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Abstract. We describe a kinetic data structure (KDS) that maintains the connected com-
ponents of the union of a set of unit-radius disks moving in the plane. We assume that the
motion of each disk can be specified by a low-degree algebraic trajectory; this trajectory,
however, can be modified in an on-line fashion. While the disks move continuously, their
connectivity changes at discrete times. Our main result is anO(n) space data structure that
takesO(logn/log logn) time per connectivity query of the form “are disksA andB in the
same connected component?” A straightforward approach based on dynamically maintain-
ing the overlap graph requiresÄ(n2) space. Our data structure requires only linear space
and must deal withO(n2+ε) updates in the worst case, each requiringO(log2 n) amortized
time, for anyε > 0. This number of updates is close to optimal, since a set ofn moving
unit disks can undergoÄ(n2) connectivity changes.

1. Introduction

Motivated by applications in mobile communication and ad hoc networks, we study a
basic geometric problem in the plane: kinetic connectivity of unit disks. Specifically,
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given a set of unit radius disks moving independently in the plane, we want acompact
data structure that can support efficient queries of the following form: “Are disksA and
B in the same connected component?” (Two disksA and B are connected if eitherA
andB overlap, or if there is a sequence of disksA = D0, D1, . . . , Dk = B such thatDi

overlapsDi+1, for all i = 0,1, . . . , k − 1.) The problem of determining the connected
components of the union ofstationarydisks, or other geometric shapes, has been well
studied in computational geometry, and several efficient algorithms are known [2], [7],
[9]. In this paper, however, we are interested in maintaining the connected components
of the disks as they move around in the plane.

One obvious approach to dealing with motion is to use discrete sampling: we can take
snapshots of the disks at regular intervals, and recompute the connected components at
each instant. This simple approach tends to be very inefficient because sampling must
be fine enough so as not to miss any critical changes in connectivity. Recomputing the
connectivity from scratch at each instant also seems wasteful. Instead, we use the kinetic
data structure (KDS) framework [1], which is an event-driven data structure. Rather
than updating the connectivity at regular, fixed time intervals, a KDS responds to certain
“critical” geometric conditions or events and is guaranteed to discover all connectivity
changes. We show that our KDS for connectivity has many desirable properties: it has
linear size, supports fast connectivity queries, and requires roughly quadratically many
updates, each of which takes poly-logarithmic time.

We assume that each disk in the set has a publishedflight plan—a specification of
its future motion, at least in the short term. We make no assumption about the motion
except that it is described by some low-degree algebraic curve so that, for any two disks,
we can determine in constant time when they meet or separate for the first time. The
flight plan of a disk can also change at any time, as long as the KDS is notified of this
change.

Maintaining the connectivity of moving disks has potential applications in ad hoc
mobile networks [8], [12]. Briefly, an ad hoc network consists of a set of mobile hosts
(or devices) in which peer-to-peer communication occurs without the use of base sta-
tions. Each host has its own unique IP address, and it transmits its position through a
beacon. Two hosts within each other’s transmission radius can communicate. The hosts
themselves act like “mobile routers,” and cooperatively forward messages not addressed
to them. In order for such ad hoc networks to work correctly, at the very least, each host
needs to know the names of all other reachable hosts. If we treat the communication
range of each host as a unit-radius disk, the reachability problem is precisely our disk
connectivity problem. Due to the “light-weight” nature of mobile hosts, it is important to
keep the computation load and memory requirement to a minimum. Our KDS achieves
both of these goals.

Another application of disk (or ball) connectivity arises in maintaining group com-
munication in military operations. During reconnaissance missions, a set of military
personnel or airplanes must remain in radio contact throughout the mission, even as
the individual members of the group move independently. A break in the group com-
munication is considered a fatal error, requiring a termination of the mission. Again,
the connectivity of disks can be used to model this problem. Connectivity of moving
shapes is also relevant to the study of biological processes in which coalitions of mov-
ing entities are determined by contact, and we want to track the evolution of coalitions
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over time. Examples include computer animation of bird flocks where proximity de-
termines subgroups and flight behavior, and cellular automata viewed at a macroscopic
scale.

The number of connected components is a zero-order topological invariant of the
shape defined by the union of the unit disks—it corresponds to the the zero Betti number
of the shape. Higher order Betti numbers, such as the number of holes, may also be
of interest. Edelsbrunner [3], [4] defines thenerveof a union of disks to be a natural
simplicial complex associated with the disks. The nerve is a topological retract of the
union of disks and thus has the same topological invariants. It can be readily extracted
from the Delaunay triangulation of the disk centers. A Delaunay triangulation of a set
of disks can easily be kinetized, but unfortunately no subcubic bound is known for the
number of changes the Delaunay triangulation undergoes under motion.

The connectivity problem can be readily cast as a dynamic graph problem: model each
disk by a node, and put an edge between two nodes if their disks overlap. As disks move,
some edges are added or deleted. Using the flight paths of the disks, we can maintain
a priority queue of times when the overlap between disks changes (either two disjoint
disks meet, or two overlapping disks separate). We can use the dynamic graph data
structure of Holm et al. [6] to maintain thisoverlap graph. This data structure supports
edge insertions or deletions inO(log2 n) amortized time, and connectivity queries in
O(logn/log logn) time.

The chief drawback of using the overlap graph is that it can haveÄ(n2) edges in
the worst case, and therefore it is not compact. The main contribution of this paper is
a linear-size spanning subgraph of the overlap graph that can be maintained efficiently
as the disks move. We use the dynamic structure of [6] to maintain the connectivity of
our graph. Our structure isefficientin the KDS sense: if the disks move algebraically,
the worst-case number of connectivity changes is2(n2), and the worst-case number of
changes to our graph is onlyO(n2+ε), for anyε > 0.

Maintaining the connectivity of disks appears to be quite different from maintaining
the connectivity of moving rectangles [5]. In the case of rectangles,O(n) cycles on the
boundary of the union of rectangles contain a rectangle vertex. Rectangle adjacencies
along these cycles give a linear-size spanning graph, which is maintained kinetically
as the rectangles move. Finding a similar spanning graph for disks is quite a bit more
complicated. In the case of rectangles, all the geometric primitives can be implemented
using standard data structures such as interval and segment trees. In the case of disks,
we need new structures, called shadows and shadow diagrams.

2. Preliminaries

Let S be a collection ofn points moving in the plane. Each point is the center of a unit
disk. We are interested in maintaining the connected components of these disks as the
points move.

Two unit disks areconnectedif they overlap (that is, the separation of their centers is
less than 2), or if they belong to the same connected component of the transitive closure
of the “overlap” relation. We say that two points ofS are connected if and only if their
unit disks are connected.
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We denote byUDisk(p) the unit disk centered on a pointp, and useUDisk(S) to
denote the union of the unit disks centered on points ofS. Because most of the discussion
below uses disks of radius 2, we use the simpler notationD(p) andD(S) to denote the
corresponding concepts for radius-2 disks. In general, we use the following function-
style notation for the Minkowski sum: ifX is a shape with a reference point, thenX(p)
is a translate ofX with the reference point atp, andX(P) =⋃p∈P X(p) for any point
set P. In other words,X(p) = X + p and X(P) = X + P, where “+” denotes the
Minkowski sum.

As part of our data structure we use sorted lists that support searching, insertion,
deletion, splitting, and concatenation inO(logn) time per operation. Such lists are
typically implemented as balanced binary trees [2] or skip lists [10]. In the remainder of
this paper (particularly Section 5.1) we simply use the termsorted listto refer to such a
data structure.

3. A Spanning Graph for Static Points

In this section we define a linear-size multigraphG on the points ofSwhose connectivity
is the same as that induced byUDisk(S). For each pointp, G has up to eight edges
connectingp to other pointsq ∈ S that lie to its right and such thatUDisk(p) ∩
UDisk(q) 6= ∅.

It is convenient for us to convert the symmetrical “overlap” relation between unit
disks into an asymmetrical containment relation between radius-2 disks and points. For
any two pointsp andq, UDisk(p) ∩ UDisk(q) 6= ∅ if and only if p is contained in the
radius-2 diskD(q).

To help define the graphG, we select eight subsets of the points ofS lying to the right
of p = (xp, yp). See Fig. 1. For eachi ∈ {0,1} and j ∈ {0,1,2,3}, define abox set

2i, j (p) = S∩ {(x, y) | xp + i < x ≤ xp + 1+ i,

yp − 2+ j < y ≤ yp − 1+ j }.

Lemma 3.1. For any set A= 2i, j (p), the disks of UDisk(A) form at most one
connected component.

0,0

0,1

0,2

0,3

1,0

1,1

1,2

1,3

Fig. 1. Cover the right half of the disk with eight squares.
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Fig. 2. The slab defining@1,2(p) is shown shaded.

Proof. The claim follows from the fact that the intersection of any two unit disks with
centers inA is nonempty. The setA is determined by the intersection of a unit square
with S, and hence the maximum separation between any two points ofA is

√
2.

If q ∈ S lies to the right ofp and D(q) containsp, thenq ∈ 2i, j (p), for some
i ∈ {0,1}, j ∈ {0,1,2,3}. (The right half ofD(p) is contained in the union of the eight
unit squares that define the2i, j (p) sets.) The preceding lemma implies that we can
connectp to all connected components lying to its right by adding at most eight edges
to the graph: one to the connected component of eachUDisk(2i, j (p)).

For convenience of computation (see Section 4), we do not actually separate the points
right of p into unit squares. Instead, we assign them to nondisjoint, semi-infinite slabs

S∩ {(x, y) | xp + i < x, yp − 2+ j < y ≤ yp − 1+ j
}
,

for i ∈ {0,1} and j ∈ {0,1,2,3}. We identify theseslab setsby their indices(i, j ),
using the notation@i, j (p). See Fig. 2. The edges ofG from p to points ofS to its right
are defined as follows:

For each set of points@i, j (p), if p ∈ D(@i, j (p)), put intoG an edge fromp to the
pointq ∈ @i, j (p) such thatD(q) has the leftmost intersection with the horizontal
line y = yp. DefineTarget(p, i, j ) ≡ q. Target(p, i, j ) does not exist if@i, j (p)
is empty orp /∈ D(@i, j (p)).

Note thatTarget(p,0, j )may be equal toTarget(p,1, j ), which is whyG is a multi-
graph instead of a graph. This is because@0, j (p) contains@1, j (p). In fact,@0, j (p) =
20, j (p) ∪ @1, j (p), and even if20, j (p) is nonempty,Target(p,0, j ) may belong to
@1, j (p). See Fig. 3.

Lemma 3.2. For each p, i ∈ {0,1}, and j ∈ {0,1,2,3}, the point Target(p, i, j )
belongs to the connected component of2i, j (p).

Proof. We prove the lemma fori = 1 andi = 0 separately. The casei = 1 is easier,
so we handle it first.
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p

a

b

Fig. 3. Target(p,0,1) = b belongs to@1,1(p), even though20,1(p) is nonempty.

If q ≡ Target(p,1, j ) exists, thenq must belong to21, j (p), the set contained in the
unit square at the left end of@1, j (p), since points to the right of21, j (p) are outside
D(p). There is only one component containing points of21, j (p), by Lemma 3.1, and
so the lemma is true fori = 1.

Because@1, j (p) ⊆ @0, j (p), we need to be sure thatTarget(p,0, j ) is either in
20, j (p) or connected to it. We consider the casesj ∈ {0,3} and j ∈ {1,2} sepa-
rately.

First, consider the casej = 0 ( j = 3 is symmetric). The portion ofD(p) inside the
slab{(x, y) | xp < x, yp − 2< y ≤ yp − 1} has diameter exactly 2. See Fig. 4(a). (The
diameter is determined by the lower left and upper right points of the region. However, the
upper right point is the intersection ofD(p)with the radius-2 disk centered at(xp, yp−2),
which shows that the diameter is 2.) All the points of(20,0(p)∪21,0(p))∩D(p) belong

p

p

a

b

(a) (b)

Fig. 4. (a) The diameter of(20,0(p) ∪21,0(p)) ∩ D(p) is at most 2. (b) Pointsa andb belong to different
connected components; the horizontal line throughp intersectsD(a) left of its intersection withD(b).
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to the same connected component, and hence even ifTarget(p,0,0) belongs to21,0(p),
it is still connected to20,0(p).1

Second, consider the casej = 1 ( j = 2 is symmetric). The diameter of the portion of
D(p) inside the slab{(x, y) | xp < x, yp − 1< y ≤ yp} is larger than 2. Hence there
may be two connected components of points inside that region. If there is only one
component, then the lemma is true; therefore, suppose that there are two components.
Leta ∈ 20,1(p)andb ∈ 21,1(p)belong to different components. See Fig. 4(b). Because
they-coordinates ofa andb differ by at most 1, theirx-coordinates differ by at least

√
3.

The leftmost point ofD(b) is at most 2−√3 to the left ofa. Likewise the left intersection
of y = yp with D(a) is at least

√
3 to the left ofa. Hencey = yp intersectsD(a) at least

2
√

3− 2 to the left of its intersection withD(b). That is,Target(p,0,1) ∈ 20,1(p),
which proves the lemma.

Theorem 3.3. The multigraphG has the same connected components as the connec-
tivity graph of UDisk(S).

Proof. By induction, it is sufficient to show that each pointp ∈ S is connected in
G to all the connected components determined by points to the right ofp and inside
D(p). The points right ofp that are directly connected top (i.e., that lie insideD(p))
are contained in2i, j (p) for i ∈ {0,1}, j ∈ {0,1,2,3}. By Lemma 3.1, the points of
each such set belong to a single connected component. The graphG contains edges from
p to eachTarget(p, i, j ); by Lemma 3.2,p is therefore connected to all components
determined by points lying right ofp and insideD(p).

4. Geometric Structures

In this section we describe geometric structures from which we can extract the spanning
graphG. We describe these structures for a static point setS; Section 5 shows how to
maintain the structures as the points move.

We slice each diskD(p) horizontally into four unit-height fragments, identified as
Fj (p), for j ∈ {0,1,2,3}. Let p = (xp, yp). Then

Fj (p) = D(p) ∩ {(x, y) | yp − j + 1≤ y < yp − j + 2}.

Note that the disk fragments are numbered top to bottom, while the unit squares are
numbered bottom to top. (This is intentional, as Lemma 4.1 will reveal.) See Fig. 5.
As above, ifP is a set of points, we use the notationFj (P) to denote the union of disk
fragments defined by the disks centered at points inP. We introduce these disk fragments
because containment by a fragment corresponds to intersection with a disk whose center
lies in a particular slab. This is made precise in the lemma below.

1 BecauseTarget(p,1, j ) always belongs to the same connected component asTarget(p,0, j ), for j ∈
{0,3}, we could reduce the size ofG by eliminating the edges toTarget(p,1,0) andTarget(p,1,3) from each
p ∈ S. However, this optimization makes no asymptotic difference, and so for uniformity of description we
retain those edges in the rest of the paper.
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0

1

2

3

Fig. 5. Divide the disk into four horizontal slices.

As an extension of the notations2i, j (p) and@i, j (p) used in Section 3, we introduce
the notation|----i (p) to denote the half-plane setS∩ {(x, y) | xp + i < x}, for i ∈ {0,1}.
That is,|----i (p) is the subset ofS lying more than distancei to the right ofp. See Fig. 6.

Lemma 4.1. Point p is contained in D(@i, j (p)) (that is, Target(p, i, j ) is non-null) if
and only if p is contained in Fj (|----i (p)).

Proof. See Fig. 7. Consider a pointq ∈ @i, j (p) such thatp ∈ D(q). Letq = (xq, yq),
and recall thatp = (xp, yp). Thenyp + j − 2 < yq ≤ yp + j − 1, by definition of
@i, j (p). Equivalently,yq − j + 1 ≤ yp < yq − j + 2. That is,p ∈ Fj (q). Because
|----i (p) ⊇ @i, j (p), we have established the forward direction of the lemma. The argument
to prove the reverse direction is similar.

Because we are interested in the containment of a pointp by disks whose centers lie
to the right ofp, we do not have to worry about the right boundaries of those disks. We
can replace each disk by itsshadow, which is the set of all points lying in the disk or
directly to its right. In general, theshadowof a planar regionQ is the Minkowski sum
of Q with the non-negativex-axis,

Shadow(Q) = {(x, y) | ∃(x′, y) ∈ Q, x′ ≤ x}.

Lemma 4.2. Point p is contained in Fj (|----i (p)) if and only if p is contained in
Shadow(Fj (|----i (p))).

Fig. 6. The sets|----1(p),@1,2(p), and21,2(p).
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p

Fig. 7. The slab of@1,2(p) is shown darkly shaded, and the copy ofF2 corresponding toTarget(p,1,2) is
lightly shaded. The only copies ofF2 that containp and have centers in the half-plane set|----1(p) are those with
centers in the slab set@1,2(p).

Proof. See Fig. 8. BecauseFj (|----i (p)) ⊂ Shadow(Fj (|----i (p))), the lemma can fail to be
true only if p lies strictly to the right ofFj (|----i (p)). However, for anyq ∈ |----i (p) such that
p lies to the right ofFj (q), p also lies to the right ofD(q), which implies thatp is right
of q, a contradiction.

It follows that we can determineTarget(p, i, j ) by intersecting the boundary of
Shadow(Fj (|----i (p))) with the horizontal liney = yp. If the intersection occurs to the
left of p, thenTarget(p, i, j ) is the pointq whose fragmentFj (q) contributes the bound-
ary arc on which the intersection lies. OtherwiseTarget(p, i, j ) is null.

To compute and maintain the graphG efficiently, we need a geometric structure that
representsShadow(Fj (|----i (p))) for all p ∈ S, i ∈ {0,1}, and j ∈ {0,1,2,3}. We use a
variant of themaxima diagramused by Basch et al. in their KDS for maintaining the
closest pair of points in the plane [1].

Let C be any convex shape with constant complexity in the plane, such that the
intersection ofC with a horizontal line, or the intersection of two translated copies of
C, can be computed in constant time. Furthermore, if the copies ofC are translating
algebraically as a function oft , it must be possible to compute in constant time the
value oft at which a triple intersection occurs for three copies ofC, or two copies and a
horizontal line. We assume thatC has a reference position (the origin in its own frame
of reference), and thatC(p) denotes a copy ofC placed with its reference position at
p. We useC ∈ {F0, F1, F2, F3} for our KDS, but we describe the geometric structure in
terms of a general convex shapeC.

q

Fig. 8. F2(q) is darkly shaded; its shadow is the entire shaded area. BecauseF2(q) is left–right symmetric
aboutq, a point to the right ofF2(q) is also to the right ofq.
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C(p)

a

b

Fig. 9. Max(C, xp) is shown dark. The feet ofShadow(C(p)) are circled. The shadow diagram records all
the feet ofShadow(C(p)) for all p ∈ S.

For a givenx-coordinatēx, letMax(C, x̄) represent the left envelope of all placements
of C at points ofS to the right of x̄. That is, if S>x̄ denotes all the points ofS with
x-coordinates greater than̄x, thenMax(C, x̄) is ∂Shadow(C(S>x̄)), the boundary of
Shadow(C(S>x̄)). This boundaryMax(C, x̄) consists of horizontal edges and edges of
translated copies ofC. We cannot afford to computeMax(C, x̄) explicitly for eachx̄,
as the total size of the shadows can beÄ(n2) for n points. Instead, we represent the
different Max(C, x̄)’s in a diagram with linear size, as is done for unions of wedges
in [1].

We can computeMax(C, x) for all values ofx by a right-to-left sweep over the points
of S. Our linear-size data structure records the history of that sweep. During the sweep,
Max(C, x) changes only whenx = xp for some pointp = (xp, yp), p ∈ S. If we
maintain the edges ofMax(C, x) for the current value ofx in a balanced binary tree, we
can update the tree in logarithmic time when we sweep over each point ofS. An edge
of Shadow(C(p)) replaces a sequence of edges inMax(C, xp).

For a given pointp = (xp, yp) ∈ S, we define thefeetof the shadowShadow(C(p))
to be the edges ofMax(C, xp) intersected by∂Shadow(C(p)). We represent the structure
of Max(C, x) for all x in a shadow diagramShadowDiagram(C), which records the feet
of Shadow(C(p)) for eachp ∈ S. The shadow diagram also includes a vertical line at
x = ∞, so that the vertical order ofy-disjoint shadows is recorded by their intersections
with the vertical line. The shadow diagram, along with thex-order of S, completely
characterizes the combinatorial structure ofMax(C, x) for all x, as can be easily seen
by right-to-left induction onS. See Fig. 9.

During the sweep construction of the shadow diagram, we can answer horizontal ray
shooting queries on the current version ofMax(C, x) by binary search on the sorted list
that representsMax(C, x). These ray shooting queries are what we need to determine
Target(p, i, j ) whenC is chosen to be one of theFj .

5. Kinetic Data Structures

We are interested in maintainingShadowDiagram(C) as the points ofSmove about. We
compute the structure initially by plane sweep.

In this section we fixC to be one of theFj , and largely omit it from the notation. We
replaceShadow(C(p)) by Shadow(p), andMax(C, x) by Max(x).
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C(p)

Fig. 10. Elements ofParents(p) are shown dark.

5.1. Support Data Structures

For each pointp = (xp, yp) ∈ S, we record the portion ofMax(xp) that is hidden by
Shadow(p), storing the sequence of edges of differentC(q) in a sorted list that supports
logarithmic-time operations [2], [10]. The edge sequence is represented as a sequence
of points of S>xp , with the edges to be computed on demand. We refer to this list as
Cover(p), thecover list of p, because the edge sequence is covered byShadow(p). In
Fig. 9, the portion ofMax(xp) between the circled feet ofShadow(p) is Cover(p).

Consider what happens to a particular shadowShadow(p) during the sweep construc-
tion of the shadow diagram. When the sweep passesx = xp, an edge ofShadow(p) is
added toMax(xp), covering some other edges. As the sweep progresses, newly added
shadows cover more and more ofShadow(p). (Note that at most a single edge of
Shadow(p) appears onMax(x) for any value ofx.) Whenever the remaining edge of
Shadow(p) is partially covered during the process, the newly added shadow has one foot
onShadow(p).

We store a sorted list of all the shadows that haveShadow(p) as one foot—these are
Shadow(q) for certain pointsq ∈ S left of p. We denote this list byParents(p). As with
the listCover(p), we represent the members ofParents(p) implicitly as a sequence of
points ofS<xp , stored in the order their shadow edges intersect∂Shadow(p). See Fig. 10.

5.2. Certificates

Two kinds of certificates are needed to maintain the shadow diagram,x-ordercertificates
andarc ordercertificates.

Thex-order certificates maintain thex-sorted order of the points inS. For two points
p = (xp, yp) andq = (xq, yq), the certificatex-order(p,q) holds if and only ifxp < xq.
We createx-order certificates based on the initial sorted order of the points ofS, then
maintain them as the points’x-order changes.

The arc order certificates maintain the intersection order of triples of shadow edges.
For every pair of consecutive elementsa andb of Parents(p), we maintain a certificate
arc-order(a,b, p) that holds if and only if∂Shadow(a) intersects∂Shadow(p) clockwise
of ∂Shadow(b). (Note that∂Shadow(p) and∂Shadow(q) intersect in at most one point,
for anyp andq.) We also maintain arc order certificates for the ends of each shadow edge:
if the upper end of∂Shadow(p) terminates on∂Shadow(a) (so p ∈ Parents(a)), andb is
the uppermost element ofParents(p), then we maintain a certificatearc-order(a,b, p).
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C(b) C(p)

C(a)

C(b)

C(p)

C(a)

Type 1 Type 2

Fig. 11. Two types of arc order certificates, denotedarc-order(a,b, p) in both cases.

We maintain a similar certificate for the bottom end of each shadow edge. Generally
speaking, we define and maintain an arc order certificate for every pair of feet that
appear consecutively along some shadow in the shadow diagram. See Fig. 11. As a
special case, we treat the vertical line atx = ∞ as a shadow boundary: we maintain arc
order certificates for the shadow edges with feet on that vertical line (i.e., shadow edges
that do not terminate on any other shadow).

Lemma 5.1. Let (X, A) be the x-order and arc order certificates determined by some
shadow diagram ShadowDiagram(C). If the points of S move continuously, but all the
certificates in(X, A) remain true, then the combinatorial structure of ShadowDiagram(C)
does not change.

Proof. Two shadow diagrams have the same combinatorial structure if and only if, for
eachp = (xp, yp) ∈ S, the two versions ofMax(xp) have the same edge sequence, and
the feet of∂Shadow(p) lie on the same edges ofMax(xp). Given two shadow diagrams
SD and SD′ with the same certificate set(X, A), we prove that they have the same
combinatorial structures by induction, using a right-to-left sweep over the points ofS.

First, because thex-order certificates are the same forSDandSD′, the sweep encoun-
ters the points in the same order. For a given pointp ∈ S, we assume inductively that
Max(xp) is the same forSDandSD′. This is trivially true for the base case, in whichp is
the rightmost point ofS. The curve∂Shadow(p) intersectsMax(xp) in two points. The
arc order certificates between neighbors inMax(xp) and between∂Shadow(p) and the
edges ofMax(xp) it contacts are the same in bothSDandSD′, and imply that the feet of
Shadow(p) are the same in the two shadow diagrams. Hence the sequence of edges of
Max(xp) covered byShadow(p) is the same in both cases, implying the equivalence of
the two instances ofMax(xp − ε) for an infinitesimalε, which establishes the inductive
hypothesis for the next point ofS to the left ofp.

5.3. Maintaining the Shadow Diagram

We now describe how to update the shadow diagram when a certificate fails. There are
two parts to the update: modifyingCover(p) andParents(p) for any affected pointsp,
and updating the set of certificates. Each of these has to be done forx-order and for arc
order certificates.
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C(p)

C(q)

Fig. 12. When x-order(p,q) fails, the portion ofCover(q) that lies insideShadow(p) is transferred to
Cover(p).

5.3.1. Failures of x-Order Certificates. When anx-order certificatex-order(p,q)
fails, it is easy to update the set ofx-order certificates. Suppose that the other two
x-order certificates involvingp andq are x-order(a, p) and x-order(q,b). Then we
remove all three certificates from the set ofx-order certificates and add new certificates
x-order(a,q), x-order(q, p), andx-order(p,b). The new certificates certify the new
x-order of the points ofS.

Whenx-order(p,q) fails, we may also have to update the cover lists and parent lists
of some points inS, as well as some arc order certificates. Ifq does not appear at either
end of Cover(p) (equivalently,p /∈ Parents(q)), then the shadow diagram does not
change, and no lists or arc order certificates need to be updated.

If x-order(p,q) fails andq appears at one end ofCover(p), we must update lists and
arc order certificates. (Note thatq cannot appear at both ends ofCover(p) except in the
degenerate case in whichp andq have equaly-coordinates.) See Fig. 12. The only cover
lists that change whenx-order(p,q) fails are those ofp andq. We search onCover(q)
to find the sublistL that lies insideShadow(p). We removeq from one end ofCover(p)
and replace it byL. Symmetrically, we removeL from Cover(q) and replace it byp.
(Duplicate points may need to be added/removed at the ends of the transferred sublist
L.) Four parent lists are affected by thex-swap ofp andq. Pointq stops being a parent
of a point at one end ofL, and becomes a parent ofp. Symmetrically,p stops being a
parent ofq and becomes a parent of a point at the other end ofL. Each added/removed
parent causes the addition/removal of three arc order certificates.

5.3.2. Failures of Arc Order Certificates. When an arc order certificatearc-order(a,b,
p) fails, we must update the shadow diagram in the vicinity of the triple intersection of
∂Shadow(a),∂Shadow(b), and∂Shadow(p). There are two kinds of arc order certificates,
depending on whethera andb both belong toParents(p) (Type 1), or whether one is
a foot of the edge from∂Shadow(p) (Type 2). See Fig. 11. Note that there are also
certificatesarc-order(a,b, p) in which botha andb are feet, but such certificates never
fail, because∂Shadow(p) always has a nontrivial edge in the shadow diagram.

When an arc order certificate of Type 1 fails, it is replaced by an arc order certificate of
Type 2, and vice versa. For example, in Fig. 13, the Type 1 certificatearc-order(a,b, p)
is replaced by the Type 2 certificatearc-order(b, p,a). To update the shadow diagram,
we make a constant number of local modifications:Parents(·) andCover(·) change for
O(1) points in the vicinity of the triple intersection, and arc order certificates for the
neighbors of the triple intersection must be updated.
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C(b)
C(b) C(p)

C(a)

C(p)

C(a)

Fig. 13. When the Type 1 certificatearc-order(a,b, p) fails, it is replaced by the Type 2 certificate
arc-order(b, p,a), and vice versa.

It is possible for multiple arc order certificate failures to happen simultaneously.
In particular, there may be multiple arc order certificates associated with the parents
of a horizontal shadow edge belonging to some∂Shadow(p). See Fig. 14. If another
horizontal shadow edge belonging to some∂Shadow(q) passes through the first edge,
all of the arc order certificatesarc-order(a,b, p) associated with the horizontal edge
must be replaced by the equivalentarc-order(a,b,q) certificates. Becausep andq have
different equations of motion, all these certificate updates are necessary, but they happen
in the same instant of simulation time. (We can remove this degeneracy symbolically by
giving each horizontal edge its own unique slope that is within some infinitesimal±ε of
zero—as a result, two horizontal edges will intersect in at most one point, and the arc
order certificates fail in sequence, rather than simultaneously. However, we do not gain
any computational advantage: although the certificates do not fail simultaneously, they
fail within an infinitesimal time interval.)

5.4. MaintainingG

We have seen that the two data structuresCover(p) andParents(p) are sufficient to let
us maintain the shadow diagram as the points ofS move, when coupled with a linear
number of KDS certificates. However, we also need to maintain the answers to a linear
number ofshadow-shootingqueries of the form

For a given pointp = (xp, yp) ∈ Sand some constantc, what edge ofMax(xp + c)
is intersected by the horizontal liney = yp?

C(p)

C(q)

Fig. 14. When q moves belowp, all of the shadow feet on∂Shadow(p) transfer simultaneously to
∂Shadow(q).
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The results of these queries, withc ∈ {0,1} and the implicit shapeC ∈ {F0, F1, F2, F3},
determine the possible values ofTarget(p, i, j ) for all p ∈ S, i ∈ {0,1}, and j ∈
{0,1,2,3}. If q is the query result andp ∈ D(q), i.e., the distance betweenp andq is
less than two, thenq = Target(p, i, j ) and there is an edge ofG from p to q.

We can answer these queries initially by performing binary search onMax(xp + c)
during the sweep line construction of the shadow diagram. One more distance comparison
per query determines the edges ofG.

To certify the correctness of the results, we need four more certificates per query.
We sort the queryx-coordinates into thex-order of the points ofS, and usex-order
certificates to maintain the totalx-sorted order of queries and points. Abusing notation
slightly, we extend thex-order(·, ·) certificate so that an argumentp refers to thex-
position of a pointp, and p+ c refers to the shiftedx-position of a query point. Thus
x-order(a, p+ c) certifies thatxa < xp + c.

We use two more certificates, either arc order certificates ory-order certificates,
to certify the edge ofMax(xp + c) that is intersected by the horizontal liney = yp.
If y = yp intersects an edge that belongs to∂Shadow(q), let a and b be the points
of Parents(q) whose shadow edges bound the interval of∂Shadow(q) intersected by
y = yp. If multiple queries map to the same interval(a,b) of Parents(q), then they
are maintained in vertical order withy-order certificates:y-order(p, p′) holds if and
only if yp < yp′ . We also maintain they-ordered list of queries for a given interval
(a,b) in a sorted list. The lowest and highest queries in the list are compared againsta
andb using arc order certificates. By abuse of notation we refer to these certificates as
arc-order(a, yp,q) andarc-order(yp,b,q).

Finally, we use adistancecertificatenear(p,q) or not-near(p,q) to certify whether
the distance fromp toq is less than or greater than two. (Hereq is the answer to a shooting
query(xp + c, yp).) We put an edge inG if and only if the distance is less than two.

To summarize, the certificates needed to maintain the shadow diagram (Section 5.2)
are

x-order(p,q) Says thatxp < xq.
arc-order(a,b, p) Let α be the intersection of∂Shadow(a) with ∂Shadow(p), and

letβ be the intersection of∂Shadow(b)with ∂Shadow(p). The certificate says that
α andβ occur in counterclockwise order along∂Shadow(p).

These certificates are augmented to maintain query results by the following:

x-order(p+ c,q + c′) Says thatxp + c < xq + c′.
arc-order(yq,b, p)
arc-order(a, yq, p) Replace the appropriate one ofα or β in the description above

by the intersection ofy = yq with ∂Shadow(p). Then the certificate says thatα
andβ occur in counterclockwise order along∂Shadow(p).

y-order(p,q) Says thatyp < yq.
near(p,q) Says thatp ∈ D(q).
not-near(p,q) Says thatp /∈ D(q).

Lemma 5.2. Suppose that a shadow diagram, a set of shadow-shooting queries, and
the graphG are correctly computed, and certified as described above. Then as long as
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no certificate fails, the shadow diagram, shadow-shooting query results, and graphG
remain correct.

Proof. The shadow diagram remains correct, by Lemma 5.1. Hence we just need to
prove that the query results and graphG are correct. Consider a query(xp+c, yp). Because
thex-order certificates maintain thex-sorted order of queries and points, the sequence
Max(xp + c) that is the target of the shooting query does not change. Suppose that the
answer to the shooting query(xp + c, yp) is initially an edge of∂Shadow(q), for some
q. The liney = yp intersects a particular interval(a,b) of Parents(q). All the shooting
queries whose results lie in the same interval(a,b) of Parents(q) are sorted vertically,
and their vertical order is maintained byy-order certificates. They-order of the lowest
and highest queries relative to the intersections of∂Shadow(a) and∂Shadow(b) with
∂Shadow(q) is maintained by arc order certificates, and hence as long as no certificates
fail, the answer to the query(xp+c, yp) remains unchanged. Finally, for a query/answer
pair p andq, the graphG contains an edge(p,q) if and only if p ∈ D(q); this condition
or its negation is certified by a distance certificate, soG does not change as long as no
certificate fails.

To maintain these queries as the points move, we must describe how to update the
certificates and query results when a certificate fails. There are four kinds of certificates,
and each has its own update strategy. Furthermore, these certificates interact with the
certificates for the shadow diagram, and we need to update the query certificates when
the shadow diagram certificates fail.

Distance certificate failures are the easiest to repair. We simply replace the certificate
by its negation, and add/remove the corresponding edge ofG.

It is also easy to repair the failure of a certificatey-order(p, p′). Two queries change
y-order, but both continue to project onto the same interval(a,b) of Parents(q). We
simply exchangep and p′ in the y-sorted list of queries whose solution is(a,b). We
delete the certificatey-order(p, p′)and create a new certificatey-order(p′, p). We delete
the other twoy-order or arc order certificates in which query pointsp andp′ participate,
and replace them by new certificates in whichp is replaced byp′, or vice versa.

When anx-order certificate involving a query fails, the answer to the query may
change. However, if the certificate involves two queries, neither answer changes, and we
simply update thex-order certificates to reflect the new order.

If x-order(p+ c,q) fails, we check whetherq’s edge is the answer to thep + c
query. If not, we simply update thex-order certificates. If yes, then the answer to the
query changes. We use binary search onCover(q) to find the new answer to the query;
suppose the old query answer was interval(a,b) in Parents(q), and the new answer is
interval (a′,b′) in Parents(q′). Then we remove the query from they-ordered list for
(a,b) and insert it into the list for(a′,b′). We update they-order certificates and the arc
order certificates involving the query’syp and its old and new neighbors. We also update
the query’s distance certificate and the graphG.

If x-order(q, p+ c) fails, we reverse the update of the preceding paragraph. If the
y-interval of∂Shadow(q) includesyp, thenq is the new answer to the query. We remove
the query from its previousy-ordered list and insert it into the one for the appropriate
interval ofParents(q), updatingy-order, arc order, and distance certificates as needed,
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as well as updatingG. If the answer to the query does not change, then we simply update
thex-order certificates.

When an arc order certificate involving a query fails, we remove the query from the
y-ordered list of its current interval(a,b) of Parents(q), whereq is the current answer
to the query. The arc order certificate comparesyp with the position of a vertex of the
shadow diagram. There are one or two edges of the shadow diagram on the opposite
side of the vertex from the interval(a,b). One of them is the new answer to the query,
and comparison ofxp + c with the positions of the points ofS that generate the edges
tells which it is (call itq′; q′ may beq). We insert the query into they-ordered list for
the appropriate interval ofParents(q′) and update all the affectedy-order, arc order, and
distance certificates, as well asG.

Lemma 5.3. Suppose that a shadow diagram, a set of shadow-shooting queries, and
the graphG are correctly computed, and certified as described above. Suppose that the
points of S move continuously, and we respond to each certificate failure by updating
the structures and certificates as described above. Then the shadow diagram, shadow-
shooting queries, graph G, and their certificates are always correct for the current
configuration of S.

5.5. Efficiency

In this section we argue that the total number of certificate failures isO(n2+ε) for any
ε > 0. More concretely, we argue that the number of certificate failures isO(nλs(n)),
whereλs(n) is the worst-case length of a Davenport–Schinzel sequence whose parameter
sdepends on the algebraic degree of the motion of points inS[11]. Since the total number
of connectivity changes isÄ(n2) in the worst case, our KDS is efficient.

We bound the number of certificate failures for the different kinds of certificates
independently. The kinds of certificates we consider arex-order certificates,y-order
certificates, arc order certificates involving only shadow edges, arc order certificates
involving queries and shadow edges, and distance certificates.

First, we observe that the total number ofx-order andy-order certificate failures is
O(n2). Each such certificate is determined by the relative positions of two points ofS,
perhaps with an offset:xp + c < xq, for c ∈ {−1,0,1}. Any such predicate can change
its truth value at most a constant number of times for points in algebraic motion.

Second, consider arc order certificates involving only shadow edges. Note that when-
ever an arc order certificate involving only shadow edges fails, one foot of some shadow
changes. However, the total number of times that the feet of any one shadow can change
is O(λs(n)). To see this, consider the edge of∂Shadow(p) that extends upwards from
the leftmost point ofC(p) and then off tox = ∞. Call this semi-infinite edgee. The
foot of e (the upper foot ofShadow(p)) is given by the first intersection ofe with a
candidateshadow; the candidates are shadows whose reference points are right ofp
and whosey-intervals include the horizontal part ofe. The total number of candidates
is O(n), and the total number of changes to the candidate set is alsoO(n). This follows
because each change to the candidate set is associated either with anx-order change of
p and someq, or with ay-order change ofyp + c andyq for someq, wherec is a fixed
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constant determined by the vertical distance betweenyp and the horizontal part ofe.
Because the points move algebraically, each pointq can enter or leave the candidate set
of p O(1) times. Since the motion of the points ofS is algebraic, any pair of candidates
can alternateO(1) times as the first shadow intersected bye. Hence the identity of the
upper (or lower) foot forms a Davenport–Schinzel sequence over time, which implies
that it changesO(λs(n)) times, for some constants.

Third, consider arc order certificates involving queries and shadow edges. The result
of a query at any instant is the intersection of a horizontal line with a particular edge of
the shadow diagram. Define thecovering edgeof a query to be the edge of the shadow
diagram that intersects the query line immediately to the left of the query result. Note that
the number of times the result of a query (the identity of the intersected edge) can change
is O(λs(n)), by an argument similar to the one bounding the number of foot changes.
Similarly, the covering edge of a query can changeO(λs(n)) times. (The covering edge
of a query(xp + c, yp) is simply given by the rightmostq ∈ S such thatxq < xp + c
andShadow(q) intersectsy = yp.) Now observe that every certificate failure involving
a query line and a vertex of the shadow diagram corresponds either to a change in the
query result or to a change in the covering edge of the query. Hence the total number of
such certificate failures isO(λs(n)) per query.

Finally, the total number of distance certificate failures isO(n2), because the distance
between any pair of points(p,q) can change from greater than two to less than two or
vice versa onlyO(1) times.

5.6. Assembling the Pieces

We now have all the pieces needed to put together a KDS to maintain the connectivity
of unit disks moving in the plane.

For each of the four disk fragmentsFj , for j ∈ {0,1,2,3}, we construct the shadow
diagramShadowDiagram(Fj ) in O(n logn) time by a right-to-left sweep over the points
of S. For each pointp ∈ S, we perform shadow-shooting queries inMax(Fj , xp + i )
for i ∈ {0,1}. This gives two queries per point ofS in each of the four different shadow
diagrams. The results of these queries define the possible values ofTarget(p, i, j ) for
each pointp ∈ S, i ∈ {0,1}, and j ∈ {0,1,2,3}. If q is the query result andp ∈ D(q),
thenq = Target(p, i, j ); if p /∈ D(q), thenTarget(p, i, j ) is null.

The graphG contains up to eight edges from eachp ∈ S to points to its right,
specifically to each non-nullTarget(p, i, j ). By Theorem 3.3,G has the same connectivity
as the disks. We use the structure of Holm et al. [6] to maintain the connectivity ofG
dynamically, as edges are added and removed. Connectivity queries on this structure
takeO(logn/log logn) time apiece.

To maintainG as the points ofS move, we create theO(n) certificates described in
Sections 5.2 and 5.4, which certify the correctness of the shadow diagram, the shadow-
shooting queries, andG. Following the standard KDS framework, we put these certificates
into a priority queue ordered by failure time, then process certificate failures as they occur.

Each certificate failure can be processed inO(logn) time, exclusive of the time needed
to maintain the connectivity structure: we perform a constant number of logarithmic-time
operations onCover(·) andParents(·) lists, then delete and create a constant number of
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certificates, as described in Sections 5.3 and 5.4. Inserting/deleting these certificates
from the priority queue takesO(logn) time apiece.

When a certificate fails, the results ofO(1) queries may change, which means that
O(1) edges ofG change. Updating the connectivity structure takesO(log2 n) amortized
time per edge insertion or deletion [6].

Taking the event bounds of Section 5.5 into account, we have the following theorem.

Theorem 5.4. Given a collection of n unit disks moving in the plane, we can maintain
the connected components of the disks in a KDS that supports connectivity queries in
O(logn/log logn) time apiece; each KDS certificate failure takes O(log2 n) amortized
time to process. The KDS is compact and efficient.

Unfortunately, our disk connectivity KDS is neither local nor responsive. The KDS is
not local because a single point ofSmay participate in2(n) certificates. It is responsive
only in an amortized sense because the connectivity graph update bound is only amortized
[6]; it is also true that a linear number of events may occur simultaneously, as noted in
Section 5.3.2, but this is not technically a responsiveness problem, because each event
(certificate failure) is processed quickly.

The problem of simultaneous events could probably be avoided by grouping together
the parents whose shadow boundaries intersect a single horizontal shadow edge, then
using a vertically ordered tournament to pick out the arc order certificate for the horizontal
edge due to fail first. These arc order certificates would no longer refer directly to the
horizontal edge, and so would not have to be replaced when one horizontal edge sweeps
over another. The (nontrivial) details are left to the reader.

Note that although the KDS is efficient, it is still possible for it to undergo many
events while the connectivity of the unit disks changes very little. For example, ifn
disjoint disks with centers onx = 0 move pastn disjoint disks with centers onx = 3,
our data structure undergoes2(n2) events while the disk connectivity does not change
at all. Similar problems affect most KDSs: because they maintain internal state that is
not externally visible, they may process many more internal events than external ones,
for some input data.

6. Conclusion

Although our result is stated for the connectivity of unit disks, it also applies to trans-
lated copies of any convex shapeD that satisfies certain mild conditions. LetM be the
Minkowski sum ofD with its reflection through the origin:M = D + D−1. Given two
pointsp andq, D(p)∩ D(q) 6= ∅ if and only if p ∈ M(q). Our result applies toD if we
can compute intersections of translates ofM quickly and can partition the right half of
M into O(1) slabs and rectangles such that the analogues of Lemmas 3.1 and 3.2 hold.

Note that in addition to answering connectivity queries, we can use our graphG to list
the elements of the connected component containing a query disk in time proportional
to the component’s size.

Our result can be improved slightly in two ways. First, we note that we need only six
queries (= graph edges) per point, not eight. We do not need to computeTarget(p,1,0)
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or Target(p,1,3), becauseTarget(p,0,0) andTarget(p,1,0) are in the same connected
component, as areTarget(p,0,3)andTarget(p,1,3). Second, we can reduce the number
of x-order events, perhaps substantially, at the expense of a somewhat more complex
certificate structure. We do not need to maintain the completex-order of all points and
queries. Instead, we needx-order certificates only for pairs of shadows such that one is
a foot of the other, and for query/shadow pairs for which anx-order change will change
the query result.

A challenging open problem is to extend our result to disks of different radii, or to
unit balls in three dimensions. Both extensions seem to be quite difficult.
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