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Abstract

The functional properties of neural circuits are defined by the patterns of synaptic connec-

tions between their partnering neurons, but the mechanisms that stabilize circuit connectiv-

ity are poorly understood. We systemically examined this question at synapses onto newly

characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the

presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic

structure. We find that early postsynaptic developmental events proceed without a strict

requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. How-

ever, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become

destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presyn-

aptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 func-

tion is required for postsynaptic maintenance in mature animals. By defining the dynamics

and temporal order of synapse formation and maintenance events in vivo, we describe a

mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion.

Author summary

The nervous system is composed of networks of interconnecting cells called neurons.

Within these networks, individual neurons establish connections or synapses with part-

nering neurons. Key connections within these networks must be stabilized and preserved

throughout the lifetime of an animal in order for the nervous system to function properly.

Alterations in synapse connectivity and stability are linked with numerous neurodevelop-

mental and neurodegenerative diseases. Therefore, it is crucial to gain a complete under-

standing of the steps in assembly of a developing synapse, and of the mechanisms

involved in synapse maturation and maintenance. Using microscopy and live imaging

approaches at newly characterized spiny synapses in a genetic model organism, the nema-

tode Caenorhabdtis elegans, we describe the sequence of events by which developing syn-

apses are constructed. In addition, we show that the cell adhesion molecule, neurexin, is
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required for stabilization of these synapses into adulthood. In the absence of neurexin,

neuronal connections begin to form but then disappear. A specific motor protein, called

kinesin-3, is required to deliver neurexin to synapses in order to stabilize specific connec-

tions between neurons. An improved understanding of the sequence of events in synapse

formation and how neurexin is delivered to developing synapses for stabilizing connec-

tions may help to advance our understanding of disorders and diseases that arise from dis-

ruptions of these processes.

Introduction

The capabilities of neural circuits to perform specific functions arise from the patterns of syn-

aptic connections between their partnering neurons. The organization of these connections is

circuit-specific and established through a complex process that involves the coordinated

assembly and maturation of specialized pre- and postsynaptic structures on appropriate part-

nering neurons, and their maintenance in the mature nervous system. We now have a general-

ized understanding of synapse structure. Active zone (AZ) proteins and neurotransmitter-

filled synaptic vesicles position near the presynaptic membrane for rapid release while neuro-

transmitter receptors are clustered at high density in apposition to these sites in order to

ensure the fidelity of synaptic communication. Genetic studies have identifed numerous muta-

tions that alter circuit connectivity or affect the overall structural organization of synapses [1–

3]. However, for many of the synapse-associated proteins affected by these mutations, we do

not yet have a mechanistic understanding of their roles in establishing synaptic connections,

or how their disruption may lead to alterations in synapse stability. Gaining an enhanced

understanding of the sequence of events involved in synapse assembly, maturation, and main-

tenance, and their relative timing in vivo is critical for addressing these questions.

Several prior studies have examined molecular events during synaptogenesis. In vivo studies

in C. elegans and Drosophila have largely focused on the formation of the presynaptic active

zone. Collectively, these studies provide compelling evidence for a model where active zone

assembly occurs sequentially. While there is some variability across synapse type, the early

stages of this process are generally organized by the highly conserved synaptic scaffolds SYD-

2/Liprin-α and SYD-1/Rho GTPase, which then recruit additional key conserved AZ proteins

such as ELKS-1/Bruchpilot, Piccolo family members, and UNC-10/RIM for subsequent stages

of assembly, including clustering of Ca2+ channels, and the recruitment of synaptic vesicles

[2,4–7]. Remarkably, nascent AZs can assemble quite rapidly (within minutes) but then often

undergo a more extended period of maturation that can last for several hours [5,8–10]. The

relationship of postsynaptic development to presynaptic assembly remains less clear. Live

imaging studies of cultured mouse hippocampal neurons have suggested that the assembly of

presynaptic components precedes recruitment of postsynaptic receptors and scaffolds [11].

More recently, 2-photon imaging of organotypic slice cultures from rat hippocampus showed

that new spines accumulate glutamate receptors concurrently with their growth and are com-

petent to participate in transmission within a few hours after outgrowth [12]. Comparatively

few in vivo studies have investigated coordinated pre- and postsynaptic development, and sig-

nificant questions remain about molecular mechanisms that direct linkages between pre- and

postsynaptic specializations to promote their maturation and stabilization.

Evolutionarily conserved synaptic adhesion proteins, such as neurexins, are prime candi-

dates for coordinating pre- and postsynaptic events during synaptogenesis. Their importance

is underscored by the fact that neurexin alterations are associated with cognitive disease,
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including schizophrenia and autism spectrum disorders [13,14]. Neurexins are typically local-

ized presynaptically and linked to postsynaptic binding partners such as dystroglycans,

LRRTMs, neuroligins, and cerebellins, through extracellular laminin and EGF-like repeats to

establish transsynaptic connections. Neurexin mediated transsynaptic signaling has been

implicated in key aspects of synapse development and function. For example, loss of presynap-

tic neurexin at the fly neuromuscular junction increases the length of the presynaptic density,

and also alters the size and molecular composition of apposed muscle glutamate receptor clus-

ters [15,16]. The broad brain distribution of neurexins and the many neurexin isoform vari-

ants in the nervous system enable complex, cell-type specific functions for neurexins at

synapses [17,18]. For example, conditional deletion of mouse neurexins revealed strikingly

divergent functions across synapses formed by cortical inhibitory interneurons and those

formed by cerebellar climbing fibers onto Purkinje neurons [19]. Importantly, molecular

mechanisms for the trafficking and delivery of neurexins to synapses remain incompletely

defined. Genetic tools that enable cell-type specific analysis are therefore critical for uncover-

ing precise functional roles of synaptic adhesion proteins and mechanisms for their regulation

within the context of individual neural circuits.

We previously identified finger-like protrusions from the dendritic processes of C. elegans
DD GABAergic motor neurons (Fig 1A) [20]. Characterization of these structures by our labo-

ratory and others pointed towards the idea that they receive synaptic input from presynaptic

cholinergic motor neurons and serve analogous roles to dendritic spines in the mammalian

brain [21–23]. Deletion of nrx-1, the sole C. elegans ortholog of neurexin, disrupts these den-

dritic spines and impairs proper localization of cholinergic receptor clusters to postsynaptic

sites on GABAergic dendrites [20]. Here we define the order and timing of pre- versus post-

synaptic development at spine-associated synapses and elucidate the role of neurexin in the

coordination of these processes in vivo. We find that clusters of both presynaptic proteins and

postsynaptic receptors are clearly visible prior to spine outgrowth. In the absence of neurexin,

immature spines and receptor clusters form initially but then disappear, indicating that neur-

exin is required for synapse stabilization and maturation rather than synaptogenesis. These

maintenance and maturation processes are supported by kinesin-3/UNC-104 motor depen-

dent transport of NRX-1 to presynaptic terminals. Together, our results suggest that axonal

delivery of neurexin to sites of synapse formation is critical for stabilization of mature postsyn-

aptic structures.

Results

We initially explored morphological features of mature spines using 3D rendering of spines

from confocal imaging and by electron microscopy. We observed considerable morphological

diversity using both approaches, as noted in prior work (Figs 1A, S1A and S2) [21,23,24]. To

explore how the neuronal cytoskeleton may contribute to spine morphological features, we

examined the localization of F-actin and tubulin in GABAergic DD dendrites using DD neu-

ron-specific expression of GFP::UtrCH (GFP fused to the Utrophin calponin homology

domain) [25] and GFP::TBA-1 (GFP-tagged α-tubulin) [26] respectively. We found that the

two markers largely occupy distinct territories, where F-actin is highly localized to dendritic

spines (Fig 1B and 1C) while tubulin occupies the dendritic shaft (Fig 1D and 1E) with more

variable localization near the spine base (S1B Fig).

We previously showed stimulation of cholinergic motor neurons elicited Ca2+ responses in

GABAergic motor neurons [20]. Here we asked whether stimulation of presynaptic choliner-

gic neurons was sufficient to elicit calcium responses in GABAergic DD dendrites. We per-

formed in vivo calcium imaging of evoked responses in spines using combined expression of a
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membrane-associated GCaMP6f calcium sensor in DD GABAergic neurons and a red shifted

channelrhodopsin, Chrimson, in cholinergic neurons [20]. Following 5 seconds of baseline

recording (488 nm, 100 ms exposure), we measured calcium responses to presynaptic depolar-

ization (5 s, 625 nm, 30 mW/cm2) (Figs 1F–1H and S3). We noted significant fluorescence

increases during the stimulation window. These occurred solely in the presence of retinal and

typically appeared simultaneously across multiple spines, returning to baseline within 5 s fol-

lowing stimulation. Importantly, mutation of the cholinergic vesicular transporter/VAChT

unc-17, reduced evoked calcium responses by 81%, indicating the Ca2+ responses we observed

in dendrites were largely dependent on presynaptic acetylcholine release (Fig 1G and 1H).

Our findings are consistent with those of another recent study [23] indicating that spines on

DD GABAergic neurons are major sites of synaptic input.

Mitochondria and other organelles are often localized near postsynaptic specializations in

order to sustain synaptic function [27,28]. We examined the distribution of organelles within

DD dendrites using fluorescent reporters labeling Golgi (AMAN-2::GFP) [29], mitochondria

(Pre-Su9::GFP) [30], and endoplasmic reticulum (ER) (RFP::TRAM-1) [29,31]. We found that

Golgi is exclusively labeled in the DD cell bodies (S1C Fig). In contrast, mitochondria and

rough ER markers are present in the main dendritic shaft near spines (S1D–S1G Fig), perhaps

suggesting involvement in dendritic signaling though we cannot fully exclude potential contri-

butions of overexpression [32,33]. Mitochondria were also evident in dendritic processes near

spines by electron microscopy (S2B–S2D Fig).

The development of synapses at DD GABAergic spines

We next investigated the relative timing of developmental events during the formation of syn-

apses onto spines. C. elegans progress through four larval stages of development (L1-L4) prior

to adulthood. DD neurons undergo a well-characterized program of synaptic remodeling such

that the mature circuit organization is established during the transition from L1 to L2 stage

[34,35]. The formation of new synaptic connections between postembryonic born cholinergic

neurons and the ventral dendrites of DD GABAergic neurons offers a window to investigate

de novo formation of neuron-neuron synapses. We focused on understanding the time course

of spine formation relative to 2 key events in synaptogenesis: 1) the formation of presynaptic

release sites, and 2) the clustering of postsynaptic receptors and F-actin.

Fig 1. C. elegans GABAergic DD neuron dendritic spines share characteristics with dendritic spines in vertebrates. (A) Representative

fluorescent images and cartoon representation of the ventral nerve cord/dendrite of a single L4 stage GABAergic DD (DD2) motor neuron with

ventrally projecting dendritic spines. CB, cell body. (B) Representative images of DD dendritic spines from animal co-expressing Pflp-13::

mCherry (labeling dendrite, red) and Pflp-13::GFP::UtrCH (labeling F-actin, green). F-actin is highly enriched in DD dendritic spines. (C)

Scatterplot of F-actin/GFP::UtrCH fluorescence in dendritic shaft compared to dendritic spines, normalized to total fluorescence within the

ROI. Bars indicate mean ± SEM. Student’s t-test, ���p<0.001, n = 21 animals. (D) Fluorescent images of tubulin (Pflp-13::GFP::TBA-1) (green)

and actin (Pflp-13::mCherry::UtrCH) (red) in DD neurons. Dendritic spines are highly enriched with F-actin while tubulin occupies the main

dendritic process. (E) Quantification of fluorescence ratio of actin/tubulin in the dendritic shaft versus dendritic spines. Student’s t-test,
����p<0.0001, n = 31 spines from 6 animals. (F) Calcium transients recorded from wild type GABAergic DD motor neuron dendrites

expressing myrGCaMP6f (Pflp-13::myrGCaMP6f::SL2::mCherry) during stimulation of presynaptic cholinergic motor neurons (Pacr-2::

Chrimson). Top, representative image showing dendritic spines identified by mCherry fluorescence (inverted LUT). Representative maximum

intensity projection heat maps showing calcium fluxes immediately prior to stimulation (prestimulus, middle panel) and during stimulus (ON,

bottom panel). Heat maps were generated by maximum intensity projection of myrGCaMP6f fluorescence from the first 4 seconds of recording

(prestimulus) and the 5 s period of stimulation (red shaded bars in G). Numbering corresponds to representative traces in Fig 1G. (G)

Representative evoked responses for indicated dendritic spines in wild type animals (wild type 1, 2 and 3, Fig 1F), animals grown in the absence

of retinal (-Retinal), and unc-17(e113) mutants. Calcium responses were continuously recorded at 10 Hz for 15 s. Prestimulus calcium fluxes

were recorded for 5 s, followed by stimulation (625 nm, ~30 mW/cm2) of cholinergic motor neurons for 5 s. All data was normalized to

prestimulus (ΔF/F0). Red shaded bar indicates duration of stimulation. Pink traces indicate Gaussian fits to responses (ΔF/F0) during

stimulation. (H) Scatter plot showing peak ΔF/F0 of responses during stimulation in wild type or unc-17(e113) mutants. Bars, mean ± SEM.

Statistical analysis, Student’s t-test, ����p<0.0001. n� 10 animals.

https://doi.org/10.1371/journal.pgen.1010016.g001
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The appearance of newly born ventral cholinergic motor neurons progressed anteriorly to

posteriorly starting roughly 16 hours after hatch, consistent with the birth and integration of

cholinergic neurons during this time frame (S4 Fig) [36]. We analyzed the distribution of pre-

and postsynaptic markers at timepoints before (12 hours after hatch), during (16, 18, 20 hours

after hatch) and after (24, 32 hours after hatch, L4 stage/42-50 hours) DD synaptic remodeling

(Figs 2, S4 and S5). We first assessed the formation of the active zone and presynaptic speciali-

zation by analyzing clustering of the Piccolo-like active zone protein, CLA-1, (GFP::CLA-1e)

[37] and the synaptic vesicle-associated protein synaptobrevin/SNB-1 (SNB-1::GFP) (Figs 2A,

2D–2E and S5). Overall, we found CLA-1 is more discretely localized to putative synapses

than SNB-1, both at earlier timepoints and throughout development, consistent with its spe-

cific localization to active zones. Immediately prior to remodeling (~12 hours after hatch), we

did not observe significant localization of either presynaptic CLA-1 or SNB-1 adjacent to the

DD process. Shortly after (16 hours after hatch), we noted the initial appearance of SNB-1-

and CLA-1-associated fluorescence in presynaptic cholinergic processes. Over the next 4

hours (20 hours after hatch) individual CLA-1 clusters were more clearly distinguishable, sug-

gesting CLA-1 association with developing active zone structures (Figs 2A, 2D, 2L and S5A).

Synaptic vesicle fluorescence was initially diffuse at 16 hours after hatch and became more

clearly organized into discrete puncta over a similar time course to CLA-1 (Figs 2A, 2E, 2L

and S5B). We did not observe the emergence of DD dendritic spines until 24–32 hours after

hatch, well after initial active zone formation and recruitment of synaptic vesicles (Figs 2A,

2C–2E and S5A and S5B). Spines continued to mature through L4 stage, increasing in both

length and number (S4D–S4F Fig).

We next examined the clustering of postsynaptic acetylcholine receptors in DD dendrites

(ACR-12::GFP). Prior to remodeling (12 hours after hatch), we did not observe detectable lev-

els of cholinergic receptors in ventral DD processes. Surprisingly, we noted immature receptor

clusters faintly visible in the dendritic shaft by 16 hours after hatch, well prior to the emergence

of dendritic spines (Figs 2B, 2F, 2L and S5C). These receptor clusters increased in number

and redistributed towards the tips of growing spines by 32 hours (Figs 2B, 2F, 2L and S5C).

We found a similar developmental trend using DD neuron-specific labeling of the LEV-10

transmembrane auxiliary protein [38], previously shown to concentrate in spines [39] (S6A

and S6B Fig). By L4 stage, receptor and LEV-10 clusters are clearly visible at the tips of mature

spines. Our analysis indicates that the initial stages of development of postsynaptic (AChR and

LEV-10 clusters) structures occur prior to spine outgrowth, raising questions about how these

initial processes may be regulated.

To begin to address this question, we analyzed the distribution of F-actin in dendrites of

the DD neurons during synapse formation (Figs 2B, 2G–2L and S5D). We noted that clusters

of F-actin were evident in the ventral DD processes prior to the completion of synaptic remod-

eling (12 hours after hatch), prior to presynaptic CLA-1 and synaptic vesicle accumulation,

and before the clustering of postsynaptic receptors. Dendritic F-actin-based structures became

more abundant coincident with increases in the number of presynaptic CLA-1 and postsynap-

tic receptor clusters. To investigate this process in real-time, we used live imaging to examine

the dynamics of postsynaptic F-actin (GFP::UtrCH) in the developing DD dendrite. We found

that F-actin is highly dynamic during early developmental stages (16–20 hours after hatch)

compared to L4 stage where the circuit has completed maturation (S6C–S6H Fig and S1 and

S2 Videos). In young animals, GFP::UtrCH clusters often shuttled out of the cell body to the

main dendritic process, perhaps indicating redistribution of F-actin to sites of postsynaptic

assembly. By 24 hours after hatch, we observed clear co-localization of F-actin with newly

formed AChR clusters in the dendritic shaft. By L4 stage, AChR clusters are stably sequestered

at the tips of spines, while F-actin occupies the spine head and neck (Fig 2H–2K).
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Dendritic spine formation does not strongly require synaptic activity

Our above analysis indicated that the localization of synaptic vesicles and active zone proteins,

such as CLA-1, occur prior to spine outgrowth. In the rodent brain, spine morphogenesis is

clearly regulated by presynaptic activity [40–43], but recent evidence suggests initial spine out-

growth may proceed independently of synaptic activity [44–46]. We therefore next asked

whether presynaptic cholinergic activity is important for the formation of DD dendritic spines.

To address this question, we analyzed the number of dendritic spines (Pflp-13::mCherry or

Pflp-13::myrGFP) and cholinergic receptors (Pflp-13::ACR-12::GFP) at L4 stage in strains car-

rying mutations that affect various aspects of synaptic function and neuronal excitability

(Table 1 and S7 Fig). Surprisingly, the abundance of spines and receptor clusters at L4 stage

were not significantly affected by disruption of ACh synthesis in cholinergic motor neurons

(mutation of the vesicular acetylcholine transporter unc-17) or by a strong reduction in synap-

tic vesicle exocytosis (mutation of the syntaxin binding protein unc-18 or the fusion regulator

unc-13). Similarly, loss-of-function mutations in genes required for dense core vesicle release

(CAPS/unc-31) and Ca2+ signaling (VGCC/unc-2) did not significantly reduce the number of

spines or receptor clusters in the mature circuit (Table 1 and S7 Fig). Our data indicate that

severe alterations in synaptic activity have very limited effects on the abundance of L4 stage

dendritic spines. However, we cannot exclude the possibility of developmental delays in spine

formation [23]. Notably, many of the mutations we examined significantly altered spine length

and the size of receptor clusters (Table 1), suggesting that activity may influence other aspects

of spine morphology and postsynaptic structure. Together, our findings point toward a model

where spine formation and postsynaptic development proceed without a strong requirement

for synaptic activity, while subsequent spine morphogenesis is more clearly affected.

Presynaptic NRX-1 stabilizes postsynaptic components

In previous work, we found that mature spines are severely reduced in L4 stage nrx-1(wy778)
mutants [20]. We found a similarly severe reduction in nrx-1(wy1155) null mutants where the

entire nrx-1 coding region is deleted [47], indicating that both alleles are nulls and highlighting

the potential importance of activity-independent mechanisms for spine formation (S7D and

S7E Fig). Mutation of nrx-1 also disrupted dendritic calcium responses evoked by presynaptic

stimulation of cholinergic motor neurons (S8 Fig). To assess involvement of presynaptic

Fig 2. Temporal order of molecular events during synapse and spine development. (A) Fluorescent images of GABAergic dendrites at 12, 16,

20, 24, and 32 hours after hatch and at L4 stage (~42–50 hours post-hatch). Animals express a GABAergic dendrite marker (Pflp-13::mCherry)

with either presynaptic active zone (Punc-17β::GFPnovo2::CLA-1e) (top) or synaptic vesicle marker (Pacr-5::SNB-1::GFP) (bottom). Images are

pseudo colored to indicate spines (magenta) and presynaptic CLA-1 or vesicle clusters (cyan). (B) Fluorescent images of GABAergic dendrites at

12, 16, 20, 24, and 32 hours after hatch and L4 animals (~42–50 hours post-hatch). Animals express a GABAergic dendrite marker (Pflp-13::

mCherry) with either postsynaptic AChR (Punc-47::ACR-12::GFP, top) or postsynaptic actin (Pflp-13::GFP::UtrCH, bottom) markers. Images are

pseudo colored to indicate spines (magenta) and postsynaptic AChR or F-actin (cyan). White asterisks (�) indicate images used in Fig 2C. (C)

Fluorescent images (inverted LUT) of GABAergic dendrites at 20 hours after hatch and L4 stage (~42–50 hours post-hatch) as indicated. Animals

express a GABAergic dendrite marker (Pflp-13::mCherry). Dashed red boxes indicate regions used in Fig 2B (asterisks). (D-G) Quantification of

spine number (purple) relative to clusters of active zone protein/CLA-1 (D), synaptic vesicle/SNB-1 (E), AChR/ACR-12 (F), and F-actin/UtrCH

(G) (black) through development. Clusters of each of these markers are visible well prior to spine outgrowth. Blue shading indicates the

approximate period of DD remodeling. For this and subsequent figures, numbering indicates animals quantified at each timepoint for each

genotype. Data points and bars indicate mean ± SEM. (H) Fluorescent confocal images of DD1 AChR/ACR-12 (Pflp-13::ACR-12::GFP, magenta)

and F-actin clusters (Pflp-13::mCherry::UtrCH, cyan) 24 hours after hatch. Dotted rectangle indicates high magnification image shown in 2I. (I)

Expanded view of DD1 dendrites 24 hours after hatch from Fig 2H. (J) Fluorescent confocal images of DD1 AChR/ACR-12 (Pflp-13::ACR-12::

GFP, magenta) and F-actin clusters (Pflp-13::mCherry::UtrCH, cyan) at L4 stage. Dotted rectangle indicates high magnification image shown in

2K. (K) Expanded view of DD1 dendrites 24 hours after hatch from Fig 2J. (L) Cartoon summary of the order of events during development of

synapses onto DD neurons. In early development, presynaptic vesicles (SNB-1) and active zone protein (CLA-1) localize along presynaptic

terminals while postsynaptic F-actin and postsynaptic receptors cluster along the postsynaptic process. Following their formation, dendritic

spines begin to extend. Spines continue to elongate throughout development and into the mature circuit (L4).

https://doi.org/10.1371/journal.pgen.1010016.g002
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NRX-1 in the establishment of spines, we asked when NRX-1 first localizes to presynaptic ter-

minals of cholinergic motor neurons. Axonal clusters of NRX-1::GFP are present by 16 hours

after hatch (Fig 3A and 3B), approximately the same time at which assemblies of the presynap-

tic scaffold CLA-1 become visible (Fig 2). Diffuse synaptic vesicle material is also visible at this

time (Fig 2) but has yet to be organized into discrete clusters. Notably, presynaptic NRX-1::

GFP clusters and spines are similar in number by L4 stage, while presynaptic CLA-1 and SNB-

1 clusters appear more abundant than spines (Fig 2D and 2E). This may suggest that a subset

of presynaptic release sites lacking NRX-1 are not associated with dendritic spines; however

some of these presynaptic puncta may represent trafficking vesicles rather than mature release

sites, complicating interpretation.

The early arrival of NRX-1 to synaptic terminals could indicate a role in either initial syn-

apse formation or subsequent stabilization and maturation. To distinguish between these pos-

sibilities, we analyzed the development of dendritic spines and cholinergic receptor clusters in

nrx-1(wy778) null mutants. We quantified spine and AChR cluster number over a similar time

course as previously completed for wild type. Surprisingly, we noted that immature spines and

receptor clusters were evident in nrx-1 mutants during early development, albeit at slightly

Table 1. Analysis of dendritic spines and cholinergic receptors in mutant strains with altered synaptic activity. Dendritic spine number, spine length, ACR-12/AChR

cluster number, and AChR cluster size at L4 stage normalized to the same measurements from wild type are shown (mean ± SEM) for each genotype (ACR-2/nAChR

UNC-2/CaV2α, UNC-13/MUNC-13, UNC-17/VAChT, UNC-18/MUNC-18, UNC-31/CAPS). Mutations that affected synaptic activity had little effect on the density of

spines or AChR clusters, but had variable effects on spine length and AChR cluster size. One-way AVOVA, Dunnett’s multiple comparisons test, �p<0.05, ��p<0.01,
���p<0.001, ����p<0.0001.

Genotype Allele type Spines AChR/receptors

Normalized spine

number ± SEM (%)

N P

value

Normalized

spine length

SEM (%)±

N P

value

Normalized ACR-12

cluster

number ± SEM (%)

N P

value

Normalized

ACR-12 cluster

size ± SEM (%)

N P

value

wild type 100.0 ± 3.5 73 ns 100.0 ± 1.8 499 ns 100.0 ± 6.3 17 ns 100.0 ± 5.1 220 ns

acr-2
(ok1887)

null [75] 86.2 ± 9.1 24 ns 77.1 ± 2.4 141 ���� 94.6 ± 10.4 20 ns 109.8 ± 5.9 245 ns

1acr-2
(n2420)gf

gain of function

[75]

52.9 ± 5.9 26 ���� 83.8 ± 2.6 135 �� 75.6 ± 6.3 18 ns 81.3 ± 5.4 178 ns

unc-2
(e55)

null [76] 81.8 ± 7.6 29 ns 90.9 ± 3.7 122 ns 77.2 ± 9.5 18 ns 83.9 ± 5.7 172 ns

unc-2
(zf35)gf

gain of function

[77]

81.7 ± 7.2 22 ns 114.7 ± 4.8 117 � 120.0 ± 7.2 20 ns 130.1 ± 7.2 312 ��

2unc-13
(e51)

hypomorph [78] 62.1 ± 8.1 18 �� 121.5 ± 7.4 78 ��� 85.0 ± 10.6 19 ns 74.8 ± 4.4 210 ns

unc-13
(s69)

severe hypomorph

[3,79]

96.2 ± 4.1 21 ns 95.8 ± 3.1 128 ns

unc-17
(e113)

null (personal

communication

from J. Rand)

104.5 ± 6.8 12 ns 94.8 ± 4.4 83 ns 101.6 ± 7.1 24 ns 119.8 ± 5.7 317 ns

unc-17
(e245)

hypomorph [80] 73.8 ± 8.4 17 ns 82.8 ± 3.1 71 ns

unc-18
(e234)

putative null [81] 76.9 ± 10.0 11 ns 98.5 ± 3.9 59 ns 96.4 ± 9.9 19 ns 113.3 ± 6.5 238 ns

unc-31
(e169)

putative null [82] 97.6 ± 5.7 22 ns 106.3 ± 3.6 166 ns 107.0 ± 8.8 21 ns 123.9 ± 5.9 291 �

1Dendritic spines were unaffected in acr-2(ok1887) null animals, but were reduced in acr-2(gf) animals. Previously described gene expression changes in cholinergic

motor neurons of acr-2(gf) animals may account for this observation [83].
2Though spines were significantly reduced in unc-13(e51) mutants, this effect appeared specific for this allele. We did not observe a significant reduction in unc-13(s69)
null mutants or in unc-17(e113) and unc-18(e234) mutants where ACh release is severely reduced.

https://doi.org/10.1371/journal.pgen.1010016.t001
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reduced density relative to wild type (Figs 3C–3F and S9). The density of spines in nrx-1
mutants increased significantly over the next several hours until 24 hours after hatch (Figs 3C,

3D and S9A). However, after this time, spine density decreased dramatically such that DD

dendrites of nrx-1 mutants were almost completely devoid of spines by L4 stage [20]. Measure-

ments of spine formation and disassembly in live imaging studies of wild type and nrx-1
mutants offered further support for this conclusion. Mature wild type spines (L4) were

remarkably stable over 1–2 hours of recording, but were more dynamic in the developing cir-

cuit (16–20 hrs after hatch) (S9C–S9I Fig and S3–S5 Videos). Developing spines in nrx-1
mutants were also highly dynamic. Notably, nrx-1 mutant spines exhibited heightened dynam-

ics into later stages of development compared with wild type spines. For example, at 21–24

hours after hatch, almost 90% of wild type spines were stable over the recording period, while

less than 50% of nrx-1 mutant spines remained stable.

Postsynaptic receptor clusters were also present early in the development of nrx-1 mutants.

The number and fluorescence intensity of ACR-12 clusters at 16 hours after hatch in nrx-1
(wy778) animals (6.8 ± 0.8 clusters/25 μm) were similar to wild type (5.6 ± 0.7 clusters/25 μm)

(Figs 3E, 3F and S9B). Within a few hours however, ACR-12 cluster number and intensity

decreased significantly in nrx-1 mutant dendrites, and remained low throughout the remain-

der of development (Figs 3E, 3F and S9B). Remarkably, the organization of dendritic F-actin

was similarly affected by nrx-1 deletion. The distribution of dendritic GFP::UtrCH was compa-

rable across nrx-1 mutants and wild type in early development (16 hrs after hatch), positioned

in discrete clusters along the main dendritic process (Fig 3G). By L4 stage, the F-actin marker

became almost exclusively associated with wild type dendritic spines, but was diffusely local-

ized along the length of L4 stage nrx-1 mutant dendrites (Fig 3G). Taken together, our results

indicate that presynaptic NRX-1 is dispensable for the earliest stages of postsynaptic assembly

and spine formation, but is critical for stabilizing dendritic spines, F-actin assemblies and

AChR clusters, and promoting their maturation.

Presynaptic neurexin localizes to cholinergic terminals and stabilizes

postsynaptic components in a Kinesin-3/UNC-104 dependent manner

To investigate this model further, we sought to determine how presynaptic neurexin is trans-

ported to active zones in vivo. Prior work showed that both synaptic vesicles and CLA-1

depend on the Kinesin-3 motor UNC-104 for their delivery to synapses [37,48]. In particular,

disruption of unc-104 causes an accumulation of synaptic vesicles within neuronal somas and

a corresponding loss of synaptic vesicles within axons [48] (S10A and S10D Fig). unc-104
(e1265) carries a D1497N mutation in the PH domain of UNC-104 that impairs cargo binding

Fig 3. Dendritic spines and postsynaptic components form initially but subsequently collapse without the synaptic adhesion protein, NRX-

1. (A) Fluorescent confocal images of dendritic spines (Pflp-13::mCherry, magenta) and cholinergic expression of NRX-1::GFP (Punc-17β::NRX-

1::GFP, cyan) at 16, 20, and 24 hours after hatch and L4 stage (~42–50 hours post-hatch). Presynaptic clusters of NRX-1::GFP are visible by 16

hours after hatch and increase in size until roughly 24 hours after hatch. (B) Quantification of the average number of spines (purple) and NRX-1

clusters (black) at the time points indicated. Blue shading indicates the approximate period of DD remodeling. Numbers indicate the number of

animals quantified at each timepoint. Data points indicate mean ± SEM. (C) Fluorescent images (inverted LUT) of DD dendritic spines (Pflp-13::

myrGFP) in wild type (left) and nrx-1(wy778) (right) animals at 16, 18, 20, and 24 hours after hatch and at L4 stage. Immature dendritic spines

clusters form initially but then collapse in nrx-1 mutants. (D) Quantification of the percentage of wild type (black) and nrx-1(wy778) (purple)

animals with 2 or more DD dendritic spines at the timepoints indicated. YA, young adult. Numbers indicate the number of animals quantified at

each timepoint. (E) Fluorescent images of ACR-12/AChR clusters (Pflp-13::ACR-12::GFP) in DD dendrites of wild type (left) and nrx-1(wy778)
mutants (right) 16, 20, and 24 hours after hatch and at L4 stage (~42–50 hours post-hatch). Immature AChR clusters initially form but then

disperse in nrx-1 mutants. (F) Quantification of the number of ACR-12::GFP clusters in DD dendrites of wild type (black) and nrx-1(wy778)
mutants (purple). Two-way ANOVA, Sidak’s multiple comparisons, �p<0.05, ��p<0.01, ���p<0.001. (G) Fluorescent confocal images of

dendritic spines (Pflp-13::mCherry) and F-actin (Pflp-13::GFP::UtrCH) in DD dendrites of wild type and nrx-1(wy778) animals at 16 hours after

hatch and L4 stage.

https://doi.org/10.1371/journal.pgen.1010016.g003
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and leads to a severe reduction in axonal UNC-104 abundance [49]. We found that NRX-1

endogenously tagged with GFP localized to puncta in neuronal processes of the nerve ring and

nerve cords of wild type animals (S10E Fig), but was strikingly decreased in the nerve cords of

unc-104(e1265) mutants (Figs 4A, 4C and S11A–S11D). A striking deficit in axonal NRX-1::

GFP localization was also evident with specific cholinergic expression of NRX-1::GFP in unc-
104 mutants (Figs 4B, 4C and S11E–S11H). By contrast, NRX-1::GFP fluorescence was signif-

icantly increased (5.4-fold) in unc-104 mutant cholinergic somas compared to wild type

(S11C, S11D, S11G, S11H Fig). Consistent with UNC-104 involvement in cholinergic NRX-1

trafficking, we found that UNC-104 and NRX-1 are partially colocalized in cholinergic axons

(S11I and S11J Fig). Accumulation of NRX-1 in cholinergic cell bodies, coupled with a

decrease in axons, indicates a failure of NRX-1 transport in the absence of functional UNC-

104. Cholinergic-specific expression of wild type unc-104 in unc-104 mutants restored axonal

NRX-1::GFP localization, indicating a cell autonomous requirement (Fig 4B and 4C). In con-

trast, mutation of the Kinesin-1 motor unc-116 did not produce significant accumulation of

NRX-1::GFP in cholinergic somas and caused comparatively less severe decreases in axonal

NRX-1::GFP, demonstrating preferential involvement of Kinesin-3 for NRX-1 transport

(S12A–S12D Fig). Live imaging studies offered additional evidence that synaptic vesicle and

NRX-1 trafficking may share a common dependence on UNC-104. We found that NRX-1::

GFP trafficking events occurred with similar anterograde and retrograde velocities to SNB-1::

GFP (labeling synaptic vesicles) trafficking events, though less frequently (S12E–S12I Fig and

S6, S7 Videos). Prior studies have noted that active zone protein trafficking events occur at

reduced frequency compared with synaptic vesicle trafficking [9]. Together, our analyses dem-

onstrate that NRX-1 localization to synapses is strongly UNC-104-dependent while UNC-116

may contribute more indirectly, perhaps through effects on other synapse-associated proteins

[50,51].

The density of spines and AChR clusters were also severely reduced in L4 stage unc-104
(e1265) mutants (Fig 4D–4F), similar to nrx-1 mutants (Fig 4G). These effects were rescued

by either native or cholinergic expression of wild type unc-104 in unc-104(e1265) mutants, but

not by GABA- or muscle-specific unc-104 expression (Fig 4D–4F), demonstrating that UNC-

104-mediated transport is critical in presynaptic cholinergic axons for postsynaptic spine

development and receptor localization.

We next asked how a failure in delivery of AZ components may contribute to the severe

reductions in spines and receptor clusters we observed in unc-104 mutants. In addition to

CLA-1 [37], transport of both ELKS-1/ELKS/CAST and UNC-10/RIM were severely disrupted

by mutation of unc-104, indicating that Kinesin-3 mediated transport is key for the synaptic

delivery and assembly of several active zone constituents in these neurons (Figs 4H–4J and

S13). Remarkably, we found that only mutation of nrx-1 produced significant decreases in

dendritic spines (Fig 4G), demonstrating that presynaptic ELKS, UNC-10, and CLA-1 are dis-

pensable for postsynaptic development. Our results demonstrate a specific requirement for

NRX-1 in the stabilization and maturation of postsynaptic structures and provide evidence

that a failure in synaptic delivery of NRX-1 is a primary causal factor in the postsynaptic struc-

tural defects of unc-104 mutants.

The stabilization of mature dendritic spines requires ongoing synaptic

delivery of NRX-1

Our results suggest UNC-104 mediated transport positions NRX-1 at the presynaptic terminal

in the early stages of synapse formation where it acts to stabilize growing postsynaptic struc-

tures, including spines and receptor clusters. We next sought to address whether there is a
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requirement for presynaptic UNC-104-dependent transport in the stabilization of mature

spines. To address this question, we used the previously characterized temperature-sensitive

allele, unc-104(ce782). unc-104(ce782) animals carry a G105E missense mutation in the motor

domain of UNC-104 [52]. When grown at the permissive temperature (13.5˚C), unc-104
(ce782) axonal synaptic vesicle abundance and animal motility are modestly reduced com-

pared to wild type. In contrast, synaptic vesicles are completely absent from unc-104(ce782)
axons following growth at restrictive temperature (20–25˚C), and animal motility is severely

compromised within 12 hours of a shift to 23˚C [52]. We raised unc-104(ce782) animals to L4

stage at the permissive temperature (13.5˚C). We then shifted L4 stage animals to the restric-

tive temperature (25˚C) for 16–20 hrs, and quantified NRX-1::GFP localization and spine den-

sity immediately following this shift (Fig 5). Axonal NRX-1::GFP clusters were strikingly

decreased in unc-104(ce782) mutants subjected to the temperature shift compared with control

animals subjected to the same shift or unc-104(ce782) mutants raised continuously at the per-

missive temperature (Fig 5B, 5C). unc-104(ce782) mutants grown at the permissive tempera-

ture had a slightly reduced number of spines overall compared with wild type (Fig 5E). A shift

to the restrictive temperature at L3 or L4 stage produced a striking reduction in spine density

for unc-104(ce782) mutants (Figs 5D, 5E and S14), but not for wild type. Taken together, our

findings indicate an ongoing requirement for UNC-104 transport that extends well beyond the

period of initial synapse formation and spine outgrowth. Among the UNC-104 cargoes we

investigated, only deletion of nrx-1 produces a significant reduction in spine density at L4

stage. We therefore propose a model where ongoing UNC-104 delivery of presynaptic NRX-1

is critical for postsynaptic maturation and maintenance of mature spines.

Discussion

C. elegans GABAergic motor neurons are decorated with functional

dendritic spines

Dendritic spines are known to act as specialized sites for compartmentalizing neurotransmis-

sion and are widely observed across various classes of neurons in both vertebrates and inverte-

brates [53]. Though suggested by prior EM studies, the presence of functional dendritic spines

on C. elegans neurons had not been fully appreciated until recently [20,22,23]. Here we

Fig 4. Presynaptic NRX-1 localizes to cholinergic terminals and stabilizes spines in an UNC-104/KIF1A-dependent manner. (A)

Representative confocal images of NRX-1::GFP (endogenous nrx-1 knock-in) from dorsal cords (inverted LUT) of wild type and unc-104(e1265)
mutants. Images on each line are from different young adult animals (5 shown for each genotype). Mutation of unc-104 impairs axonal NRX-1:

GFP localization. (B) Representative confocal images of cholinergic NRX-1::GFP (Punc-129::NRX-1::GFP, inverted LUT) from the dorsal nerve

cord of wild type, unc-104(e1265) and unc-104(e1265) mutants rescued by cholinergic expression of wildtype unc-104 (Punc-17β). Images on

each line are from different young adult animals (5 shown for each genotype). (C) Scatterplot of the average number of NRX-1::GFP (endogenous

or transgenic), CLA-1::GFP, UNC-10::GFP, or ELKS-1::mCherry clusters per 50 μm of dorsal nerve cord in unc-104(e1265) mutants or rescue as

indicated. Values are normalized to their respective controls. Red dotted line indicates 50% of wild type values. Bars indicate mean ± SEM.

Student’s t-test, ����p<0.0001. n� 11 animals. Raw values with respective controls are shown in S13 Fig. (D) Fluorescent images (inverted LUT)

of DD dendritic spines (Pflp-13::myrGFP) from L4 stage wild type, unc-104(e1265), and unc-104(e1265) mutants rescued by cholinergic

expression of wild type unc-104. (E) Fluorescent images of AChR/ACR-12 clusters in DD dendrites (Pflp-13::ACR-12::GFP) of L4 stage wild type,

unc-104(e1265), and unc-104(e1265) mutants rescued by cholinergic expression of wild type unc-104. (F) Scatterplot showing quantification of

DD dendritic spines per 15 μm (Pflp-13::myrGFP) (purple) and DD cholinergic receptor clusters (Pflp-13::ACR-12::GFP) (green) in wild type,

unc-104(e1265), and indicated cell-specific rescue lines. Inset, number of rescuing lines/total transgenic lines tested for each rescue construct.

Bars, mean ± SEM. One-way ANOVA, Dunnett’s multiple comparisons test, ����p<0.0001. n� 10 animals. (G) Fluorescent images of DD

dendritic spines (Pflp-13::myrGFP or Pflp-13::mCherry) from L4 stage wild type, nrx-1(wy778), cla-1(ok937), unc-10(md1117), or elks-1(ok2762)
mutants. Only mutation of nrx-1 affects dendritic spines. (H) Representative confocal images of cholinergic CLA-1 (Punc-17β::CLA-1::GFP,

inverted LUT) from the dorsal nerve cord of wild type or unc-104(e1265) mutants. Images on each line are from different young adult animals (5

shown for each genotype). (I) Representative confocal images of cholinergic UNC-10 (Punc-129::UNC-10::GFP, inverted LUT) from dorsal nerve

cords of wild type and unc-104(e1265) mutants. Images on each line are from different young adult animals (5 shown for each genotype). (J)

Representative confocal images of cholinergic ELKS-1 (Punc-129::ELKS-1::mCherry, inverted LUT) from dorsal nerve cords of wild type and

unc-104(e1265) mutants. Images on each line are from different young adult animals (5 shown for each genotype).

https://doi.org/10.1371/journal.pgen.1010016.g004
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Fig 5. UNC-104/KIF1A transport of NRX-1 is required in the mature circuit to maintain postsynaptic structure. (A) Cartoon depiction of

experimental timeline. Animals were grown at 13.5˚C until L4 stage before shifting animals to the restrictive temperature of 25˚C for 16–20 hours and

imaging. (B) Line scan fluorescent images of NRX-1::GFP (knock-in to endogenous locus, inverted LUT) from dorsal cords of wild type and unc-104
(ce782) mutants grown continuously at the permissive temperature (13.5˚C) (middle panel) or shifted to the restrictive temperature (25˚C) (bottom

panel) at L4 stage for 16–20 hours before imaging (bottom panel). Each line scan indicates an individual animal. (C) Quantification of NRX-1::GFP

clusters along a 50 μm region of the dorsal nerve cord in wild type and unc-104(ce782)ts animals. Two-way ANOVA, Tukey’s multiple comparisons

test, ns, not significant, �p<0.05, n� 11 animals. Data points indicate mean ± SEM. (D) Fluorescent images of DD spines in wild type and unc-104
(ce782)ts animals grown continuously at the permissive temperature (13.5˚C) (middle panel) or shifted to the restrictive temperature (25˚C) (bottom
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examined the developmental trajectory of postsynaptic structures (dendritic spines and cholin-

ergic receptor clusters) located on GABAergic motor neurons relative to presynaptic release

sites and showed that the stabilization of growing dendritic spines requires presynaptic NRX-

1/neurexin.

Neural circuit organization and performance is dictated by the locations of synaptic con-

nections and the identities of the interconnected neurons. Elucidation of the processes govern-

ing the construction of synapses and their coordination across presynaptic axons and

postsynaptic dendrites are therefore fundamental for understanding circuit assembly and

function. However, relatively few studies have monitored in real-time the coordinated assem-

bly of pre- and postsynaptic specializations in vivo. Our work tackled this important question,

taking advantage of the GABAergic DD spine model and the cellular precision offered by the

C. elegans motor circuitry. We find that C. elegans DD dendritic spines share many of the hall-

mark features of vertebrate dendritic spines, but also have some key differences. Most notably,

mature C. elegans spines display limited overt activity-dependent dynamics in wild type ani-

mals and appear comparatively stable relative to spines in rodents. This raises the important

question of what is the functional role of spines in GABAergic neurons? Prior studies have

provided evidence for compartmentalized calcium signals in C. elegans neurons [54]. There-

fore, one intriguing possibility is that, similar to the situation in mammals, spines serve to

compartmentalize calcium and perhaps other biochemical signals in GABAergic neurons.

Spines may also be required in order to achieve the unusual dyadic arrangement of synapses in

the ventral nerve cord, where presynaptic specializations of cholinergic motor neurons are

positioned for transmission onto both GABA motor neuron and muscle postsynaptic partners

[55]. In this case, GABAergic spines may have developed to intercept cholinergic release sites

onto muscles, as suggested previously [56]. Although not yet characterized by light micros-

copy, prior electron microscopy studies indicated the presence of spine-like structures in other

C. elegans neurons such as RMD, RME, SMD, and RIP [21,24,56]. Additional investigation of

these structures should help to elucidate their precise functional roles.

We found that F-actin is compartmentalized to discrete regions within the dendritic shafts

of DD neurons very early in the development of the circuit (prior to the appearance of spines)

and later becomes exclusively localized to dendritic spines. F-actin labeling of spines is appar-

ent as soon as they are detectable, suggesting that F-actin assemblies may participate in the ear-

liest stages of spine development. Prior to remodeling of DD neurons, sites of GABA release

are located on the ventral processes of DD neurons. As F-actin based structures are often asso-

ciated with release sites [57,58], our finding that F-actin is clustered in ventral DD processes

prior to remodeling may suggest that F-actin initially associated with release sites persists in

the DD neurite through remodeling and is then repurposed for postsynaptic development,

perhaps acting as a landmark or actin-based mechanism for stimulating postsynaptic

maturation.

Notably, we also observed punctate cholinergic receptor fluorescence in GABAergic den-

drites several hours prior to the formation of dendritic spines. These immature receptor clus-

ters colocalize with dendritic F-actin assemblies, suggesting that receptors are trafficked into

dendrites and positioned with F-actin to rapidly populate growing spines. Indeed, we observed

that receptor clusters are visible in growing spines as soon as spines can be clearly resolved.

This is consistent with recent findings from time-lapse 2-photon imaging of hippocampal

organotypic slice cultures showing that receptor accumulation in spines occurs concurrently

panel) at L4 stage for 16–20 hours before imaging. (E) Quantification of the number of spines per 15 μm in wild type and unc-104(ce782)ts animals.

Two-Way ANOVA, Tukey’s multiple comparisons test, ns, not significant, ��p<0.001. n� 13 animals. Data points indicate mean ± SEM.

https://doi.org/10.1371/journal.pgen.1010016.g005
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with spine outgrowth [12]. Similarly, we found that synaptic material accumulates in presyn-

aptic axons prior to the emergence of spines from dendritic processes. In particular, initial

accumulations of the presynaptic scaffold CLA-1 and the synaptic vesicle marker synaptobre-

vin/SNB-1 were visible in the axon with a similar time-course to the appearance of dendritic

cholinergic receptor clusters. Presynaptic material became more clearly localized to discrete

puncta over the next 4–6 hours, occurring roughly coincident with receptor accumulation at

the tips of growing spines. Notably, our findings do not support a strong requirement for pre-

synaptic neurotransmitter release in spine formation.

Transsynaptic NRX-1/Neurexin signaling stabilizes dendritic F-actin

assemblies to promote postsynaptic maturation

Numerous studies across a variety of model systems have examined roles for neurexins in syn-

apse development and function. However, no single consensus view of neurexin function has

emerged. Instead, functions for neurexins at specific synapses are thought to be dictated by cel-

lular and molecular context [19,59]. Mammalian genomes encode three Nrxn genes that can

give rise to α-, β-, and γ-Nrxn isoforms. These isoforms share common intracellular and trans-

membrane regions but differ in their extracellular domains. α-Nrxn has six extracellular LNS

domains interleaved with three EGF-like repeats. β-Nrxn has only one LNS domain, while γ-

Nrxn lacks all identifiable extracellular domains. The multi-faceted roles for neurexins at verte-

brate synapses likely emerge as a consequence of the many neurexin isoforms that are gener-

ated by alternative splicing, the complexity of their cellular expression, and the potential for

these isoforms to selectively interact with distinct postsynaptic partners.

The C. elegans genome encodes a single neurexin gene, nrx-1, which generates long α and

short γ isoforms [60]. As is the case in other systems, C. elegans NRX-1 has roles in presynaptic

organization, for example in calcium channel clustering at the active zone [47]. Interestingly,

the short γ-NRX-1 isoform that lacks identifiable ectodomains performs these roles (worms do

not encode β-NRX-1), but even in the absence of both isoforms, a level of presynaptic func-

tionality is maintained, as indicated by the presence of evoked responses in muscle cells follow-

ing presynaptic motor neuron stimulation [20]. Our prior studies pointed toward the

importance of NRX-1 at synapses between cholinergic and GABAergic motor neurons [20].

Surprisingly, our time course studies here revealed that initial spine outgrowth and AChR clus-

tering occur normally in nrx-1 mutants lacking both isoforms. However, spines and AChRs in

nrx-1 mutants become destabilized within hours and disperse, such that GABAergic dendrites

are almost completely devoid of these postsynaptic components by L4 stage. Dendritic F-actin

assemblies, that normally show discrete localization to spines, are also disorganized in nrx-1
mutants, and are diffusely distributed throughout GABAergic dendritic processes in nrx-1
mutants. We propose a model where presynaptic NRX-1 is required for the stabilization of

dendritic spines and other postsynaptic structures in GABAergic dendrites. We suggest that

presynaptic NRX-1 directs the organization of dendritic F-actin to stimulate maturation and

stabilization of spines and postsynaptic receptor clusters. A similar form of F-actin based reor-

ganization is a key step in presynaptic differentiation [25,57]. Our findings contrast with previ-

ous culture studies that implicated neurexin in postsynaptic induction [61].

Our work has parallels with recent studies in Xenopus and Drosophila. In embryonic Xeno-
pus brain, presynaptic β-neurexin stabilizes dendritic filopodia through an adhesive partner-

ship with neuroligin to direct the development of dendritic arbors [62]. Similarly, during fly

metamorphosis, neurexin/neuroligin-based adhesion promotes the growth of neurite branches

independently of synaptic activity (Constance et al., 2018) [63]. In the present studies, we

showed NRX-1 stabilization of dendritic spines occurs independently of synaptic activity.
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Previous studies of nlg-1 reporters [64,65] and more recent transcriptome profiling efforts [66]

show that nlg-1 is not strongly expressed in GABAergic motor neurons. Consistent with these

findings, we previously showed deletion of neuroligin/nlg-1 did not significantly alter either

dendritic spines or receptor clusters in GABAergic neurons at L4 stage [20]. These results sug-

gest NRX-1 interaction with alternate binding partners in GABAergic neurons that to date

remain unidentified. Identifying such partners will be an interesting area for future studies.

UNC-104/Kinesin 3-dependent localization of NRX-1/Neurexin is an

essential early step required for synapse maturation and stabilization

Efficient trafficking of synaptic and active zone cargoes to presynaptic terminals is essential for

synapse formation and neuronal communication. Long-range axonal transport of synaptic

vesicles and active zone proteins is carried out by anterograde kinesin and retrograde dynein

motors. However, significant questions remain about which synaptic proteins are trafficked

together and their dependence on specific motors. We showed NRX-1 localization to presyn-

aptic terminals is dependent on kinesin-3 UNC-104/KIF1A. The anterograde transport of syn-

aptic and dense core vesicles are also strongly dependent upon UNC-104 [48,67]. In contrast,

several studies suggest that other AZ proteins exhibit weaker requirements for UNC-104 in

their delivery. For example, ELKS-1 and other AZ proteins localize to C. elegans HSN synapses

in an UNC-104-independent manner [6]). Similarly, UNC-10/RIM is properly concentrated

in nerve ring processes of unc-104(e1265) mutants [68]. Here, we found that NRX-1, UNC-10/

RIM, ELKS-1/ELKS and CLA-1/piccolo all show a dependence on UNC-104 for anterograde

transport to cholinergic synapses. The unc-104(e1265) allele used in our study carries a point

mutation in the PI(4,5)P2 binding pocket of the PH domain and reduces the ability of UNC-

104 to bind cargo [49], perhaps implicating this domain in UNC-104-dependent localization

of these proteins.

Prior studies of rodent cultured neurons also suggested a requirement for the Kinesin-3

motor in neurexin transport, indicating that mechanisms for NRX-1 delivery to synapses are

conserved [69]. We found that dendritic spines collapse and AChR clusters disperse when

UNC-104 delivery of synaptic cargoes is disrupted. Of the putative UNC-104 cargoes we ana-

lyzed, only mutation of nrx-1 produced significant disruption of dendritic spines. We therefore

propose that NRX-1 is a key UNC-104 cargo required for spine stabilization. Our live imaging

points to similar rates of transport for synaptic vesicles and NRX-1. However, it remains

unclear whether NRX-1 is delivered as a component of synaptic vesicles or may be segregated

into a distinct vesicular population, such as synaptic vesicle protein transport vesicles (STVs).

Our findings that mutations which severely impair synaptic vesicle fusion do not affect spine

density point toward the latter possibility.

The prior identification of a temperature-sensitive allele of unc-104 allowed us to explore

the temporal requirements for UNC-104 delivery of NRX-1. Importantly, we found that UNC-

104 delivery was not solely required during early stages of synapse maturation but was critical

throughout the developmental progression of the circuit toward maturity. These findings

argue that delivery of presynaptic NRX-1 is required to maintain postsynaptic structure long

after circuit assembly is complete. This raises interesting questions about the relationship

between NRX-1 transport and synapse stability, perhaps suggesting that alterations in the

rate of axonal NRX-1 transport may directly impact synaptic connectivity in mature animals.

More broadly, our studies provide a new view of adhesive mechanisms in circuit connectivity

and highlight a novel role for neurexin in the stabilization of mature synapses and dendritic

spines.
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Materials and methods

Strains

All strains are N2 Bristol strain derivatives (wild type) and were maintained at room tempera-

ture (20–24˚C) on nematode growth media plates (NGM) seeded with E. coli strain OP50.

Transgenic strains were obtained by microinjection to achieve transformation [70] and identi-

fied using co-injection markers. Integrated lines were produced with X-ray irradiation and

outcrossed to wild type/N2 Bristol eight times. Only hermaphrodites (L1-L4, young adults)

were used in this study. A complete list of all strains used in this study is found in S1 File.

Worms used for time course studies were staged by transferring freshly hatched larvae to

seeded OP50 plates and transferring to 25˚C (time point 0).

Molecular biology

Plasmids were constructed using the two-slot Gateway Cloning system (Invitrogen) and con-

firmed by restriction digest and sequencing.

Utrophin/F-actin reporter. Sequence coding for mCherry was amplified from pDest-16

(and ligated into AgeI-HF/BspEI-digested PNYL183 (Pflp-13::GFP::UtrCH, gift from Dong

Yan’s laboratory) to make pCL87 (Pflp-13::mCherry::UtrCH).

TBA-1/tubulin reporter. Sequence coding for GFP::TBA-1 was amplified from plasmid

pYJ128 (gift from Kang Shen laboratory) and ligated into a destination vector to create pDest-

173. pDest-173 was recombined with pENTR-5’-flp-13 to generate pDO61 (Pflp-13::GFP::

TBA-1).

Golgi apparatus reporter. pDest-161 (AMAN-2::GFP) was recombined with pENTR-3’-

flp-13 to generate pDO47 (Pflp-13::AMAN-2::GFP). pDest-161 was created by HindIII-HF

digestion of Pgpa-4::AMAN::GFP (gift from Gert Jansen’s laboratory) and ligated with a desti-

nation vector.

Mitochondria reporter. pre-su9::GFP was isolated from XmaI/SphI-HF digested

pDM1389 (gift from A.V. Maricq lab) and ligated into a destination vector to create pDest-91

(pre-su9::GFP). pDest-91 was recombined with pENTR-5’-flp-13 to generate pAP102 (Pflp-
13::pre-Su9::GFP).

ER reporter. Tag-RFP::TRAM-1 was amplified from plasmid pCT27 (gift from A.V. Mar-

icq laboratory) and ligated to a KpnI-HF/NgoMIV digested destination vector to generate

pDest-169. pDest-169 was recombined with pENTR-3’-flp-13 to generate pDO59 (Pflp-13::

RFP::TRAM-1).

Presynaptic vesicle reporter. acr-5 promoter was amplified from plasmid pDM806 and

ligated into pENTR-D-TOPO to generate pENTR-40. pENTR-40 was then recombined with

pDest-5 to generate pAP264 (Pacr-5::SNB-1::GFP).

B-type specific motor neuron reporter. pDO45 (Pacr-5::GFP) was created by recombin-

ing pDest-94 (GFP) and pENTR-40 (acr-5 promoter).

myrGCamp6f. myrGCaMP6f was amplified from plasmid pDest-164 and ligated into a

destination vector to create pDest-180. pDest-180 was recombined with pENTR3’-flp-13 to

create pDO69 (Pflp-13::SL2::myrGCamp6f).

CLA-1 reporter. 3XnovoGFP::CLA-1e was isolated from SphI-HF/AgeI-HF digested

pKP85 (gift from Peri Kurshan) and ligated with a destination vector to create pDest-307

pDest-307 was recombined with pENTR-3’-unc-17β to generate pSR58 (Punc-17β::3Xno-

voGFP::CLA-1e cDNA).

unc-104 rescue constructs. UNC-104cDNA::mCherry was isolated from SphI-HF/

NheI-HF digested pLL48 (gift from Kang Shen lab) and ligated with a destination vector to
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make pDest-308. pDest-308 was recombined with pENTR-unc-17β to generate pDO126

(Punc-17β::UNC-104cDNA::mCherry), pENTR-3’-unc-47 to generate pDO134 (Punc-47::

UNC-104cDNA::mCherry), and pENTR-3’-myo-3 to generate pDO136 (Pmyo-3::UNC-

104cDNA::mCherry).

Punc-17β::NRX-1::GFP. pAP112 was generated by recombining pENTR-3’-unc-17β with

pDest-99 (NRX-1::GFP).

ELKS-1::mCherry. mCherry::ELKS-1cDNA was isolated from SphI-HF/Ascl digested

pK043 (gift from Peri Kurshan laboratory) and ligated with a destination vector to create

pDest-325. pDest-325 was recombined with pENTR-unc-129 to generate pDO156 (Punc-129::

ELKS-1::mCherry).

UNC-10::GFP. UNC-10::GFP was isolated from BamHI-HF/SbfI digested pRIM3 (gift

from Michael Nonet laboratory) and ligated with a destination vector to generate pDest-304.

pDest-304 was recombined with pENTR-3’-unc-129 to generate pDO128 (Punc-129::UNC-

10::GFP).

CRISPR/Cas-9 endogenously tagged NRX-1::GFP. Strain PHX3578 nrx-1(syb3578) was

generated in N2 animals by SunyBiotech. Linker sequence and GFP were inserted after exon

27 at the 3’ end of C29A12.4a1/nrx-1. Sequence flanking the GFP is below.

5’: CGGGAATGGAGTCGCAAAGAAAAAGGATTTTAAAGAGTGGTACGTAaa
ggtaccgcgggccc

gggatccaccggtcgccaccatggtg

3’: TCCATTTCTTCAATCAAAACTCAATACAATGATGATTAAAAAATTCACTTTTGTCTGCAAA

TTGCCACAACTTCAAAACGGGTAC

PAM sequence is underlined

Synonymous mutations are bolded

Linker is in lower case letters

nrx-1 gene is CAPTIALIZED

Hydrogel solution

Hydrogel was prepared as an aqueous solution of polyethylene glycol (20% w/v) and the photoi-

nitiator Irgacure (0.5% stock, 0.1% working concentration), and stored at 4˚C in the dark.

Confocal microscopy

All strains were immobilized with sodium azide (0.3 M) on a 2% or 5% agarose pad. Images

were obtained using an Olympus BX51WI spinning disk confocal equipped with a 63x objec-

tive. For time course analyses, newly hatched larvae were transferred to a seeded OP50 plate

and maintained at 25˚C.

Long term live imaging of dendritic spines and F-actin. Nematodes were immobilized

using 2 μL 50 mM muscimol in 10 μL 20% PEG hydrogel solution. Once paralyzed, hydrogel

was curated using a handheld UV Transilluminator (312 nm, 3 minutes). Z-stacks were

acquired every 5 minutes for at least one hour.

Live imaging of synaptic vesicle and NRX-1 trafficking. Nematodes were immobilized

using 50 mM muscimol on a 5% agarose pad. Cholinergic commissures were imaged using

Perkin Elmer spinning disk confocal equipped with a 63x objective using 100 ms exposure for

30 seconds.
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Confocal microscopy analysis

All image analysis was conducted using ImageJ software (open source) within defined ROIs

using intensity threshold values determined from control experiments. ROIs were located 15–

30 μm anterior to DD1, DD2 or DD3 somas.

Spine analysis. Mature spines were quantified as protrusions from the dendrite >0.3 μm

in length (measuring from the base to the tip of the protrusion). Spine density was defined as

the number of spines/unit length within a selected ROI.

3D rendering was conducted using Imaris/bitplane 3D image analysis software. Morpho-

logical categories were determined based on criteria used in [71]. The ImageJ line tool was

used to measure the length and width of the spine 3D rendering. Based on these calculations,

spines were placed into one of four morphological categories based on the following criteria:

Stubby: middle width>total length; Thin: middle width = tip width; Mushroom: tip

width>middle width; Branched: >1 spine head.

Fluorescence intensity analysis

F-actin/spine and F-actin/tubulin. The DD neurite was extracted using the line and line

straighten functions. Total fluorescence intensity (utrophin/UtrCH, tubulin/TBA-1, ER/

TRAM-1) on the dendritic shaft (line width 4) and below the dendritic shaft (line width 8) were

measured. For soma fluorescence intensity, ROI was drawn around the perimeter of the soma.

Synaptic marker and receptor cluster. Background fluorescence was subtracted, and the

number and size of synaptic/receptor puncta were measured using the ‘analyze particles’ func-

tion. Confocal montages were assembled using the ‘straighten to line’ function in a 50 μm

region of the dorsal nerve cord.

Live Imaging

An event is defined as an incidence of spine destabilization/pruning, elongation/formation, or

a stable spine during an entire live imaging recording. Z-stacks of DD1 dendrites were

acquired every 5 minutes for 60–160 minutes. Numbers indicates number of events for each

genotype at each timepoint.

Calcium Imaging

Animals were grown on plates seeded with OP50 containing 2.7 mM All-Trans Retinal (ATR).

Plates were stored at 4˚C under dark conditions and used within one week. Imaging was car-

ried out using L4 animals immobilized in hydrogel [72]. Animals were transferred to 7.5 μL of

the hydrogel mix placed on a silanized glass slide and covered with a glass slide. Hydrogel was

cured using a handheld UV Transilluminator (312 nm, 3 minutes). Post-curing, the covering

slide was removed and replaced with a coverslip. Imaging was carried out using a Yokogawa

CSU-X1-A1N spinning disk confocal system (Perkin Elmer) equipped with EM-CCD camera

(Hamamatsu, C9100-50) and 63X oil immersion objective. Chrimson photoactivation (~30

mW/cm2) was achieved using a TTL-controlled 625 nm light guide coupled LED (Mightex

Systems). A 556 nm BrightLine single-edge short-pass dichroic beam splitter was positioned in

the light path (Semrock) (S3 Fig). Data were acquired at 10 Hz for 15 s using Volocity software

and binned at 1×1 during acquisition. Analysis was performed using ImageJ. The DD neurite

process in each time series was extracted using the straighten function, background subtracted

and photobleaching correction was carried out by fitting an exponential function to the data

(CorrectBleach plugin). A smoothing function was applied to the data to enhance signal-to-

noise. Individual spine ROIs were identified using the mCherry fluorescence. Post imaging
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processing, pre-stimulus baseline fluorescence (F0) was calculated as the average of the data

points in the first 4 s of the recording. Data was normalized to prestimulus baseline as ΔF/F0,

where ΔF = F–F0. Peak ΔF/F0 was determined by fitting a Gaussian function to the ΔF/F0 time

sequence using Multi peak 2.0 (Igor Pro, WaveMetrics). All collected data were analyzed,

including failures (no response to stimulation). Control recordings were carried out in the

absence of Retinal.

Electron microscopy

Staged L4 wild type (Pflp-13::ACR-12::GFP) hermaphrodites were subjected to high-pressure

freeze fixation using a HPM10 high-pressure freezer. Hermaphrodites were slowly freeze

substituted in 2% osmium tetroxide (OSO4), 0.1% uranyl acetate, 2% H2O in acetone fixative

[73,74]. Samples were embedded in blocks, sectioned at 70 nm-thick serial sections and subse-

quently collected on copper slot grids. Samples were post-stained in 2.5% uranyl acetate in

70% methanol for 20 minutes and 1:6 lead citrate in H2O for 2 minutes at room temperature.

Images were acquired using the Philips CM10 TEM.

We identified and characterized 6 DD1 spines from a 35 μm region of the ventral head

region where the neurite emerges from the cell body of DD1 GABAergic motor neuron.

Temperature shift experiments

Wild type and unc-104(ce782)ts animals eggs were raised at 13.5˚C until L3 or L4 stage as indi-

cated, then shifted to 25˚C for 16–20 hrs prior to imaging. Animals were age-matched at the

time of the temperature shift to account for developmental delays of unc-104(ce782)ts mutants,

approximately 144 hours to L4 stage for unc-104(ce782)ts mutants, and 120 hours for wild

type.

Supporting information

S1 File. Strain list.

(XLSX)

S1 Fig. Cell biology characterization of DD dendrites and spines. (A) Fluorescent image

(top, inverted LUT) and 3D rendering (middle and insets) of DD dendritic spines from an ani-

mal expressing Pflp-13::mCherry, shows diverse spine morphologies. DD dendritic spines

share morphological similarities with mammalian dendritic spines: mushroom (5.49 ± 0.66%),

branched (5.49 ± 0.66%), stubby (73.63 ± 3.09%), and thin (15.38 ± 1.21%). Arrowheads, spine

insets. n = 83 dendritic spines from 11 animals, measurements, percentage ± SD. (B) Fluores-

cent images of tubulin (Pflp-13::GFP::TBA-1) and F-actin (Pflp-13::mCherry::UtrCH) in DD

neurons. White arrows indicate dendritic regions where tubulin contacts the base of a den-

dritic spine. (C) Fluorescent images of DD1 dendritic spines (Pflp-13::mCherry) and Golgi

marker (Pflp-13::AMAN-2::GFP) in DD neurons. Golgi fluorescence is primarily restricted to

the DD1 soma. Dotted white line traces the neuronal cell body. (D) Fluorescent images of

DD1 dendritic spines (Pflp-13::mCherry) and mitochondria (Pflp-13::pre-Su9::GFP). Mito-

chondrial fluorescence is visible in the main dendritic processes of DD neurons near spines.

(E) Quantification of mitochondria fluorescence intensity in dendritic shaft and dendritic

spines. Bars, mean ± SEM. Student’s t-test, ����p<0.0001. (F) Fluorescent images of DD3 den-

dritic spines (Pflp-13::myrGFP) and rough endoplasmic reticulum (ER) (Pflp-13::RFP::

TRAM). TRAM fluorescence is enriched in DD cell bodies but is also more weakly visible in

the dendritic processes of DD neurons. (G) Fluorescent images of DD1 dendritic spines (Pflp-
13::myrGFP) and rough endoplasmic reticulum (ER) (Pflp-13::RFP::TRAM). Fluorescence
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signal intensity was increased to better display process.

(TIF)

S2 Fig. Ultrastructure of DD dendritic spines. (A) Cartoon depiction of the anterior serial

cross-sections used for electron microscopy studies of the ventral nerve cord, focusing on the

dendrite of the DD1 neuron. Cross-sections in B are from White and colleagues [21] while sec-

tions in C and D are from this work. (B) Serial cross-sections (443-446/597) of the ventral

nerve cord from N2U series [21]. Teal indicates DD1 dendrite and dendritic spines dipping

into the ventral nerve cord to meet presynaptic cholinergic terminals (magenta). Asterisks

indicates mitochondrion within the dendritic shaft, see S1 Fig. (C) Ventral nerve cord electron

micrographs. Serial cross-sections (225-228/491) of the ventral nerve cord. Teal indicates DD1

dendrite and dendritic spines (226/491 and 227/491) dipping into the ventral nerve cord to

meet presynaptic cholinergic terminals (presumably VA/VB neurons, magenta). Asterisks

indicates mitochondria within the dendritic shaft, see S1 Fig. Scale bar, 100 nm. (D) Two rep-

resentative micrographs from serial sections where the entire extent of the spine is visible are

shown. Asterisk indicates mitochondrion within the dendritic shaft. Scale bar, 100 nm.

(TIF)

S3 Fig. Cartoon illustration of calcium imaging recording platform. Imaging was per-

formed using a Yokogawa CSU-X1-A1N spinning disk confocal system (Perkin Elmer)

equipped with EM-CCD camera (Hamamatsu, C9100-50) and 63X oil immersion objective.

Chrimson photoactivation (~30 mW/cm2) was achieved using a TTL-controlled 625 nm light

guide coupled LED (Mightex Systems), permitting illumination of the entire immobilized ani-

mal, while simultaneously recording GCaMP6f fluorescence (excitation 488 nm, emission 525

nm). A 556 nm edge BrightLine single-edge short-pass dichroic beam splitter was positioned

in the light path (Semrock) to prevent 625 nm light from reaching the camera.

(TIF)

S4 Fig. The anterior to posterior development of post-embryonic born ventral cholinergic

motor neurons and GABAergic dendritic spines. (A) Fluorescent images of B-type choliner-

gic neurons (DB/VB) (Pacr-5::GFP) (green) and DD GABAergic neurons (Pflp-13::mCherry)

(red) at 16 and 24 hours after hatch. VB cholinergic neurons are born post-embryonically in

an anterior to posterior order (blue). Note that at 16 hours after hatch Pacr-5::GFP fluores-

cence indicating VB1 and VB2 cell bodies is visible. By 24 hours after hatch Pacr-5::GFP fluo-

rescence indicating VB3 is visible. White dotted circles outline the neuronal cell bodies. (B)

Fluorescent images of the anterior ventral nerve cord in animals co-expressing the synaptic

vesicle marker Pacr-5::SNB-1::GFP in B-type cholinergic neurons (DB/VB) (green) with Pflp-
13::mCherry labeling DD GABAergic neurons (red) at 12, 16, and 24 hours after hatch. At 12

hours, little SNB-1::GFP fluorescence is visible in the ventral nerve cord. Embryonic born, dor-

sally directed B-type (DB) cholinergic motor neurons predominantly make synaptic contacts

in the dorsal nerve cord. Ventrally-directed, B-type (VB) cholinergic motor neurons are born

post-embryonically and have not yet completed their maturation at this time. SNB-1::GFP

fluorescence in the ventral nerve cord is faintly visible by 16 hrs after hatch and becomes more

prominent by 24 hrs after hatch, coincident with maturation of VB motor neurons. White dot-

ted circles indicate outlines of neuronal cell bodies. Yellow arrows indicated presynaptic vesi-

cle clusters, SNB-1. (C) Cartoon representation of the developmental timing of post-

embryonic born ventral cholinergic motor neurons, spine outgrowth, and cholinergic synaptic

vesicle localization. (D-E) Fluorescent images (inverted LUT) of DD1 and DD2 dendritic

spines 24 hours after hatch (D) and at L4 (~42–50 hours after hatch) stage (E). Animals express

Pflp-13::mCherry to label dendritic spines. Red dashed rectangle indicates inset anterior to
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DD1 soma. Blue dashed rectangle indicates inset anterior to DD2 soma. Note that DD1 spines

form prior to DD2 spines. (F) Quantification of the length of growing dendritic spines at 24

and 32 hours after hatch and at L4 (~42–50 hours after hatch) stage. Data points indicate

mean ± SEM.

(TIF)

S5 Fig. Development of pre- and postsynaptic components. Fluorescent images of GABAer-

gic dendrites at 12, 16, 20, 24, and 32 hours after hatch and at L4 stage (~42–50 hours post-

hatch). Animals express a GABAergic dendrite marker (Pflp-13::mCherry) with either (A) pre-

synaptic active zone marker (Punc-17β::GFPnovo2::CLA-1e), (B) synaptic vesicle marker

(Pacr-5::SNB-1::GFP) or postsynaptic receptors (C) (Punc-47::ACR-12::GFP) or (D) F-actin

(Pflp-13::GFP::UtrCH) (Punc-17β::GFPnovo2::CLA-1e). Images are pseudo colored to indicate

spines (magenta) and synaptic components (CLA-1, vesicle clusters, F-actin, or AChRs)

(cyan).

(TIF)

S6 Fig. LEV-10 localization and actin dynamics during development. (A) Fluorescent con-

focal images showing dendritic spines (magenta) and the postsynaptic CUB transmembrane

domain LEV-10 (cyan). Animals express Pflp-13::mCherry with DD neuron specific LEV-10::

GFP11x7 using a strategy for cell-specific labeling of endogenous LEV-10 (NATF) [39]. (B)

Quantification of the number of DD dendritic spines and LEV-10 clusters at 16, 20, and 24

hours after hatch, and L4 stage (~42–50 hours post-hatch). (C) (C, E, G) Line scans displaying

relative fluorescence intensity of F-actin (Pflp-13::GFP::UtrCH) at 16 hours after hatch (C), 24

hours after hatch (E), and L4 (~42–50 hours after hatch) animals (G). Each color indicates a

line scan of fluorescence intensity for the same DD dendrite ROI acquired at 5-minute inter-

vals. Note the variable distribution of fluorescence intensities across line scans from images

acquired near 16 hours after hatch compared to later time points, indicating increased F-actin

dynamics during early development. (D, F, H) Confocal images (inverted LUT) showing Pflp-
13::GFP::UtrCH fluorescence (labeling F-actin) in the DD dendrite of 16 (D), or 24 (F) hours

after hatch, or at L4 stage (~42–50 hours after hatch) (H). For each, sequences of fluorescent

images separated by 30 minutes are shown.

(TIF)

S7 Fig. Spines and AChR localize independently of presynaptic activity. (A, B) Fluorescent

confocal images (inverted LUT) of DD1 dendritic spines (Pflp-13::mCherry (A) or Pflp-13::

myrGFP (B)) in L4 stage wild type and selected mutant strains where synaptic activity is

affected. (A) Fluorescent confocal images of AChR clusters (Pflp-13::ACR-12::GFP) in the DD

dendrite of L4 stage wild type and selected mutant strains where synaptic activity is affected.

(B) Fluorescent confocal images (inverted LUT) of DD1 dendritic spines (Pflp-13::myrGFP) in

L4 stage wild type and nrx-1(wy1155) null mutants. (C) Quantification of the number of DD1

dendritic spines in L4 wild type and nrx-1(wy1155) null mutants. Student’s t-test,
����p<0.0001. Bars, mean ± SEM.

(TIF)

S8 Fig. Dendritic calcium responses are severely reduced in nrx-1 mutants. Scatter plot

showing peak ΔF/Fo responses measured from GABAergic DD motor neuron dendrites dur-

ing a 5s period of cholinergic photostimulation in wild type, acr-16(ok789); acr-12(ok367),
nrx-1(wy778), nrx-1(nu485), and nrx-1(ok1649) mutants. All genotypes co-express Pflp-13::

myrGCaMP6f::SL2::mCherry for measurement of dendritic calcium responses with Pacr-2::

Chrimson for cholinergic neuron depolarization. Dendritic calcium responses were not signif-

icantly affected by deletion of the homomeric nAChR subunit acr-16, but were significantly
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reduced by mutation of either acr-12 or nrx-1. Bars indicate mean ± SEM. One-way ANOVA,

Dunnett’s multiple comparisons, ����p<0.0001. Wild type control is the same as Fig 1H.

n� 10 animals.

(TIF)

S9 Fig. Spine and AChR localization and spine dynamics in developing wild type and nrx-1
(wy778) mutants. (A) Quantification of the number of DD spines/15 μm in wild type (black)

and nrx-1(wy778) (purple) animals 16, 20, 24, 32 hours after hatch and at L4 (~42–50 hours

after hatch) and young adult (YA) (~52–56 hours after hatch) stages. Two-way ANOVA,

Sidak’s multiple comparisons test, � p<0.05, ��p<0.01, ����p<0.0001. Data points indicate

mean ± SEM. Numbers indicate animals quantified for each timepoint. (B) Quantification of

ACR-12::GFP fluorescence intensity from DD dendrites of wild type (black) and nrx-1(wy778)
(purple) animals at 16, 20, and 24 hours after hatch and L4 stage (~42–50 hours post-hatch).

Two-way ANOVA, Sidak’s multiple comparisons test, ��p<0.01, ���p<0.001. Data points indi-

cate mean ± SEM. (C) Fluorescent image (inverted LUT) of DD dendritic spines at timepoint

zero in a wild type animal 16–20 hours after hatch. Dashed red box indicates region shown in

S9D Fig. (D) Fluorescent images (inverted LUT) of an individual wild type DD dendritic spine

(Pflp-13::mCherry) at 0, 45, and 70 minute timepoints during live imaging of area indicated by

red box in S9C Fig. Red dashed line indicates largest extent of spine outgrowth. (E) Fluorescent

image (inverted LUT) of nrx-1(wy778) mutant DD1 dendritic spines (Pflp-13::mCherry) at

timepoint zero acquired 16–20 hours after hatch. Dashed red and blue boxes indicate regions

shown in S9F Fig. (F) Fluorescent images (inverted LUT) of individual nrx-1(wy778) mutant

DD dendritic spines (Pflp-13::mCherry) at (top) 90. 95, and 100 minute timepoints during live

imaging of area indicated by red box in S9E Fig and (bottom) at 555, 70, 75, 90 minute time-

points during live imaging of area indicated by blue box in S9E Fig. Red dashed line indicates

largest extent of spine outgrowth. Red arrows indicate spine dynamics. (G) Fluorescent image

(inverted LUT) of wild type DD dendritic spines (Pflp-13::mCherry) at timepoint zero at L4

stage. Dashed red box indicates region shown in S9H Fig. (H) Fluorescent images (inverted

LUT) of an individual wild type DD dendritic spine (Pflp-13::mCherry) at 0, 30, and 65 minute

timepoints during live imaging of the area indicated by red box in S9G Fig. (I) Quantification

of the percentage of spine events in wild type and nrx-1(wy778) animals at 16–20 hours after

hatch, 21–24 hours after hatch, and at L4 (~42–50 hours after hatch) compared to the total

number of events. An event is defined as an incidence of spine destabilization/pruning, elonga-

tion/formation, or a stable spine during an entire live imaging recording. Z-stacks of DD1 den-

drites were acquired every 5 minutes for 60–160 minutes. Numbers indicates number of

events for each genotype at each timepoint.

(TIF)

S10 Fig. Mutation of unc-104 impairs synaptic vesicle delivery to cholinergic axons in the

dorsal nerve cord and NRX-1 endogenously tagged with GFP localizes to neuronal pro-

cesses. (A) Fluorescent images of cholinergic synaptic vesicles (Pacr-2::mCherry::RAB-3) in

the dorsal nerve cord of young adult wild type and unc-104(e1265) mutants. Images on each

line are from different animals (4 are shown for each genotype). (B) Quantification of cholin-

ergic synaptic vesicles (Pacr-2::mCherry::RAB-3) per 50 μm of the dorsal nerve cords of wild

type and unc-104(e1265) mutants. Student’s t-test, ����p<0.0001. Bars, mean ± SEM. (C) Fluo-

rescent images of the soma in wild type and unc-104(e1265) mutants expressing cholinergic

vesicle reporter (Pacr-2::mCherry::RAB-3). Dotted white lines outline the cell body. (D) Quan-

tification of soma cholinergic synaptic vesicle fluorescence intensity (AU) (Pacr-2::mCherry::

RAB-3) of wild type and unc-104(e1265) mutants. Student’s t-test, ����p<0.0001. Bars,

mean ± SEM. (E) NRX-1::GFP localizes within neuronal processes of the nerve ring and shows
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punctate localization in processes of the ventral and dorsal nerve cords of L4 stage worms.

(TIF)

S11 Fig. NRX-1 localization to cholinergic axons is decreased in unc-104 mutants and colo-

calizes with UNC-104 in cholinergic axon terminals. (A) Quantification of NRX-1::GFP

(endogenous knock-in) clusters in a 50 μm region of the dorsal nerve cord in wild type and

unc-104(e1265) animals. Bars, mean ± SEM. Student’s t-test, ����p<0.0001. n� 11 animals.

(B) Quantification of NRX-1::GFP (endogenous knock-in) axon fluorescence intensity in a

50 μm region of the dorsal nerve cord. Bars, mean ± SEM. Student’s t-test, ����p<0.0001.

n� 11 animals. (C) Fluorescent images of NRX-1::GFP (endogenous knock-in) in somas of

wild type and unc-104(e1265) mutants. Dotted white lines outline the neuronal cell body. (D)

Quantification of NRX-1::GFP soma fluorescence intensity. Bars, mean ± SEM. Student’s test,
����p<0.001. (E) Quantification of the number of NRX-1::GFP (Punc129::NRX-1::GFP) clus-

ters in a 50 μm region of the dorsal nerve cord in wild type, unc-104(e1265), and unc-104
(e1265) mutants rescued with cholinergic expression of wild type unc-104. Bars, mean ± SEM.

One-way ANOVA, Dunnett’s multiple comparisons test, ����p<0.0001. n� 11 animals. (F)

Quantification of NRX-1::GFP fluorescence intensity in cholinergic axons (Punc129::NRX-1::

GFP) of a 50 μm region of the dorsal nerve cord. Bars, mean ± SEM. One-way ANOVA, Dun-

nett’s multiple comparisons test, ����p<0.0001. n� 11 animals. (G) Fluorescent images of

NRX-1::GFP in cholinergic somas of wild type, unc-104(e1265) and unc-104(e1265) mutants

rescued with cholinergic expression of wild type unc-104. Dotted white lines outline the neuro-

nal cell body. (H) Quantification of NRX-1::GFP fluorescence intensity in cholinergic somas.

Bars, mean ± SEM. One-way ANOVA, Dunnett’s multiple comparisons test, ����p<0.001. (I)

Line scans depicting relative fluorescent intensity of NRX-1::GFP (green) and UNC-104::

mCherry (red) for a 50 μm region of the dorsal nerve cord. Gray dotted rectangles indicate

corresponding puncta in S11J Fig. (J) Fluorescent images of the dorsal nerve cord in an adult

animal expressing NRX-1::GFP (Punc-129::NRX-1::GFP) and UNC-104::mCherry (Punc-129::

UNC-104::mCherry). Colocalization is indicated by white carets.

(TIF)

S12 Fig. NRX-1 localizes independently of UNC-116/KIF5A/C and has similar anterograde

and retrograde velocity as SNB-1. (A) Fluorescent images (inverted LUT) of NRX-1::GFP

(Punc-129::NRX-1::GFP) from the dorsal nerve cord of wild type and unc-116(e2310) mutants.

Images on each line are from different animals (5 are shown for each genotype). (B) Quantifi-

cation of the number of NRX-1 clusters (Punc-129::NRX-1::GFP) in a 50 μm region of the dor-

sal nerve cord of wild type and unc-116(e2310) animals. Bars, mean ± SEM. Student’s t-test,
���p<0.001. n� 14 animals. (C) Fluorescent images of NRX-1 (Punc-129::NRX-1::GFP) from

cholinergic neuron somas of wild type and unc-116(e2310) mutants. Dotted white lines outline

cell bodies. (D) Quantification of fluorescence intensity of NRX-1 (Punc-129::NRX-1::GFP)

from cholinergic somas of wild type and unc-116(e2310) mutants. Bars, mean ± SEM. Stu-

dent’s t-test, ns, not significant. (E, F) Kymographs of synaptic vesicle (Punc-129::SNB-1::GFP)

(E) and NRX-1 (Punc-129::NRX-1::GFP) (F) trafficking events recorded from cholinergic neu-

ron commissures. (G) Quantification of the anterograde velocity (μm/second) of SNB-1::GFP

(blue) and NRX-1::GFP (orange) along the axonal commissure. ns, not significant. n� 10 ani-

mals for all panels. (H) Quantification of the retrograde velocity (μm/second) of SNB-1::GFP

(blue) and NRX-1::GFP (orange) along the axonal commissure. ns, not significant. (I) Quanti-

fication of the total number of SNB-1::GFP (blue) and NRX-1::GFP (orange) trafficking events

binned into retrograde and anterograde directions. Note that NRX-1 trafficking events occur

significantly less frequently than SNB-1 events.

(TIF)
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S13 Fig. Active zone protein localization in unc-104(e1265) mutants. (A) Scatterplot of

CLA-1::GFP puncta number in a 50 μm region of the dorsal nerve cord in wild type and unc-
104(e1265) animals. Student’s t-test, ����p<0.0001. Bars, mean ± SEM. These data correspond

to quantification in Fig 4C. (B) Scatterplot of CLA-1::GFP fluorescence intensity in a 50 μm

region of the dorsal nerve cord in wild type and unc-104(e1265) animals. Student’s t-test,
����p<0.0001. Bars, mean ± SEM. (C) Scatterplot of UNC-10::GFP puncta number in a 50 μm

region of the dorsal nerve cord in wild type and unc-104(e1265) animals. Student’s t-test,
����p<0.0001. Bars, mean ± SEM. These data correspond to quantification in Fig 4C. (D) Scat-

terplot of UNC-10::GFP fluorescence intensity in a 50 μm region of the dorsal nerve cord in

wild type and unc-104(e1265) mutants. Student’s t-test, ����p<0.0001. Bars, mean ± SEM. (E)

Scatterplot of ELKS-1::mCherry puncta number per 50 μm of the dorsal nerve cord in wild

type and unc-104(e1265) animals. Student’s t-test, ����p<0.0001. Bars, mean ± SEM. These

data correspond to quantification in Fig 4C. (F) Scatterplot of ELKS-1::mCherry fluorescence

intensity in a 50 μm region of the dorsal nerve cords of wild type and unc-104(e1265) mutants.

Student’s t-test, ���p<0.001. Bars, mean ± SEM.

(TIF)

S14 Fig. Shift to restrictive temperature during L3 in wild type and unc-104(ce782)ts ani-

mals. (A) Cartoon depiction of experimental timeline. Animals were grown at 13.5˚C until L3

stage (~approx. 120 hours in unc-104(ce782) mutants, 96 hours in wild type animals) before

shifting animals to their restrictive temperature of 25˚C for 16–20 hours and imaging. (B)

Fluorescent images of DD spines (Pflp-13::myrGFP) from wild type (top) or unc-104(ce782)ts
animals grown continuously at the permissive temperature (13.5˚C) (middle panel) or shifted

to the restrictive temperature (25˚C) for 16–20 hours before imaging. (C) Quantification of

DD spines per 15 μm from wild type and unc-104(ce782)ts mutants. Two-way ANOVA,

Tukey’s multiple comparisons test, ����p<0.0001, n� 12 animals. Data points indicate

mean ± SEM.

(TIF)

S1 Video. Confocal live imaging video of F-actin dynamics (labeled by Pflp-13::GFP::

UtrCH) in the DD1 dendrite of wild type animals at 16 hours after hatch. For display,

movies are shown at 3 fps. Images were acquired every 5 minutes.

(AVI)

S2 Video. Confocal live imaging video of F-actin dynamics (labeled by Pflp-13::GFP::

UtrCH) in the DD1 dendrite of wild type animals at L4 stage. For display, movies are

shown at 3 fps. Images were acquired every 5 minutes.

(AVI)

S3 Video. Wild type DD dendritic spines (Pflp-13::myrGFP) 16 hours after hatch. A z-

stack was acquired every 5 minutes for at least 1 hr of imaging duration. For display, movies

are shown at 3 fps

(AVI)

S4 Video. nrx-1(wy778) mutant DD dendritic spines (Pflp-13::myrGFP) 16 hours after

hatch. A z-stack was acquired every 5 minutes for at least 1 hr of imaging duration. For dis-

play, movies are shown at 3 fps

(AVI)

S5 Video. Wild type DD dendritic spines (Pflp-13::myrGFP) at L4 stage. A z-stack was

acquired every 5 minutes for at least 1 hr of imaging duration. For display, movies are
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shown at 3 fps

(AVI)

S6 Video. NRX-1::GFP trafficking in a cholinergic commissure of a young adult animal

(Punc-129::NRX-1::GFP). Videos were recorded at 100 ms exposure for 30 seconds. For dis-

play, video is shown at 25 fps.

(AVI)

S7 Video. SNB-1::GFP trafficking in a cholinergic commissure of a young adult animal

(Punc-129::SNB-1::GFP). Videos were recorded at 100 ms exposure for 30 seconds. For dis-

play, video is shown at 25 fps.

(AVI)

Acknowledgments

Nematode strains were provided by the Caenorhabditis Genetics Center which is funded by

the NIH National Center for Research Resources. Thank you to Dori Schafer for access to 3D

rendering Imaris software. Thank you to Dirk Albrecht’s laboratory for advice with hydrogel

immobilization. Thank you to the laboratories of: Dong Yan, Kang Shen, Andres Maricq,

Michael Nonet, Peri Kurshan, and Gert Jansen for providing reagents. Thank you to Peri Kur-

shan for sharing unpublished results. Thank you to William Joyce and Michael Gorczyca for

technical assistance. Thank you to Steve Cook for help with analysis of electron micrographs

and John White for use of N2U electron micrographs. Lastly, we thank members of the Francis

laboratory for manuscript comments.

Author Contributions

Conceptualization: Devyn Oliver, David H. Hall, Michael M. Francis.

Data curation: Devyn Oliver, Shankar Ramachandran, Alison Philbrook, Christopher M.

Lambert, Ken C. Q. Nguyen, David H. Hall.

Formal analysis: Devyn Oliver, Shankar Ramachandran, Michael M. Francis.

Funding acquisition: Michael M. Francis.

Investigation: Devyn Oliver, Shankar Ramachandran, Michael M. Francis.

Methodology: Devyn Oliver, Shankar Ramachandran, Michael M. Francis.

Project administration: Devyn Oliver, Michael M. Francis.

Resources: Ken C. Q. Nguyen, David H. Hall, Michael M. Francis.

Supervision: Michael M. Francis.

Validation: Devyn Oliver.

Visualization: Devyn Oliver, Shankar Ramachandran.

Writing – original draft: Devyn Oliver, Michael M. Francis.

Writing – review & editing: Devyn Oliver, Shankar Ramachandran, Michael M. Francis.

References
1. Hendi A., Kurashina M., and Mizumoto K., Intrinsic and extrinsic mechanisms of synapse formation and

specificity in C. elegans. Cell Mol Life Sci, 2019. 76(14): p. 2719–2738. https://doi.org/10.1007/s00018-

019-03109-1 PMID: 31037336

PLOS GENETICS Kinesin delivery of presynaptic neurexin stabilizes dendritic spines

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010016 January 28, 2022 28 / 32

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010016.s021
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010016.s022
https://doi.org/10.1007/s00018-019-03109-1
https://doi.org/10.1007/s00018-019-03109-1
http://www.ncbi.nlm.nih.gov/pubmed/31037336
https://doi.org/10.1371/journal.pgen.1010016


2. Zhen M. and Jin Y., The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. ele-

gans. Nature, 1999. 401(6751): p. 371–5. https://doi.org/10.1038/43886 PMID: 10517634

3. Richmond J.E., Davis W.S., and Jorgensen E.M., UNC-13 is required for synaptic vesicle fusion in C.

elegans. Nat Neurosci, 1999. 2(11): p. 959–64.

4. Bohme M.A., et al., Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca(2+) chan-

nel-vesicle coupling. Nat Neurosci, 2016. 19(10): p. 1311–20.

5. Fouquet W., et al., Maturation of active zone assembly by Drosophila Bruchpilot. J Cell Biol, 2009. 186

(1): p. 129–45. https://doi.org/10.1083/jcb.200812150 PMID: 19596851

6. Patel M.R., et al., Hierarchical assembly of presynaptic components in defined C. elegans synapses.

Nat Neurosci, 2006. 9(12): p. 1488–98. https://doi.org/10.1038/nn1806 PMID: 17115039

7. Dai Y., et al., SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS. Nat Neu-

rosci, 2006. 9(12): p. 1479–87. https://doi.org/10.1038/nn1808 PMID: 17115037

8. Nagerl U.V., et al., Protracted synaptogenesis after activity-dependent spinogenesis in hippocampal

neurons. J Neurosci, 2007. 27(30): p. 8149–56. https://doi.org/10.1523/JNEUROSCI.0511-07.2007

PMID: 17652605

9. Lipton D.M., Maeder C.I., and Shen K., Rapid Assembly of Presynaptic Materials behind the Growth

Cone in Dopaminergic Neurons Is Mediated by Precise Regulation of Axonal Transport. Cell Rep, 2018.

24(10): p. 2709–2722. https://doi.org/10.1016/j.celrep.2018.07.096 PMID: 30184504

10. McDonald N.A., Fetter R.D., and Shen K., Assembly of synaptic active zones requires phase separation

of scaffold molecules. Nature, 2020. 588(7838): p. 454–458. https://doi.org/10.1038/s41586-020-2942-

0 PMID: 33208945

11. Friedman H.V., et al., Assembly of new individual excitatory synapses: time course and temporal order

of synaptic molecule recruitment. Neuron, 2000. 27(1): p. 57–69. https://doi.org/10.1016/s0896-6273

(00)00009-x PMID: 10939331

12. Zito K., et al., Rapid functional maturation of nascent dendritic spines. Neuron, 2009. 61(2): p. 247–58.

https://doi.org/10.1016/j.neuron.2008.10.054 PMID: 19186167

13. Sudhof T.C., Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 2008. 455

(7215): p. 903–11. https://doi.org/10.1038/nature07456 PMID: 18923512

14. Kasem E., Kurihara T., and Tabuchi K., Neurexins and neuropsychiatric disorders. Neurosci Res, 2018.

127: p. 53–60. https://doi.org/10.1016/j.neures.2017.10.012 PMID: 29221905

15. Li J., et al., Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densi-

ties, synaptic growth, and synaptic transmission. Neuron, 2007. 55(5): p. 741–55. https://doi.org/10.

1016/j.neuron.2007.08.002 PMID: 17785181

16. Owald D., et al., Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly.

Nat Neurosci, 2012. 15(9): p. 1219–26.

17. Missler M. and Sudhof T.C., Neurexins: three genes and 1001 products. Trends Genet, 1998. 14(1): p.

20–6. https://doi.org/10.1016/S0168-9525(97)01324-3 PMID: 9448462

18. Sudhof T.C., Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. Cell,

2017. 171(4): p. 745–769. https://doi.org/10.1016/j.cell.2017.10.024 PMID: 29100073

19. Chen L.Y., et al., Conditional Deletion of All Neurexins Defines Diversity of Essential Synaptic Organizer

Functions for Neurexins. Neuron, 2017. 94(3): p. 611–625 e4.

20. Philbrook A., et al., Neurexin directs partner-specific synaptic connectivity in C. elegans. Elife, 2018. 7.

https://doi.org/10.7554/eLife.35692 PMID: 30039797

21. White J.G., et al., The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc

Lond B Biol Sci, 1976. 275(938): p. 327–48. https://doi.org/10.1098/rstb.1976.0086 PMID: 8806

22. Oliver D., Alexander K., and Francis M.M., Molecular Mechanisms Directing Spine Outgrowth and Syn-

aptic Partner Selection in Caenorhabditis elegans. J Exp Neurosci, 2018. 12: p. 1179069518816088.

https://doi.org/10.1177/1179069518816088 PMID: 30546264

23. Cuentas-Condori A., et al., C. elegans neurons have functional dendritic spines. eLife, 2019. 8: p.

e47918. https://doi.org/10.7554/eLife.47918 PMID: 31584430

24. White J.G., et al., The structure of the nervous system of the nematode Caenorhabditis elegans. Philos

Trans R Soc Lond B Biol Sci, 1986. 314(1165): p. 1–340. https://doi.org/10.1098/rstb.1986.0056 PMID:

22462104

25. Chia P.H., et al., Local F-actin network links synapse formation and axon branching. Cell, 2014. 156(1–

2): p. 208–20. https://doi.org/10.1016/j.cell.2013.12.009 PMID: 24439377

26. Yan J., et al., Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. Elife, 2013.

2: p. e00133. https://doi.org/10.7554/eLife.00133 PMID: 23482306

PLOS GENETICS Kinesin delivery of presynaptic neurexin stabilizes dendritic spines

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010016 January 28, 2022 29 / 32

https://doi.org/10.1038/43886
http://www.ncbi.nlm.nih.gov/pubmed/10517634
https://doi.org/10.1083/jcb.200812150
http://www.ncbi.nlm.nih.gov/pubmed/19596851
https://doi.org/10.1038/nn1806
http://www.ncbi.nlm.nih.gov/pubmed/17115039
https://doi.org/10.1038/nn1808
http://www.ncbi.nlm.nih.gov/pubmed/17115037
https://doi.org/10.1523/JNEUROSCI.0511-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17652605
https://doi.org/10.1016/j.celrep.2018.07.096
http://www.ncbi.nlm.nih.gov/pubmed/30184504
https://doi.org/10.1038/s41586-020-2942-0
https://doi.org/10.1038/s41586-020-2942-0
http://www.ncbi.nlm.nih.gov/pubmed/33208945
https://doi.org/10.1016/s0896-6273%2800%2900009-x
https://doi.org/10.1016/s0896-6273%2800%2900009-x
http://www.ncbi.nlm.nih.gov/pubmed/10939331
https://doi.org/10.1016/j.neuron.2008.10.054
http://www.ncbi.nlm.nih.gov/pubmed/19186167
https://doi.org/10.1038/nature07456
http://www.ncbi.nlm.nih.gov/pubmed/18923512
https://doi.org/10.1016/j.neures.2017.10.012
http://www.ncbi.nlm.nih.gov/pubmed/29221905
https://doi.org/10.1016/j.neuron.2007.08.002
https://doi.org/10.1016/j.neuron.2007.08.002
http://www.ncbi.nlm.nih.gov/pubmed/17785181
https://doi.org/10.1016/S0168-9525%2897%2901324-3
http://www.ncbi.nlm.nih.gov/pubmed/9448462
https://doi.org/10.1016/j.cell.2017.10.024
http://www.ncbi.nlm.nih.gov/pubmed/29100073
https://doi.org/10.7554/eLife.35692
http://www.ncbi.nlm.nih.gov/pubmed/30039797
https://doi.org/10.1098/rstb.1976.0086
http://www.ncbi.nlm.nih.gov/pubmed/8806
https://doi.org/10.1177/1179069518816088
http://www.ncbi.nlm.nih.gov/pubmed/30546264
https://doi.org/10.7554/eLife.47918
http://www.ncbi.nlm.nih.gov/pubmed/31584430
https://doi.org/10.1098/rstb.1986.0056
http://www.ncbi.nlm.nih.gov/pubmed/22462104
https://doi.org/10.1016/j.cell.2013.12.009
http://www.ncbi.nlm.nih.gov/pubmed/24439377
https://doi.org/10.7554/eLife.00133
http://www.ncbi.nlm.nih.gov/pubmed/23482306
https://doi.org/10.1371/journal.pgen.1010016


27. Vos M., Lauwers E., and Verstreken P., Synaptic mitochondria in synaptic transmission and organiza-

tion of vesicle pools in health and disease. Front Synaptic Neurosci, 2010. 2: p. 139. https://doi.org/10.

3389/fnsyn.2010.00139 PMID: 21423525

28. Karagas N.E. and Venkatachalam K., Roles for the Endoplasmic Reticulum in Regulation of Neuronal

Calcium Homeostasis. Cells, 2019. 8(10). https://doi.org/10.3390/cells8101232 PMID: 31658749

29. Edwards S.L., et al., An organelle gatekeeper function for Caenorhabditis elegans UNC-16 (JIP3) at the

axon initial segment. Genetics, 2013. 194(1): p. 143–61. https://doi.org/10.1534/genetics.112.147348

PMID: 23633144

30. Sarasija S. and Norman K.R., A gamma-Secretase Independent Role for Presenilin in Calcium Homeo-

stasis Impacts Mitochondrial Function and Morphology in Caenorhabditis elegans. Genetics, 2015. 201

(4): p. 1453–66.

31. Rolls M.M., et al., Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in inver-

tebrate neurons. Mol Biol Cell, 2002. 13(5): p. 1778–91.

32. Perez-Alvarez A., et al., Endoplasmic reticulum visits highly active spines and prevents runaway poten-

tiation of synapses. Nat Commun, 2020. 11(1): p. 5083. https://doi.org/10.1038/s41467-020-18889-5

PMID: 33033259

33. Li Z., et al., The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and

synapses. Cell, 2004. 119(6): p. 873–87. https://doi.org/10.1016/j.cell.2004.11.003 PMID: 15607982

34. Witvliet D., et al., Connectomes across development reveal principles of brain maturation. bioRxiv,

2021: p. 2020.04.30.066209. https://doi.org/10.1038/s41586-021-03778-8 PMID: 34349261

35. White J.G., Albertson D.G, and Anness M.A, Connectivity changes in a class of motoneurone during

the development of a nematode. Nature, 1978. 271(5647): p. 764–6. https://doi.org/10.1038/271764a0

PMID: 625347

36. Kurup N. and Jin Y., Neural circuit rewiring: insights from DD synapse remodeling. Worm, 2016. 5(1):

p. e1129486. https://doi.org/10.1080/21624054.2015.1129486 PMID: 27073734

37. Xuan Z., et al., Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and

release. Elife, 2017. 6.

38. Gally C., et al., A transmembrane protein required for acetylcholine receptor clustering in Caenorhabdi-

tis elegans. Nature, 2004. 431(7008): p. 578–82. https://doi.org/10.1038/nature02893 PMID:

15457263

39. He S., Cuentas-Condori A., and Miller D.M. 3rd, NATF (Native and Tissue-Specific Fluorescence): A

Strategy for Bright, Tissue-Specific GFP Labeling of Native Proteins in Caenorhabditis elegans. Genet-

ics, 2019. 212(2): p. 387–395. https://doi.org/10.1534/genetics.119.302063 PMID: 30952669

40. Sala C. and Segal M., Dendritic spines: the locus of structural and functional plasticity. Physiol Rev,

2014. 94(1): p. 141–88. https://doi.org/10.1152/physrev.00012.2013 PMID: 24382885

41. Saneyoshi T., Fortin D.A., and Soderling T.R., Regulation of spine and synapse formation by activity-

dependent intracellular signaling pathways. Curr Opin Neurobiol, 2010. 20(1): p. 108–15. https://doi.

org/10.1016/j.conb.2009.09.013 PMID: 19896363

42. Engert F. and Bonhoeffer T., Dendritic spine changes associated with hippocampal long-term synaptic

plasticity. Nature, 1999. 399(6731): p. 66–70. https://doi.org/10.1038/19978 PMID: 10331391

43. De Roo M., et al., Spine dynamics and synapse remodeling during LTP and memory processes. Prog

Brain Res, 2008. 169: p. 199–207. https://doi.org/10.1016/S0079-6123(07)00011-8 PMID: 18394475

44. Lu W., et al., The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal

structure and function. Neuron, 2013. 78(3): p. 433–9. https://doi.org/10.1016/j.neuron.2013.02.030

PMID: 23664612

45. Sigler A., et al., Formation and Maintenance of Functional Spines in the Absence of Presynaptic Gluta-

mate Release. Neuron, 2017. 94(2): p. 304–311 e4. https://doi.org/10.1016/j.neuron.2017.03.029

PMID: 28426965

46. Sando R., et al., Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission.

Neuron, 2017. 94(2): p. 312–321 e3. https://doi.org/10.1016/j.neuron.2017.03.047 PMID: 28426966

47. Kurshan P.T., et al., gamma-Neurexin and Frizzled Mediate Parallel Synapse Assembly Pathways

Antagonized by Receptor Endocytosis. Neuron, 2018. 100(1): p. 150–166 e4. https://doi.org/10.1016/j.

neuron.2018.09.007 PMID: 30269993

48. Hall D.H. and Hedgecock E.M., Kinesin-related gene unc-104 is required for axonal transport of synap-

tic vesicles in C. elegans. Cell, 1991. 65(5): p. 837–47. https://doi.org/10.1016/0092-8674(91)90391-b

PMID: 1710172

PLOS GENETICS Kinesin delivery of presynaptic neurexin stabilizes dendritic spines

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010016 January 28, 2022 30 / 32

https://doi.org/10.3389/fnsyn.2010.00139
https://doi.org/10.3389/fnsyn.2010.00139
http://www.ncbi.nlm.nih.gov/pubmed/21423525
https://doi.org/10.3390/cells8101232
http://www.ncbi.nlm.nih.gov/pubmed/31658749
https://doi.org/10.1534/genetics.112.147348
http://www.ncbi.nlm.nih.gov/pubmed/23633144
https://doi.org/10.1038/s41467-020-18889-5
http://www.ncbi.nlm.nih.gov/pubmed/33033259
https://doi.org/10.1016/j.cell.2004.11.003
http://www.ncbi.nlm.nih.gov/pubmed/15607982
https://doi.org/10.1038/s41586-021-03778-8
http://www.ncbi.nlm.nih.gov/pubmed/34349261
https://doi.org/10.1038/271764a0
http://www.ncbi.nlm.nih.gov/pubmed/625347
https://doi.org/10.1080/21624054.2015.1129486
http://www.ncbi.nlm.nih.gov/pubmed/27073734
https://doi.org/10.1038/nature02893
http://www.ncbi.nlm.nih.gov/pubmed/15457263
https://doi.org/10.1534/genetics.119.302063
http://www.ncbi.nlm.nih.gov/pubmed/30952669
https://doi.org/10.1152/physrev.00012.2013
http://www.ncbi.nlm.nih.gov/pubmed/24382885
https://doi.org/10.1016/j.conb.2009.09.013
https://doi.org/10.1016/j.conb.2009.09.013
http://www.ncbi.nlm.nih.gov/pubmed/19896363
https://doi.org/10.1038/19978
http://www.ncbi.nlm.nih.gov/pubmed/10331391
https://doi.org/10.1016/S0079-6123%2807%2900011-8
http://www.ncbi.nlm.nih.gov/pubmed/18394475
https://doi.org/10.1016/j.neuron.2013.02.030
http://www.ncbi.nlm.nih.gov/pubmed/23664612
https://doi.org/10.1016/j.neuron.2017.03.029
http://www.ncbi.nlm.nih.gov/pubmed/28426965
https://doi.org/10.1016/j.neuron.2017.03.047
http://www.ncbi.nlm.nih.gov/pubmed/28426966
https://doi.org/10.1016/j.neuron.2018.09.007
https://doi.org/10.1016/j.neuron.2018.09.007
http://www.ncbi.nlm.nih.gov/pubmed/30269993
https://doi.org/10.1016/0092-8674%2891%2990391-b
http://www.ncbi.nlm.nih.gov/pubmed/1710172
https://doi.org/10.1371/journal.pgen.1010016


49. Kumar J., et al., The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of

specific binding to cargo. PLoS Genet, 2010. 6(11): p. e1001200. https://doi.org/10.1371/journal.pgen.

1001200 PMID: 21079789

50. Byrd D.T., et al., UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans.

Neuron, 2001. 32(5): p. 787–800. https://doi.org/10.1016/s0896-6273(01)00532-3 PMID: 11738026

51. Sakamoto R., et al., The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1

and UNC-16 complex and regulates synaptic vesicle localization. Mol Biol Cell, 2005. 16(2): p. 483–96.

https://doi.org/10.1091/mbc.e04-07-0553 PMID: 15563606

52. Edwards S.L., et al., Synapse-Assembly Proteins Maintain Synaptic Vesicle Cluster Stability and Regu-

late Synaptic Vesicle Transport in Caenorhabditis elegans. Genetics, 2015. 201(1): p. 91–116. https://

doi.org/10.1534/genetics.115.177337 PMID: 26354975

53. Tonnesen J. and Nagerl U.V., Dendritic Spines as Tunable Regulators of Synaptic Signals. Front Psy-

chiatry, 2016. 7: p. 101. https://doi.org/10.3389/fpsyt.2016.00101 PMID: 27340393

54. Hendricks M., et al., Compartmentalized calcium dynamics in a C. elegans interneuron encode head

movement. Nature, 2012. 487(7405): p. 99–103. https://doi.org/10.1038/nature11081 PMID:

22722842

55. Hall D.H. and Russell R.L., The posterior nervous system of the nematode Caenorhabditis elegans:

serial reconstruction of identified neurons and complete pattern of synaptic interactions. J Neurosci,

1991. 11(1): p. 1–22. https://doi.org/10.1523/JNEUROSCI.11-01-00001.1991 PMID: 1986064

56. White J., Clues to basis of exploratory behaviour of the C. elegans snout from head somatotropy. Philos

Trans R Soc Lond B Biol Sci, 2018. 373(1758).

57. Chia P.H., Patel M.R., and Shen K., NAB-1 instructs synapse assembly by linking adhesion molecules

and F-actin to active zone proteins. Nat Neurosci, 2012. 15(2): p. 234–42. https://doi.org/10.1038/nn.

2991 PMID: 22231427

58. Meng L., et al., The Cell Death Pathway Regulates Synapse Elimination through Cleavage of Gelsolin

in Caenorhabditis elegans Neurons. Cell Rep, 2015. 11(11): p. 1737–48. https://doi.org/10.1016/j.

celrep.2015.05.031 PMID: 26074078

59. Luo F., et al., Neurexins cluster Ca(2+) channels within the presynaptic active zone. EMBO J, 2020. 39

(7): p. e103208. https://doi.org/10.15252/embj.2019103208 PMID: 32134527

60. Haklai-Topper L., et al., The neurexin superfamily of Caenorhabditis elegans. Gene Expr Patterns,

2011. 11(1–2): p. 144–50. https://doi.org/10.1016/j.gep.2010.10.008 PMID: 21055481

61. Graf E.R., et al., Neurexins induce differentiation of GABA and glutamate postsynaptic specializations

via neuroligins. Cell, 2004. 119(7): p. 1013–26. https://doi.org/10.1016/j.cell.2004.11.035 PMID:

15620359

62. Chen S.X., et al., Neurexin-neuroligin cell adhesion complexes contribute to synaptotropic dendritogen-

esis via growth stabilization mechanisms in vivo. Neuron, 2010. 67(6): p. 967–83. https://doi.org/10.

1016/j.neuron.2010.08.016 PMID: 20869594

63. Constance W.D., et al., Neurexin and Neuroligin-based adhesion complexes drive axonal arborisation

growth independent of synaptic activity. Elife, 2018. 7. https://doi.org/10.7554/eLife.31659 PMID:

29504935

64. Staab T.A., et al., Regulation of synaptic nlg-1/neuroligin abundance by the skn-1/Nrf stress response

pathway protects against oxidative stress. PLoS Genet, 2014. 10(1): p. e1004100. https://doi.org/10.

1371/journal.pgen.1004100 PMID: 24453991

65. Hunter J.W., et al., Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are

hypersensitive to oxidative stress and mercury toxicity. Dis Model Mech, 2010. 3(5–6): p. 366–76.

https://doi.org/10.1242/dmm.003442 PMID: 20083577

66. Taylor S.R., et al., Molecular topography of an entire nervous system. Cell, 2021. 184(16): p. 4329–

4347 e23. https://doi.org/10.1016/j.cell.2021.06.023 PMID: 34237253

67. Zahn T.R., et al., Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kine-

sin UNC-104. Traffic, 2004. 5(7): p. 544–59. https://doi.org/10.1111/j.1600-0854.2004.00195.x PMID:

15180830

68. Koushika S.P., et al., A post-docking role for active zone protein Rim. Nat Neurosci, 2001. 4(10): p.

997–1005. https://doi.org/10.1038/nn732 PMID: 11559854

69. Neupert C., et al., Regulated Dynamic Trafficking of Neurexins Inside and Outside of Synaptic Termi-

nals. J Neurosci, 2015. 35(40): p. 13629–47. https://doi.org/10.1523/JNEUROSCI.4041-14.2015

PMID: 26446217

70. Mello C.C., et al., Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration

of transforming sequences. EMBO J, 1991. 10(12): p. 3959–70. PMID: 1935914

PLOS GENETICS Kinesin delivery of presynaptic neurexin stabilizes dendritic spines

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010016 January 28, 2022 31 / 32

https://doi.org/10.1371/journal.pgen.1001200
https://doi.org/10.1371/journal.pgen.1001200
http://www.ncbi.nlm.nih.gov/pubmed/21079789
https://doi.org/10.1016/s0896-6273%2801%2900532-3
http://www.ncbi.nlm.nih.gov/pubmed/11738026
https://doi.org/10.1091/mbc.e04-07-0553
http://www.ncbi.nlm.nih.gov/pubmed/15563606
https://doi.org/10.1534/genetics.115.177337
https://doi.org/10.1534/genetics.115.177337
http://www.ncbi.nlm.nih.gov/pubmed/26354975
https://doi.org/10.3389/fpsyt.2016.00101
http://www.ncbi.nlm.nih.gov/pubmed/27340393
https://doi.org/10.1038/nature11081
http://www.ncbi.nlm.nih.gov/pubmed/22722842
https://doi.org/10.1523/JNEUROSCI.11-01-00001.1991
http://www.ncbi.nlm.nih.gov/pubmed/1986064
https://doi.org/10.1038/nn.2991
https://doi.org/10.1038/nn.2991
http://www.ncbi.nlm.nih.gov/pubmed/22231427
https://doi.org/10.1016/j.celrep.2015.05.031
https://doi.org/10.1016/j.celrep.2015.05.031
http://www.ncbi.nlm.nih.gov/pubmed/26074078
https://doi.org/10.15252/embj.2019103208
http://www.ncbi.nlm.nih.gov/pubmed/32134527
https://doi.org/10.1016/j.gep.2010.10.008
http://www.ncbi.nlm.nih.gov/pubmed/21055481
https://doi.org/10.1016/j.cell.2004.11.035
http://www.ncbi.nlm.nih.gov/pubmed/15620359
https://doi.org/10.1016/j.neuron.2010.08.016
https://doi.org/10.1016/j.neuron.2010.08.016
http://www.ncbi.nlm.nih.gov/pubmed/20869594
https://doi.org/10.7554/eLife.31659
http://www.ncbi.nlm.nih.gov/pubmed/29504935
https://doi.org/10.1371/journal.pgen.1004100
https://doi.org/10.1371/journal.pgen.1004100
http://www.ncbi.nlm.nih.gov/pubmed/24453991
https://doi.org/10.1242/dmm.003442
http://www.ncbi.nlm.nih.gov/pubmed/20083577
https://doi.org/10.1016/j.cell.2021.06.023
http://www.ncbi.nlm.nih.gov/pubmed/34237253
https://doi.org/10.1111/j.1600-0854.2004.00195.x
http://www.ncbi.nlm.nih.gov/pubmed/15180830
https://doi.org/10.1038/nn732
http://www.ncbi.nlm.nih.gov/pubmed/11559854
https://doi.org/10.1523/JNEUROSCI.4041-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/26446217
http://www.ncbi.nlm.nih.gov/pubmed/1935914
https://doi.org/10.1371/journal.pgen.1010016


71. Harris K.M., Jensen F.E., and Tsao B., Three-dimensional structure of dendritic spines and synapses in

rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic

physiology and long-term potentiation. J Neurosci, 1992. 12(7): p. 2685–705. https://doi.org/10.1523/

JNEUROSCI.12-07-02685.1992 PMID: 1613552

72. Burnett K., Edsinger E., and Albrecht D.R., Rapid and gentle hydrogel encapsulation of living organisms

enables long-term microscopy over multiple hours. Commun Biol, 2018. 1: p. 73. https://doi.org/10.

1038/s42003-018-0079-6 PMID: 30271954

73. Weimer R.M., Preservation of C. elegans tissue via high-pressure freezing and freeze-substitution for

ultrastructural analysis and immunocytochemistry. Methods Mol Biol, 2006. 351: p. 203–21. https://doi.

org/10.1385/1-59745-151-7:203 PMID: 16988436

74. Muller-Reichert T., et al., Three-dimensional reconstruction methods for Caenorhabditis elegans ultra-

structure. Methods Cell Biol, 2010. 96: p. 331–61. https://doi.org/10.1016/S0091-679X(10)96015-9

PMID: 20869530

75. Jospin M., et al., A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhi-

bition in Caenorhabditis elegans. PLoS Biol, 2009. 7(12): p. e1000265. https://doi.org/10.1371/journal.

pbio.1000265 PMID: 20027209

76. Mathews E.A., et al., Critical residues of the Caenorhabditis elegans unc-2 voltage-gated calcium chan-

nel that affect behavioral and physiological properties. J Neurosci, 2003. 23(16): p. 6537–45. https://

doi.org/10.1523/JNEUROSCI.23-16-06537.2003 PMID: 12878695

77. Huang Y.C., et al., Gain-of-function mutations in the UNC-2/CaV2alpha channel lead to excitation-domi-

nant synaptic transmission in Caenorhabditis elegans. Elife, 2019. 8. https://doi.org/10.7554/eLife.

45905 PMID: 31364988

78. Maruyama I.N. and Brenner S., A phorbol ester/diacylglycerol-binding protein encoded by the unc-13

gene of Caenorhabditis elegans. Proc Natl Acad Sci U S A, 1991. 88(13): p. 5729–33. https://doi.org/

10.1073/pnas.88.13.5729 PMID: 2062851

79. Hu Z., Tong X.J., and Kaplan J.M., UNC-13L, UNC-13S, and Tomosyn form a protein code for fast and

slow neurotransmitter release in Caenorhabditis elegans. Elife, 2013. 2: p. e00967. https://doi.org/10.

7554/eLife.00967 PMID: 23951547

80. Alfonso A., et al., The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine trans-

porter. Science, 1993. 261(5121): p. 617–9. https://doi.org/10.1126/science.8342028 PMID: 8342028

81. Sassa T., et al., Regulation of the UNC-18-Caenorhabditis elegans syntaxin complex by UNC-13. J

Neurosci, 1999. 19(12): p. 4772–7. https://doi.org/10.1523/JNEUROSCI.19-12-04772.1999 PMID:

10366611

82. Speese S., et al., UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis

in Caenorhabditis elegans. J Neurosci, 2007. 27(23): p. 6150–62. https://doi.org/10.1523/

JNEUROSCI.1466-07.2007 PMID: 17553987

83. McCulloch K.A., Zhou K., and Jin Y., Neuronal transcriptome analyses reveal novel neuropeptide mod-

ulators of excitation and inhibition imbalance in C. elegans. PLoS One, 2020. 15(6): p. e0233991.

https://doi.org/10.1371/journal.pone.0233991 PMID: 32497060

PLOS GENETICS Kinesin delivery of presynaptic neurexin stabilizes dendritic spines

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010016 January 28, 2022 32 / 32

https://doi.org/10.1523/JNEUROSCI.12-07-02685.1992
https://doi.org/10.1523/JNEUROSCI.12-07-02685.1992
http://www.ncbi.nlm.nih.gov/pubmed/1613552
https://doi.org/10.1038/s42003-018-0079-6
https://doi.org/10.1038/s42003-018-0079-6
http://www.ncbi.nlm.nih.gov/pubmed/30271954
https://doi.org/10.1385/1-59745-151-7%3A203
https://doi.org/10.1385/1-59745-151-7%3A203
http://www.ncbi.nlm.nih.gov/pubmed/16988436
https://doi.org/10.1016/S0091-679X%2810%2996015-9
http://www.ncbi.nlm.nih.gov/pubmed/20869530
https://doi.org/10.1371/journal.pbio.1000265
https://doi.org/10.1371/journal.pbio.1000265
http://www.ncbi.nlm.nih.gov/pubmed/20027209
https://doi.org/10.1523/JNEUROSCI.23-16-06537.2003
https://doi.org/10.1523/JNEUROSCI.23-16-06537.2003
http://www.ncbi.nlm.nih.gov/pubmed/12878695
https://doi.org/10.7554/eLife.45905
https://doi.org/10.7554/eLife.45905
http://www.ncbi.nlm.nih.gov/pubmed/31364988
https://doi.org/10.1073/pnas.88.13.5729
https://doi.org/10.1073/pnas.88.13.5729
http://www.ncbi.nlm.nih.gov/pubmed/2062851
https://doi.org/10.7554/eLife.00967
https://doi.org/10.7554/eLife.00967
http://www.ncbi.nlm.nih.gov/pubmed/23951547
https://doi.org/10.1126/science.8342028
http://www.ncbi.nlm.nih.gov/pubmed/8342028
https://doi.org/10.1523/JNEUROSCI.19-12-04772.1999
http://www.ncbi.nlm.nih.gov/pubmed/10366611
https://doi.org/10.1523/JNEUROSCI.1466-07.2007
https://doi.org/10.1523/JNEUROSCI.1466-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17553987
https://doi.org/10.1371/journal.pone.0233991
http://www.ncbi.nlm.nih.gov/pubmed/32497060
https://doi.org/10.1371/journal.pgen.1010016

