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Abstract

We present a framework that allows a robot manipulator to learn how to execute structured tasks from human demonstrations.

The proposed system combines physical human–robot interaction with attentional supervision in order to support kinesthetic

teaching, incremental learning, and cooperative execution of hierarchically structured tasks. In the proposed framework, the

human demonstration is automatically segmented into basic movements, which are related to a task structure by an attentional

system that supervises the overall interaction. The attentional system permits to track the human demonstration at different

levels of abstraction and supports implicit non-verbal communication both during the teaching and the execution phase.

Attention manipulation mechanisms (e.g. object and verbal cueing) can be exploited by the teacher to facilitate the learning

process. On the other hand, the attentional system permits flexible and cooperative task execution. The paper describes the

overall system architecture and details how cooperative tasks are learned and executed. The proposed approach is evaluated in

a human–robot co-working scenario, showing that the robot is effectively able to rapidly learn and flexibly execute structured

tasks.

Keywords Multimodal human–robot interaction · Attentional supervision · Learning from demonstration · Intuitive

kinesthetic teaching
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1 Introduction

The integration of robotic devices in human populated envi-

ronments requires the ability of the robot to continuously

learn novel tasks and to adapt their execution to the human

intentions and behaviors. In a human-dwelled environment,

indeed, the robot will be asked to execute incrementally com-

plex activities both autonomously or in cooperation with

human co-workers. In this scenario, the interaction with the

human should be natural and fluent during both task execu-

tion and task learning. In this work, we propose a framework

which allows natural human–robot interaction along with

incremental teaching and autonomous or cooperative exe-

cution of structured tasks.

A structured task, like preparing a certain recipe, can be

hierarchically decomposed in different subtasks involving
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multiple primitive actions and manipulated objects. Actions

have to be performed in a coherent manner, meaning that the

actions have to be executed on certain objects with a partic-

ular order. For example, to pour water in a cup, the robot has

to take the bottle, reach the cup, and then pour the liquid.

In order to make a robot able to learn how to perform struc-

tured tasks and collaboratively execute them, our approach

integrates multimodal interaction (Rossi et al. 2013), atten-

tional supervision (Norman and Shallice 1986; Cooper and

Shallice 2006; Caccavale and Finzi 2015, 2016), and kines-

thetic teaching (Lee and Ott 2011; Saveriano et al. 2015).

In our framework, the human operator can naturally interact

with the robot using voice and physical guidance, while a

supervisory attentional system (Norman and Shallice 1986;

Cooper and Shallice 2006) continuously monitors and tracks

the human–robot interactive activities during both training

and execution sessions.

Attentional mechanisms that are suitable for human–robot

task teaching have been explored in the robotic litera-

ture, mainly in the context of visual attention (Nagai 2009;

Breazeal and Berlin 2008; Borji et al. 2010); in contrast,

in this work we focus on attentional supervision and physi-

cal interaction. Namely, in course of a kinesthetic teaching

session, the human can physically interact with the robot to

demonstrate the execution of the actions, while the supervi-

sory system is exploited to interpret the human guidance in

the context of a structured task. In this setting, the supervisory

attentional system supports implicit non-verbal communica-

tion and permits to track the human demonstration at different

levels of abstraction.

More specifically, human demonstrations are automati-

cally segmented into basic movements, exploiting contextual

information (e.g. the relative distance between the robot

and the objects to manipulate, explicit human commands,

etc.). The generated primitives are simultaneously monitored

by the attentional system, which relates them to the asso-

ciated task structure exploiting top-down (task-based) and

bottom-up (stimuli-driven) attentional mechanisms. These

mechanisms enable also a natural interaction of the robot

with the teacher, which can exploit attention manipulation

(object and verbal cueing) to facilitate the learning pro-

cess (Nicolescu and Mataric 2003). Notice also that in the

proposed framework, action segmentation, annotation, and

(task-based) contextual interpretation are one-shot and auto-

matic, hence they do not require any manual post-processing

of the collected data.

In summary, our contributions in this paper are the fol-

lowing:

– We present a framework that combines the benefits

of kinesthetic teaching and attentional supervision to

allow natural teaching by demonstration and flexi-

ble/collaborative execution of structured tasks.

– We propose an approach to action segmentation and

annotation that simultaneously associates the generated

segments to the task structure during a one-shot kines-

thetic demonstration.

– We demonstrate the overall system providing empirical

results to show the effectiveness of proposed approach in

task teaching and execution.

The source code of the entire system—fully integrated

with the Robot Operating System (ROS)—can be down-

loaded from https://github.com/matteosaveriano/task-teachi

ng-and-supervision.

The rest of the paper is organized as follows. Section 2

presents and discusses related work. The proposed architec-

ture for multimodal teaching/execution is detailed in Sect. 3.

Section 4 describes how structured tasks are learned and exe-

cuted using the proposed architecture. Experiments in a real

word scenario are presented in Sect. 5. Finally, Sect. 6 states

the conclusions and proposes further extensions.

2 Related work

Kinesthetic teaching is a natural and intuitive way to teach

elementary robotic motions (Lee and Ott 2011; Saveriano

et al. 2015). The goal of kinesthetic teaching is to physically

guide the robot to show the desired behavior. In this setting,

collected demonstrations are used to learn and reproduce

the elementary motions. Current approaches for kinesthetic

teaching are mainly concerned with learning and reproducing

basic motion primitives, while our goal in this paper is to learn

how to execute structured cooperative tasks from kinesthetic

demonstrations. The works by Kulić et al. (2012) and Takano

et al. (2016) focus on segmenting demonstrated movements

in order to create a dictionary of basic motions, which can

then be combined to generate more complex behaviors. These

algorithms are effective in segmenting motion data into basic

primitives, but they do not address the problem of extract-

ing the associated execution constraints (e.g. an object firstly

has to be grasped and then placed) from demonstrations.

In contrast, our approach allows us to generate execution

constraints (preconditions, postconditions, etc.) during the

demonstration; these constraints are needed to monitor and

flexible execute the learned structured tasks. Moreover, dif-

ferently from Kulić et al. (2012) and Takano et al. (2016) we

can learn goal-oriented activities involving interaction with

the environment.

The problem of deciding the next motion to execute can

also be treated as a classification problem. The approach

in Pastor et al. (2012) uses nearest neighbor classification

to determine the next action to execute. In Manschitz et al.

(2015), a graph is used to represent transitions between ele-

mentary motions. A classifier associated with each node in
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the graph determines when a transition occurs, i.e., when a

motion is finished and the robot can execute the next one.

These approaches permit to learn and reproduce complex

robotic tasks from human demonstrations, however, differ-

ently from our approach, they do not consider the possibility

of executing the learned tasks in a flexible manner or in coop-

eration with the human.

Alternative works have focused on the problem of learn-

ing high-level task representations from human observations

(Argall et al. 2009). In Tenorth and Beetz (2013) and Zoliner

et al. (2005), sequential constraints (like reaching an object

and then grasping it) are used to determine a set of seman-

tic rules that determine the sequence of actions to perform.

Semantic rules are also used by Ramirez-Amaro et al. (2015)

to learn, recognize and reproduce human activities from

video sequences. Human activities are segmented following

the popular approach by Fod et al. (2002), which suggests

to segment an action stream looking at the zeros in the joint

velocities. Velocities smaller than a given threshold value

are considered as zero. The segmented activities are then

matched with a set of pre-programmed motion primitives

and executed by the robot. The problem of task learning

from human activity observations is also faced by Dillmann

(2004). Here, the human demonstration is used to generate

a robot-independent task structure associated with robot-

specific primitives. Aforementioned approaches are effective

in learning the task structure from human observations, but

motion primitives are assumed as given. Our approach is

complementary, we assume that an abstract description of the

task is available, while our goal is to learn both the motion

primitives and their relations with the task structure. Other

works in the context of human–robot collaboration are pro-

posed in Magnanimo et al. (2014) and Koppula and Saxena

(2015). In this case, collaborative activities are recognized in

order to infer the future human actions. Human action antici-

pation is used by the robot to generate the right response to the

human behavior (Koppula and Saxena 2015) in so enhancing

the collaboration. These approaches consider the robot as an

assistant, which is unable to autonomously execute the task.

In this respect, our system permits to learn and execute both

autonomous and cooperative tasks.

We propose a framework that enables incremental task

teaching and cooperative task execution at different lev-

els of abstraction. Moreover, we are interested in natural

and smooth human–robot interaction that supports coop-

erative task execution and incremental adaptation. In this

respect, related to our work, in Nicolescu and Mataric (2003)

the teacher can use simple verbal cues to facilitate the

learning process. In particular, the authors propose explicit

verbal instructions to bias the learner’s attention to relevant

aspects of the demonstration, but an attentional framework

is not deployed. Differently from this approach, we pro-

pose to deploy a supervisory attentional system that enables

more complex attention-base interaction (verbal, non-verbal,

explicit, implicit, etc.) during both the teaching and the exe-

cution phase. Social attentional mechanisms for non-verbal

task teaching are proposed and investigated by Breazeal and

Berlin (2008). In this case, the authors mainly focus on visual

attention and gaze direction. In particular, they show the

effectiveness of spatial scaffolding cues during interactive

task demonstration. Visual attention mechanisms for robot

learning are also proposed by Nagai (2009), Borji et al.

(2010) and Belardinelli et al. (2007). In contrast to these

works, we focus on executive attention and cognitive control

mechanisms supporting kinesthetic task teaching. Supervi-

sory attentional frameworks for robotic system have been

proposed (Kawamura et al. 2007) considering also cooper-

ative tasks execution (Caccavale and Finzi 2016; Caccavale

et al. 2016), but not in a learning by demonstration context.

3 System architecture

The overall system architecture is depicted in Fig. 1. The

human can interact with the robot in a multimodal manner

with gestures, speech, and physical guidance during both task

execution and kinesthetic teaching sessions. An attentional

system supervises both the human and the robot activities

(Attentional Behavior-based System) and manages high-level

tasks monitoring and execution (Attentional Executive Sys-

tem). On the other hand, the Robot Manager is responsible

for low-level task supervision, execution and learning. These

components are detailed below.

Fig. 1 The overall architecture for teaching and execution. The atten-

tional system supervises task execution and learning, while the Robot

Manager enables segmentation of the robot activities (Motion Seg-

mentation), kinesthetic teaching, primitive action learning (Motion

Learning) and execution (Motion Generation). The attentional system

manages the execution of high-level tasks (Attentional Executive Sys-

tem) and low-level sensorimotor processes (Attentional Behavior-based

System). The communication between the Robot Manager and the atten-

tional system is managed by the RobotStream (robot motion data) and

ObjectStream (perceived data from the RM to the attentional system)
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3.1 Robot manager

The Robot Manager (RM) handles low-level aspects of the

human–robot interaction and it is responsible for a correct

task execution. In particular, the RM is responsible for: (i)

smooth transition between teaching and execution modes; (ii)

segmentation of the human demonstration into basic actions;

(iii) scene monitoring (objects classification and tracking);

and (iv) robot state monitoring (robot-object distance, motion

primitives learned or executed). Task teaching is performed

by means of kinesthetic teaching (Lee and Ott 2011). In

this work, we use the gravity compensation control to make

the robot ideally weightless for an easy and safe physi-

cal guidance. High level tasks are segmented into a set of

point-to-point motions (reaching and manipulating objects).

Segmented data are compactly represented as stable dynami-

cal systems (DS), that we call motion primitives. The learned

motion primitives are used to generate motor commands in

the execution phase. Notice that stable DS are well-suited for

point-to-point motion generation since they are guaranteed to

converge towards a given target, and they can rapidly adapt

to external perturbations, like changes in the initial/target

location and unforeseen obstacles (Saveriano and Lee 2013,

2014). Learned DS generate the reference trajectories that the

robot tracks using a Cartesian impedance control with high

stiffness gains (2000 N/m for the position and 200 Nm/rad

for the orientation). Hence, the RM has two control modes:

a gravity compensation control for the teaching phase, and

a Cartesian impedance control for the execution. These two

control modes are enough to teach and execute structured

tasks. Another control mode, such as the controller proposed

by Lee and Ott (2011), can be eventually added to the RM in

order to allow the task refinement during the execution.

3.2 Attentional system

The attentional system provides the cognitive control mecha-

nisms needed to flexibly orchestrate the execution of complex

tasks and to monitor the human activities. Following a super-

visory attentional system (SAS) approach (Norman and

Shallice 1986; Cooper and Shallice 2006), we propose a

framework where interactive action execution and learn-

ing are supported by attentional mechanisms. In a SAS

framework, the executive control depends on two main mech-

anisms: contention scheduling and supervisory attention.

The first one allows to reactively select and regulate rou-

tinized activities depending on bottom-up perceptual stimuli

and internal drives; the second one is a higher-level pro-

cess that drives the system towards task-oriented behaviors

through attentional regulations. In our human–robot interac-

tion setting, the attentional system exploits hierarchical task

representations to supervise and regulate the robot actions,

while interacting with the human.

More specifically, we rely on the system proposed by Cac-

cavale and Finzi (2015) and Caccavale and Finzi (2016). This

framework is endowed with a Long Term Memory (LTM)

and a Working Memory (WM) (see Attentional Executive

System in Fig. 1). These components are detailed below.

Long term memory The LTM contains the procedural knowl-

edge available to the system, that is, the actual robotic

behavioral repertory that includes the abstract descriptions

of the tasks the robotic system can perform [an instance can

be found in Eq. (4)]. More specifically, each task is hier-

archically defined in the LTM by a set of predicates of the

form schema(m, l, p), where m is the name of the task, l

is a list of mi subtasks associated with enabling conditions

ri (releasers), i.e. l=〈(m1, r1), . . . , (mn, rn)〉, while p rep-

resents a post-condition used to check the accomplishment

of the task. Notice that these task definitions are exploited

to be retrieved, allocated, and instantiated in the WM for

execution. For this purpose, we introduce a special process,

called alive that continuously updates the WM by allocating

and deallocating a hierarchy of behaviors that implements

the corresponding task schemata in the LTM. For instance,

in Fig. 2, the add(Obj) schema is retrieved by alive (t1 step

in Fig. 2) and then instantiated and allocated in the WM as

the behavior add(water), which is ready for the execution

(t2 step in Fig. 2).

Working memory The Working Memory (WM) permits to

temporarily maintain and manipulate the information needed

to execute task-oriented activities; it represents the execu-

tive state of the system and collects the processes recruited

and instantiated for task execution. In our framework,

these processes are represented by an annotated rooted tree

Fig. 2 Representation of the WM expansion process managed by alive.

When the new node add(water) is allocated in WM the associated

schema is selected from LTM (retrieve phase) and exploited to decom-

pose the node in WM by adding and instantiating the new abstract or

concrete sub-nodes mentioned in the schema (expand phase)
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Fig. 3 Action segmentation and hierarchical task decomposition dur-

ing kinesthetic teaching of a pouring task. The robot has to pick-up the

bottle (pick(water)), reach the glass, pour the water (pour(water)) and

place the bottle (place(water)). The Robot Manager (down) performs

action segmentation (S1, S2, . . . , S5) and learns the associated motion

primitives, while the attentional system (up) connects the generated seg-

ments and primitives to the task structure (s1(water), s2(water), and

gripper(close) connected to pick(water); s3(glass) and s4(glass)

connected to pour(water), etc.). The green and blue labels represent,

respectively, releasers and post-conditions

T = (r , B, E), whose nodes in B represent allocated pro-

cesses/behaviors, the root r ∈ B is the alive process, which

bootstraps and manages the WM, while the edges E repre-

sent parental relations among sub-processes/sub-behaviors.

These nodes can be either concrete, representing real sen-

sorimotor processes, or abstract, which are for complex

behaviors to be hierarchically decomposed according with

the associated schemata in LTM. An example of the hierarchi-

cal behaviors generated for the execution of the add(water)

is illustrated Fig. 2 (bottom, right), while the ones for the

pouring task can be found in Fig. 3. In these illustrations,

for each node, green labels represent releasers (enabling-

conditions), while blue labels are for a post-condition (goal

conditions) exploited to monitor the accomplishment of goal-

oriented activities. More specifically, each node b in WM is

represented by a 5-tuple (mb, qb, pb, xb, μb), where mb is the

name of the allocated task, qb and pb represent the releaser

and post-condition respectively, xb is the set of sub-behaviors

generated by mb, while μb is a value that represents the cur-

rent attentional state of the behavior (see magnitude below).

Here, mb, qb, pb, xb are instances of the associated schema

in the LTM. Indeed, each node b in WM, is generated by the

alive process that allocates a schema(m, l, p) with a variable

binding that instantiates m in mb, p in pb and the list l in

the list of sub-behaviors xb and the associated releasers. For

instance, in Fig. 3, the pour(Obj) task is instantiated by the

argument water for the variable Obj , hence task, releaser,

post-condition and sub-behaviors are also instantiated by

water . This process is analogous to the one introduced for

HTN planning (Nau et al. 2003). Each concrete behavior

accesses sensory data σb, affects control variables cb and

updates a set of state variables V representing the current

state of the overall system. For instance, in Fig. 3, when the

water .picked boolean variable is set to true, the pick task

is accomplished while the next pour task is enabled to be

executed. In this case, the state variable water .picked is

updated by the concrete behavior gripper(close) when the

grasped object is the water.

Attentional regulation In line with (Norman and Shallice

1986), we assume that each node in the WM is also endowed

with an activation value regulated by attentional mechanisms.

This value is affected by top-down and bottom-up atten-

tional processes. In our framework, the activation value of

concrete behaviors is a frequency that represents the res-

olution at which a sensorimotor process is monitored and

controlled. More specifically, in concrete behaviors, the acti-

vation value is bottom-up regulated by a monitoring function

g(σb, εb) = λb, which depends on behavior-specific stim-

uli σb and the behavioral state variables εb (subset of the

state variables V ). In this work, analogously to (Caccav-

ale and Finzi 2016), we consider the distance of targets as

an estimation of behavioral accessibility, hence σb is here

directly associated to the minimal distance of the target for the

behavior. In particular, we assume that the activation period

λb ∈ [λmin, λmax ] is bottom-up regulated by the following

123



Autonomous Robots

saturating (and increasing) linear function:

λb = g(σb, εb) =







λmin if σ ≤ rmin

λmax if σ ≥ rmax

α · σ + β otherwise

(1)

specified by two parameters rmin and rmax , with α =
(λmax−λmin)/(rmax−rmin) and β = λmin−α · rmin used

to describe the linear increase of g for σ in the interval

[rmin, rmax ]. Notice that in this formulation, we assume a

direct bottom-up influence of the σb stimuli, hence εb here

is not exploited, however, more complex regulations can

be introduced (see for example Broqure et al. 2014). This

bottom-up regulation is then top-down modulated by a mag-

nitude value μb that summarizes the overall influence of the

WM on the behavioral attentional state. In concrete behav-

iors, top-down and bottom-up influences are then combined

in an emphasis value eb = μb/λb representing the actual

activation frequency for the behavior b. The absence of a

top-down influence is represented by μb = 1. Whenever

a magnitude change happens for a node in the WM, this

update is inherited by all its descendants. In addition, we

assume that when a behavior is accomplished, the magni-

tude of the parent node is increased by a constant value

k, which is then propagated towards its active successors.

In this setting, the magnitude of a generic behavior is then

given by μb = μ f + kn, where μ f is the parent magnitude

and n is the number of accomplished sub-behaviors. This

mechanism facilitates active behaviors representing the con-

tinuation of accomplished subtasks, in so inducing a smooth

drive towards task accomplishment with an associated reduc-

tion of task switching.

Conflict regulation The behavioral activation level is then

exploited to regulate behavioral competitions and conflicts.

Indeed, multiple tasks can be allocated in the WM at the

same time, therefore several behaviors can compete for the

execution generating conflicts and impasses (Botvinick et al.

2001). Contentions among alternative concrete behaviors

are solved exploiting the attentional activation: following

a winner-takes-all approach, the behaviors associated with

the higher emphasis are selected with the exclusive access

to mutually exclusive resources. More specifically, in our

framework this mechanism occurs when multiple concrete

behaviors simultaneously try to access and update a mutu-

ally exclusive control variable c. In this case, given the set

C(c) of competitors for the c variable, the system selects the

most emphasized concrete behavior:

bwin = argmax
b∈C(c)

eb. (2)

The selected behavior bwin can then modify the variable

c with the exclusive access. As already stated above, once

a behavior is accomplished, the upward propagation of

magnitude described above permits to facilitate task-related

behaviors in conflicts, in so orienting the system towards task

continuation and accomplishment. This task-oriented facili-

tation mechanism can be enhanced or reduced by tuning the

k parameter.

4 Kinesthetic teaching of structured tasks

The proposed framework supports human–robot interaction

during both task demonstration and task execution. In order to

enable natural interaction and incremental task learning, the

system can anytime switch between teaching and execution.

The teaching phase can start from the human or the robot

initiative. In the first case, the human can explicitly switch

to a demonstration session through a command (either vocal

and/or gestural) and directly show the execution of a task.

Otherwise, in the second case, the robot can wait for the

human assistance when not able to execute an activity. This

happens when a task under execution is not linked to concrete

sensorimotor behaviors. In this case, the system waits for the

user guidance in order to learn how to perform the missing

subtasks.

During the teaching phase, the human can physically guide

the robot in order to demonstrate the correct execution of

the task. This kinesthetic teaching session is supervised by

the attentional system, which has to connect the segmented

training motions to the related tasks and subtasks. The atten-

tional system tracks and monitors both the human and the

robot task execution. This way, the low-level robotic actions

taught by the user through kinesthetic teaching are labeled

by the higher level tasks/subtasks managed by the attentional

system. For instance, Fig. 3 illustrates the action segmen-

tation of a water-pouring task along with the associated

hierarchical task decomposition. During the teaching mode,

the RM provides action segmentation and motion primitive

learning, while the attentional system monitors the subtasks

to be fulfilled (pick(water), pour(water) and place(water)).

When a new segment is recognized by the system (S1, S2,

. . . , S5), a new node in the tree is generated (S1(water),

S2(water), . . . , S5(word), gripper(open)) and linked to

the most emphasized subtask.

During the demonstration, the human can also facilitate

the learning process by providing additional verbal cues to the

robot (such as object handling, vocal commands, etc.). These

cues can affect the attentional state of the robot, hence they

can influence task/subtask contentions and segments associ-

ations. Moreover, the human can always inspect the result

of a training session by invoking the repetition of learned

tasks and subtasks. Indeed, if the learned activities are not

satisfactory, task demonstrations can be repeated.
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Notice that, in a collaborative task execution setting, spe-

cific subtasks can be directly assigned to the human or

executed either by the human or the robot. For instance, a

pouring task may also include an explicit open(bottle) sub-

task that requires human manipulation. If the open(bottle)

subtask is executed by the human during the teaching, then it

will be assigned to the human. Hence, during the execution

phase, the robotic system will wait for the human assistance

in order to successfully execute the task. The overall learning

process is further detailed in the rest of the section.

4.1 Action segmentation

The demonstrated task has to be segmented into elemen-

tary movements. An effective segmentation strategy has to

be fast enough to work in real-time, consistent across differ-

ent demonstrations of the same task, and complete, meaning

that the generated segments represent the entire task.

In this work, we propose a simple and effective seg-

mentation mechanism, which is based on object proximity

and explicit human commands. Following the approach by

Wächter et al. (2013), each object in the environment is

associated with a proximity area, i.e., a sphere of radius r

around each object (we set r = 120 mm). When the end-

effector of the robot enters or leaves the proximity area of

an object, a new segment is generated. Analogously, when

a human command (e.g. open/close gripper) is executed a

new low-level action is created. The attentional system can

then automatically connect the generated action segments

to the task structure (see Fig. 3), while the Robot Manager

uses the robot’s trajectories to learn a motion primitive for

each action segment. Human commands are also included in

the task structure, in order to control the gripper when the

robot executes the task. We distinguish between two classes

of actions:

– Near-Object Action (NOA): the action is segmented

inside the proximity area of an object. In this case, we

exploit Dynamic Movement Primitives (DMP) (Ijspeert

et al. 2013) to compute a robust approximation of the

observed trajectory in order to accurately reproduce the

motion.

– Far-Object Action (FOA): the action is segmented out of

the proximity area of any object. In this case, only the

end-point of the observed trajectory is considered. The

action is then reproduced with a point-to-point motion,

generated with a linear dynamical system. This way, the

robot reaches the proximity area always with the same

pose, and executes NOA actions starting from a state

which is consistent with the demonstration (see Sect. 4.2).

The proposed segmentation mechanism allows the system

to reproduce complex actions involving two or more objects.

Fig. 4 Teaching and execution of the pouring action (NOA). In the

teaching phase (left) the user drives the robot near the cup and pours

water, while in the execution phase (right) the robot reproduces the

movement

For example, the pouring action (NOA) illustrated in Fig. 4

has been trained with high accuracy and associated with the

pour(water) primitive behavior within the abstract task of

pouring.

The segmentation strategy requires the robot-object dis-

tances. Possible failures may occur if the objects are not

properly tracked, for instance if the teacher hides the object

to manipulate during the teaching. Failures may also occur if

the robot enters in the proximity area of multiple objects

simultaneously and each of these can be associated with

the generated segment. This occurrence can be prevented

by properly choosing the radius of the proximity area r .

Finally, the segmentation strategy may generate unnecessary

segments if the teacher guides the robot inside/outside the

proximity area of different objects without grasping them.

Even in this case, the learned task can be correctly executed

although the robot performs unnecessary motions like the

human demonstrator. This undesirable behavior can be pre-

vented by instructing the teacher to directly guide the robot

towards the object to use.

4.2 Learningmotion primitives

The described segmentation approach transforms the human

demonstration into a set of basic actions with associated tar-

get poses. In order to reproduce the actions on a real robot,

we encode the segmented data into stable dynamical sys-

tems and refer to these systems as motion primitives. In

this work, motion primitives are learned from demonstra-

tions using Dynamic Movement Primitives (Ijspeert et al.

2013). DMP encode a motion primitive into a second order,

non-linear dynamical system (Park et al. 2008)

ṗ = v (3a)

v̇ = K (g − p) − Dv − K (g − p0)s + K f (s) (3b)
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ṡ = −γ s (3c)

where p is the robot position/orientation, v its linear/angular

velocity, g the desired (goal) position, p0 is the initial posi-

tion of the robot, K and D are positive definite gain matrices.

The nonlinear forcing term f (·) reshapes the linear dynam-

ics to follow the demonstrated trajectory. The forcing term

is deactivated by the clock signal s → 0 to guarantee con-

vergence to g. The scalar gain γ > 0 determines how fast

s → 0. Recalling that, in practice, s = 0 after 5/γ seconds,

we set each γ equal to 5 over the duration of the NOA action.

DMP have several properties which make them well-

suited for our approach. First, the forcing term is learned

using a single demonstration. Hence, the user does not have to

repeat the same action multiple times. Second, DMP guaran-

tee convergence towards the target from any initial position.

Third, stable dynamical systems are robust to changes in the

target position and can be eventually combined with reac-

tive collision avoidance strategies to generate converging and

collision-free paths (Saveriano et al. 2017).

The full DMP structure in Eq. (3a)–(3c) is exploited to

learn and retrieve Near-Object-Actions, e.g., the nonlinear

part of motion of a pouring action. For Far-Object-Actions,

instead, we only consider the linear part of the DMP and

neglect the terms −K (g − p0)s + K f (s) in Eq. (3c). This

way, the robot executes complex actions always from the

same initial state, preventing the problem of the excessive

magnification of trajectories generated from different ini-

tial states (Ijspeert et al. 2013). In order to reproduce the

demonstrated motion when the objects are placed at differ-

ent locations, goal poses are referred to a frame attached

to the specific object. At run time, the current goal is first

referred to the robot frame (located at the base of the robot)

and then passed together with the robot pose to the dynam-

ical system that generates the motion. It is worth noticing

that the combination of DMP and the proposed segmenta-

tion strategy permits to learn motion primitives without any

off-line data processing. In particular, the target position for

each action, as well as the demonstrated trajectory, are auto-

matically provided by the segmentation approach and then

used to learn the action, without further human intervention

or data post-processing.

4.3 Task learning

In this section, we illustrate how the generated segments

are connected to high-level task structures. This process is

managed by the attentional system while monitoring the

human demonstration. We assume that a description of the

task structure is already provided in the LTM (see Eq. (4)

for an example), while the learning problem is to produce

an updated LTM where all the associations between sub-

tasks and segments are represented. We call open subtasks

the schemata of LTM that represent concrete behaviors [as

subtask(take, Obj) in Eq. (4)] but are not associated to

segments (i.e. that cannot be executed by the robot). In this

setting, starting from an initial LTM0 that contains a set of

n open subtasks, our learning process produces an updated

LTMl where the open subtasks in LTM0 are further decom-

posed by the m generated segments, each associated with

a motion primitive in the Robot Manager. When a teaching

phase starts, the abstract behavior representing the task to be

demonstrated is allocated in the WM and then hierarchically

decomposed by the alive process (see Sect. 3.2). This way, a

behavioral tree Ttask is generated in the WM that contains a

set of open subtasks O = {sub1, . . . , subn} to be linked to

the segments produced by the RM. In order to describe this

process, we consider the demonstration of a water-pouring

task (see Fig. 5). This task is hierarchically decomposed in

the take-water and pour-water subtasks (frame t1), which

are denoted in the LTM by the following schemata:

schema(add(Obj),

〈(subtask(take, Obj), hand. f ree),

(subtask(pour , Obj), Obj .taken)〉,
Obj .used)

schema(subtask(take, Obj), 〈 〉, Obj .taken)

schema(subtask(pour , Obj), 〈 〉, Obj .used)

(4)

Here, the pick-and-pour task can be instantiated with dif-

ferent objects (Obj). The subtask take is enabled when

the hand is free (releaser hand. f ree) and associated with

the Obj .taken post-condition, while the pour subtask is

enabled when the object is taken (releaser Obj .taken) and

related to the Obj .used post-condition.

In order to be executed, the add(Obj) has to be instanti-

ated and allocated in the WM. However, the two subtasks

(pour and take) are not linked to concrete sensorimotor

processes, which are automatically generated during the

kinesthetic teaching process. Since each subtask is imple-

mented by a concrete WM node, it is associated with an

activation level, which is (bottom-up) affected by the prox-

imity of the objects in the scene [see Eq. (1)] and (top-down)

modulated by the overall tasks allocated and enabled in the

WM. Therefore, during the human demonstration, the atten-

tional system enhances the activations of the subtasks which

are accessible (i.e. closer to the associated target objects)

and task relevant (i.e. top-down stimulated through the task

structure). These activation values are then used to link the

concrete subtasks to the generated segments (and to the asso-

ciated motion primitives in the Robot Manager), as described

in Algorithm 1.

In particular, when a new segment is created by the

Robot Manager (line 2), all the enabled open sub-tasks of
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subtask(take,water)
2 (1)

subtask(pour,water)
0.2 (1)

add(water)
1 (1)

alive
1 (1)

foa8(water)
2 (1)

noa9(water)
2 (1)

TRUE ~foa8.done

gripper(close)
2 (1)

~noa9.done

subtask(take,water)
2 (1)

subtask(pour,water)
0.1 (1)

add(water)
1 (1)

~hand.free water.taken

alive
1 (1)

foa8(water)
2 (1)

noa9(water)
2 (1)

TRUE ~foa8.done

gripper(close)
2 (1)

~noa9.done

foa10(world)
2 (1)

TRUE

~hand.free water.takensubtask(take,water)
0.3 (1)

subtask(pour,water)
2 (1)

add(water)
1 (1)

alive
1 (1)

hand.free ~water.taken

t1

t2

t3

Fig. 5 Representation of the WM update during the pouring task. The

system starts from a simple structure for the add(water) task (t1). Dur-

ing the user demonstration new segments are added to the take-water

subtask (t2) along with their releaser (labels on the arrows). When the

new pour -water subtask is selected (t3) a new FOA is linked with

a true releaser. Here, green and red ovals represent enabled and dis-

abled behaviors (satisfied and unsatisfied releasers), blue ovals are for

accomplished behaviors (satisfied postconditions), dotted ovals are for

abstract behaviors. For each behavioral node, the values outside/inside

brackets are for the inverse of emphasis 1/eb (i.e. activation period) and

magnitude μb (top-down influence) respectively

Algorithm 1 Allocation of a new segment in the task hierar-

chy.

1: while true do

2: if a new segment seg from RM exists then

3: get winner subwin ← argmax
subi ∈O

esubi

4: if subwin is a new subtask and seg is FOA then

5: set releaser q ← true

6: else

7: set releaser q ← pprev

8: end if

9: set post-condition p ← seg.done

10: add behavior (seg, q, p,∅, μ) to subwin in WM

11: add new schema(seg, 〈 〉, p) in LTM

12: add 〈seg, q〉 to sub-task list of subwin in LTM

13: end if

14: end while

the WM compete to add the segment as a new child node

(line 3). In our framework, this competition is managed by a

winner-takes-all approach where the most emphasized sub-

task acquires the new segment [see Eq. (2)]. When a new

segment is generated, we have to define its releaser and post-

condition (lines 4–9). The releaser is always enabled (true)

if a FOA segment is added to a subtask with no other child

nodes (lines 4, 5). Otherwise, the execution of the segments

has to be chained, hence the post-conditions of the previ-

ous segment is exploited as the releaser of the current one

(lines 6, 7). The post-condition of each segment is then set

to seg.done (line 9). This symbolic post-condition is asso-

ciated with a sub-symbolic constraint used to check whether

the associated motion has been actually executed by the

robot. If a segment is associated with a motion primitive,

sub-symbolic constraints are directly provided by the RM

(e.g. target zones for the end-effector). Instead, predefined

commands (e.g. open/close gripper) are directly associated

with predefined sub-symbolic conditions (e.g. constraints

on the gripper state). When a new segment is generated, a

corresponding new behavior is allocated in WM as a child

node of the winning open subtask (line 10) (see also Fig. 5,

frame t2, where the linked segments are indicated by the

dotted line) and the LTM is updated accordingly (lines 11,

12). Notice that the chaining constraint is introduced for

segments belonging to the same subtask or if the subtask

starts with a NOA segment, which requires the fixed start-

ing point provided by the previous segment. On the other

hand, if the new subtask starts with a FOA segment, we can

keep it decoupled from the previous subtask, in so enabling

reusability and flexible execution of the associated subtask.

Indeed, at the execution time, all the enabled segments of

the WM compete to acquire the control of the robotic plat-

form. Hence, multiple independent tasks and subtasks can be

executed in a flexible manner, diverging from the sequence

illustrated during the demonstration. The overall method is

exemplified in Fig. 5. Once the user drives the robot towards

the bottle and grasps it, the system generates 3 new seg-

ments: f oa8(water) when the robot enters the objects area,

noa9(water) and gripper(close) when the bottle is reached

and grasped. These segments are attached to the take-water

subtask, which is the only one available in this context, while

the associated enabling conditions are needed to ensure the
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sequence of the segments (i.e. noa9 executed after f oa8, and

gripper(close) after noa9). Afterwards, when the robot is

driven towards the cup, the novel segment f oa10(world)

is generated and linked to the pour-water subtask which

becomes active after the bottle grasping. In this case, the

motion between the bottle and the cup represents a FOA and

the new generated segment is associated with a true releaser

(i.e. always enabled).

5 Experimental results

In this section, we propose some experiments to show that

the proposed approach can be effectively applied for (i)

incremental learning and execution of structured tasks, (ii)

execution of learned tasks in cooperation with the human,

and (iii) reuse of acquired knowledge in different contexts.

To this end, we consider two typical tasks of a kitchen sce-

nario; namely prepare coffee and prepare tea. The robot is

a KUKA LWR IV+ (Bischoff et al. 2010), equipped with a

WSG50 2-fingers gripper. As illustrated in Fig. 6, objects are

recognized and tracked using markers and a RGB-D camera

as in Garrido-Jurado et al. (2014). The marker close to the

robot base is used to compute the coordinate transformation

between the camera frame and the robot base. Due to possi-

ble marker occlusions during the teaching, we estimate the

robot-camera transformation and the pose of the cup at the

beginning of each experiment and keep them constant during

the execution. All the other objects, instead, are continuously

tracked at 30 Hz. The user initiates a kinesthetic teaching

session via the speech command teach. The teaching ses-

sion is terminated by the speech command done. The user

can interrupt/restart the execution of a learned task using the

speech commands stop/repeat. Graduate students in robotics

and automation participated to the experiments as teachers.

The parameters used in our system are listed in Table 1.

Fig. 6 Experimental setup

Table 1 Parameters used in the experimental evaluation

Parameter Meaning Value

Robot Manager

r Radius of the proximity area 0.12 m

K = diag(k1, . . . , k6) DMP stiffness gains ki = 70.0

D = diag(d1, . . . , d6) DMP damping gains di = 2
√

ki

Attentional System

λmax Max behavior period 1 s

λmin Min behavior period 0.1 s

rmax Max object distance 2 m

rmin Min object distance 0 m

k Magnitude increment 1

5.1 Pouring a drink

In the first experiment we teach the robot how to pour water in

a cup. The pouring task consists of two subtasks: take-water

and pour-water (see Fig. 5, t1). During the teaching process,

the teacher has to simply guide the robot towards the task

execution, providing sparse speech commands (open/close)

to control the gripper. In Fig. 7, we illustrate the WM state

after a one-shot teaching session. At the end of the demon-

stration, we can find nine generated segments, which are

linked to the associated subtasks. These new elements are

also associated with preconditions, effects, and activation

values. As detailed in Algorithm 1, these generated elements

are also stored in the LTM to be re-used in future scenar-

ios. Once learned, the task can be executed. In this situation,

the attentional system first selects the subtask take-water,

which is enabled when the robot has no object in its grip-

per (hand.free). The segments linked to the same subtask are

Fig. 7 The WM state after the pouring task demonstration. Nine gen-

erated segments are linked to the associated subtasks
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Table 2 Results for ten repetitions of the pouring a drink task

take-water pour-water add(water)

Teaching time (s) (mean ± std)

20.1 ± 1.2 30.3 ± 0.8 50.4 ± 2.0

Execution time (s) (mean ± std)

31.0 ± 1.5 46.5 ± 0.8 77.5 ± 2.3

Success rate

1 1 1

executed in the order shown during the demonstration. For

example, in order to perform the take-water subtask, the robot

executes foa1(water), noa2(water) and then gripper(close).

In order to quantitatively evaluate the effectiveness of

the proposed approach, we measured teaching and execu-

tion times over ten repetitions of the task. Moreover, in order

to show the robustness of our approach with respect to the

initial conditions, we performed ten repetitions of the task

with the bottle placed at random positions, measuring the

success rate as the number of correct executions over the

total executions. A trial is considered successful if the robot

grasps the bottle and pours the water within the cup.

As shown in Table 2, teaching this relatively complex task

requires approximately 50 s. Moreover, the task was success-

fully executed in all the ten trials (success rate equal to 1).

These results show that the proposed framework allows to

transfer novel skills to a robotic device in a quite fast, natu-

ral, and effective manner. Indeed, for each session, the task

is illustrated through a one-shot kinesthetic teaching demon-

stration, associated with sporadic verbal commands only

used to open or close the gripper. Notice also that the execu-

tion time for the pouring task (77.5 s, on average) appears

here slightly longer than the time needed to demonstrate

the task (50.4 s, on average). This slower execution does not

depend on the attentional system, which can effectively mon-

itor and select the robotic tasks and actions. Instead, it mainly

depends on the convergence time of the dynamical systems

used to generate motor commands (see Sect. 4.2). A possible

way to reduce the execution time is to perform each action at

a predefined speed ǫ, i.e., by generating a velocity command

with ṗ = ǫ v

‖v‖ instead of Eq. (3a).

5.2 Prepare coffee: task learning and autonomous
execution

This experiment shows how a complex, structured task is

learned and executed using the proposed framework. We con-

sider the task of preparing a coffee, in which the robot has

to: (i) pour the water in the cup, (ii) add the coffee pow-

der, and (iii) mix water and coffee powder with a spoon.

Before learning, the WM only contains the three behav-

Fig. 8 The WM before learning how to prepare a coffee. The task

preparecoffee has three child nodes, namely add(water), add(coffe)

and use(spoon). add(water) and add(coffe) can be executed in any

order (true releaser), while use(spoon) requires that both the water and

the coffee powder are added. Initially, both subtask(take,water) and

subtask(take,coffee) are enabled, hence they compete for the initial seg-

ments

iors add(water), add(coffee) and use(spoon) without any link

to motion primitives, as illustrated in Fig. 8. The action

primitives and segments are automatically added during the

kinesthetic teaching and then used to reproduce the task. Note

that the order of execution of add(water) and add(coffee) is

not relevant for task learning and execution, therefore, they

are both enabled when the task starts. In this case, task selec-

tion only depends on the attentional regulations. In Fig. 9,

we show teaching and execution snapshots of add(water),

add(coffee) and use(spoon), each associated with the WM

state obtained at the end of a learning session. Here, the user

can directly teach the overall prepare coffee task and then

execute it, otherwise the task can be step by step demon-

strated and executed (see the prepare tea task in Sect. 5.4).

Similarly to the previous experiment, we measured teach-

ing and training time, as well as, the success rate over ten

task repetitions (with objects randomly placed). Results in

Table 3 show that, on average, teaching the prepare coffee

task takes less than 3 min, while executing the task takes

about 3.7 min. Analogously to the previous experiment, the

longer execution time mainly depends on the convergence

time of the dynamical systems. Table 3 also shows train-

ing and execution times for each subtask. Looking at these

results, we notice that the time to grasp an object is almost

independent on the particular item. This is because, in our

setup, objects are relatively close and they are grasped in a

similar manner. We also notice that take-spoon takes always

longer than other take actions. The reason is that the sub-

task use(spoon) is always executed at the end, and the robot

has to cover a bigger distance to reach the spoon. Moreover,

Table 3 shows that the task execution has less variability

than the teaching. This means that, despite the user intro-
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Fig. 9 The robot learns how to prepare a coffee. (Left panels) Snapshots of the kinesthetic teaching and autonomous task execution. (Right panels)

Actions are automatically attached to the behaviors in the WM and used to reproduce the task

duces some variability across different demonstrations, the

task execution time is relatively constrained. Several actions

of the learned task are, in fact, linear point-to-point motions

which are executed in similar times across different repeti-

tions.

Also in this case, the task success rate is quite high

(0.9) and only one failure occurs over ten trials. In the

failed trial, the robot did not grasp the coffee jar sufficiently

close to its center of mass, probably due to an error in

the tracking system. Being the jar turned, the robot failed

to add the coffee in the cup. Notice that, in the current

implementation, we exploit a simple grasping strategy. A

possible way to increase the robustness of the system is

to use a multi-fingered robotic hand and perform a power

grasp (Roa et al. 2012), or to exploit tactile sensing in

order to detect and avoid the slipping (De Maria et al.

2015).
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Table 3 Results for ten repetitions of the prepare coffee task

take-water pour-water add(water) take-coffee pour-coffee add(coffee) take-spoon mix-spoon use(spoon) prepareCoffee

Teaching time (s) (mean ± std)

20.0 ± 2.3 30.1 ± 1.4 50.1 ± 3.7 19.8 ± 2.6 37.2 ± 1.9 57.0 ± 4.5 21.3 ± 2.7 37.3 ± 1.9 58.6 ± 4.6 165.7 ± 12.8

Execution time (s) (mean ± std)

28.4 ± 0.5 42.7 ± 0.3 71.1 ± 0.8 27.9 ± 0.7 47.7 ± 0.3 75.6 ± 1.0 29.8 ± 0.7 48.0 ± 0.4 77.8 ± 1.1 224.5 ± 2.9

Success rate

1 1 1 1 0.9 0.9 1 1 1 0.9

Fig. 10 Cooperative execution of the prepare coffee task. The user

takes the bottle and pours the water while the robot is approaching the

bottle. Notice that, before the human intervention the most emphasized

action segment is foa8(water). On the other hand, when the human

performs the action, the robotic task execution is online adapted: the

most emphasized action segment becomes foa1(coffee) and the robot

takes the coffee jar

5.3 Prepare coffee: cooperative task execution

The proposed framework permits a cooperative execution

of the learned tasks. As a proof of concepts, we consider

the coffee task described in the previous experiment and

two cooperative scenarios. In the first case, the human

helps the robot to fulfill the task by adding the water him-

self. To show the on-line capabilities of the attentional

system, the user intentionally takes the bottle, while the

robot is approaching it, (i.e., while it is executing the

foa8(water) action in Fig. 10) and pours the water. In this

situation, the system has to rapidly adapt task execution

with respect to the human behavior. Since the water is not

anymore available in the scene, the add(water) behavior

becomes less attractive for the robot that starts to execute

the add(coffee) (which is available and enabled in the WM).

At the same time, the system can monitor the human behav-

ior and assign the add(water) execution to the human. In

Fig. 11 a The bottle is closed and the robot will fail to pour the water.

b Once the user has suspended the task and removed the cap, the robot

can correctly execute it

this setting, for the sake of simplicity, the above assign-

ment is explicitly communicated by the human through a

vocal utterance. Notice, however, that more complex activ-

ity recognition methods can be deployed for the same

purpose (Caccavale et al. 2014). We executed this cooper-

ative task ten times, obtaining an average execution time of

149.8 ± 3.5 s. A comparison with the autonomous execution

time in Table 3 allows us to conclude that the cooperative

execution is beneficial in terms of execution time. In partic-

ular, we observe that the time needed for task adjustment

does not have a significant impact on the total execution

time.

Human–robot cooperation can be also exploited to over-

come robot limitations. As a proof of concepts, we consider

the case in Fig. 11a where the robot is pouring the water with

the bottle closed. Even with a more sophisticated perception

system able to recognize the cap, a single manipulator could

not open the bottle and the pouring task would fail. In this

case, the human intervention is essential to fulfill the task.

In the proposed framework, during the execution phase, the

user can suspend the task execution via the speech command

stop, open the bottle (see Fig. 11b), and restart the execu-

tion (speech command repeat). Otherwise, we can explicitly

introduce in the task structure a subtask open(Obj) which is

directly assigned to the human manipulation and left unlinked
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Fig. 12 The robot learns how to prepare a tea. (Top-left) The add(water)

behavior has been already demonstrated for the prepare coffee task

and can be reused in the prepare tea task. (Top-right) The WM state

after the add(water) execution. (Bottom-left) The human can demon-

strate the novel subtask through kinesthetic teaching, then the robot can

autonomously execute the rest of the task (add(tea)). (Bottom-right)

The WM state after the add(tea) demonstration

for the robot execution. This way, the robot is to wait for

the human help or guidance in order to execute the task.

During the teaching phase, this subtask can be executed by

the human (under the attentional supervision), while the rest

of the task can be again demonstrated through kinesthetic

teaching. Analogously to the close subtask, for the sake of

simplicity, the human may just verbally declare the end of

his/her intervention. It is also worth noting that, in this coop-

erative setting, the operator can teach motion primitives in

preparation of the human interventions. For instance, when

the next subtask is a human manipulation (e.g. open(water)),

the robot should provide the object (bottle of water) in a com-

fortable position for the operator, hence in the learning phase

this subtask should be also demonstrated taking the human

into account.

5.4 Prepare tea: task re-usage

In the last experiment, we show that the acquired knowl-

edge can be re-used to speed-up the acquisition of novel

tasks. We consider the task of preparing a tea, where the

robot has to pour the water in the cup and add a tea bag.

The add(water) behavior is the same behavior used to pre-

pare the coffee and can be re-used in this novel scenario.

In other words, the already learned behavior can be loaded

from the long term memory and instantiated in the work-

ing memory, while the user has only to teach how to add

the tea bag (see Fig. 12). Once allocated in the WM, all the

enabled and linked subtasks (e.g. add(water)) can be exe-

cuted until the open subtask (add(tea)) is selected. In this

case the robot needs the human demonstration to learn how

to complete the overall task. In order to assess the effective-

ness of task re-usage, we run ten teaching sessions: in five

runs the teacher has to demonstrate the entire task, while in

the remaining five runs the operator only teaches the miss-

ing add(tea) behavior. In this second setting, the robot waits

for the human assistance, whenever not able to execute a

subtask. As reported in Table 4, in the tea scenario, task re-

usage is effective and can reduce the teaching time of about

53%.
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Table 4 Results for ten training trials of the prepare tea task

Teaching time (s) (mean ± std) Task re-usage

add(water) add(tea) prepareTea (yes / no)

50.1 ± 1.9 34.1 ± 1.0 84.2 ± 2.9 No

− 35.6 ± 1.4 35.6 ± 1.4 Yes

The symbol “−” indicates an already learned subtask

6 Conclusions and future work

We presented a framework that allows a robot manipula-

tor to learn how to execute structured tasks from one-shot

kinesthetic demonstrations. In this framework, a supervisory

attentional system continuously monitors the human and the

robot activities during both task execution and task learn-

ing. During kinesthetic teaching, the human demonstration is

automatically segmented producing motion primitives, while

the attentional system relates the generated segments to the

task structure exploiting attentional regulations. The frame-

work has been evaluated considering a robotic manipulator

operating in a kitchen scenario. Obtained results show that the

system allows the robot to quickly learn and robustly execute

typical structured activities that involve object manipulation.

Moreover, we have shown how the attentional supervision

of both the user and the robot activities enables cooperative

execution of the learned tasks with an associated reduction

of the execution time. Finally, we illustrated how learned

tasks/subtasks can be reused in the context of novel task, in

so enabling the acquisition of incrementally complex capa-

bilities.

The focus of this work was on learning and executing

kinematic tasks; extending the framework to learn and exe-

cute force patterns will be the topic of our future research.

Moreover, we plan to investigate more complex human inter-

action scenarios along with more sophisticated attentional

cueing mechanisms during both task teaching and execu-

tion. Finally, we aim at assessing the effectiveness of the

proposed framework with an extended user study involving

inexpert users.
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