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By averaging the basic equations on microscale. expressions are derived for the effective added 

mass density and the kinetic energy density of a mixture of liquid and gas bubbles. Due to 

hydrodynamic interaction between the bubbles there appears to be a difference between the 

effective added mass density and the mass coefficient of the kinetic energy density due to relative 

motion of the phases. For spherical bubbles with velocities all equal, isotropic spatial distribution, 

gas fraction u and liquid density p,, the effective added mass density and the mass coefficient of the 

kinetic energy density (due to relative motion) are calculated. They are respectively 0.5a(l + 

3.324o)p, and 0.5cu(l - O.h76cr)p, and show good agreement with results in the literature. 

1. Introduction 

An expression for the added mass of a solitary massless body moving 

through an unbounded perfect liquid was derived by Kelvin. The added mass is 

found to be equal to the mass coefficient in the kinetic energy of the liquid in a 

frame moving with the (uniform) liquid velocity at infinity. In case there is a 

cloud of massless bodies in the liquid, Kelvin’s approach for the calculation of 

the added mass can be extrapolated for the cloud as a whole. 

In section 2 expressions are derived for the effective added mass density and 

the kinetic energy density of a mixture of liquid and gas bubbles, at low gas 

concentrations. In the literature it is sometimes assumed, or taken for granted, 

that the equality between the mass coefficient in the kinetic energy (due to 

relative motion) and the added mass, which exists in case of a solitary body, 

can be extended to mixtures. The calculation in section 2 shows that this 

equality does not exist at higher values of the concentration, when interactions 

have to be taken into account. Quantitative calculations for certain pair 

probability functions are carried out in section 3. They are discussed in section 

4 in connection with other results obtained in the literature. 
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2. On the relation between the effective added mass and kinetic energy density 

of a mixture of liquid and gas bubbles 

Consider an unbounded perfect liquid with density p, through which a 

solitary gas bubble moves, The bubble can be regarded as massless and 

incompressible. It will be assumed that the velocity field is uniform in absence 

of the bubble. Therefore a frame of reference can be chosen that moves with 

the liquid velocity at infinity, In this frame the liquid is at rest at infinity and 

the potential describing the velocity field due to the motion of the bubble is 4. 

The impulse Z of the liquid is then defined by Kelvin (Lamb’), p. 161) as 

s 

where the integration is over the surface S of the bubble and dA is a surface 

element directed normal to the bubble surface. 

If the bubble is spherical, or its motion is along an axis of symmetry then its 

added mass p,M is a scalar and defined by the expression (Batchelor3), p. 408) 

p,Mw=Z, (2) 

with relative bubble velocity w. 

The kinetic energy of the liquid in a frame moving with the liquid velocity at 

infinity can be shown to be (Batchelor3), p. 403) 

Substituting eqs. (1) and (2) in (3), the expression for the kinetic energy with 

respect to a frame moving with the liquid velocity at infinity becomes 

T=ip,Mw-w. (4) 

For the calculation of the effective added mass and the kinetic energy density 

of a mixture of liquid and massless identical gas bubbles the mixture is thought 

to be embedded in an unbounded volume of pure liquid. In fact the solitary 

bubble is now replaced by a cloud of bubbles. Again a frame of reference will 

be chosen that moves with the liquid velocity at infinity. In this frame the 

potential describing the velocity field due to the motion of the bubbles is 4. 
Now we will look for expressions for the impulse and the added mass of the 

cloud of bubbles as a whole. 
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The impulse can be derived by summing eq. (1) over the surfaces of the N 

bubbles in the cloud: 

The possibility to do this was already recognized by Lambx) (p. 162). 

We make the number of bubbles N and the enveloping volume V of the 

(5) 

cloud very large, while the number density IZ = N/V remains small. In this case 

it is more useful to speak in terms of (for example) impulse density rather than 

impulse. Also it should be stressed that the velocity w of the bubbles is relative 

to a frame fixed to the liquid at infinity. From continuity it follows then that the 

liquid velocity at infinity equals the volume velocity in the cloud. In fact a 

frame is chosen that moves with the volume velocity. In this frame the impulse 

density is defined as 

I’ = z/v . (6) 

In analogy with formula (3) we have for the kinetic energy density of the liquid 

in the above-mentioned frame 

T 
T’=v=-v,=, 2 ’ i 1 ,v;/p,+dA,. 

s, 
(7) 

For small number densities it is possible to approximate the eqs. (5) and (7) to 

a form which can be handled. By means of methods common in statistical 

mechanics (see Batchelor’.‘)) the sums in (6) and (7) can be approximated by 

z~=-n(lp,4dA~~+~(n’+‘); 

s, 

(8) 

Tf=-5iW’.Ip,4dA,)+0(,“1). 
s, 

withs=1,2..... 

In (8) and (9) the quantities between brackets are ensemble averaged over 

all possible configurations of s interacting bubbles. As we are interested in the 

relation between the effective added mass density and the kinetic energy 

density of the mixture, an expression is needed for the former. The expression 
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for the effective added mass density p,M* defined by eq. (4.12) in Van 

Wijngaarden”) will be used here: 

p,M*( w;) = I' . (10) 

Following Batchelor’), p. 228, this definition is the analogue for mixtures of 

the isolated bubble added mass in eq. (2). In order to have (for simplicity) a 

scalar M*, it will be assumed that the bubbles are moving along their axis of 

symmetry. 

Using (8), (9) and (10) the kinetic energy density of the mixture, in a frame 

moving with the volume velocity, can be shown to be 

T’ = ;p,M*( wi) - ( wi) (11) 

on the condition that the following equation holds: 

(w;/P,+dA,)= (r+(\P,+dAi). 
s, S, 

(12) 

There are two circumstances in which eq. (12) holds. In the first place when 

the bubbles have equal velocities, because then wi = ( wi). The second case 

occurs when interactions are not taken into account. In all other events (12) 

does not hold and we must conclude that, in an approximation in which 

interactions are taken into account, the effective added mass density and the 

mass coefficient in the kinetic energy density will be different. 

Lhuillier”) and Geurst6) attack the problem of formulation of equations of 

motion for a bubbly flow by starting with a Lagrangian. Both authors write the 

kinetic energy density in the Lagrangian, for the case of spherical bubbles, as 

(13) 

with average liquid velocity U,, average gas velocity U,, gas density p,, liquid 

density p, and gas concentration by volume cr. This is the kinetic energy density 

observed in a frame at rest. Lhuillier leavesf(a) as it is. He only observes that 

in the limit LY-+ 0 f(a) must tend to 0.5~~. This is correct, as we will see. 

Geurst’), in his formulation of the kinetic energy density in a rest frame, 

identifies from the start p,f(a) with the effective added mass density. In the 

lines above we formulated, eq. (9), the kinetic energy density in a frame 

moving with the volume velocity. In order to make a comparison possible, we 

write down also the kinetic energy density in a rest frame. With liquid velocity 

u in that frame, we have 
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(14) 

The integration takes place over the volume V, of the liquid phase in the 

averaging volume V. The local liquid velocity u in a frame at rest can be 

expressed as the sum U,, + u’. In this expression is U’ the local liquid velocity in 

a frame moving with the volume velocity U,, of the mixture. Substitution of 

U,, + U’ for u in (14) gives 

This can be rewritten in terms of p,, a, U,, U, and U’ with 

1 
-/u’dV=U,-U,, v, 

“I 
(16) 

and 

uo = u, + 4J, - U,) (17) 

to give for the kinetic energy density of the liquid phase in a frame at rest 

T’ = ; p,(l - a)U; - ; p,(l - a)a*(lU, - U,l)'+ ; p, + I U’ . U’ dV 

“I 
(IS) 

The third term on the right-hand side of (18) is recognized as the kinetic 

energy density of the liquid in a frame moving with the volume velocity of the 

mixture. This can be written as 

T’ = b,&>(Iup - u,,l)” . (19) 

It is assumed that the bubbles are axially symmetric and moving along their 

axis of symmetry. For non-interacting bubbles k(a) is then 0.5M,a + ~‘(LY~), 

with real constant M,. When interaction between the bubbles is taken into 

account terms of higher order in CY have to be added. In fact k(a) is expanded 

for small (Y in a Taylor series around the non-interaction value. The sth order 

term in the expansion is the contribution to k(a) due to the interaction 

between s bubbles on microscale. Thus the coefficient k(a) can be expressed as 
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k(a) = OSM,a(l + M,a + M,a2 f.. . + M,/) + G’(c?+~), (20) 

with real constants Ms. It follows then from (13) and (17) to (20) that for s = 3, 

f(a) is given by 

f(a)=0.5M,a[l_ M,(2-MMz)+2 a+ M,(I-2~+M,)+2 a2] 
1 1 

+ O(a”) . (21) 

The values of the constants MS have to be determined by evaluation of formula 

(9). 
From eq. (12) the conclusion was drawn that there exists an equality 

between the mass coefficient p,k(c-w) in the kinetic energy density in a frame 
moving with the volume velocity, and the effective added mass density p,M*(a) 
in only two cases: for (Y -0, i.e. if bubble interaction is neglected, or for 

w, = ( wi). With this result and eqs. (20) and (21) we see now that the mass 

coefficient ~,f(a) in the kinetic energy density in a frame at rest equals the 

effective added mass density p,M* only in one case: for (Y -+O, when bubble 

interaction is not taken into account. 

3. Calculation of the kinetic energy density and effective added mass of a 

mixture of liquid and hydrodynamically interacting gas bubbles 

In this section expression (9) will be evaluated for a configuration of two 

spherical bubbles (s = 2). If s = 2 every bubble is thought to interact hyd- 

rodynamically with one other bubble, and (9) is 

-0.5p,nw, - (22) 

In order to carry out the averaging process in (22), a pair probability density 

function is needed. A probability density function will be used which is 

factorized in a velocity distribution function and a configurational distribution 

function. With regard to the velocity distribution it will be assumed that all 

bubbles move with the average gas velocity U,. Since w, = ( wi) = w = U, - U, 

the calculated mass coefficient of the kinetic energy density, in frame moving 

with U,, and the effective added mass density will be identical. 

The potential CD for two spherical bubbles with equal radii a, separation s 

and velocities w can be found in Biesheuvel’). He employed a rectangular 
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co-ordinate system (x, y, z) with origin coinciding with the instantaneous 

position of bubble 1, and x-axis directed along the line of the centres. Also 

were used two systems of spherical polar co-ordinates (rr, f3,, c#+) with origins at 

the centres of the bubbles. With respect to the centre of bubble 1 the potential 

@ is then 

(23) 

with 

%I = 1 0 fornfl, 

1 for-n-l, 

Pi(cos 0,) are Tesseral harmonics according to the definition of Hobson’). 

The surface integral in (22) can be evaluated after substitution of (23) and 

making use of several orthogonality properties of Tesseral harmonics. After 

some calculations the quantity between brackets in (22) becomes for bubble 1 

(25) 

The summations over j can be removed using eq. A(2) in Van Wijngaarden”) 

(or Biesheuvel’), eq. (3.4)): 
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i: (Il,f+ll) gmj( ;)j’? = 1+ 2g,,(-l)“_’ . 

j=m 

(26) 

Expression (25) is then simplified to 

0.5P,+$; 131,:1). w . (27) 

Using (24) and the relations for the coefficients Kmnpr expression (27) can be 

rewritten as 

0.5p,(0.5a) 

i 

w*w-3u(~J+s).w+3i: (;)” :$?r,, 

( )i 

SW . (28) 
p=6 

- WZK1 Ip 

In (28) u(b, b + s) is the velocity at b in the mixture due to a bubble with 

velocity w at b + s: 

-WA. (29) 

Expression (28) has now to be averaged over all possible configurations of the 

ensemble. This will be done the way Van Wijngaarden”) demonstrated. P(C,) 

is the conditional probability distribution of a configuration of N bubbles and 

P(C,IB) is the conditional probability distribution function. The latter is the 

probability distribution given there is a bubble in b. P(C,) and P(C,,lb) are 

normalized such that 

1 P(C,) dC, = [ P(C,lb) dC, = N! (30) 

The average of the second term between the braces in (28) is then given by 

-3(u(b, C,). w> = --w* $ 1 u(b, C,)P(C,lb) dC, . (31) 

The integral in (31) is not absolutely convergent if the configuration is reduced 

to two bubbles. In order to overcome this difficulty a renormalisation tech- 

nique due to Batchelor’) has to be used. This technique removes the converg- 

ence problem by subtracting from (31) an averaged quantity with a known 

value and an identical behaviour of its integrand for large separations of the 

bubbles. The quantity to be used here is 
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u(~,C,)P(C,,,)~C,=O. (32) 

The integral in (32) is equal to the volume velocity. Since the volume velocity 

in a frame moving with the volume velocity of the mixture is zero, vanishes the 

integral in (32). Subtraction of (31) from (32) gives 

3(u(b;C,)~w))=w+J u(k C,)(P(C,k) - P(C,)) dC,v . (33) 

This can be reduced to a two-bubble configuration without convergence 

problems. Now P(b + s/b) and P(b + s) have to be specified. It will be assumed 

that the configurational distribution is completely random (analogous to Van 

Wijngaarden”)): 

P(b + sib) = 1 0 for s <2a, 

n for s>2a, 
(34) 

P(b + s) = n for all s 

Reducing (33) to a two-bubble configuration and using (34) the former 

becomes 

3(u(b,b+s).w)=-3nw. 
I 

u(b, b + s) ds (35) 
5%2N 

In order to evaluate the integral the role of the bubbles is interchanged. 

Instead of u(b, b + s) is considered u(b + s, b). This is the velocity at b + s 

when there is a bubble at b. In the region s 5 a, u(b + s, 6) equals w. For 

a < s S 2a, u(b + s, b) is given by (29). This gives for (35) 

3(u(b,b+s).w)=-w-w 
I 

3n ds 

5 -Yil 

3w. 
I 

0.5na3sm”[2wx, -w,, -wz] ds (36) 
fl-.SS7U 

As the first term equals -3cuw - w and the second term vanishes, (36) becomes 

-3(u(b,b+s).w)=3aw.w. (37) 

The other terms between the braces in (28) can be reduced to two-bubble 
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configurations without convergence problems. Averaging the third term, using 

spherical polar co-ordinates gives 

a 2 nw* 
p=6 J-I 

71 2rr sin 8s*(K,,, cos*0 - K,rp sin20)( fJP d0 ds 

s=*a 8=0 

(38) 

Summation of the results in (37) and (38) and the first order term w * w gives, 

with the coefficient 0.5p,(0.5a), the ensemble average of (28): 

0.5p,(0.5a)(l+ 3.324a)w - w + 6(a3) . (39) 

This is the kinetic energy density of the liquid in the mixture with respect to a 

frame moving with the volume velocity. Its mass coefficient P,~((Y) is equal to 

p,Jc(~y) = 0.5~(1 + 3.324a)p, + 6((r3) . (40) 

As proved in section 2 for this velocity distribution the effective added mass 

density is also equal to (40). 

Comparison with (20) shows that M, = 1 and M, = 3.324. From (21) it 

follows then that the mass coefficient f(a) in the kinetic energy density of the 

mixture in a frame at rest is 

f(a) = 0.5a(l - 0.676a) + 0(a3) . (41) 

4. Comparison with results in the literature 

In this section some results derived in the literature for the kinetic energy 

density and effective added mass density will be discussed and compared to the 

results obtained in this paper. 

Van Wijngaarden”) calculated the effective added mass density of a dilute 

mixture of spherical gas bubbles randomly distributed in liquid just after 

instantaneous acceleration to a volume velocity U,. He obtained 

P,M*(~) = 0.5a(l + 3.21a)p, + @x3). (42) 

After the acceleration the bubbles have an average velocity 3U,(l-2.14a) in a 

frame at rest (the values listed here are corrected values). As the average 
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bubble velocity depends on (Y the individual bubble velocity cannot be constant 

with respect to the averaging process. For this reason eq. (12) does not hold 

and the effective added mass density (42) must differ from the associated mass 

coefficient p,k(a) of the kinetic energy density for terms of second order in (Y. 

Biesheuvels) found the effective added mass density of a mixture of liquid 

and spherical gas bubbles, with random configurational and uniform velocity 

distribution. to be 

P,M*(~) = 0.5a(l + 3.324a)p, + Q3). (43) 

This is equal to the result (40) obtained in this paper for this case. The 

difference between (42) and (43) in the terms of order (Y’ is surprisingly small, 

considering the difference in velocity distribution. Apparently the velocity 

distribution does not have much influence on the effective added mass density. 

Also it can be observed that (43) is larger than (42). This agrees with the 

genera1 theorem (Batchelor’), p. 231) which states that the effective transport 

parameters have a maximum when the local transport properties of the mixture 

are uniform. 

Zuber”) made the following estimate of the effective added mass density: 

@4”(a) = 0.5a(l + 3a)p, + fl(CC) . (44) 

Again this result does not differ much from (42) or (43). The reason for this is 

explained in Van Wijngaarden”). 

Geurst’) wrote the kinetic energy density as (13) and identified from the 

start p,f((~) with the effective added mass density p,M”(a). Using variational 

calculus Geurst derived equations of motion and subsequently investigated the 

characteristics of these. They are real provided f(a) behaves in a specific way 

as a function of a. He finds that marginal stability is ensured, for spherical 

bubbles, when (p. 252) 

f(CX) = 0.5a(l-4a) + O(CIy’). (45) 

Geurst compares this with values for the effective added mass density obtained 

in the literature, for example (42). He comments on the fact that marginal 

stability requires a specific configuration with a view to (45). 

However, as we have seen in section 2, it is not ~&a) but p,k(~y) that can be 

compared with the effective added mass density if the fluctuations in the 

bubble velocities are negligible. Using (21), Geurst would obtain a coefficient 

k(cw) in (20) with a vanishing constant M,: 
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k(a) = osa! + 8(a3). (46) 

This result is remarkable. In despite of the 0(cy3) accuracy, the second order 

terms in a, due to interaction, are absent. Geurst also derived an expression 

forf(a) with an accuracy of 6(a4) (p. 251). This expression is equal to (21) if 

the constants M, and M,, describing interactional effects, vanish. A very 

interesting point is now revealed. Though Geurst does take interactional 

effects into account up to order a3 (which is one order higher than any other 

reference in the literature), he must conclude that his equations have marginal 

stability only if 

k(a) = 0.5M,a + O(a”) . (47) 

In other words, there is marginal stability if p,k(a) (e.g. the effective added 

mass density) equals for every order in a (ranging from 1 to 3) the value in the 

non-interaction case. This is in line with the fact that Geurst finds the gas 

concentration waves in the mixture to travel with the speed of the bubbles (p. 

253). Biesheuvel and Van Wijngaarden4) also found this result: k(a) = 0.5a 

and real characteristic speeds equal to the bubble speed. But as they did not 

take interactions into account, their results are only valid up to first order in (Y. 

The last result for the kinetic energy density that will be discussed is that of 

Oshima”). He found for f(a), 

f(a) = 0.5f_?(l- a) + a@“) . (48) 

Comparison with (41) shows that there is only a small difference in the second 

order term in (Y. This similarity can be explained as follows. Though Oshima 

does not refer to Zuber”) he uses the same (approximating) method, velocity 

distribution and configurational distribution. Their velocity distribution is such 

that all bubbles have the average gas velocity. Therefore (12) holds and the 

effective added mass density equals the mass coefficient p,k(~y). For this reason 

it should be expected that (44) and (48) yield the same result. Using (20), (21) 

and (48) it is confirmed that the effective added mass density of Zuber’2) and 

the mass coefficient p&(a) of Oshima are identical. 

5. Conclusion 

There is a fundamental difference between the effective added mass density 

and the mass coefficient of the kinetic energy density due to relative motion, of 

a mixture of liquid and gas bubbles. Only if the fluctuations in the bubble 
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velocities are negligible and with the help of a conversion formula a com- 

parison is possible for terms of second and higher order in the gas fraction. For 

this velocity distribution and an isotropic spatial distribution the kinetic energy 

density has a negative dependance on the gas fraction CY in second order terms, 

but does not vanish for 0 < (Y < 1. Stressing the difference the effective added 

mass density has a positive dependence on the gas fraction in the second order 

terms. The results agree well with the results in the literature. 
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