

The University of Manchester Research

Kinetic correlation between aldehyde/enamine stereoisomers in reactions between aldehydes with [small alpha]-stereocenters and chiral pyrrolidine-based catalysts DOI:

10.1039/C2SC01082H

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Bures, J., Armstrong, A., & Blackmond, D. G. (2012). Kinetic correlation between aldehyde/enamine stereoisomers in reactions between aldehydes with [small alpha]-stereocenters and chiral pyrrolidine-based catalysts. Chemical Science, 3, 1273-1277. https://doi.org/10.1039/C2SC01082H

Published in:

Chemical Science

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Chemical Science

EDGE ARTICLE

¹⁵ Please check this proof carefully. **Our staff will not read it in detail after you have returned it**.

Translation errors between word-processor files and typesetting systems can occur so the whole proof needs to be read. Please pay particular attention to: tabulated material; equations; numerical data; figures and graphics; and references. If you have not already indicated the corresponding author(s) please mark their name(s) with an asterisk. Please e-mail

a list of corrections or the PDF with electronic notes attached – do not change the text within the PDF file or send a revised manuscript.

Please bear in mind that minor layout improvements, e.g. in line breaking, table widths and graphic placement, are routinely applied to the final version.

We will publish articles on the web as soon as possible after receiving your corrections; no late corrections will be made.

Please return your final corrections, where possible within 48 hours of receipt by e-mail to: chemicalscience@rsc.org

30 Reprints—Electronic (PDF) reprints will be provided free of charge to the corresponding author. Enquiries about purchasing paper reprints should be addressed via: http://www.rsc.org/publishing/journals/guidelines/paperreprints/. Costs for reprints are below:

35	Reprint costs		35		
	No of pages Cost (per 50 copies)		per 50 copies)		
		First	Each additional		
40	2-4	£225	£125	40	
40	5–8	£350	£240		
	9-20	£675	£550		
	21-40	£1250	£975		
	>40	£1850	£1550		
45	Cost for including co	ver of journal issue:		45	

50

25

30

c2sc01082h

25

50

15

Chemical Science

Cite this: DOI: 10.1039/c2sc01082h

www.rsc.org/chemicalscience

EDGE ARTICLE

Kinetic correlation between aldehyde/enamine stereoisomers in reactions between aldehydes with α -stereocenters and chiral pyrrolidine-based catalysts[†]

Jordi Bures,^a Alan Armstrong^b and Donna G. Blackmond^{*a}

Received 19th December 2011, Accepted 25th January 2012 DOI: 10.1039/c2sc01082h

10

1

5

The formation of enamines between aldehydes with α -stereocenters and pyrrolidine-based catalysts that lack an acidic proton is examined by kinetic and spectroscopic studies. The reaction exhibits "kinetic stereospecificity" in that each enantiomer of the aldehyde initially reacts to form a specific enamine stereoisomer, prior to thermodynamic equilibration of the E and Z enamines. For the case of prolinate catalysts, each of the stereoisomeric enamines is correlated with a specific stereoisomeric

15 oxazolidinone. The reactions of E and Z enamines with electrophiles such as DEAD lead to products of opposite stereochemistry. The product enantioselectivity observed depends on the extent to which the E and Z enamines are pre-equilibrated prior to reaction with the electrophile. General implications for selectivity in organocatalytic reactions are discussed.

20

25

30

Introduction

Enamine formation is a key step in a wide variety of organocatalytic reactions.¹ The experimental detection of these intermediates in pyrrolidine-based catalytic reactions remained elusive, however, until Gschwind and coworkers² demonstrated the application of NMR methodology³ allowing quantitative identification and temporal monitoring of enamines. We recently carried out kinetic, spectroscopic and computational studies of the formation of enamine carboxylates between linear aldehydes

and prolinate catalysts either pre-formed or formed in situ from proline in the presence of a base.^{4,5} Because of the synthetic importance of molecules with quaternary stereocenters, we began to focus on applying these tools to probe organocatalytic inter-

- 35 mediates formed from aldehydes with α -stereocenters.⁶ We report here several examples of unusual experimental observations in organocatalytic reactions involving enamines from α, α disubstituted aldehydes and catalysts that lack the acidic proton of proline, demonstrating that the formation and reaction of
- 40 stereoisomeric enamines is kinetically stereospecific.7 This concept has important general consequences in asymmetric catalytic reactions that follow an enamine pathway.
- 45

50

- ^aDepartment of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA. E-mail: blackmond@scripps.edu; Fax: +858-784-2180; Tel: +858-784-2128
- ^bDepartment of Chemistry, Imperial College, London SW7 2AZ, UK † Electronic supplementary information (ESI) available. See DOI: 10.1039/c2sc01082h

Results and discussion

We reported that the sense of the stereochemical outcome of the α -amination reaction of linear aldehydes using proline in the 25 presence of bases such as DBU is opposite that for proline.^{4,5} The proline-catalyzed α -amination of α, α -disubstituted aldehydes such as 1a ($R^1 = Ph$, $R^2 = Me$) has been reported by Bräse,^{6a} and we expected again to observe a reversal in enantioselectivity in this reaction using proline/DBU. Surprisingly, however, racemic 30 product was observed in the reaction of 1a with DEAD using 2a/ DBU. This result prompted us to examine the stereochemical outcome of trisubstituted enamine formation (Scheme 1), which has not yet received detailed attention in mechanistic organocatalysis. 35

NMR studies of interactions between 1a and 2a/DBU

When aldehyde rac-1a was allowed to equilibrate at ambient temperature with 2a/DBU, a mixture of ca. 9:1 E-3: Z-3 40 enamines was observed by ¹H NMR spectroscopy, as identified

Scheme 1 Enamine formation between aldehydes and pyrrolidine catalysts.

1

5

10

15

20

EDG ■ C2SC01082H

by nOe contacts.⁹ Monitoring the process over time, however, revealed that enamine concentrations were roughly equal immediately after mixing substrate and catalyst and that equilibration required about 30 min (Fig. 1). Equilibration of the *E* : *Z* enamine mixture is accelerated in the presence of acid. NMR spectra of *rac*-1a and 2a/DBU with 1 equiv CH₃COOH taken immediately after mixing reveal the system has already reached

the thermodynamic ratio of enamines.

The addition of acid also promotes the formation of oxazoli-10 dinones, and we have shown previously for linear aldehydes and catalyst **2a**/DBU that the *E*-enamine first identified by Gschwind is quantitatively converted to two diastereomeric oxazolidinones in the presence of acid;^{5a} however, in the case of α, α -disubstituted aldehydes, the system equilibrates to give a mixture containing

- 15 both enamines and oxazolidinones. 1D-gNOESY and 2D-ROESY NMR studies reveal that each enamine exhibits a more intense EXSY cross-peak with a particular oxazolidinone peak (Fig. 2). In order to assign the stereochemistry at the C1' center of each oxazolidinone, we studied oxazolidinone formation from
- S-1a and R-1a separately with S-2a, as shown in Scheme 2.
 Reaction of S-1a with S-2a produces the oxazolidinone diastereomer S-4 with the upfield C(2) proton at 4.96 ppm, while R-1a with S-2a yields the oxazolidinone diastereomer R-4 with the C(2) proton downfield at 4.99 ppm. This experiment allows us to assign the enamine oxazolidinone relationship for *rac*-1a with

S-2a/DBU, as shown in Scheme 2.8 The EXSV data in Fig. 2 reveal a staragisemaria corr

The EXSY data in Fig. 2 reveal a stereoisomeric correlation between the enamines and oxazolidinones, with 2S,1'R,2'R-4 associated with the *E*-enamine and 2S,1'R,2'S-4 with the *Z*-

enamine. One important consequence of such a relationship is that the formation of the two oxazolidinones from 2a/DBU and *rac*-1a cannot proceed through a common intermediate. This supports Gschwind's studies^{2a} proposing that oxazolidinones formed from enamines of linear aldehydes do not share a common iminium ion as a precursor, in contrast to conventional descriptions of the reaction pathway.

Our results also help to settle an intriguing question raised by Seebach⁹ about two possible pathways for enamine formation from an oxazolidinone, namely bond dissociation *vs. E2*-elimination, which provide different stereochemical outcomes. Seebach suggested that deuterium labeling might be used to determine which mechanism is extant; however, as illustrated in Scheme 3, application of our EXSY results to the Seebach

40

Fig. 2 2D-ROESY ¹H-NMR spectrum of an equilibrated mixture of *rac*-**1a** (0.45 M) and *S*-**2a**/DBU (0.15 M) in CDCl₃ at 25 °C in the presence of 1 equiv CH₃COOH.⁹ *E*-enamine *E*-**3** (red) correlates with oxazolidinone *R*-**4** at 4.99 ppm (red); *Z*-enamine *Z*-**3** (blue) correlates with oxazolidinone *S*-**4** at 4.96 ppm (blue) (see Scheme 2).⁸

30

proposal reveals that the *E*2-elimination pathway predicts the 35 wrong enamine-oxazolidinone correlation.

NMR studies of enamine formation with 1a and 2b

The initial kinetic formation of a *ca.* 1 : 1 mixture of enamines from racemic aldehyde **1a**, and the enamine/oxazolidinone correlation revealed in Fig. 2, raise the intriguing question of a stereoisomeric relationship between enamine configuration and that of the starting aldehyde. To probe this idea, we turned to the study of intermediates derived from catalyst **2b** and aldehyde **1a**. As with **2a**/DBU, this catalyst has been shown to give product selectivity opposite to that of proline in reactions such as the α amination of aldehydes. From the viewpoint of NMR study, **2b**

Scheme 2 ¹H-NMR assignments of oxazolidinones formed from enantiopure *S*-1a and 2a.

Scheme 3 Enamine-oxazolidinone correlation predicted for E2 elimination pathway compared to that experimentally observed.

has the advantage that enamine formation in the absence of acid

is sufficiently slow to allow observation of the initial rates of E

10

and Z isomer formation. As shown in Fig. 3, the initial E and Z15 enamine concentrations from rac-1a again differ from the equilibrium composition, which ultimately gives enamines E-5 and Z-**5** in a thermodynamic ratio of $E: \mathbb{Z} \approx 5:1$ for the equilibrated system of S-2b and rac-1a. The initial rate of enamine formation was also monitored for reaction of each separate enantiomer of 20

1a, as shown in Fig. 4.8 Interestingly, the thermodynamically less stable Z-enamine forms more quickly initially for S-1a, while R-1a shows both a kinetic and thermodynamic preference for E-5. The observed stereochemical relationship can be rationalized

by invoking selective formation of the *E* iminium intermediate 25 and removal of the proton from the α -carbon in a stereoelectronically controlled orientation parallel to the iminium π system, with the proton placed on the sterically more accessible face opposite to the catalyst sidechain (Scheme 4). The stereochemical relationship is maintained in the reverse reaction by 30 protonation on the less hindered face of the S-trans-enamine conformer. Eventual equilibration of the E and Z enamines is possible because of the accessibility of alternative (but less favored) transition states for the deprotonation of the interme-

diate iminium, e.g., reaction via the Z iminium, or in a confor-35 mation of the E iminium where the C-H bond is oriented syn to the sidechain. Similar arguments apply to less favored transition states for the reverse reaction.10

Rationalization of catalytic results 40

0.08

These studies of enamine formation may help to rationalize the results of catalytic reactions using α, α -disubstituted aldehydes and catalysts such as 2a/DBU and 2b, such as the α -amination (Table 1). A general network shown in Scheme 5 describes the

Fig. 4 Temporal profiles for enamine formation E-5 and Z-5 from 0.15 M S-2b with 0.45 M S-1a (left) or R-1a (right) in CDCl₃ at 25 °C measured by NMR.

15

rate of formation of the major and minor products, 7_{maj} and 7_{min} , where the concentration of the electrophile and species such as water in the hydrolysis step are equal in each pathway and are thus suppressed for simplicity. We propose (and will test) 20 a simplifying assumption for aldehydes with R^1 and R^2 of approximate C_{nv} symmetry that the *E* and *Z*-enamines exhibit the same reactivity,¹¹ which then gives $k_{maj} = k'_{maj}$ and $k_{min} =$ k'_{\min} and the expression for product enantiomeric excess as eqn (1). A selectivity factor is defined for product formation as s =25 $k_{\rm mai}/k_{\rm min}$. The selectivity factor s is equivalent to the enantiomeric ratio in the case where only one enamine forms, as for reactions of linear aldehydes such as propanal 1b, where the Eenamine is formed essentially exclusively.^{2a} With 2a/DBU as catalyst, the α -amination of **1b** with DEAD (52% ee, entry 3) 30 gives s = 3.2, while for catalyst **2b** (79% ee, entry 10), s = 8.5. Insertingly these values and the experimentally determined equilibrium enamine E/Z ratios for aldehyde **1a** into eqn (1) gives predicted product ee values of 38% S-7a for catalyst 2a/DBU and 55% S-7a for 2b, in excellent agreement with the experimental 35 values in Table 1 (entries 6 and 8) of 34% and 53% S-7a respectively. This concordance supports the validity of the simplifying assumption that the E and Z enamines react with similar facial selectivities. It also suggests that in the case of both catalysts 2a/DBU and 2b, the disubstituted enamine derived 40 from 1b reacts with facial selectivity similar to that of its trisubstituted counterpart derived from 1a, thus providing what might be considered an intrinsic selectivity for reaction of enamines formed from each catalyst.

45

50

Scheme 4 Rationale for kinetic stereospecificity in enamine formation.

5

1

1

2

30

10

Entry	Catalyst	Aldehyde R ¹ , R ²	Additive	Product ee^{a} (%)
1 ^{<i>b</i>}	2a	1b CH ₃ , H	none	85 (<i>R</i>)
2^b	2a/DBU	1b CH ₃ , H	none	48 (S)
3^b	2a/DBU	1b CH ₃ , H	$CH_3COOH (1 eq)$	52 (S)
4^c	2a/DBU	1a CH ₃ , Ph	none	racemic
5 ^c	2a/DBU	1a CH ₃ , Ph	none	21 $(S)^d$
6 ^{<i>c</i>}	2a/DBU	1a CH ₃ , Ph	CH ₃ COOH (1 eq)	34 (<i>S</i>)
				$38(S) - eqn(1)^e$
7^c	2b	1a CH ₃ , Ph	none	f
8 ^c	2b	1a CH ₃ , Ph	$CH_3COOH (1 eq)$	53 (S)
				$55(S) - eqn(1)^{e}$
9^c	2b	1b CH ₃ , H	none	
10^c	2b	1b CH ₃ . H	CH ₃ COOH (1 eq)	79 (S)

35 Scheme 5 General network for reaction of stereoisomeric enamines.

40
$$\% ee = 100 \cdot \frac{\left(k_{maj} - k_{\min}\right)\left([E] - [Z]\right)}{\left(k_{maj} + k_{\min}\right)\left([E] - [Z]\right)} = 100 \cdot \frac{\left(s - 1\right)\left(1 - \frac{[Z]}{[E]}\right)}{\left(s + 1\right)\left(1 + \frac{[Z]}{[E]}\right)}$$
(1)

Eqn (1) also rationalizes the racemic product observed for 1a 45 with catalyst 2a/DBU (Table 1, entry 4) for reaction occurring prior to equilibration, when $[E] \approx [Z]$ initially as shown in Fig. 1. Thus this unexpected result of 0% ee may be attributed to the interception of the kinetic mixture of enamines by the electrophile prior to equilibration (*i.e.*, ca. 1 : 1 E : Z, Fig. 1). This is in agreement with our previous results for linear aldehydes showing 50 that enamine formation is rate-determining. Supporting this conclusion is the outcome of reactions carried out when rac-1a is allowed to pre-equilibrate with 2a/DBU prior to reaction,12 and that for reactions carried out with addition of acid, which gave product enantioselectivities 21% and 34% ee S-7a (Table 1, 55 entries 5 and 6), respectively.

Finally, an important general consequence for any α, α disubstituted aldehyde/catalyst system comes from consideration of eqn (1) together with the experimental E/Z value. This provides an estimate of the maximum product enantioselectivity achievable for an electrophile with perfect selectivity: for 30 example, in the case of 1a with 2b, eqn (1) predicts $ee_{max} = ca$. 68%, while for 1a with 2a/DBU, $ee_{max} = ca.$ 80%. Reaction optimization efforts should take into account both the kinetic and thermodynamic E/Z values as well as the relative rates of enamine formation and enamine reaction. Catalyst design that 35 provides a higher equilibrium enamine E/Z ratio together with reaction conditions that allow pre-equilibration of the enamines will allow for high enantioselectivity; alternatively, catalyst design focused on establishing a strong kinetic preference for one enamine, coupled with conditions that allow rapid attack on the 40 electrophile, provides another approach that may afford high enantioselectivity. In either case the stereochemical outcome is determined by the facial preference for attack of the enamine at its prevailing concentration ratio at the instant of attack - on the electrophile. 45

Conclusions

The development of asymmetric reactions to form quaternary stereogenic centers is an important research goal, and the use of aldehydes with α -stereocenters as substrates in organocatalytic transformations *via* enamine catalysis is a promising approach. Our work reveals that both the kinetics and thermodynamics of reversible enamine reactions must be considered in the design of selective catalytic solutions to this challenge. Our work shows for the first time that reversible enamine formation between asymmetric catalysts and aldehydes with α -stereocenters is kinetically stereospecific, with a distinct correlation between one enantiomer of the aldehyde and one stereoisomeric enamine. The reactions of

- 1 these enamines with electrophiles also proceed with high selectivity, with each enamine correlating directly with one stereoisomeric reaction product. A theoretical analysis allows a general model to be advanced that predicts the enantiomeric excess of the
- 5 product in reactions of enamines with electrophiles. Establishment of a stereogenic center from enamine intermediates, and preservation of the stereogenic integrity of reaction products that may themselves form enamines, particularly for cascade reaction networks, are critical processes that may be influenced by the
- 10 thermodynamic *vs.* kinetic selectivity of enamine formation and reaction. We demonstrate that kinetic stereospecificity in ultimately reversible enamine reactions may contribute to the efficacy of enamine-based catalysis in complex reaction networks.

15 Acknowledgements

AA and DGB acknowledge research funding from the EPSRC. JB acknowledges a postdoctoral fellowship from the Education Ministry of Spain (EX2009-0687) and FECYT. We acknowledge D.-H. Huang and L. Pasternack (TSRI NMR Facility) for

20 D.-H. Huang and L. Pasternack (ISKI NMR F valuable assistance with NMR spectroscopy.

Notes and references

- (a) S. Mukherjee, J. W. Yang, S. Hoffmann and B. List, Chem. Rev., 2007, 107, 5471–5569; (b) P. Melchiorre, M. Marigo, A. Carlone and G. Bartoli, Angew. Chem., Int. Ed., 2008, 47, 6138–6171; (c) S. Bertelsen and K. A. Jorgensen, Chem. Soc. Rev., 2009, 38, 2178– 2189; (d) C. Palomo and A. Mielgo, Angew. Chem., Int. Ed., 2006, 45, 7876–7880; (e) S. Sulzer-Mosse and A. Alexakis, Chem. Commun., 2007, 3123–3135.
- 2 (a) M. B. Schmid, K. Zeitler and R. M. Gschwind, Angew. Chem., Int. Ed., 2010, 49, 4997–5003; (b) M. B. Schmid, K. Zeitler and R. M. Gschwind, J. Am. Chem. Soc., 2011, 133, 7065–7074; (c) M. B. Schmid, K. Zeitler and R. M. Gschwind, Chem. Sci., 2011, 2, 1793–1803.
 - 3 J. Schleucher, B. Schworer, R. K. Thauer and C. Griesinger, J. Am. Chem. Soc., 1995, **117**, 2941–2942.

- 4 D. G. Blackmond, A. Moran, M. Hughes and A. Armstrong, J. Am. Chem. Soc., 2010, **132**, 7598–7599.
- 5 (a) J. E. Hein, J. Bures, Y. H. Lam, M. Hughes, K. N. Houk, A. Armstrong and D. G. Blackmond, *Org. Lett.*, 2011, **13**, 5644– 5647; (b) J. E. Hein, A. Armstrong and D. G. Blackmond, *Org. Lett.*, 2011, **13**, 4300–4303.
- 6 (a) H. Vogt, S. Vanderheiden and S. Brase, *Chem. Commun.*, 2003, 2448–2449; (b) S. Sulzer-Mosse, A. Alexakis, J. Mareda, G. Bollot, G. Bernardinelli and Y. Filinchuk, *Chem.-Eur. J.*, 2009, 15, 3204–3220; (c) D. D. Steiner, N. Mase and C. F. Barbas 3rd, *Angew. Chem.*, *Int. Ed.*, 2005, 44, 3706–3710.
- 7 The IUPAC definition of stereospecificity states: "A reaction is 10 termed stereospecific if starting materials differing only in their configuration are converted into stereoisomeric products. According to this definition, a stereospecific process is necessarily stereoselective but not all stereoselective processes are stereospecific. Stereospecificity may be total (100%) or partial." Since the formation and reaction of enamines are reversible processes that equilibrate to a thermodynamic selectivity outcome, we introduce 15 the term "kinetic stereospecificity" to highlight the initial preference for one stereoisomer to form one enamine, prior to equilibration. We use this term to indicate the connection between aldehyde configuration and configuration of the initially formed enamine (a) A. D. McNaught in IUPAC Compendium of Chemical Terminology, 2nd ed. V. Gold, K. L. Loening, P. Shemi, Blackwell Science, 20 Oxford, 1996, p 2193; (b) A. D. McNaught in IUPAC Compendium of Chemical Terminology, 2nd ed. V. Gold, K. L. Loening, P. Shemi, Blackwell Science, Oxford, 1994, p 1077.
- 8 See Supporting Information[†].
- 9 D. Seebach, A. K. Beck, D. M. Badine, M. Limbach, A. Eschenmoser, A. M. Treasurywala, R. Hobi, W. Prikoszovich and B. Linder, *Helv. Chim. Acta*, 2007, **90**, 425.
- 10 The accessibility of less favored transition states for the protonation of the enamine from the less hindered face of the *S-cis*-enamine or the more hindered face of the *S-trans*-enamine may also be considered.
- 11 This simplification may break down for aldehydes where the conformational preferences of the R^1 and R^2 substituents result in different facial selectivities for the *E* and *Z*-enamines; see ref. 5*b*.
- 12 **1a** was mixed with 33 mol% catalyst **2a/DBU** for 30 min prior to three consecutive additions of 33 mol% **6**, for a total of three catalytic turnovers. See Supporting Information[†].

35

40

45

25

30

1

5

40

35

55

50

Authors Queries

Journal: SC

Paper: c2sc01082h

Title: Kinetic correlation between aldehyde/enamine stereoisomers in reactions between aldehydes with αstereocenters and chiral pyrrolidine-based catalysts

Editor's queries are marked like this... I, and for your convenience line numbers are inserted like this... 5

	Query Reference	Query	Remarks	
15		[INFO-1] Please carefully check the spelling of all author names. This is important for the correct indexing and future citation of your article. No late		15
20	1	corrections can be made. FOR YOUR INFORMATION: You can cite this paper before the page numbers are assigned with: (authors), Chem. Sci., DOI: 10.1039/c2sc01082h.		20