we conclude
qualitatively that there has been no major distortion of the
GC cluster within the last few 105 years.

6. Using the 3D velocity dispersion, we derive an improved
statistical parallax to the GC of R0 = 8.07 ± 0.32stat ±
0.13sys kpc. This result is in good agreement with the val-
ues obtained by stellar orbit, stellar photometry, and globular
cluster distribution studies.

7. For stars located within the innermost few (projected) arcsec,
we calculate limits on accelerations in the plane of sky. We
use these limits to constrain the stars’ minimum line-of-sight
distances from the plane of Sgr A*. We find non-trivial re-
sults for 5 out of 750 stars and conclude that already a mod-
erate extension of the observation timeline can increase this
number substantially.

8. The star group IRS13E does not co-move with the H <
19.4 stars in its 0.7′′ vicinity. When excluding stars which are
too fast to be part of the IRS13E system, there is no sign for
a significant star concentration. This seriously weakens the
case for IRS13E being the core of a substantial star cluster.

In summary, our analysis has improved substantially our knowl-
edge regarding the kinematic properties of the GC star cluster.
The next step will be to feed our extensive data set into a full-
scale dynamical model. We plan to make use of the recently
developed NMAGIC code (De Lorenzi et al. 2007) in order to
finalize the physical description of the old stellar population in
the central parsec of our Milky Way.
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Appendix A: Image distortion parameters

We extracted the distortion parameters from our imaging data by
executing the following steps:

1. Combination of all individual frames to be mosaicked via
simple shift-and-add (SSA) with integer-pixel accuracy.

2. Constructing a list of many (≈200) good (meaning bright, but
unsaturated stars well separated from neighbouring sources)
reference stars distributed over the entire FOV. For source
selection, the SSA image is used.

3. Re-identification of all reference stars located in the FOV of
each individual image, followed by determining their detec-
tor positions.

4. Computation of all pairwise star-star separations in each im-
age. This calculation results in a net of baselines for each
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image. Baselines present in more than one image are subject
to inter-image comparison.

5. Modelling the distortion correction.

The three model parameters (β, xC , yC) were fit by a χ2 min-
imization. Geometric distortion implies that the detector plate
scale is a function of the detector position; thus the length of
a given baseline (in units of pixels) depends on its location on
the detector. The optimum parameter set is found by iteratively
comparing all baselines in all images shifted on sky, applying the
temporary parameters to the reference star detector coordinates,
and checking for the improvement.

In case of the large scale (27 mas/pixel) images we executed
parameter fits in a straight forward manner. We made use of the
analytic fit engine FindMinimum implemented in the software
package Mathematica.

For the small scale (13 mas/pixel) data sets this procedure
was not applicable. Due to the less significant distortion and
the smaller number of reference stars available (≈100), the an-
alytic fit algorithm usually did not converge towards a reliable
result. Thus we constructed a stochastic minimization algorithm
which searches the parameter space iteratively using the follow-
ing scheme:

1. Compute the value of the cost function (i.e. the function to
be minimized) at the actual position in parameter space.

2. Select a second position in parameter space and compute the
value of the cost function at that position.

3. If the value of the cost function at the new position is smaller
than the actual one: move there. Otherwise: stay at present
position.

4. Repeat steps 1–3 until a fixed number of iterations is
completed.

Starting from a given initial position in parameter space, in iter-
ation n for each parameter p a new value (step 2) is computed as

pn+1 = pn + s(n) · (1/z[0,1] − 1) · ǫ(0.5 − z[0,1]) (A.1)

with

s(n) = s0 · 10−n/N .

Here N is the maximum number of iterations, z[0,1] a random
number in the range [0, 1], ǫ(x) the sign function returning −1 or
+1 depending on the sign of x, and s0 the initial step size.

This definition assures that (1) the algorithm cannot be easily
trapped in a local minimum, as even extreme search radii are oc-
casionally tested, and (2) the vicinity of the best-so-far-solution
found at the end of the search time is explored with reasonable
accuracy, as the average search radius decreases exponentially
with time (thus increasing the “selection pressure” on the algo-
rithm). The idea for this definition was taken from the concept
of Simulated Annealing introduced by Kirkpatrick et al. (1983).

Appendix B: Accuracy of radio coordinates

Absolute radio coordinates and infrared image coordinates are
tied via nine SiO maser stars in the field of view. These maser
stars show finite statistical errors in both radio and NIR im-
age positions. The uncertainties limit the accuracy of the global
coordinates.

We examined the influence of these uncertainties on the
transformation accuracy using a Monte-Carlo test. We executed
105 coordinate transformations, each time using sets of posi-
tions with random displacements. The displacements followed

Gaussian distributions according to the individual statistical
errors.

By sampling a coordinate grid with the typical FOV size (po-
sitions ±20′′ from Sgr A*) we mapped the transformation uncer-
tainty as a function of position. The results are shown in Fig. 3.
The contours mirror the geometry of the alignment of the refer-
ence stars in the plane of the sky (see also Fig. 1); the errors vary
in the range 1.2 ... 5 mas.

Of particular interest is the accuracy of the global posi-
tion (0, 0) which corresponds to the location of Sgr A*, the dy-
namical centre of the GC star cluster. Here the errors were

δRA = 1.26 mas

δDec = 1.20 mas.

These errors are uncertainties in absolute positions. Our kine-
matic analysis is based on time-resolved relative positions.
Therefore the proper motion accuracies are much better than
suggested by the errors of the absolute positions.
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