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Abstract

Single-cell RNA sequencing data have complex features such as dropout events, over-dispersion,

and high-magnitude outliers, resulting in complicated probability distributions of mRNA abundances

that are statistically characterized in terms of a zero-inflated negative binomial (ZINB) model. Here

we provide a mesoscopic kinetic foundation of the widely used ZINB model based on the biochemical

reaction kinetics underlying transcription. Using multiscale modeling and simplification techniques,

we show that the ZINB distribution of mRNA abundance and the phenomenon of transcriptional

bursting naturally emerge from a three-state stochastic transcription model. We further reveal a

nontrivial quantitative relation between dropout events and transcriptional bursting, which provides

novel insights into how and to what extent the burst size and burst frequency could reduce the dropout

rate. Three different biophysical origins of over-dispersion are also clarified at the single-cell level.

Keywords: dropout, over-dispersion, transcriptional bursting, stochastic gene expression, chemical

master equation, multiscale modeling, model simplification

1 Introduction

Gene expression in living cells is a complex stochastic process, resulting in spontaneous random

fluctuations in mRNA and protein abundances [1]. Recent technological advances in single-cell RNA

sequencing (scRNA-seq) have made it possible to measure mRNA expression and provide transcriptome

profiles at the single-cell level [2–5]. Compared with traditional bulk RNA sequencing which measures

the average mRNA expression levels across millions of cells, scRNA-seq enables the dissection of gene

expression heterogeneity in different cell populations and tissues, and thus allows the investigation of

many fundamental biological questions such as the identification of novel cell types, the classification

of cell subtypes, and the reconstruction of cellular developmental trajectories [6].

Stochasticity in gene expression measurements has two fundamental origins: (i) the intrinsic noise

due to small copy numbers of biochemical molecules and random collisions between them, giving rise

to various probabilistic chemical reactions [1], and (ii) the extrinsic noise due to limitations of current

experimental techniques. Although scRNA-seq provides a new level of data resolution, it also produces

a much higher noise level than bulk-level measurements. A remarkable characteristic of scRNA-seq

data is the high frequency of zero read counts [7, 8]. Given the excessive amount of zero observations in

scRNA-seq data, it is important to distinguish between (i) the structural (true) zeros where the genes are

truly unexpressed and (ii) the dropout (false) zeros where the genes are actually expressed but fail to be

detected [9–13]. While the former is due to intrinsic biological variability, the latter, which is referred

to as dropout events, is due to extrinsic technical reasons.
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Due to the tiny amount of mRNA in an individual cell, the input material needs to be captured with

low efficiency and go through many rounds of amplification before being sequenced. This results in low

mRNA capture rate and strong amplification bias, as well as dropout events [14]. To be more specific,

the workflow of scRNA-seq experiments includes the following steps: isolation of single cells, cell

lysis while preserving mRNA, mRNA capture, reverse transcription of primed RNA into cDNA, cDNA

amplification, library preparation, and sequencing [15]. During these steps, possible technical reasons

leading to dropouts include mRNA degradation after cell lysis, low efficiency of mRNA capture, reverse

transcription, and cDNA amplification, library size differences, and sequencing depth [10]. Recent

studies [15] have shown that the efficiency for poly-adenylated mRNA species to be captured, converted

into cDNA, and amplified can range between 10% and 40%, depending on the study. This means that

if the starting transcripts in an individual cell are in low amount, there is a certain probability that they

will not be detected by current scRNA-seq methods.

Besides the dropout effect, other characteristics of scRNA-seq data include over-dispersion [16] and

high-magnitude outliers [17] due to the stochastic nature of gene expression at the single-cell level and

the related phenomenon of transcriptional bursting [15]. Given these complex features of scRNA-seq

data, recent studies have highlighted the need to develop novel statistical and computational methods in

data analysis, especially differential expression analysis [5]. When handling dropout events, a popular

perspective held by the bioinformatic field is that the complicated probability distributions of mRNA

abundances in a cell population need to be explicitly characterized by a global zero-inflation parameter,

resulting in various zero-inflated models [18, 19]. Among these statistical models, the zero-inflated

negative binomial (ZINB) model is the most widely used [20–31], where the zero-inflated part describes

dropouts and the negative binomial part accounts for over-dispersion. Some other commonly used

models are listed in Sec. 7.

Modern sciences emphasize quantitative characterization of experimental observations, which is

widely known as mathematical modeling. Along this line, two types of modeling methods should be

distinguished: data-driven and mechanism-based modeling [32]. The former explains experimental

phenomena in terms of data analysis based on various mathematical formulas and statistical models,

while the latter understands the world in terms of mathematical deductions based on various mechanisms

and scientific laws. The ZINB model of scRNA-seq data proposed in previous studies belongs to the

former category.

In the present work, we provide a mesoscopic kinetic foundation of the widely used ZINB model

based on the stochastic biochemical reaction kinetics underlying transcription. In fact, many stochastic

models of transcription dynamics have been proposed [33–40]. Although some previous models could

provide a clear explanation of over-dispersion, very few of them have incorporated the dropout effect

into their model assumptions. So far, there is still a lack of a kinetic basis for the ZINB distribution of

mRNA abundance. In addition, it is widely believed that the complex features of scRNA-seq data are

closely related to the phenomenon of transcriptional bursting. However, the quantitative relationship

among dropout events, over-dispersion, and transcriptional bursting still remains unclear. The present

paper addresses these issues.

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2019. ; https://doi.org/10.1101/827840doi: bioRxiv preprint 

https://doi.org/10.1101/827840
http://creativecommons.org/licenses/by/4.0/


2 A novel three-state model of transcription

Based on the central dogma of molecular biology, the transcription of a gene in an individual cell

has a standard two-stage representation involving the switching of the gene between an active and an

inactive epigenetic state and the synthesis of the mRNA from the gene [1]. In the active state, the gene

produces the mRNA. When the gene is inactive, the process of mRNA synthesis is terminated. Due to

various technical factors in scRNA-seq experiments such as low mRNA capture rate, amplification bias,

and sequencing depth, at a particular time, the mRNA expression in a single cell can be either detectable

or undetectable [31]. As a result, it is reasonable to assume that the gene of interest can exist in a third

state, referred to as the dropout state, where the mRNA expression of this gene cannot be detected due

to technical reasons. Here the dropout state should not be regarded as an epigenetic conformation of

the gene. Instead, it characterizes an undetectable state where the transcriptional signal of the gene is

missing. These considerations lead to the three-state transcription model illustrated in Fig. 1(a), where

a transcript can be synthesized with rate s or be degraded with rate v, and the gene can switch among

the active, inactive, and dropout states with certain switching rates ai and bi, i = 1, 2, 3. Compared with

the classical two-state transcriptional model without the dropout state [1], the cyclic structure of gene

state switching will remarkably increase the theoretical complexity, as we shall see.
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Fig. 1. Stochastic transcription kinetics in individual cells with dropout events. (a) A three-state transcription

model involving gene switching among the active, inactive, and dropout states. Here the dropout state characterizes

the detection state where the mRNA expression of this gene is undetectable. (b) Transition diagram of the Markovian

model whose dynamics is governed by the chemical master equation.

From the chemical perspective, the microstate of the gene of interest can be described by an ordered

pair (i,m): the state i of the gene and the copy number m of detectable transcripts, where i = 1, 2, 3

correspond to the active, inactive, and dropout states, respectively. Then the stochastic dynamics of our

three-state transcription model can be described by the Markov jump process (continuous-time Markov

chain) with transition diagram illustrated in Fig. 1(b). Since the transcriptional signal is missing when

a dropout occurs, it is reasonable to assume that the dropout state can only exist with zero detectable

transcript, described by the microstate (3, 0).

Experimentally, it was widely observed that the dropout rate for a given cell strongly depends on its

expression level, with dropouts being more frequent for cells with low mRNA expression levels [17]. In

general, the total content of mRNA in a single cell is low (0.01-2.5pg per cell) [41] and most genes only

transcribe a small copy number of mRNA [42]. Due to the tiny amount of mRNA in an individual cell,

the input material needs to be captured with low efficiency and go through many rounds of amplification

before being sequenced. This results in low mRNA capture rate and strong amplification bias, as well as
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dropout events [26]. As a result, microstates (1,m) and (2,m) with tiny mRNA abudance m are more

likely to convert to the dropout microstate (3, 0). In our Markovian model, for simplicity, we assume

that (3, 0) can only be reached from (1,m) and (2,m) with m = 0 (Fig. 1(b)). In Sec. 7, a removal of

this assumption will be discussed and a more realistic model will be given.

There is another reason leading us to consider the three-state transcription model. Recent single-cell

experiments have provided evidence that for many genes, more than two states may participate in the

transcription process [43–47]. In fact, if a gene can only switch between the active and inactive states,

then the sojourn times in the active and inactive states should be exponentially distributed. However,

recent single-cell time-lapse measurements in eukaryotic cells [43, 44] have indicated that the sojourn

time in the inactive state may have a non-exponential peaked distribution. This indicates that the gene

dynamics in the inactive state may contain at least two exponential steps, so that in sum the gene would

undergo a three-state switching process.

In particular, in two recent studies, the authors monitored gene expression dynamics in mouse

fibroblasts [43] and Chinese hamster ovary cells [47] using single-cell time-lapse microscopy and found

that both data sets were well described by a three-state gene expression model involving gene switching

among an active, an inactive (reversibly silent), and a refractory (irreversibly silent) state. The difference

between the inactive and refractory states is that the former has a good chance to switch back to the

active state, while the possibility for the latter to switch back is much lower. In the inactive or refractory

state, RNA polymerases could either be absent from the promoter or present in a paused state. Therefore,

the dropout state in our three-state transcription model may have two different interpretations: It may

either correspond to an undetectable state due to purely technical factors or correspond to a refractory

state due to real biological factors.

Let pi,m(t) denote the probability of having m detectable transcripts at time t when the gene is in

state i. Then the evolution of the Markovian model is governed by the chemical master equation






































ṗ1,0 = a1p2,0 + a3p3,0 + vp1,1 − (b1 + b3 + s)p1,0,

ṗ2,0 = b1p1,0 + a2p3,0 + vp2,1 − (a1 + b2)p2,0,

ṗ3,0 = b3p1,0 + b2p2,0 − (a2 + a3)p3,0,

ṗ1,m = a1p2,m + sp1,m−1 + (m+ 1)vp1,m+1 − (b1 + s+mv)p1,m, m ≥ 1,

ṗ2,m = b1p1,m + (m+ 1)vp2,m+1 − (a1 +mv)p2,m, m ≥ 1.

Here s is the transcription rate; v is the degradation rate of the mRNA; ai and bi, i = 1, 2, 3 are the

switching rates of the gene among the three states. Since (i,m) represents the microstate of having m

transcripts in a single cell when the gene is in state i and each transcript can be degraded with rate v, the

transition rate from microstate (i,m) to microstate (i,m−1), which represents the total degradation rate

of the m transcripts, should be mv (Fig. 1(b)) [1]. In addition, since the dropout state could describe a

refractory state, which has a lower chance to switch back to the active state than the inactive state, it is

natural to assume a1 > a3 in our model.

3 Model simplification via decimation

One of the most important reasons for over-dispersion of bulk and single-cell RNA-seq data is

transcriptional bursting, also known as transcriptional pulsing [15], which describes the phenomenon of

relatively short transcriptionally active and high expression periods followed by longer transcriptionally

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2019. ; https://doi.org/10.1101/827840doi: bioRxiv preprint 

https://doi.org/10.1101/827840
http://creativecommons.org/licenses/by/4.0/


silent and low expression periods [43, 48], resulting in spontaneous temporal fluctuations of transcript

levels (Fig. 2(a)).

In general, transcriptional bursting results from multiple time scales underlying the transcription

process [49]. In fact, the mechanism of transcriptional bursting has been described by Paulsson in his

review paper [1], “If genes are mostly inactive but transcribe a large number of mRNAs while in the

active state, transcription could occur in bursts”. Intuitively, if we require the gene to be mostly inactive,

the switching rate b1 of the gene from the active to the inactive state should be much larger than the

reverse switching rate a1 from the inactive to the active state. On the other hand, if we require the gene

to transcribe a large number of transcripts while in the active state, the transcription rate s should be

very large, at least at the same order of magnitude as the switching rate b1. These considerations lead

to the following biochemical conditions for transcriptional bursting: b1 ≫ a1 and s/b1 is finite. Here,

by saying that s/b1 is finite, we mean that s and b1 are roughly at the same order of magnitude. When

the gene is active, the large transcription rate s will give rise to fast accumulation of mRNA. Once the

gene becomes inactive, the transcription process is terminated and transcripts will be degraded until

the gene becomes active again. We stress here that the above biochemical conditions imposed on the

rate constants are consistent with a recent single-cell experiment on transcriptional bursting [43], where

the authors monitored the transcription kinetics in mouse fibroblasts using time-lapse bioluminescence

imaging and found that the three rate constants a1, b1, and s across different genes are typically at the

magnitude of 0.01/min, 0.1/min, and 1/min, respectively.
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Fig. 2. Numerical simulations of the stochastic trajectories of the gene state and mRNA copy number

based on the original Markovian model under two sets of biologically relevant parameters. (a) Two typical

trajectories when the mean burst size h and maximum burst frequency λ are moderate. The model parameters are

chosen as h = 3, λ = 1.5, s = hb1, v = 1, a1 = λv, b1 = 25, a2 = 1, b2 = 4, a3 = 0, b3 = 1. (b) Two typical

trajectories in the limiting case of h → 0 and λ → ∞, while λh = γ is kept as a constant. The model parameters

are chosen as h = 0.2, λ = 10, s = hb1, v = 1, a1 = λv, b1 = 100, a2 = 1, b2 = 4, a3 = 0, b3 = 1.

Due to the timescale separation of the underlying biochemical reaction kinetics, our Markovian

model can be simplified to a much simpler one. To see this, let β = b1/a1 ≫ 1 denote the ratio of the

switching rates between the active and inactive states. Moreover, let q(i,m),(i′,m′) denote the transition

rate of the Markovian model from microstate (i,m) to microstate (i′,m′) and let

q(i,m) =
∑

(i′,m′) 6=(i,m)

q(i,m),(i′,m′)
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denote the rate at which the system leaves microstate (i,m), which is defined as the sum of transition

rates from (i,m) to other microstates. Since β ≫ 1, we say that (i,m) is a fast state if

lim
β→∞

q(i,m) = ∞

and we say that (i,m) is a slow state if

lim
β→∞

q(i,m) < ∞.

If (i,m) is a fast state, then the time that the system stays in this state will be very short. Since b1 ≫ a1

and s/b1 is finite, we write b1 = βa1 and s = βa1(s/b1), where β ≫ 1 and we treat a1 and s/b1

as constants. Here b1 and s are the only two model parameters depending on β and all other model

parameters are independent of β. It is easy to check that the leaving rates of all microstates are given by







































q(1,0) = b1 + b3 + s = βa1(1 + s/b1) + b3,

q(2,0) = a1 + b2,

q(3,0) = a2 + a3,

q(1,m) = b1 + s+mv = βa1(1 + s/b1) +mv, m ≥ 1,

q(2,m) = a1 +mv, m ≥ 1,

which shows that

lim
β→∞

q(1,m) = ∞, lim
β→∞

q(2,m) < ∞, lim
β→∞

q(3,m) < ∞.

Therefore, all active microstates (1,m) are fast states and all other microstates (2,m) and (3,m) are

slow states (Fig. 3(a)). By using a classical simplification method of two-time-scale Markov jump

processes called decimation [50–55], the original Markovian model can be simplified to a reduced one

by removal of all fast states.
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Fig. 3. Multiscale model simplification of the Markovian model. (a) Fast (green) and slow (blue) states of the

original Markovian model. (b) Schematic diagram of the decimation method of model simplification. The effective

transition rate from microstate (i,m) to microstate (i′,m′) is the superposition of the direct transition rate and the

contribution of indirect transitions via all fast transition paths. (c) Transition diagram of the reduced Markovian

model when b1 ≫ a1 and s/b1 is finite. The red arrows in (a)-(c) point the directions of typical fast transition

paths, which correspond to random transcriptional bursts.
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The remaining question is to determine the transition diagram and effective transition rates of the

reduced model. This process is described as follows. Suppose that the original model jumps from

microstate (i,m) to another microstate a particular time. When β ≫ 1, the transition probability from

microstate (i,m) to another microstate (i′,m′) is given by

w(i,m),(i′,m′) = lim
β→∞

q(i,m),(i′,m′)

q(i,m)
.

Let (i1,m1), · · · , (in,mn) be a sequence of microstates. We say that

c : (i,m) → (i1,m1) → · · · → (in,mn) → (i′,m′)

is a fast transition path from (i,m) to (i′,m′) if the intermediate states (i1,m1), · · · , (in,mn) are all

fast states. Moreover, the probability weight wc of the fast transition path c is defined as

wc = q(i,m),(i1,m1)w(i1,m1),(i2,m2) · · ·w(in,mn),(i′,m′).

According to the decimation theory [50–55], the effective transition rate from (i,m) to (i′,m′) is given

by

q̃(i,m),(i′,m′) = q(i,m),(i′,m′) +
∑

c

wc,

where c ranges over all fast transition paths from (i,m) to (i′,m′). This formula shows that the effective

transition rate from (i,m) to (i′,m′) is the sum of two parts: the direct transition rate q(i,m),(i′,m′) and

the contribution of indirect transitions via all fast transition paths, as illustrated in Fig. 3(b).

Since the intermediate states of a fast transition path c are all fast states, in order for the path to

have a positive probability weight, all the intermediate transitions along this path must satisfy

lim
β→∞

q(i1,m1),(i2,m2) = · · · = lim
β→∞

q(in,mn),(i′,m′) = ∞.

By using this criterion, it is easy to see that the original model only has two types of fast transition paths

with positive probability weights, which are given by

(2,m) → (1,m) → (1,m+ 1) → · · · → (1,m′) → (2,m′), m′ > m, (1)

and

(3, 0) → (1, 0) → (1, 1) → · · · → (1,m) → (2,m), m ≥ 0, (2)

as illustrated by the red arrows in Fig. 3(a). To proceed, we defined two constants p and q as

p =
s

s+ b1
, q =

b1
s+ b1

.

When β ≫ 1, the transition probabilities along the above two fast transition paths are given by

w(1,m),(1,m+1) = lim
β→∞

s

q(1,m)
= p,

w(1,m),(2,m) = lim
β→∞

b1
q(1,m)

= q.

Therefore, the probability weight of the path (1) is given by a1p
m′−mq and the probability weight of the

path (2) is given by a3p
mq. Since there is no direct transition, the effective transition rate from (2,m)

to (2,m′) is the indirect transition rate via the fast transition path (1):

q̃(2,m),(2,m′) = a1p
m′−mq.
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Moreover, the effective transition rate from (3, 0) to (2,m) is the sum of the direct transition rate and

the indirect transition rate via the fast transition path (2):

q̃(3,0),(2,m) = q(3,0),(2,m) + a3p
mq =







a2 + a3q, m = 0,

a3p
mq, m ≥ 1.

The above two formulas indicate that the reduce model may produce large jumps of mRNA abundance

within a very short period, which correspond to transcriptional bursts. Each random burst corresponds

to a fast transition path of the original model (see the red arrows in Fig. 3(a)). So far, we have obtained

all effective transition rates of the reduced model, whose transition diagram is depicted in Fig. 3(c).

The above calculations can be understood intuitively as follows. Since b1 ≫ a1 and s/b1 is finite,

the process of mRNA synthesis followed by gene silencing is essentially instantaneous. Once the gene

becomes active, it can either produce a transcript with probability p = s/(s + b1) or switch to the

inactive state with probability q = 1 − p = b1/(s + b1). Therefore, the probability that the gene

produces k transcripts in a single burst before it is finally silenced will be pkq, which follows a geometric

distribution. This consideration again leads to the reduced model illustrated in Fig. 3(c). The evolution

of the reduced model is governed by the chemical master equation







































ṗ2,0 = vp2,1 + (a2 + a3q)p3,0 − (a1p+ b2)p2,0,

ṗ3,0 = b2p2,0 − (a2 + a3)p3,0,

ṗ2,m =

m−1
∑

k=0

a1p
m−kqp2,k + (m+ 1)vp2,m+1

+ a3p
mqp3,0 − (a1p+mv)p2,m, m ≥ 1.

(3)

Since the burst size of the mRNA, which is defined as the number of transcripts produced in a single

burst (Fig. 2(a)), is geometrically distributed, its expected value is given by

h =

∞
∑

k=0

kpkq =
p

q
=

s

b1
.

4 Theoretical foundation for the ZINB model

Although the topological structure of the reduced model is complicated, its steady-state probability

distribution can be solved analytically. To see this, let pss(i,m) denote the steady-state probability of

microstate (i,m). At the steady state, the probabilities of all microstates are time-independent and thus

the left side of (3) must equal zero, giving rise to a set of linear equations. Interestingly, this set of linear

equations can be solved explicitly with its solution being given by (see Appendix)






























pss2,0 = A ·
a1
ã1

,

pss3,0 = A ·
a1b2

ã1(a2 + a3)
,

pss2,m = A ·
pm(a1/v)m

m!
, m ≥ 1,

(4)

where A is a normalization constant, ã1 is a constant given by

ã1 = a1 +
b2a3

a2 + a3
, (5)
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and (x)m = x(x + 1) · · · (x +m − 1) is the Pochhammer symbol. Since all steady-state probabilities

add up to one, the normalization constant A can be determined as

A =

[

a1
ã1

(

1 +
b2

a2 + a3

)

+ q−a1/v − 1

]−1

.

Let pssm denote the steady-state probability of having m copies of detectable transcripts. Then we obtain














pss0 = pss2,0 + pss3,0 = A ·
a1
ã1

(

1 +
b2

a2 + a3

)

,

pssm = pss2,m = A ·
pm(a1/v)m

m!
, m ≥ 1.

Since the probabilities p and q can be represented by the mean burst size h as

p =
h

1 + h
, q =

1

1 + h
,

the steady-state distribution of mRNA abundance can be written in a unified way as

pssm = wδ0(m) + (1− w)
(λ)m
m!

(

h

1 + h

)m(

1

1 + h

)λ

= wpzero-inflated
m + (1− w)pNB

m ,

where δ0(m) is Kronecker’s delta function which takes the value of 1 when m = 0 and takes the value

of 0 otherwise, and λ > 0 and 0 < w < 1 are two constants given by

λ =
a1
v
,

w =

a1

ã1

(

1 + b2
a2+a3

)

− 1

a1

ã1

(

1 + b2
a2+a3

)

+ (1 + h)λ − 1
.

Here 0 < w < 1 is a result of our model assumption a1 > a3. This is exactly the ZINB distribution of

mRNA abundance widely used in scRNA-seq data analysis [20–31]. Specifically, the ZINB distribution

is the mixture of two distributions: the zero-inflated part

pzero-inflated
m = δ0(m)

is a single-point distribution concentrated at zero and the negative binomial part

pNB
m =

(λ)m
m!

(

h

1 + h

)m(

1

1 + h

)λ

is a negative binomial distribution. The ZINB distribution is determined by three parameters with clear

biological implications: the dropout rate w which characterizes the proportion of the zero-inflated part

due to both technical and biological effects, the mean burst size h which describes the average number

of transcripts synthesized in a single burst, and the maximum burst frequency λ which represents the

maximum number of occurrence of random bursts per mRNA lifetime. A more detailed discussion on

the burst frequency will be given in the next section.

The ZINB distribution can exhibit three different types of shapes, as illustrated in Fig. 4. To clarify

the conditions for the three types of shapes, we notice that the mode (maximum point) of the negative

binomial part pNB
m is given by

µmode =







0 when λ < 1,

[(λ− 1)h] when λ ≥ 1,
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where [x] denotes the integer part of x. In fact, the first type of shape occurs when pss0 ≤ pss1 , that is,

(λ− 1)h ≥ 1 +
w

1− w
(1 + h)λ+1.

In this case, the dropout rate is small and the mode of the negative binomial part is large. Then the ZINB

distribution peaks at the non-zero mode [(λ − 1)h] with no zero-inflation (Fig. 4(a)). The second type

of shape occurs when pss0 > pss1 and µmode ≤ 1, that is,

(λ− 1)h < min{1 +
w

1− w
(1 + h)λ+1, 2}.

In this case, the dropout rate is large and the mode of the negative binomial part is small. Then the ZINB

distribution peaks at zero with apparent or inapparent zero-inflation (Fig. 4(b)). The third type of shape

occurs when pss0 > pss1 and µmode ≥ 2, that is,

2 ≤ (λ− 1)h < 1 +
w

1− w
(1 + h)λ+1.

In this case, both the dropout rate and the mode of the negative binomial part are large. Then the ZINB

distribution becomes bimodal and peaks at both zero and the non-zero mode [(λ − 1)h] with apparent

or inapparent zero-inflation (Fig. 4(c)).
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Fig. 4. Three different types of shapes for the ZINB distribution of mRNA abundance. (a) The distribution

peaks at a non-zero mode with no zero-inflation. (b) The distribution peaks at zero with apparent or inapparent

zero-inflation. (c) The distribution exhibits bistability and peaks at both zero and a non-zero mode with apparent or

inapparent zero-inflation.

Three special cases should be paid special attention to. The first case occurs when the mean burst

size h → 0 and the maximum burst frequency λ → ∞, while λh = γ is kept as a constant. In this case,

we have

(λ)m

(

h

1 + h

)m

→ γm,

(

1

1 + h

)λ

=

(

1−
h

1 + h

)λ

→ e−γ .

Then the ZINB distribution of mRNA abundance reduces to the zero-inflated Poisson (ZIP) distribution

pssm = wδ0(m) + (1− w)
γm

m!
e−γ .

In fact, the ZIP distribution is also extensively applied in scRNA-seq data analysis [27] and its kinetic

mechanism has been clarified in previous studies [37, 40]. Our analytic theory shows that the ZIP model

also naturally emerges from our three-state transcription model.

The second special case occurs when b2 = b3 = 0, which means that the switching from the active

or inactive state to the dropout state is forbidden. In this case, the three-state model reduces to the
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classical two-state model without the dropout state [1]. It is easy to verify that ã1 = a1 and w = 0 in

this regime. This shows that the dropout rate will vanish in the absence of the dropout state.

The last special case occurs when a3 = 0, which means that the switching from the dropout state to

the active state is forbidden. This is especially biologically relevant when the dropout state is understood

to be the refractory (irreversibly silent) state found in recent single-cell experiments [43, 47]. In this

case, we also have ã1 = a1 and thus the dropout rate is given by

w =
K2

K2 + (1 + h)λ
,

where K2 = b2/a2 is the equilibrium constant of gene switching between the inactive and dropout

states. An increased equilibrium constant K2 will result in a larger fraction of cells being in the dropout

state and thus is expected to enhance the dropout rate w. Interestingly, our theory reveals a nontrivial

quantitative relation between dropout events and transcriptional busting: an increased mean burst size h

or maximum burst frequency λ will give rise to a decline in the dropout rate w. This relation provides

novel insights into how and to what extent the burst size and burst frequency of the mRNA could

reduce the dropout rate. The basic reason of such dependency is that an increase in the burst size and

burst frequency will both promote rapid accumulation of mRNA from a low to a higher level, which is

unfavorable to the occurrence of dropouts.

5 Mean burst duration and burst frequency

It has been shown that the mean burst size of the mRNA is given by h = s/b1. Here we present

a more detailed discussion on the burst frequency. In this section, we assume that the time-dependent

mRNA abundance in an individual cell could be measured at a series of successive time points, and

due to various technical factors, the mRNA expression is undetectable during some periods. Recall

that each transcriptional burst is featured by a short transcriptionally active period followed by a long

transcriptionally silent period. Mathematically, the mean burst duration, which is defined as the average

time needed to complete a single burst (Fig. 2(a)), can be computed as the inverse of the total probability

flux between the active microstates and other (inactive and dropout) microstates [56, 57]. From (4), the

total flux J between the active microstates and other microstates is given by

J =

[

∞
∑

m=0

pss2,m

]

a1 + pss3,0a3 = αa1,

where 0 < α ≤ 1 is a constant given by

α =

a1

ã1

+ a3b2
ã1(a2+a3)

+ (1 + h)λ − 1

a1

ã1

+ a1b2
ã1(a2+a3)

+ (1 + h)λ − 1
,

and thus the mean burst duration is given by

τburst =
1

J
=

1

αa1
.

Since the mRNA lifetime is the inverse of the mRNA degradation rate v, the mean burst frequency λ0 of

the mRNA, which is defined as the average number of occurrence of random bursts per mRNA lifetime,

is given by the quotient of the mRNA lifetime 1/v and the mean burst duration τburst:

λ0 =
1

vτburst

=
αa1
v

= αλ,
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where λ = a1/v is the maximum burst frequency defined previously. Since 0 < α ≤ 1, the true mean

burst frequency λ0 is always smaller than the maximal burst frequency λ.

We next focus on three special cases. In the limiting case of h → 0 and λ → ∞, while λh = γ is

kept as a constant, we have λ0 → ∞. In this regime, random bursts occur very frequently but each burst

only contributes a very small burst size. Due to large burst frequencies, the gene switches very rapidly

between the active and inactive states, giving rise to a large number of “futile” switches (Fig. 2(b)).

In the special case of b2 = b3 = 0, the three-state model reduces to the classical two-state model

without the dropout state [1]. In this regime, we have α = 1 and the mean burst frequency attains its

maximum λ0 = λ. In the presence of the dropout state, we have b2 > 0 and α < 1. This shows that

dropout events will lead to a reduction of the burst frequency by prolonging the transcriptionally silent

periods.

The last special case occurs when a3 = 0, which means that the switching from the dropout state

to the active state is forbidden. In this case, we have ã1 = a1 and

α =
(1 + h)λ

K2 + (1 + h)λ
= 1− w

is the proportion of the negative binomial part. Then the mean burst frequency is given by

λ0 = (1− w)λ.

This quantitative relation reveals how the dropout rate could affect the burst frequency.

6 Over-dispersion of scRNA-seq data

The simplest kinetic model of transcription is the classical birth-death process, which describes the

synthesis and degradation of the mRNA. The steady-state distribution of the birth-death process turns

out to be a Poisson distribution, whose mean and variance are equal. In bulk or single-cell RNA-seq

experiments, read counts are always over-dispersed relative to Poisson: the variance is higher than the

mean [16, 58].

In the literature, the dispersion, sometimes referred to as noise, in mRNA abundance within a cell

population is often characterized by the Fano factor η = σ2/〈m〉, which is defined as the ratio of

the variance σ2 and the mean 〈m〉. A dispersion greater than one reveals a deviation from the Poisson

distribution and thus serves as a characteristic signal of over-dispersion. Strictly speaking, the dispersion

captures all sources of variation between samples, including contributions from technical factors leading

to dropouts as well as real biological variation.

To calculate the mean and variance of mRNA abundance, we consider the generating function of

the ZINB distribution:

F (z) =

∞
∑

m=1

pssmzm = w + (1− w)
qλ

(1− pz)λ
.

Then the mean and variance can be recovered by taking the derivatives of the generating function:

〈m〉 = F ′(1) = (1− w)λh,

σ2 = F ′′(1) + F ′(1)− F ′(1)2 = (1− w)[wλ2h2 + λh2 + λh].
(6)

Therefore, the dispersion in mRNA abundance is given by

η =
σ2

〈m〉
= 1 + h+ wλh,
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where the constant term 1 is the dispersion of a Poisson distribution arising from individual births

and deaths of the mRNA, the middle term h describes the dispersion due to transcriptional burst sizes,

and the last term wλh characterizes the dispersion due to the interaction between dropout events and

transcriptional bursting. When there are no dropouts, the dispersion reduces to η = 1 + h, which does

not depend on the burst frequency [1]. Interestingly, in the presence of dropout events, the dispersion

positively depends on the three parameters: the dropout rate w, mean burst size h, and maximum burst

frequency λ. This clearly reveals three different biophysical origins of over-dispersion.

Statistically, the three parameters involved in the ZINB distribution can be estimated in several

different ways. The maximum likelihood estimation has been discussed in [30]. Here we provide two

additional approaches. In fact, the first three moments of the ZINB distribution can be recovered from

the generating function as

〈m〉 = F ′(1) = (1− w)λh,

〈m2〉 = F ′′(1) + F ′(1) = (1− w)[λ(λ+ 1)h2 + λh]

〈m3〉 = F ′′′(1) + 3F ′′(1) + F ′(1)

= (1− w)[λ(λ+ 1)(λ+ 2)h3 + 3λ(λ+ 1)h2 + λh].

By analyzing scRNA-seq data, the first three moments of mRNA abundance can be estimated. Solving

the above set of polynomial equations give the moment estimates of w, h, and λ.

When the mRNA levels across cells are relatively high, there is still another method to estimate the

three parameters. From (4), when m ≫ 1, we have

pssm+1

pssm
=

h

h+ 1
·
m+ λ

m+ 1
≈

h

h+ 1
.

This suggests that for any k ≥ 1,

pssm+k ≈

(

h

h+ 1

)k

pssm.

Taking logarithm on both sides gives rise to

log pssm+k ≈ k log

(

h

h+ 1

)

+ log pssm,

which is a linear relation with respect to k. Therefore, we only need to calculate the logarithm of the

steady-state probabilities at large mRNA copy numbers and then carry out a linear regression analysis

with respect to the copy number difference k. The slope of the linear regression provides an estimate of

the mean burst size h. Once h is known, we can solve (6) to obtain the estimates of the dropout rate w

and maximum burst frequency λ:

w =
〈m〉

〈m〉+ η − h− 1
,

λ =
(η − h− 1)(〈m〉+ η − h− 1)

〈m〉h
.

where η = σ2/〈m〉 is the dispersion.
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7 Discussion

In this work, we present a comprehensive analysis of a three-state transcription model with dropout

events and over-dispersion based on the biochemical reaction kinetics underlying transcription. Using

the multiscale simplification technique of decimation, we simplify the original Markovian model to a

reduced one by removal of all fast states. It turns out that transcriptional bursts exactly correspond to

the fast transition paths of the original model. Although the reduced model has a complicated topology,

we obtain its steady-state analytic solution. The widely used ZINB or ZIP model of scRNA-seq data

naturally emerges as the steady-state distribution of the reduced model. This provides a mesoscopic

kinetic foundation of these statistical models. We further clarify the biological implications of the three

parameters involved in the ZINB distribution: the dropout rate w, mean burst size h, and maximum burst

frequency λ. In addition, we discover a nontrivial relation between dropout events and transcriptional

bursting, which quantitatively reveals how and to what extent the burst size and burst frequency could

reduce the dropout rate. Another relation reveals how dropout events could lower the burst frequency by

prolonging the transcriptionally silent periods. The dispersion of scRNA-seq data is also investigated

at the single-cell level and three different biophysical origins of over-dispersion are found. Finally, two

statistical methods are given to estimate the three parameters involved in the ZINB distribution.

Our three-state transcription model is a minimal kinetic model that could account for the ZINB

distribution of mRNA abundance. Recently, there has been some discussion on the role of various

technical and biological effects on the apparent zero-inflation in scRNA-seq data [27, 59, 60]. In our

minimal three-state model, zero-inflation is realized by the introduction of a dropout state, which may

be either interpreted as an undetectable state due to technical factors or interpreted as a refractory state

due to biological factors. In other words, our three-state model cannot distinguish whether zero-inflation

is a consequence of technical or biological effects. If we would like to empirically decide between the

two interpretations, a more realistic model that takes into account more complex features of stochastic

transcription dynamics must be developed.

If the dropout state is interpreted as a refractory state due to biological factors, then a more realistic

model would be the Markovian model illustrated in Fig. 5(a), where microstates (3,m), m ≥ 1 are

incorporated and transitions between microstates (1,m), (2,m), and (3,m) are allowed. Here (3,m)

represents the microstate of having m transcripts in an individual cell when the gene is in the refractory

state. In fact, the minimal kinetic model depicted in Fig. 1(b) can be viewed as an approximation of the

more realistic model when a2, a3 ≪ v. This can be understood intuitively as follows. Since a2, a3 ≪ v,

the degradation of the mRNA is fast and the switching of the gene from the refractory state to the active

or inactive state is slow. Once the gene is in the refractory state, before it could switch to the active or

inactive state, the microstates (3,m), m ≥ 0 are already in rapid pre-equilibrium due to fast mRNA

degradation and thus most of the probability is concentrated on microstate (3, 0).

If the dropout state is interpreted as an undetectable state due to technical factors, then a more

realistic model would be the Markovian model illustrated in Fig. 5(b), where the microstate of the

gene of interest is described by an ordered triple (i,m, k): the activity i of the gene with i = 1, 2

corresponding to the active and inactive states, respectively, the copy number m of the mRNA, and

the detection state k of the transcriptional signal with k = 1, 0 corresponding to the detectable and

undetectable states, respectively. In scRNA-seq experiments, the variable of interest is the copy number
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Fig. 5. More realistic models of transcription. (a) A Markovian model of stochastic transcription involving gene

switching among an active, an inactive, and a refractory state. The microstate of the gene of interest is described by

an ordered pair (i,m): the activity i of the gene and the copy number m of the mRNA. Here i = 1, 2, 3 correspond

to the active, inactive, and refractory states, respectively. (b) A Markovian model of stochastic transcription with

dropout events. The microstate of the gene of interest is described by an ordered triple (i,m, k): the activity i of

the gene, the copy number m of the mRNA, and the detection state k of the transcriptional signal. Here i = 1, 2
correspond to the active and inactive states, respectively, and k = 1, 0 correspond to the detectable and undetectable

states, respectively.

of detectable transcripts, which is given by

N(i,m, k) =







m, if k = 1,

0, if k = 0.

This Markovian model allows transitions between detectable microstates (i,m, 1) and undetectable

microstates (i,m, 0). Since dropouts are more frequent for cells with low mRNA expression levels [17],

the transition rate from (i,m, 1) to (i,m, 0) should be a decreasing function of m and the transition rate

from (i,m, 0) to (i,m, 1) should be an increasing function of m. Within this framework, the minimal

kinetic model depicted in Fig. 1(b) can be roughly viewed as an approximation of the more realistic

model with all undetectable microstates (i,m, 0) combined as a single microstate (3, 0).

Besides the ZINB and ZIP models discussed in the present work, many other statistical models have

also been proposed to analyze scRNA-seq data. Some commonly used models include but not limited to

the Gaussian mixture model [61], Poisson-negative binomial mixture model [17, 62], Poisson-gamma

mixture model [63], Hurdle model [64], zero-inflated log-normal model [18], zero-inflated Gaussian

mixture model [19], and Bayesian mixture model [65, 66]. We anticipate that the mesoscopic kinetic

mechanisms for these models could be clarified. A deeper understanding of the connection between the

kinetic approach and the statistical approach is expected.
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Appendix

Here we provide the detailed derivation of the steady-state probability distribution of the reduced

model depicted in Fig. 3(c). At the steady state, the steady-state probabilities of all microstates satisfy

the following set of linear equations:






































0 = vpss2,1 + (a2 + a3q)p
ss
3,0 − (a1p+ b2)p

ss
2,0,

0 = b2p
ss
2,0 − (a2 + a3)p

ss
3,0,

0 =

m−1
∑

k=0

a1p
m−kqpss2,k + (m+ 1)vpss2,m+1

+ a3p
mqpss3,0 − (a1p+mv)pss2,m, m ≥ 1.

(7)

By the second equation in (7), we have

(a2 + a3)p
ss
3,0 = b2p

ss
2,0.

Inserting this equation into the first and third equations in (7) eliminates pss3,0 and yields















0 = vpss2,1 − ã1pp
ss
2,0,

0 = ã1p
mqpss2,0 +

m−1
∑

k=1

a1p
m−kqpss2,k + (m+ 1)vpss2,m+1 − (a1p+mv)pss2,m, m ≥ 1,

(8)

where ã1 is the constant defined in (5). For convenience, set

w0 =
ã1
a1

pss2,0, wm = pss2,m, m ≥ 1.

Then the two equations in (8) can be rewritten in a unified way as

m−1
∑

k=0

a1p
m−kqwk + (m+ 1)vwm+1 − (a1p+mv)wm = 0, m ≥ 0. (9)

To proceed, we introduce the generating function

F (z) =

∞
∑

m=1

wmzm.

Then the algebraic equation (9) can be converted into the ordinary differential equation

vF ′(z) =
a1p

1− pz
F (z),

whose solution is given by

F (z) = A(1− pz)−a1/v,

where A is a constant. Therefore, wm can be recovered from the generating function F as

wm =
F (m)(0)

m!
= A ·

pm(a1/v)m
m!

.

This shows that

pss2,0 = A ·
a1
ã1

, pss2,m = A ·
pm(a1/v)m

m!
, m ≥ 1.
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[39] Jia, C., Zhang, M. Q. & Qian, H. Emergent Lévy behavior in single-cell stochastic gene expression. Phys.

Rev. E 96, 040402 (2017).

[40] Klindziuk, A. & Kolomeisky, A. B. Theoretical Investigation of Transcriptional Bursting: A Multistate

Approach. J. Phys. Chem. B 122, 11969–11977 (2018).

[41] Livesey, F. Strategies for microarray analysis of limiting amounts of RNA. Briefings in Functional Genomics

2, 31–36 (2003).

[42] Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single

cells. Science 329, 533–538 (2010).

[43] Suter, D. M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 332,

472–474 (2011).

[44] Harper, C. V. et al. Dynamic analysis of stochastic transcription cycles. PLoS Biol. 9, e1000607 (2011).
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