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Abstract. Aerosols and clouds play central roles in at-
mospheric chemistry and physics, climate, air pollution,
and public health. The mechanistic understanding and
predictability of aerosol and cloud properties, interactions,
transformations, and effects are, however, still very limited.
This is due not only to the limited availability of measure-
ment data, but also to the limited applicability and com-
patibility of model formalisms used for the analysis, inter-
pretation, and description of heterogeneous and multiphase
processes. To support the investigation and elucidation of
atmospheric aerosol and cloud surface chemistry and gas-
particle interactions, we present a comprehensive kinetic
model framework with consistent and unambiguous termi-
nology and universally applicable rate equations and param-
eters. It enables a detailed description of mass transport and
chemical reactions at the gas-particle interface, and it allows
linking aerosol and cloud surface processes with gas phase
and particle bulk processes in systems with multiple chemi-
cal components and competing physicochemical processes.

The key elements and essential aspects of the presented
framework are: a simple and descriptive double-layer surface
model (sorption layer and quasi-static layer); straightforward
flux-based mass balance and rate equations; clear separa-
tion of mass transport and chemical reactions; well-defined
and consistent rate parameters (uptake and accommodation
coefficients, reaction and transport rate coefficients); clear
distinction between gas phase, gas-surface, and surface-
bulk transport (gas phase diffusion, surface and bulk accom-
modation); clear distinction between gas-surface, surface
layer, and surface-bulk reactions (Langmuir-Hinshelwood
and Eley-Rideal mechanisms); mechanistic description of
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concentration and time dependences (transient and steady-
state conditions); flexible addition of unlimited numbers of
chemical species and physicochemical processes; optional
aggregation or resolution of intermediate species, sequential
processes, and surface layers; and full compatibility with tra-
ditional resistor model formulations.

The outlined double-layer surface concept and formalisms
represent a minimum of model complexity required for a
consistent description of the non-linear concentration and
time dependences observed in experimental studies of atmo-
spheric multiphase processes (competitive co-adsorption and
surface saturation effects, etc.). Exemplary practical applica-
tions and model calculations illustrating the relevance of the
above aspects are presented in a companion paper (Ammann
and P̈oschl, 2007).

We expect that the presented model framework will serve
as a useful tool and basis for experimental and theoretical
studies investigating and describing atmospheric aerosol and
cloud surface chemistry and gas-particle interactions. It shall
help to end the “Babylonian confusion” that seems to in-
hibit scientific progress in the understanding of heteroge-
neous chemical reactions and other multiphase processes in
aerosols and clouds. In particular, it shall support the plan-
ning and design of laboratory experiments for the elucidation
and determination of fundamental kinetic parameters; the es-
tablishment, evaluation, and quality assurance of comprehen-
sive and self-consistent collections of rate parameters; and
the development of detailed master mechanisms for process
models and derivation of simplified but yet realistic parame-
terizations for atmospheric and climate models.
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1 Introduction

Aerosols and clouds play central roles in atmospheric chem-
istry and physics, climate, air pollution, and public health.
They influence the Earth’s energy budget by scattering and
absorption of radiation, they regulate the hydrological cy-
cle, and they affect the abundance of trace gases via hetero-
geneous chemical reactions and other multiphase processes
(Andreae and Crutzen, 1997; Ravishankara, 1997; Seinfeld
and Pandis, 1998; Waibel et al., 1999; Finlayson-Pitts and
Pitts, 2000; Ramanathan et al., 2001; Ramaswamy et al.,
2001; Rudich, 2003; Mikhailov et al., 2004; Kulmala et al.,
2004; Kanakidou et al., 2005; Lohmann and Feichter, 2005;
Pöschl, 2005; Fuzzi et al., 2006; Rudich et al., 2007; and
references therein).

Moreover, aerosols can cause respiratory, cardiovascu-
lar, and allergic diseases when inhaled and deposited in
the human respiratory tract (Finlayson-Pitts and Pitts, 1997;
Finlayson-Pitts and Pitts, 2000; Katsouyanni et al., 2001;
Pope et al., 2002; P̈oschl, 2002a; B̈ommel et al., 2003; Gau-
derman et al., 2004; Franze et al., 2005; Pöschl, 2005; Grui-
jthuijsen et al., 2006; and references therein).

The quantification of aerosol and cloud effects and the as-
sessment of natural and anthropogenic influencing factors are
among the key topics of current research on the environment
and public health. The mechanistic understanding and pre-
dictability of aerosol and cloud properties, interactions, and
transformation (chemical and physical aging) are, however,
still very limited.

Atmospheric aerosols and clouds are complex multiphase
systems consisting of a wide variety of organic and inor-
ganic chemical compounds – multiple main components and
hundreds of trace substances – in gaseous, liquid, and solid
form (Seinfeld and Pandis, 1998; Finlayson-Pitts and Pitts,
2000; McMurry, 2000; Raes et al., 2000; Matta et al., 2003;
Maßling et al., 2003; P̈oschl, 2003; Sciare et al., 2003; Smo-
lik et al., 2003; Schauer et al., 2003, 2004; Schneider et al.,
2004; Putaud et al., 2004a, b; Pöschl, 2005; Fuzzi et al.,
2006; Elbert et al., 2007; Rudich et al., 2007; and references
therein).

Chemical reactions proceed both at the surface as well as
in the bulk of solid and liquid particles, influencing atmo-
spheric gas phase chemistry as well as the physicochemical
properties and effects of the particles (Ravishankara, 1997;
Atkinson et al., 1997; Seinfeld and Pandis, 1998; Finlayson-
Pitts and Pitts, 2000; Moise et al., 2000, 2001, 2002a, b,
2005; P̈oschl et al., 2001; Sander et al., 2002; Ammann et
al., 2003; Reid and Sayer, 2003; Rudich, 2003; Katrib et al.,
2005; Laskin et al., 2005; P̈oschl, 2005; Fuzzi et al., 2006;
George et al., 2007; and references therein).

For example, they lead to the formation of reactive halogen
species and depletion of ozone in the stratosphere and ma-
rine boundary layer (Austin et al., 2003; Sander et al., 2003;
Pszenny et al., 2004; Coe et al., 2006; von Glasow, 2006;
Pechtl et al., 2007), to the decomposition of N2O5 (Meilinger

et al., 2002; Stewart et al., 2004; Seisel et al., 2005; Karagu-
lian et al., 2006; McNeill et al., 2006), and have been exten-
sively discussed as a source for HONO (Broske et al., 2004;
Stemmler et al., 2007; and references therein).

On the other hand, chemical aging of aerosol particles
generally decreases their reactivity, increases their hygro-
scopicity and cloud condensation activity (Pöschl et al.,
2001; Kumar et al., 2003; Rudich, 2003; Asad et al., 2004;
Broekhuizen et al., 2004; McFiggans et al., 2006; Dinar
et al., 2006a, b, 2007; Rudich et al., 2007; and references
therein), and can change their optical properties (Gelencser
et al., 2003; Abo Riziq et al., 2007; Dinar et al., 2008; and
references therein).

Heterogeneous oxidation and nitration reactions lead to
the formation or degradation of hazardous aerosol compo-
nents (Finlayson-Pitts and Pitts, 1997; Letzel et al., 2001;
Pöschl, 2002a; Schauer et al., 2004; Franze et al., 2005;
Pöschl, 2005; Gruijthuijsen et al., 2006; and references
therein), they cause artifacts upon sampling and analysis
of air particulate matter (Finlayson-Pitts and Pitts, 2000;
Schauer et al., 2003; Pöschl, 2005; and references therein),
and they play a major role in technical processes and devices
for the control of combustion aerosol emissions (Su et al.,
2004; Messerer et al., 2004, 2006; Ivleva et al., 2007; and
refernces therein).

Efficient investigation and description of these multi-
phase and multicomponent processes in laboratory, field, and
model studies require consistent terminologies and univer-
sally applicable mathematical formalisms. Such formalisms
have been presented and are widely applied for reactions oc-
curring in the bulk of liquid atmospheric particles (Schwartz
and Freiberg, 1981; Schwartz, 1986; Hanson et al., 1994;
Kolb et al., 1995; Sander, 1999; Finlayson-Pitts and Pitts,
2000; Ervens et al., 2003; Sander et al., 2005; Sandu and
Sander, 2006; Tost et al., 2007; and references therein).

The formalisms presented and applied for the description
of particle surface reactions, however, generally have been
limited to specific reaction systems and conditions: liquid
water, water ice, acid hydrates, soot, or mineral dust; fresh
or aged surfaces; low or high reactant concentrations; tran-
sient or (quasi-)steady-state conditions; limited numbers of
chemical species and reactions; etc. (e.g. Jayne et al., 1990;
Davidovits et al., 1991; Mozurkewich, 1993; Tabazadeh and
Turco, 1993; Tabor et al., 1994; Davidovits et al., 1995;
Kolb et al., 1995; Nathanson et al., 1996; Atkinson et al.,
1997; Carslaw and Peter, 1997; Hanson, 1997; Jayne et al.,
1997; P̈oschl et al., 1998; Bertram et al., 2001; Clegg and
Abbatt, 2001; Grassian, 2001; Katrib et al., 2001; Pöschl et
al., 2001; Vesala et al., 2001; Adams et al., 2002; Hynes et
al., 2002; Remorov et al., 2002; Sander et al., 2002; Smith
et al., 2002; Worsnop et al., 2002; Ammann et al., 2003; da
Rosa et al., 2003; Djikaev and Tabazadeh, 2003; Folkers et
al., 2003; Reid and Sayer, 2003; Rudich, 2003; Strekowski
et al., 2003; Frinak et al., 2004; Kwamena et al., 2004, 2006,
2007; Thornberry and Abbatt, 2004; Adams et al., 2005; Al-
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Hosney and Grassian, 2005; Gustafsson et al., 2005; Kleff-
mann and Wiesen, 2005; Pöschl, 2005; Remorov and Bard-
well, 2005; Seisel et al., 2005; Garrett et al., 2006; Kahan
et al., 2006; Li et al., 2006; Remorov and George, 2006;
Vlasenko et al., 2006; Chan et al., 2007; Hatch et al., 2007;
Rudich et al., 2007; Zahardis and Petrucci, 2007; and refer-
ences therein).

The different and sometimes inconsistent rate equations,
parameters, and terminologies make it hard to compare and
to extrapolate the results of different studies over the wide
range of reaction conditions relevant for the atmosphere on
the one hand, and for laboratory experiments and technical
processes on the other. Indeed, scientific progress in the un-
derstanding of heterogeneous chemical reactions and other
multiphase processes in aerosols and clouds appears to be
inhibited by a “Babylonian confusion” of terms and param-
eters (P̈oschl, 2005; P̈oschl et al., 2005a, b, c; Fuzzi et al.,
2006; Garrett et al., 2006; Rudich et al., 2007).

To provide a basis for consistent description of chemical
reactions and mass transport at the surface and in the bulk of
liquid and solid atmospheric particles, we have developed a
comprehensive model framework for aerosol and cloud sur-
face chemistry and gas-particle interactions. In analogy to
well-established formalisms of gas phase chemistry, it shall
support the establishment and evaluation of comprehensive
and self-consistent collections of rate parameters (Atkinson
et al., 1997; Sander et al., 2002; Atkinson et al., 2004, 2006,
2007), the development of detailed master mechanisms and
process models (Saunders et al., 2003; Jenkin et al., 2003;
Bloss et al., 2005a, b; Aumont et al., 2005; Johnson et al.,
2006), and the derivation of simplified but realistic mecha-
nisms and parameterisations for large scale atmospheric and
climate models (P̈oschl et al., 2000; von Kuhlmann et al.,
2004; J̈ockel et al., 2005; Spracklen et al., 2005; Croft et al.,
2005; Textor et al., 2006; Tost et al., 2007).

The presented model framework builds on the basic ki-
netic theories of gases, condensed phases, and interfaces,
and it combines concepts, rate equations, and rate parame-
ters developed and applied in physical chemistry, surface sci-
ence and aerosol research (Masel, 1996; Seinfeld and Pandis,
1998; Berry et al., 2000; Finlayson-Pitts and Pitts, 2000). It
is meant to be sufficiently general and flexible to allow effi-
cient description of both simple and complex systems, to en-
able the inclusion of more elaborate concepts and formalisms
of current and future atmospheric research and surface sci-
ence, and to bridge the gaps between atmospheric and tech-
nical processes as well as between modeling and experimen-
tal studies. Most likely not all of the rate parameters intro-
duced below will be available for all species and systems of
atmospheric relevance, but in analogy to the development of
detailed master mechanisms of atmospheric gas phase chem-
istry they can be determined for certain model species and
systems and extrapolated for others. The presented termi-
nology and formalisms shall help to develop a clear picture
of the measurements, calculations, and assumptions which

are required for a mechanistic description and prediction of
aerosol surface chemistry and gas-particle interactions.

The general concept, terminology, and rate equations are
outlined in the following sections of this manuscript: Sect. 2
deals with the basic concepts of gas kinetics and uptake co-
efficients and with the influence of gas phase diffusion. Sec-
tion 3 introduces a double-layer surface model and the quasi-
elementary steps of mass transport and chemical reaction at
the surface, which represent a minimum of model complexity
that is needed for mechanistic description of the concentra-
tion and time-dependent surface reaction kinetics observed in
experimental studies of atmospheric multiphase chemistry.
Section 4 addresses general aspects of model application
such as the change of gas uptake coefficients and other rate
parameters with composition, temperature, and time. More-
over, Sect. 4 shows how the general rate equations intro-
duced in Sects. 2 and 3 are related to standard surface reac-
tion mechanisms (Langmuir-Hinshelwood, Eley-Rideal) and
how they can be simplified and applied under (quasi-)steady-
state conditions (adsorption equilibrium, adsorption-reaction
steady-state, equivalent resistor model formulations).

Exemplary practical applications including analytical and
numerical solutions for different systems under transient and
(quasi-)steady-state conditions are presented in a companion
paper (Ammann and P̈oschl, 2007).

2 Gas phase composition and processes

2.1 Gas kinetic fluxes and uptake coefficients

In atmospheric chemistry the net uptake of gases by aerosol
and cloud particles is usually described by an uptake coeffi-
cient, which is defined as the number of gas molecules taken
up by the particle divided by the number of gas molecules
impinging onto the particle surface (here and below the term
“molecule” includes atomic, ionic, and radical species). In
terms of molecular fluxes, the uptake coefficient for a gas
species Xi , γXi , can be expressed as the ratio between the
net flux of Xi from the gas phase to the condensed phase,
Jnet,Xi , and the gas kinetic flux of Xi colliding with the sur-
face, Jcoll,Xi (number of molecules per unit area and unit
time):

γXi =
Jnet,Xi

Jcoll,Xi

(1)

Equation (1) is fully compatible with traditional verbal def-
initions of the uptake coefficient, butJnet,Xi andγXi can as-
sume negative values if the particle acts as a net source of Xi ,
which will be discussed below. For a list of symbols and SI
units see Appendix A.

Based on gas kinetic theory, the flux of collisions of gas
species Xi with a surface can be expressed as

Jcoll,Xi = [Xi]gs
ωXi

4
(2)
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[X i ]gs is the gas phase concentration of Xi close the sur-
face, i.e. about one mean free path off the surface (see
Sect. 2.2), andωXi is its mean thermal velocity given by
ωXi = (8R T /(π MXi))

1/2, whereMXi is the molar mass of
Xi , R is the gas constant, andT is the absolute temperature.

Assuming that the gas phase concentration of Xi is ho-
mogeneous throughout the investigated system, the flux of
surface collisions can be described by the average gas ki-
netic flux, Jcoll,avg,Xi = [X i ]g ωXi /4, where [Xi ]g is the av-
erage gas phase concentration of Xi , i.e. the concentra-
tion far from the particle. Under these conditions the net
flux of Xi into the condensed phase can be described by
Jnet,Xi = γXi [X i ]g ωXi /4. Significant net uptake, however,
will lead to local depletion of Xi close to the particle surface
([X i ]gs< [X i ]g), and gas phase diffusion will influence fur-
ther uptake (Jcoll,Xi < Jcoll,avg,Xi). Therefore it is useful to
define an effective uptake coefficientγeff,Xi and a gas phase
diffusion correction factorCg,Xi :

Jnet,Xi = γeff,Xi Jcoll,avg,Xi = γeff,Xi [Xi]g
ωXi

4

= γXi [Xi]gs
ωXi

4
(3)

Cg,Xi =
γeff,Xi

γXi

=
Jcoll,Xi

Jcoll,avg,Xi

=
[Xi ]gs

[Xi ]g
(4)

γeff,Xi relates the net uptake of species Xi directly to its av-
erage gas phase concentration, which is usually the major
observable in laboratory studies and the most relevant vari-
able in atmospheric models. It is sometimes also referred
to as the “apparent”, “measurable”, or “net” uptake coeffi-
cient. Note, however, that the term “net uptake coefficient”
is not well suited to distinguishγeff,Xi fromγXi , because both
quantities describe the same net flux of species Xi from the
gas phase to the condensed phase and are just normalized
by different gas kinetic reference fluxes (average gas kinetic
flux or actual surface collision flux).Cg,Xi describes the ra-
tio between these fluxes, which is determined by the rates of
uptake and gas phase diffusion and will be described in detail
below (Sect. 2.2).

The net gas phase loss of Xi due to gas-particle inter-
actions,Lg,p,Xi−Pg,p,Xi (i.e. gross loss minus production;
molecules per unit volume and unit time), can be conve-
niently calculated, when the particle surface concentration,
[PS]g (area per unit volume), and the effective uptake coeffi-
cient are known:

Lg,p,Xi − Pg,p,Xi = Jnet,Xi [PS]g = γeff,Xi [PS]g[Xi]g
ωXi

4
= kg,p,Xi [Xi]g (5)

Equation (5) allows to use an apparent first-order rate co-
efficient,kg,p,Xi =γeff,Xi [PS]g ωXi /4, to calculate the net gas
phase loss as a (pseudo-)first-order process with respect to
average gas phase composition, which is usually the pre-
ferred way to handle heterogeneous reactions in atmospheric
models.

Uptake coefficients for different types of gases and aerosol
particles are usually determined in laboratory studies cover-
ing a limited range of experimental conditions. For a reli-
able extrapolation and application of the experimentally de-
termined uptake coefficients to atmospheric conditions and
in numerical models of the atmosphere, the uptake coeffi-
cients have to be deconvoluted into basic physicochemical
parameters, which describe the multiple steps (elementary
processes) that are usually involved in aerosol surface reac-
tions and gas-particle interactions and will be outlined in the
following sections (transport and chemical reactions in and
between gas phase, surface, and particle bulk).

For gas uptake by liquid droplets a widely used resis-
tor model has been developed to deconvoluteγeff,Xi under
(quasi-)steady-state conditions. In this model, gas phase dif-
fusion to the particle surface, mass transfer from the gas
phase into the liquid phase, and subsequent chemical reac-
tion in the liquid are regarded as decoupled processes. These
processes are described by individual resistance terms which
can be added up to obtain 1/γeff,Xi as the overall resistance in
analogy to an electrical circuit consisting of serial resistors
(Schwartz and Freiberg, 1981; Schwartz, 1986; Hanson et
al., 1994; Kolb et al., 1995; Finlayson-Pitts and Pitts, 2000;
and references therein):

1

γeff,Xi

=
1

0g,Xi

+
1

γXi

(6)

1

γXi

=
1

αXi

+
1

0b,Xi

(7)

αXi represents the probability or normalized rate of trans-
fer of gas molecules across the surface (or gas-liquid in-
terface) into the liquid and has usually been referred to as
the “mass accommodation coefficient”. The “conductances”
(inverse resistances)0g,Xi and 0b,Xi represent normalized
rates of gas phase diffusion and bulk diffusion and reac-
tion, respectively. The most common formulae used to cal-
culate these conductances are0g,Xi ≈8Dg,Xi ω−1

Xi d−1
p and

0b,Xi ≈4Hcp,Xi R T ω−1
Xi (Db,Xi kb,Xi)

1
2 , whereDg,Xi is the

gas phase diffusion coefficient of Xi , dp is the particle di-
ameter,Hcp,Xi is the solubility or Henry’s law coefficient of
Xi , Db,Xi is the diffusion coefficient of Xi in the liquid, and
kb,Xi is the first-order chemical loss rate coefficient of Xi

in the liquid. The derivation and applicability of the resis-
tor model equations and parameters will be addressed below
(Sects. 2.2 and 4.3.2). Several studies have already set out
to include surface reaction terms in the resistor model for
gas uptake by liquid atmospheric particles and to extend it to
solid particles. So far, however, the applicability of the pub-
lished formalisms and terminologies was generally limited to
specific types of aerosols and reaction conditions (e.g. Han-
son, 1997; Smith et al., 2002; Worsnop et al., 2002; Ammann
et al., 2003; Reid and Sayer, 2003; and references therein).
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2.2 Gas phase diffusion

Mass transport from the gas phase to the surface of an aerosol
or cloud particle and the influence of molecular diffusion in
the gas phase depend on the flow regime, which is charac-
terized by the Knudsen number,KnXi , and determined by
the mean free path of the investigated species Xi in the gas
phase,λXi , and by the particle radius,rp, or diameter,dp:
KnXi = λXi /rp = 2λXi /dp.

Based on simple gas kinetic theory and on earlier stud-
ies of gas-particle interaction,λXi andKnXi can be approx-
imated by (Fuchs, 1964; Fuchs and Sutugin, 1971; Seinfeld
and Pandis, 1998; and references therein):

λXi =
3Dg,Xi

ωXi

(8)

KnXi =
6Dg,Xi

ωXi dp
(9)

For air and most atmospheric gases the mean free path
at standard temperature and pressure (STP, 0◦C, 1 atm)
is on the order of∼60 nm, and the particle size depen-
dence of the Knudsen number can be approximated by
KnXi ≈ (102 nm)/dp with dp in nm or byKnXi ≈ (0.1µm)/dp

with dp in µm, respectively.
In the gas kinetic or free-molecule regime (dp� λXi ,

KnXi�1) and wheneverKnXi /γXi�1, the flow of Xi from
the gas phase to the condensed phase is limited only by sur-
face kinetics and independent of the gas phase diffusion co-
efficient. Under these conditions the gas phase concentration
of Xi is homogeneous ([Xi ]gs≈ [X i ]g), and the net flow,
Fnet,Xi (molecules per unit time), is simply given by multipli-
cation ofJnet,Xi as defined in Eq. (3) with the particle surface
area (d2

p π for spherical geometry):Fnet,Xi = d2
p π γXi [X i ]g

ωXi /4.
In the continuum regime (dp� λXi , KnXi�1), the

flow of Xi is limited only by gas phase diffusion when
KnXi /γXi�1. Under these conditions, the flow is directly
proportional to the gas phase diffusion coefficient and parti-
cle diameter, and it is independent of the uptake coefficient
(Seinfeld and Pandis, 1998; and references therein).

In the transition regime (dp ≈ λXi , KnXi ≈1) when
γXi ≈1 and also in the continuum regime when
KnXi /γXi ≈1, the flow of Xi is influenced by both gas
phase diffusion and surface kinetics, which can be described
by correction terms in the continuum and gas kinetic flow
equations as detailed below.

Whenever KnXi /γXi <≈1 (continuum or transition
regime), the gas concentration of Xi far from the surface
([X i ]g), which drives gas phase diffusion, is different from
the near-surface concentration ([Xi ]gs), which drives surface
uptake kinetics. A relation between [Xi ]g and [Xi ]gs can be
obtained by matching the flow of gas phase diffusion to the
surface with the flow of uptake at the surface.

For the uptake of Xi by a “perfectly absorbing sphere”
(γXi = 1) under steady-state conditions in the continuum
regime (KnXi�1), the net flow from the gas phase into
the particle (number of molecules per unit time) can be de-
scribed by the following continuum and gas kinetic expres-
sions (Fuchs, 1964; Fuchs and Sutugin, 1971; Seinfeld and
Pandis, 1998):

Fnet,Xi = 2π dp Dg,Xi [Xi ]g = d2
pπ

ωXi

4
[Xi ]gs (10)

In this case, the relation between the near-surface and av-
erage (distant) gas phase concentrations of Xi is given by:
[X i ]gs/[X i ]g = 8 Dg,Xi /(ωXi dp) = 4/3KnXi .

For lower values ofγXi and for the transition regime, the
flow matching approach of Fuchs (1964) can be applied to
obtain a relation between [Xi ]gs and [Xi ]g. It had been devel-
oped for the coagulation of aerosol particles and is adopted
here for the special case where one particle (molecule) is very
small and moving much faster than the other one (quasi-static
aerosol particle). Under these conditions, the average dis-
tance from which the molecule has a straight trajectory to
the particle surface,1Xi , can be approximated byλXi for
KnXi�1, λXi /2 for KnXi�1, and values in between for
KnXi ≈1:

1Xi =
2

3dp λXi


(

dp

2
+ λXi

)3

−

((
dp

2

)2

+ λ2
Xi

) 3
2

− dp

2

(11)

By defining the gas phase concentration of Xi at the distance
1Xi from the surface as [Xi ]gs, the net flow of gas phase dif-
fusion through a virtual particle envelope with the diameter
(dp + 21Xi) can be expressed as

Fnet,Xi = 2π (dp+ 21Xi) Dg,Xi

(
[Xi ]g− [Xi ]gs

)
(12)

For mass conservation, the above continuum expression for
the flow of gas phase diffusion to the surface has to equal the
gas kinetic expression for the flow of uptake at the surface
(Fnet,Xi = d2

p π Jnet,Xi):

2π
(
dp+ 21Xi

)
Dg,Xi

(
[Xi ]g− [Xi ]gs

)
= d2

p π γXi

ωXi

4
[Xi ]gs (13)

Rearrangement using the above definitions ofCg,Xi , λXi ,
KnXi , and1Xi leads to

Cg,Xi =
[Xi ]gs

[Xi ]g
=

dp+ 21Xi

3γXi d2
p

8λXi
+ dp+ 21Xi

=
1

1+ γXi
0.75

KnXi (1+KnXi
1Xi
λXi

)

(14)

Equation (14) can be further simplified by neglecting the size
dependence of1Xi and assuming1Xi = λXi as will be dis-
cussed and illustrated below (Fig. 1).
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Fig. 1. Gas phase diffusion correction factorCg,Xi plotted against
Knudsen numberKnXi for different uptake coefficients and transi-
tion regime flux matching approaches:γXi=1 for black lines and
symbols; γXi=0.1 for red lines and symbols;γXi=0.01 for blue
lines and symbols; FS (symbols): Eq. (19) based on Fuchs and
Sutugin (1971); F (solid lines): Eq. (14) based on Fuchs (1964);
F, simp. (dashed lines): Eq. (14) with1Xi=λXi ; F, cont. (dotted
lines): Eq. (20).

Fuchs (1964) expressed the result of flux matching as a
correction factorβF for the flow of a trace gas species Xi into
a “perfectly absorbing sphere” under continuum conditions:

Fnet,Xi = βF 2π dp Dg,Xi [Xi ]g (15)

βF =

γXi

(
1+ KnXi

1Xi

λXi

)
γXi +

4
3KnXi

(
1+ KnXi

1Xi

λXi

) (16)

Fuchs and Sutugin (1971) proposed an alternative correction
factorβFS, which was derived from a numerical solution of
the Boltzmann diffusion equation for neutron transfer to a
black sphere and is thus characteristic for light molecules in
a heavy background gas:

βFS=
γXi (1+ KnXi)

γXi +
4
3KnXi (KnXi + 1+ 0.28γXi)

(17)

The applicability ofβFS for trace gases in air (including
species with higher molecular mass) has been confirmed by
good agreement with experimental data (Li and Davis, 1996;
Widmann and Davis, 1997; Seinfeld and Pandis, 1998; Shi et
al., 1999; Swartz et al., 1999; Qu and Davis, 2001; Worsnop
et al., 2001).

By insertingβFS instead ofβF in Eq. (15) and rearrange-
ment usingJnet,Xi =Fnet,Xi/(d

2
p π) and Eq. (9),Cg,Xi can

be flexibly adapted to the approach of Fuchs and Sutu-
gin (1971):

Jnet,Xi = βFS
ωXi

3
KnXi [Xi ]g =

=
Kn2

Xi + KnXi

Kn2
Xi + KnXi + 0.28KnXi γXi + 0.75γXi

γXi

ωXi

4
[Xi ]g

= Cg,Xi γXi

ωXi

4
[Xi ]g (18)

Cg,Xi =
1

1+ γXi
0.75+0.28KnXi

KnXi (1+KnXi )

(19)

In the gas kinetic or free-molecule regime (KnXi�1), Cg,Xi

is close to unity ([Xi ]gs≈ [X i ]g), and in the continuum
regime (KnXi�1), Eqs. (14) and (19) both can be reduced
to:

Cg,Xi =
1

1+ γXi
0.75
KnXi

(20)

Figure 1 displaysCg,Xi calculated as a function ofKnXi for
γXi = 0.01, 0.1, and 1, respectively. The calculations have
been performed with Eqs. (20), (19), (14), and with a simpli-
fied version of Eq. (14) assuming1Xi =λXi . ForγXi ≤0.01
the results of the different formalisms are essentially identi-
cal. ForγXi ≈0.1 small differences occur in the transition
regime but the relative deviations are less than 5 %. Substan-
tial deviations between the different formalisms occur only
for γXi ≈1 andKnXi ≈1. Even under these conditions, how-
ever, the differences relative to Eq. (19) do not exceed +7 %
for Eq. (14), +10 % for Eq. (14) with1Xi =λXi , and−13 %
for Eq. (20), respectively. For many atmospheric process
studies, these differences are well within the general uncer-
tainties. They should, however, not be neglected in high-
precision measurements and model calculations of processes
with γXi ≈1 andKnXi ≈1. The results of earlier studies sug-
gest that Eq. (19) based on Fuchs and Sutugin (1971) is most
appropriate under isothermal conditions (Li and Davis, 1996;
Widmann and Davis, 1997; Seinfeld and Pandis, 1998; Shi et
al., 1999; Swartz et al., 1999; Qu and Davis, 2001; Worsnop
et al., 2001). More elaborate formalisms may be required
for non-isothermal processes (Qu et al., 2001), but several
studies have shown that the formulation of Fuchs and Sutu-
gin (1971) works well also under non-isothermal conditions
(Kulmala and Vesala, 1991; Vesala et al., 1997; Kulmala and
Wagner, 2001; Winkler et al., 2004).

To our knowledge, a gas phase diffusion correction fac-
tor similar toCg,Xi as defined in Eq. (4) and calculated in
Eqs. (14), (19), and (20) has not been explicitly defined and
introduced for the description of atmospheric gas-particle in-
teractions before. At least within the kinetic model presented
in the following sections, however, it appears to be the most
useful, convenient, and descriptive way of representing the
influence of gas phase diffusion on mass transport and chem-
ical reaction at the surface of aerosol particles. In particular,
it allows the flexible implementation of different models and
corrections for gas phase diffusion effects without changing
the remainder of the kinetic model formalism.

The relation ofCg,Xi with the gas phase diffusion conduc-
tance,0g,Xi , of the traditional resistor model outlined above
follows from Eqs. (4) and (6):

Cg,Xi =
γeff,Xi

γXi

=
1

1+ γXi
1

0g,Xi

(21)
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with

0g,Xi = γXi

Cg,Xi

1− Cg,Xi

=
4

3
KnXi

(
1+ KnXi

1Xi

λXi

)
(22)

for the approach of Fuchs (1964), and

0g,Xi =
KnXi (1+ KnXi)

0.75+ 0.28KnXi

(23)

for the interpolation of Fuchs and Sutugin (1971), respec-
tively.

For the calculation of gas phase diffusion resistances in
the continuum regime (KnXi�1) the above equations can
be rearranged by inversion, multiplication with (1−KnXi),
and omission of quadratic terms ofKnXi , which leads to

1

0g,Xi

≈
ωXi dp

8Dg,Xi

− 0.38 (24)

for the gas phase diffusion resistance term based on
Fuchs (1964), and

1

0g,Xi

≈
ωXi dp

8Dg,Xi

− 0.47 (25)

for the resistance term based on Fuchs and Sutugin (1971),
respectively.

The additive constants−0.38 and−0.47 on the right hand
side of Eqs. (24) and (25), respectively, correspond to the cor-
rection term−1/2 in traditional resistor model formulations
for the effect of gas phase diffusion in the continuum regime
(Danckwerts, 1951; Finlayson-Pitts and Pitts, 2000; and ref-
erences therein), which have been attributed to an effective
doubling of the mean molecular velocity component directed
towards the surface in case of high net uptake (distortion of
Maxwellian flow; Motz and Wise, 1960). If, however,KnXi

is indeed more than an order of magnitude below unity, the
additive constants contribute less than∼5 % to the gas phase
diffusion resistances and can be omitted from Eqs. (24) and
(25), which become equivalent to Eq. (20).

3 Particle surface and bulk composition and processes

3.1 Double-layer surface model and surface mass balance

To describe the physicochemical processes at the gas-particle
interface, we apply a simple double-layer surface model
which comprises two monomolecular layers: a quasi-static
surface layer consisting of (quasi-)non-volatile particle com-
ponents Yj (molecules, ions, or functional groups), and a
sorption layer consisting of adsorbed volatile molecules Xi

(Fig. 2). Both the non-volatile particle components Yj and
the volatile molecules Xi can be reversibly transferred be-
tween the double-layer surface and the underlying particle
bulk, in which they can undergo diffusion and reaction. The
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Fig. 2. Double-layer surface model compartments and transport
fluxes for volatile species Xi (left) and non-volatile species Yj
(right).

contribution of Xi to the chemical composition and physic-
ochemical properties of the quasi-static surface layer, how-
ever, is assumed to be negligible. The description and ef-
fects of semivolatile species that can significantly contribute
to the composition of all model compartments (gas phase,
sorption layer, quasi-static surface, particle bulk) will be ad-
dressed below (Sect. 3.7). Note that a double-layer surface
model as outlined above represents a minimum of model
complexity required for consistent description of competi-
tive co-adsorption and surface saturation effects as detailed
and discussed in Sects. 4 and 5.

To describe surface-bulk mass transport and the potential
influence of bulk composition on surface processes, it is use-
ful to define the condensed phase directly adjacent to the
quasi-static surface layer as the “near-surface particle bulk”.
Depending on the chemical composition and physical state of
the investigated particles, the near-surface bulk region can be
pictured to extend one or a few molecular diameters or chem-
ical bonds (∼1 nm) from the quasi-static surface into the par-
ticle bulk. The chemical species present in the near-surface
particle bulk are not directly exposed to the gas phase or
sorption layer species, but they interact with the quasi-static
surface layer and can influence its physicochemical proper-
ties: e.g. electron donor-acceptor and charge-transfer inter-
actions; hydrogen bonding networks (O’Hanlon and Forster,
2000); quasi-liquid or structurally disordered surface layers
on ice (Delzeit et al., 1996; Girardet and Toubin, 2001). With
respect to mass transport, the near-surface particle bulk is
analogous to the near-surface gas-phase, i.e. the gas phase
about one mean free path off the surface as discussed in the
preceding section on gas phase diffusion. Both can be pic-
tured as the region from which a molecule of the investigated
species can directly interact and undergo exchange with the
molecules in the double-layer surface.

Mass transport of the volatile species Xi and non-volatile
species Yj between the near-surface gas phase (gs), the sorp-
tion layer (s), the quasi-static surface layer (ss), and the near-
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Fig. 3. Classification of chemical reactions between volatile and
non-volatile species at the surface.

surface particle bulk (bs) can be summarized by:

Xi(gs)

Jads,Xi
−→

←−
Jdes,Xi

Xi(s)

Js,b,Xi
−→

←−
Jb,s,Xi

Xi(bs) (26)

Yj (ss)

Jss,b,Yj
−→

←−
Jb,ss,Yj

Yj (bs) (27)

Compartments and transport fluxes in the double-layer sur-
face model considering only volatile and non-volatile species
are illustrated in Fig. 2. Combination of transport with chem-
ical production and loss at the surface leads to the following
surface mass balance equations for Xi and Yj :

d[Xi]s/dt = Jads,Xi − Jdes,Xi + Ps,Xi − Ls,Xi

+Jb,s,Xi − Js,b,Xi (28)

d[Yj ]ss/dt = Pss,Yj − Lss,Yj + Jb,ss,Yj − Jss,b,Yj (29)

[X i ]s is the concentration of Xi in the sorption layer (num-
ber per unit area), and [Yj ]ss is the concentration of Yj in
the quasi-static surface layer (number per unit area). All
terms on the right hand side of Eqs. (28) and (29) are flux
densities (number per unit area and unit time):Jads,Xi and
Jdes,Xi stand for adsorption and desorption, i.e. reversible
mass transport from the near-surface gas phase to the sorp-
tion layer; Jb,s,Xi and Js,b,Xi for mass transport from the
near-surface bulk to the sorption layer and vice versa;Ps,Xi

andLs,Xi for production and loss of adsorbed Xi by chemical
reaction at the surface;Jb,ss,Yj andJss,b,Yj for mass trans-
port from the bulk to the quasi-static surface layer and vice
versa;Pss,Yj and Lss,Yj for chemical production and loss
of Yj in the quasi-static surface layer. The mass transport
flux densities,Jads,Xi , Jdes,Xi , Jb,s,Xi , Js,b,Xi , Jb,ss,Yj , and
Jss,b,Yj , are determined by the chemical composition and
physicochemical properties of the surface (sorption layer and
quasi-static layer), the near-surface gas phase, and the near-
surface particle bulk. Molecular mechanisms and rate equa-
tions for the mass transport processes will be outlined be-
low (Sects. 3.2 and 3.4). For chemical production and loss

of Xi in the sorption layer (Ps,Xi −Ls,Xi) and of Yj in the
quasi-static surface layer (Pss,Yj −Lss,Yj ), respectively, dif-
ferent reaction mechanisms have to be taken into account.
Depending on the involved model compartments we distin-
guish between gas-surface reactions, surface layer reactions
and surface-bulk reactions. The different types of chemical
reactions and rate parameters are illustrated in Fig. 3 and will
be described in detail below (Sect. 3.3).

3.2 Adsorption and desorption (gas-surface mass transport)

We define adsorption as the accommodation of gas molecules
on the quasi-static particle surface, i.e. transport from the gas
phase into the sorption layer on the quasi-static surface, and
desorption as the reverse process. As indicated by the sur-
face mass balance equations outlined above, the presented
model framework aims at a clear distinction of transport pro-
cesses (adsorption and desorption) from chemical reactions
at the surface. We speak of adsorption or surface accom-
modation when the gas molecule colliding with the surface
neither reacts nor bounces off immediately but stays within
a distance on the order of a chemical bond (∼10−10 m) for a
duration longer than the average duration of a (quasi-)elastic
gas-surface collision or molecular scattering process. From
gas kinetic theory this duration can be approximated by the
ratio of the typical length of a chemical bond and the mean
thermal velocity of the gas molecule (∼102 m s−1), which is
generally on the order of∼10−12 s under ambient conditions
in the lower atmosphere.

The processes of adsorption and desorption are considered
to include intermolecular interactions between molecules in
the sorption layer and in the quasi-static surface layer (van
der Waals interactions, hydrogen bonding, and similar elec-
tron donor-acceptor interactions; Goss, 2004) but no forma-
tion or cleavage of stable chemical bonds. Gas-surface in-
teractions which lead to the formation or cleavage of sta-
ble chemical bonds (including so-called dissociative adsorp-
tion or desorption) are regarded either as (quasi-)elementary
“gas-surface reactions” (Sect. 3.3.1) or as two-step processes
of gas-surface mass transport and subsequent chemical re-
action within the surface double-layer (“surface layer reac-
tions”, Sect. 3.3.2). The conceptual distinction between ad-
sorption, scattering (bounce), and immediate reaction of gas
molecules colliding with a liquid or solid surface is supported
by the results of molecular beam experiments and other ad-
vanced surface science studies revealing further details of
gas-surface interactions on a molecular level (e.g. Masel,
1996; Nathanson et al., 1996; Rettner et al., 1996; Bartels-
Rausch et al., 2002, 2005; and references therein).

In surface science the terms “physisorption” and “trap-
ping” are frequently used to describe loose binding of
adsorbed molecules to a surface (negative adsorption en-
thalpies typically<50 kJ mol−1), whereas “chemisorption”
and “sticking” are used to describe strong binding (nega-
tive adsorption enthalpies typically>50 kJ mol−1; Masel,
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1996). Within the kinetic model framework outlined in this
manuscript, however, all of these terms are sub-summarized
under the umbrella terms adsorption or surface accommo-
dation, which comprise the full range from rather loose to
relatively strong binding of molecules to the quasi-static sur-
face, as long as no formation or cleavage of stable chemical
bonds is involved. This definition is in line with Langmuir’s
understanding of adsorption (Langmuir, 1916) and aims at
making the presented kinetic model framework with a lim-
ited number of rate equations and parameters consistently
applicable for the wide variety of particles and trace gases
interacting in the atmosphere. It is, however, not meant to
constrain the distinction and application of different mech-
anisms and traditional categories of adsorption for detailed
investigation and characterization of specific systems, from
which the generalized rate parameters defined below can be
determined and extrapolated to atmospheric conditions.

The flux of adsorption of gas molecules Xi can be de-
scribed by multiplication of the flux of surface collisions,
Jcoll,Xi , with a surface accommodation coefficient or adsorp-
tion probability,αs,Xi :

Jads,Xi = αs,Xi Jcoll,Xi (30)

αs,Xi is defined as the probability that Xi undergoes nei-
ther scattering nor immediate chemical reaction upon colli-
sion with the particle but is accommodated in the sorption
layer of the particle (0≤αs,Xi ≤1). In the scientific litera-
ture similarly defined parameters have been called adsorp-
tion coefficient (Shi et al., 1999; Turco et al., 1989; Worsnop
et al., 2002), condensation coefficient (Pruppacher and Klett,
1997), sticking coefficient (Hanson, 1997), sticking proba-
bility (Clement et al., 1996; Garrett et al., 2006), trapping
probability (Masel, 1996), adsorptive mass accommodation
coefficient (Elliott et al., 1991), (mass) accommodation coef-
ficient (Jayne et al., 1990; Tabazadeh and Turco, 1993; Prup-
pacher and Klett, 1997; Kulmala and Wagner, 2001; Huth-
welker et al., 2006), and thermal accommodation coefficient
(Li et al., 2001; Worsnop et al., 2002). For clarity and unam-
biguous distinction of the gas-to-surface mass transfer pro-
cess specified above from mass transfer into the bulk, from
chemical reactions, and from heat transfer (Sect. 4.2), how-
ever, we propose to use the term surface accommodation co-
efficient.

Inserting Eq. (2) in (30) leads to

Jads,Xi = ka,Xi [Xi]gs (31)

with a first-order adsorption rate coefficientka,Xi =

αs,Xi ωXi /4, which has the dimensions of unit length per unit
time and can be regarded as a deposition velocity.

In Eqs. (30) and (31) all surface-specific parameters are
lumped in the surface accommodation coefficientαs,Xi , with-
out making any a priori assumptions about the number and
nature of sorption sites, surface coverage by competing ad-
sorbate molecules, surface mobility and residence of adsor-
bate molecules, etc. The simplest way to estimateαs,Xi is

a Langmuir adsorption model in which all adsorbate species
compete for a single type of non-interfering sorption sites
with an overall concentration [SS]ss (number per unit area)
on the quasi-static surface. In this caseαs,Xi is determined
by the surface accommodation coefficient on a clean, i.e.
adsorbate-free surface,αs,0,Xi , and the sorption layer surface
coverage,θs, which is given by the sum of the fractional sur-
face coverages of all competing adsorbate species,θs,Xp:

αs,Xi = αs,0,Xi (1− θs) (32)

θs =
∑
p

θs,Xp (33)

Under the assumption of a single type and surface concen-
tration of sorption sites for all adsorbate species, the frac-
tional surface coverage of an individual species Xp is given
by θs,Xp = [Xp]s/[SS]ss.

In practice the nature of sorption sites at the surface of an
aerosol particle is determined by its chemical composition,
and the interaction between different adsorbates and specific
surface sites (molecules, functional groups, atoms, or ions)
may be highly variable. For such complex systems differ-
ent types of sorption sites can be defined for different types
of phase species interacting with the surface. For example,
dual-site Langmuir formalisms have been applied to describe
the interaction of carbonaceous particles with nitrogen ox-
ides (Gray and Do, 1992). In principle, such formalisms
are compatible with the model framework outlined in this
manuscript, but they seem to be hard to generalize for atmo-
spheric applications with a large number of interacting trace
gases and their elaboration goes beyond the scope of this pa-
per. Here we apply a simple approach assuming that the com-
petition of different adsorbate species for different adsorption
sites on the quasi-static particle surface can be described by
assigning effective molecular cross sections to the adsorbate
species and letting them compete for surface area rather than
specific sites. In this case, the fractional surface coverage of
individual species Xp can be calculated by

θs,Xp = [Xp]s/[Xp]s,max= σs,Xp [Xp]s (34)

whereσs,Xp is the effective molecular cross section of Xp in
the sorption layer, and the inverse ofσs,Xp is the maximum
surface concentration of Xp, [Xp]s,max.

Equations (31)–(34) describe a Langmuir-type adsorp-
tion process accounting for different competing adsorbate
species. The influence of the (potentially changing) chemical
composition of the quasi-static particle surface on adsorbate-
surface interactions and thus on the surface accommodation
coefficient can be taken into account by describingαs,0,Xi

as a linear combination of the initial surface accommodation
coefficients that would be observed on pure substrates made
up by the different surface components Yq weighted by their
fractional surface areaθss,Yq , i.e. their surface concentration
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[Yq ]ss multiplied by their effective molecular cross section
σss,Yq

αs,0,Xi =

∑
q

αs,0,Xi,Yq θss,Yq (35)

θss,Yq = [Yq ]ssσss,Yq (36)

with
∑
q

θss,Yq=1.

If the surface accommodation process were significantly
influenced not only by the quasi-static surface layer but also
by the underlying condensed phase (e.g. by hydrogen bond-
ing or other electron donor-acceptor interactions), the com-
position of the near-surface particle would also have to be
taken into account. This could be achieved by expressing
αs,0,Xi,Yp as a linear combination of the adsorption probabil-
ities αs,0,Xi,Yp,Yq which would be observed for Xi colliding
with an adsorbate-free surface made up of pure Yp on an un-
derlying bulk of pure Yq :

αs,0,Xi,Yp =

∑
q

αs,0,Xi,Yp,Yq φYq (37)

The weighting factorφYq could be the mole, mass, or volume
fraction of Yq in the near-surface particle bulk. The latter
appear to be more suitable for the representation of macro-
molecular particle components.

In this approach surface heterogeneities and interferences
between adsorbate molecules which may lead to non-linear
dependence ofαs,Xi on particle composition and sorption
layer coverage, are assumed to be negligible or cancel out
statistically. If this is not the case, appropriate corrections or
alternative mathematical formalisms have to be applied. The
investigated surfaces and underlying molecular layers have to
be resolved into quasi-homogenous areas, or Monte-Carlo-
type simulations have to be performed. Such approaches
could be included in the presented model framework, but
they would have to be designed specifically for different
aerosol systems and are beyond the scope of this paper.

Combining Eqs. (31) and (32) leads to

Jads,Xi = ka,0,Xi [Xi]gs(1− θs) (38)

with

ka,0,Xi = αs,0,Xi

ωXi

4
(39)

Equation (38) is consistent with standard textbook formula-
tions for the flux of Langmuir adsorption (Langmuir, 1916;
Laidler et al., 1940). The dependence ofαs,0,Xi and thus of
ka,0,Xi on the composition of the quasi-static surface layer
and near-surface particle bulk described in Eqs. (35)–(37),
however, implies that even in the simple model of adsorption
outlined above, the surface accommodation and adsorption
rate coefficients may change over time if the particle com-
ponents are transformed by chemical reactions (chemical ag-
ing).

In the Langmuir model of reversible adsorption, also the
desorption process can be described by a first-order rate co-
efficient,kd,Xi , which is assumed not to depend onθs and can
be regarded as the inverse of the desorption lifetime,τd,Xi ,
i.e. the mean residence time of the investigated species on
the surface in the absence of chemical reaction and surface-
bulk mass transport (Laidler et al., 1940):

Jdes,Xi = kd,Xi [Xi]s = τ−1
d,Xi [Xi]s = τ−1

d,Xi σ−1
Xi θs,Xi (40)

Under adsorption equilibrium conditions it is useful to
combine the rate coefficients of adsorption and desorption
into a Langmuir adsorption equilibrium constantKads,Xi

(Sect. 4.4). In case of rapid chemical reaction or surface-bulk
exchange, however, the actual mean residence time of Xi on
the surface is shorter than its desorption lifetime, which can
be taken into account in an effective adsorption equilibrium
constantK ′ads,Xi for the description of adsorption-reaction
steady-state conditions (Sect. 4.5). These special cases of
equilibrium and steady-state conditions will be described and
discussed in more detail below (Sect. 4) and illustrated by ex-
emplary model calculations in a companion paper (Ammann
and P̈oschl, 2007).

In analogy to Eqs. (35)–(37) forαs,0,Xi , the influence of
the chemical composition of the quasi-static surface layer
and near-surface particle bulk can be taken into account by
describingτd,Xi as a linear combination of the desorption
lifetimes which would be observed on pure substrates made
up by the different chemical components of the actual sur-
face,τd,Xi,Yp, or on surfaces made up by pure Yp on an un-
derlying bulk of pure Yq , τd,Xi,Yp,Yq .

Since desorption is driven by thermal motion, the mean
residence times and desorption rate coefficients are expected
to exhibit a strong temperature dependence, which can usu-
ally be described by an Arrhenius equation involving the heat
of adsorption and a pre-exponential factor on the order of the
vibration frequency of the involved molecules and chemical
bonds (Laidler et al., 1940; Baetzold and Somorjai, 1976;
Pöschl et al., 2001; and references therein). Of course the
other rate coefficients of mass transport and chemical reac-
tion introduced above and in the remainder of this manuscript
can also exhibit more or less pronounced temperature depen-
dences, as will be discussed below (Sect. 4.2).

From heterogeneous catalysis it is known that almost all
technically relevant surface reactions (except for single crys-
tal surfaces) can be described by Langmuir-Hinshelwood or
Eley-Rideal rate equations derived on the basis of a simple
Langmuir adsorption model; even in systems where the ac-
tual adsorption process does not follow a simple Langmuir
isotherm, reaction rates can often be described by Langmuir-
Hinshelwood rate equations based on the assumption of
Langmuir adsorption (Sect. 4; Masel, 1996; Ammann et al.,
2003; and references therein). Thus we expect that the above
rate equations of adsorption and desorption will be suitable
for the description of most relevant surface reactions on at-
mospheric particles, as indicated by multiple recent studies
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(Arens et al., 2001; P̈oschl et al., 2001; Ammann et al., 2003;
Rudich, 2003; Dubowski et al., 2004; Mmereki et al., 2004;
Sullivan et al., 2004; Ammann and Pöschl, 2007; and refer-
ences therein).

3.3 Chemical reactions at the surface

3.3.1 Gas-Surface Reactions (GSR)

We reserve the term gas-surface reactions exclusively for re-
actions which can be described by a single kinetic step of col-
lision and reaction between gas phase and surface molecules,
i.e. heterogenous elementary reactions in which one of the re-
actants comes directly from the gas phase without a separate
step of surface accommodation prior to reaction. Accord-
ing to the above definition of surface accommodation, gas-
surface reactions in the lower troposphere would have to oc-
cur within∼10−12 s upon collision of the gas molecule with
the surface. In the chemical engineering literature, processes
involving gas-surface reactions are commonly referred to as
Eley-Rideal mechanisms.

In principle, sorption layer and quasi-static surface layer
components Xi and Yj can be formed upon reaction of any
gas phase species Xp with any surface species Xq or Yq , re-
spectively. Net chemical production (i.e. gross production
minus loss) of Xi and Yj by elementary second-order gas-
surface reactions can be described by the following general-
ized rate equations:

Ps,g,Xi − Ls,g,Xi =

∑
u

∑
p

∑
q

cGSRu,s,Xi Jcoll,Xp(
γGSRu,Xp,Xq θs,Xq + γGSRu,Xp,Yq θss,Yq (1− θs)

)
(41)

Pss,g,Yj − Lss,g,Yj =

∑
u

∑
p

∑
q

cGSRu,ss,Yj Jcoll,Xp(
γGSRu,Xp,Xq θs,Xq + γGSRu,Xp,Yq θss,Yq (1− θs)

)
(42)

cGSRu,s,Xi andcGSRu,ss,Yj stand for the stoichiometric coef-
ficients (negative for starting substances and positive for re-
action products) of surface species Xi and Yj involved in
the elementary gas-surface reaction GSRu; u = 1, . . . ,umax
for a total number ofumax elementary gas-surface reactions.
γGSRu,Xp,Xq or γGSRu,Xp,Yq are defined as elementary gas-
surface reaction probabilities, i.e. the probabilities that gas
phase molecules Xp undergo an elementary gas-surface reac-
tion GSRu when colliding with an adsorbed volatile species
Xi in the sorption layer or with a non-volatile species Yj in
the quasi-static surface layer, respectively.

Production and loss of Xi by elementary gas-surface reac-
tions can involve volatile species in the sorption layer as well
as non-volatile species in the uncovered fraction, (1− θs), of
the quasi-static surface layer:

Pg,gsr,Xi − Lg,gsr,Xi =

∑
u

∑
p

∑
q

cGSRu,g,Xi Jcoll,Xp(
γGSRu,Xp,Xq θs,Xq + γGSRu,Xp,Yq θss,Yq (1− θs)

)
(43)

cGSRu,g,Xi stands for the stoichiometric coefficient of gas
molecules Xi involved in the elementary gas-surface reaction
GSRu.

Due to chemical interferences (activation or passivation
by neighboring species, etc.), the reaction probabilities
γGSRu,Xp,Xq andγGSRu,Xp,Yq may depend on surface com-
position and adsorbate coverage. As discussed in the above
Langmuir adsorption model, non-linear interferences cannot
be easily taken into account, but linear dependences on sur-
face and near-surface bulk composition could be accounted
for by linear combination of the reaction probabilities that
would be observed on pure substrates made up by the chem-
ical components of the actual surface and near-surface parti-
cle bulk (in analogy to Eqs. 35–37). The same applies for the
rate coefficients of surface layer reactions and surface-bulk
reactions defined in the following sections.

3.3.2 Surface Layer Reactions (SLR)

The term surface layer reaction is reserved for reactions
which proceed within the surface double layer and involve
only adsorbed species or components of the quasi-static
surface layer. Such reactions can be influenced by sur-
face heterogeneities and chemical interferences (local deple-
tion or enrichment, activation or passivation by neighboring
species, etc.), but for simplicity we assume that they exhibit a
straightforward rate-dependence on the average surface con-
centration of the reactants and that deviations cancel out sta-
tistically. The same approach has been taken in early sur-
face science (Laidler et al., 1940; Hinshelwood, 1940) and is
widely applied in heterogeneous catalysis (Masel, 1996). In
the chemical engineering literature processes involving sur-
face layer reactions are commonly referred to as Langmuir-
Hinshelwood mechanisms.

Assuming that all relevant surface layer reactions can
be described by quasi-elementary steps following first- or
second-order kinetics, the following generalized expressions
can be used to describe net chemical production (i.e. pro-
duction minus loss) of surface species Xi or Yj by reactions
within the sorption layer (Ps,s,Xi −Ls,s,Xi), between sorp-
tion layer and quasi-static surface layer (Ps,ss,Xi −Ls,ss,Xi ,
Pss,s,Yj −Lss,s,Yj ), and within the quasi-static surface layer
(Pss,ss,Yj −Lss,ss,Yj ).

Ps,s,Xi − Ls,s,Xi =

∑
v

∑
p

cSLRv,s,Xi [Xp]s(
kSLRv,Xp +

∑
q

kSLRv,Xp,Xq [Xq ]s

)
(44)

Ps,ss,Xi − Ls,ss,Xi =

∑
v

∑
p

∑
q

cSLRv,s,Xi kSLRv,Xp,Yq

[Xp]s [Yq ]ss (45)

Pss,ss,Yj − Lss,ss,Yj =

∑
v

∑
p

cSLRv,ss,Yj [Yp]ss
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kSLRv,Yp +

∑
q

kSLRv,Yp,Yq [Yq ]ss

)
(46)

Pss,s,Yj − Lss,s,Yj =

∑
v

∑
p

∑
q

cSLRv,ss,Yj kSLRv,Xp,Yq

[Xp]s [Yq ]ss (47)

Here cSLRv,s,Xi and cSLRv,ss,Yj stand for the stoichiomet-
ric coefficients (negative for starting materials and positive
for reaction products) of species Xi and Yj in reaction
SLRv; v = 1, . . . ,vmax in a system with a total number of
vmax (photo-)chemical reactions occurring on the surface of
the investigated aerosol particles.kSLRv,Xp,Yq , kSLRv,Xp,Xq,

andkSLRv,Yp,Yq are second-order reaction rate coefficients;
kSLRv,Xp and kSLRv,Yq are first-order reaction rate coeffi-
cients, including photolysis frequencies (j -values).

In principle, higher-order reactions might also occur in
real systems and could be flexibly included in Eqs. (44)–(47).
In analogy to the description of complex gas phase reactions
in atmospheric chemistry, however, it should be possible to
avoid excessive complexity and diversity of rate equations
and to describe such reactions by formal first- or second-
order rate equations with appropriate rate coefficients reflect-
ing the influence of additional species (third-body reactions;
Atkinson et al., 2004).

3.3.3 Surface-bulk reactions

The term surface-bulk reaction is reserved for elementary
reactions between species in the quasi-static surface layer
and in the near-surface particle bulk. For simplicity we as-
sume that potential surface-bulk reactions proceed via quasi-
elementary steps with straightforward second-order rate-
dependence on the surface concentration of the reactant in
the quasi-static surface layer and on the volume concentra-
tion of the involved species in the near-surface particle bulk.

Under these conditions the following generalized expres-
sion can be used to describe net chemical production of
quasi-static surface layer species Yj by surface-bulk reac-
tions (Pss,b,Yj−Lss,b,Yj ):

Pss,b,Yj − Lss,b,Yj =

∑
w

∑
p

cSBRw,ss,Yj [Yp]ss(∑
q

kSBRw,Yp,Yq [Yq ]bs+
∑

r

kSBRw,Yp,Xr [Xr ]bs

)
(48)

cSBRw,s,Yj stands for the stoichiometric coefficient (nega-
tive for starting materials and positive for reaction products)
of surface species Yj in the surface bulk reaction SBRw;
w = 1, . . . ,wmax in a system with a total number ofwmax
chemical reactions occurring between surface species and
underlying condensed phase species on the surface of the in-
vestigated aerosol particles. [Yj ]b,s or [Xi ]b,s are the volume
concentrations of Yj and Xi in the near-surface particle bulk

(number per unit volume), andkSBRw,Yp,YqandkSBRw,Yp,Xr

are the second-order rate coefficients.
On the other hand, the net chemical production of Xi and

Yj in the near-surface particle bulk due to surface-bulk reac-
tions can be described by

Pb,ss,Yj − Lb,ss,Yj =

∑
w

∑
p

cSBRw,b,Yj [Yp]ss(∑
q

kSBRw,Yp,Yq [Yq ]bs+
∑

r

kSBRw,Yp,Xr [Xr ]bs

)
(49)

Pb,ss,Xi − Lb,ss,Xi =

∑
w

∑
p

cSBRw,b,Xi [Yp]ss(∑
q

kSBRw,Yp,Yq [Yq ]bs+
∑

r

kSBRw,Yp,Xr [Xr ]bs

)
(50)

cSBRw,b,Xi andcSBRw,b,Yj stand for the stoichiometric coef-
ficients (negative for starting materials and positive for re-
action products) of near-surface bulk species Xi and Yj in
the surface-bulk reaction SBRw. For highly dynamic sur-
faces with rapid surface-bulk mass transport (low-viscosity
liquid droplets with high molecular diffusivity and/or tur-
bulent mixing), surface-bulk reactions can probably be ne-
glected under most conditions. For non-volatile solid parti-
cles, however, they may play a significant role in the chemi-
cal aging of the surface and near-surface particle bulk.

3.3.4 Overall chemical production and loss of surface layer
components

For conciseness, gross production and loss have not been
separated in the above generalized rate equations for gas-
surface, surface layer and surface-bulk reactions. For some
considerations, however, this separation may be useful and it
is easy to achieve by separate summation of the reaction rate
terms with positive stoichiometric coefficients (production)
and with negative stoichiometric coefficients (loss). Accord-
ingly, the overall flux densities of gross chemical production
and loss of adsorbed molecules Xi in the sorption layer and
of non-volatile particle components Yj in the quasi-static
surface layer, respectively, can be expressed as follows:

Ps,Xi = Ps,g,Xi + Ps,s,Xi + Ps,ss,Xi (51)

Ls,Xi = Ls,g,Xi + Ls,s,Xi + Ls,ss,Xi (52)

Pss,Yj = Pss,g,Yj + Pss,s,Yj + Pss,ss,Yj + Pss,b,Yj (53)

Lss,Yj = Lss,g,Yj + Lss,s,Yj + Lss,ss,Yj + Lss,b,Yj (54)

To describe the influence of chemical reactions at the surface
on the composition and mass balance of an aerosol particle
surface, Eqs. (51)–(54) have to be inserted in Eqs. (28) and
(29). Some of the reaction pathways and flux densities, how-
ever, which have been included for completeness and con-
sistency of the above generalized rate expressions, are ex-
pected to be negligible under most atmospherically relevant
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conditions and will not be taken into account in the remainder
of this manuscript (e.g.Pss,ss,Yj , Pb,ss,Yj , Lb,ss,Yj , Pb,ss,Xi ,
Lb,ss,Xi).

3.4 Surface-bulk mass transport

3.4.1 Transfer of volatile species between sorption layer
and near-surface particle bulk

For the mass transport of volatile species Xi between the
sorption layer and near-surface particle bulk (solvation and
desolvation, respectively), we assume a first-order depen-
dence on sorption layer and near-surface bulk concentration,
respectively:

Js,b,Xi = ks,b,Xi [Xi]s (55)

Jb,s,Xi = kb,s,Xi [Xi]bs (56)

The surface-to-bulk transfer rate coefficientks,b,Xi can be
regarded as the inverse of the surface-bulk exchange life-
time, τs,b,Xi , i.e. the mean residence time of the investigated
species at the surface in the absence of chemical reaction and
desorption. τs,b,Xi is expected to decrease with increasing
dynamic variability of the quasi-static surface and with de-
creasing viscosity of the near-surface particle bulk. In anal-
ogy to the desorption lifetime, the influence of the chemi-
cal composition of the quasi-static surface and near-surface
particle bulk on the surface-bulk exchange lifetime could be
taken into account by describingτs,b,Xi as a linear combi-
nation of the residence times that would be observed on pure
substrates made up by the chemical components of the actual
surface and near-surface particle bulk (in analogy to Eqs. 35–
37). Moreover, the cluster-nucleation model proposed by
Davidovits et al. (1991) and similar approaches of describing
surface-to-bulk transfer could be used to determine and pa-
rameterizeks,b,Xi (Remorov and Bardwell, 2005; Remorov
and George, 2006).

The bulk-to-surface transfer rate coefficientkb,s,Xi has di-
mensions of unit length per unit time and can be regarded as
a transfer velocity, analogous to the deposition velocity (ad-
sorption rate coefficientka,Xi) on the gas phase side. It is
expected to be negligibly small for solid non-volatile materi-
als and to increase with increasing mobility of Xi in the con-
densed phase. Based on kinetic theory of condensed phases
and on the diffusion coefficient of Xi in the near-surface
particle bulk, it should be possible to estimate the magni-
tude of kb,s,Xi for different types of particles. A detailed
discussion of this aspect, however, is beyond the scope of
this paper, which is focused on surface reactivity rather than
surface-bulk mass transport. As for the rate coefficients de-
fined above, linear dependences on surface and near-surface
bulk composition could be accounted for by linear combina-
tion of the inverse rate coefficients that would be observed
on pure substrates made up by the chemical components of
the actual surface and near-surface particle bulk (in analogy
to Eqs. 35–37).

3.4.2 Mass transport of non-volatile particle components
between quasi-static surface layer and near-surface
particle bulk

Mass transport of chemical species between the quasi-static
surface layer and the near-surface particle bulk, i.e. con-
version of surface species into near-surface particle bulk
species and vice versa, can proceed via two mechanisms:
(a) coverage or exposure of near-surface bulk species by
reactive transformation and size changes of the overlying
quasi-static surface layer species (e.g. addition or loss of
functional groups, partial volatilization); and (b) mutual
exchange between surface and near-surface bulk species by
thermal motion. We denote the transfer fluxes corresponding
to the different mechanisms byJss,b,rx,Yj and Jb,ss,rx,Yj

(reactive transformation) and byJss,b,ex,Yj and Jb,ss,ex,Yj

(exchange), respectively.

a) Reactive transformation

Chemical transformations changing the molecular size
of particle components in the quasi-static surface layer (e.g.
addition or loss of functional groups, volatilization) will
generally lead to the coverage of neighboring surface species
or to the exposure of previously underlying near-surface
bulk species. The overall process can be described by a
pseudo-first-order “quasi-static surface transformation rate
coefficient” kss,rx calculated from the net production and
effective cross section of all quasi-static surface species Yp:

kss,rx =
∑
p

(Pss,Yp − Lss,Yp) σYp (57)

Negative values ofkss,rx describe the exposure of near-
surface bulk species to the gas phase or sorption layer, which
implies their transfer from the near-surface bulk to the quasi-
static surface,Jss,b,rx,Yj . Positive values ofkss,rx, on the
other hand, describe the coverage of surface species which
implies their transfer from the quasi-static surface to the near-
surface particle bulk,Jb,ss,rx,Yj .

By multiplication of the surface transformation rate coef-
ficient with the surface concentration [Yj ]ssor with the near-
surface bulk mole fraction and effective cross section of a
non-volatile particle component Yj , respectively, the corre-
sponding surface-bulk mass transport fluxes can be approxi-
mated as follows:

Jss,b,rx,Yj =
kss,rx +

∣∣kss,rx
∣∣

2
[Yj ]ss= kss,b,rx,Yj [Yj ]ss (58)

Jb,ss,rx,Yj =

∣∣kss,rx
∣∣− kss,rx

2

φYj/σYj∑
p

φYp/σYp

σ−1
Yj

=

∣∣kss,rx
∣∣− kss,rx

2

1

σ 2
Yj

∑
p

[Yp]bs
∑
p

φYp/σYp

[Yj ]bs

= kb,ss,rx,Yj [Yj ]bs (59)
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In Eq. (59)φYq stands for the mole fraction of Yq in the
near-surface particle bulk. If mass or volume fraction are
used instead, the number concentrations [Yp]bs have to be
scaled by molar mass or partial molar volume, respectively.
kb,ss,rx,Yj and kss,b,rx,Yj are the pseudo-first-order rate
coefficients for reactive bulk-to-surface and surface-to-bulk
transfer of Yj , respectively.

b) Mutual exchange

In analogy to the surface-bulk mass transport of volatile
species, we assume that the mass transport fluxes of
non-volatile particle components Yj exhibit a first-order
dependence on their surface and near-surface bulk concen-
trations, respectively:

Jss,b,ex,Yj = kss,b,ex,Yj [Yj ]ss (60)

Jb,ss,ex,Yj = kb,ss,ex,Yj [Yj ]bs (61)

Again, the transfer rate coefficients can be expected to in-
crease with increasing dynamic variability of the quasi-static
surface and with decreasing viscosity of the near-surface par-
ticle bulk. Linear dependences on surface and near-surface
bulk composition could be accounted for by linear combina-
tion of the inverse rate coefficients for pure substrates.

In contrast to the mass transport of volatile species be-
tween bulk and sorption layer, however, the mutual exchange
of non-volatile species between quasi-static surface layer and
near-surface particle bulk has to be balanced at all times be-
cause

∑
q

θss,Yq =1 by definition, i.e. the quasi-static surface

has to be a monomolecular layer (Sect. 3.1, Eq. 36).
Since precise values for the transfer rate coefficients of

all species present in real aerosol particles will hardly ever
be available, practical application of Eqs. (60) and (61)
for a comprehensive description of surface-bulk exchange
will require a self-consistent normalisation formalism. The
normalisation could be achieved in analogy to Eqs. (58)
and (59) using an overall exchange rate coefficient instead
of the transformation rate coefficient. The magnitude of
such an overall exchange rate coefficient or of individual
exchange rate coefficients for different species and different
types of particles could be estimated based on diffusion
coefficients and kinetic theory of condensed phases. A
detailed discussion of this issue, however, is beyond the
scope of this framework paper.

c) Overall transfer fluxes

Combining the above equations describing the two dif-
ferent transfer mechanisms, the overall transfer fluxes of
non-volatile species Yj between the quasi-static surface
layer and the near-surface particle bulk,Jss,b,Yj andJb,ss,Yj

can be expressed as

Jss,b,Yj = Jss,b,rx,Yj + Jss,b,ex,Yj = kss,b,Yj [Yj ]ss (62)

Jb,ss,Yj = Jb,ss,rx,Yj + Jb,ss,ex,Yj = kb,ss,Yj [Yj ]bs (63)

With pseudo-first-order transfer rate coefficients

kss,b,Yj = kss,b,rx,Yj + kss,b,ex,Yj (64)

and

kb,ss,Yj = kb,ss,rx,Yj + kb,ss,ex,Yj (65)

3.5 Bulk reactivity and solubility

As outlined in Sects. 3.1–3.4 the concentrations of Xi and
Yj in the near-surface particle bulk, [Xi ]bs and [Yj ]bs, can
influence the interaction between gas and surface molecules
and can be changed by surface-bulk mass transport and reac-
tions. On the other hand, the composition of the near-surface
particle bulk is influenced by transport, solubility, and chem-
ical reaction in the particle bulk, which will generally change
over time (solubility saturation, depletion of reaction partners
and change of diffusion coefficients due to chemical aging).

A detailed discussion of physicochemical processes within
the particle bulk is beyond the scope of this paper, which is
focused on aerosol surface chemistry. Here we just include
a couple of special cases which are also considered in tradi-
tional resistor model formulations.

3.5.1 Chemical reaction

Under steady-state conditions and if surface-bulk reactions
are negligible, the net mass transport flux of Xi from the
surface to the near-surface particle bulk,Js,b,net,Xi , can be
matched with the so-called reacto-diffusive flux of Xi in the
particle bulk,Jb,rd,Xi :

Js,b,net,Xi = Js,b,Xi − Jb,s,Xi = Jb,rd,Xi (66)

Jb,rd,Xi is the flux of Xi from the near-surface particle bulk
towards the particle core which is driven by the consumption
of Xi through chemical reaction. Assuming spherical geom-
etry, a uniform pseudo-first-order loss rate coefficientkb,Xi ,
and a uniform diffusion coefficientDb,Xi of Xi in the particle
bulk, the reacto-diffusive flux can be expressed as (Hanson,
1997):

Jb,rd,Xi = Cb,rd,Xi

√
kb,XiDb,Xi [Xi]bs (67)

Cb,rd,Xi is the reacto-diffusive geometry correction factor
(conversion from planar to spherical geometry) which is de-
termined by the particle radius,rp, and the so called reacto-
diffusive length for species Xi , lrd,Xi = (Db,Xi /kb,Xi)

1/2:

Cb,rd,Xi = coth

(
rp

lrd,Xi

)
−

lrd,Xi

rp
(68)

According to Eqs. (66), (67), (55), and (56) the concentration
ratio [Xi ]bs/[X i ]s under steady-state conditions is given by

[Xi]bs

[Xi]s
=

ks,b,Xi

kb,s,Xi + Cb,rd,Xi

√
kb,XiDb,Xi

(69)
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and the net flux of surface-to-bulk mass transport can be ex-
pressed as a function of [Xi ]s and a pseudo-first-order trans-
fer rate coefficientks,b,net,Xi :

Js,b,net,Xi = ks,b,net,Xi [Xi]s (70)

ks,b,net,Xi =
ks,b,Xi Cb,rd,Xi

√
kb,Xi Db,Xi

kb,s,Xi + Cb,rd,Xi

√
kb,Xi Db,Xi

= ks,b,Xi

(
1+

kb,sXi

Cb,rd,Xi

√
kb,XiDb,Xi

)−1

(71)

Formalisms for the description of reactive transformation
of the particle bulk composition by diffusion and chemical
reaction as a function of gas-particle interaction time have
been presented and applied in recent studies (Worsnop et al.,
2002; Smith et al., 2002, 2003). Again, a detailed discus-
sion of such processes is beyond the scope of this paper, but
it should be possible to flexibly include such formalisms in
the model framework presented here. In fact, it is certainly
more straightforward to include additional processes in the
flux-based kinetic model framework presented here than in
the traditional resistor model.

3.5.2 Dissolution

Under mass transport equilibrium conditions (negligible
chemical loss and production) the rate coefficients of gas-
surface and surface-bulk transport can be combined to ob-
tain the solubility or gas-particle partitioning coefficient,
Ksol,cp,Xi , which describes the partitioning of a volatile
species between gas phase and condensed phase (particle
bulk). At infinite dilution, i.e. for ideal or at least highly
dilute solutions,Ksol,cp,Xi equals the Henry’s law coefficient
for Xi in the investigated condensed phase,Hcp,Xi . Solu-
bilities or Henry’s law coefficients are mostly reported as
amount-of-substance concentrations in the condensed phase
per unit partial pressure in the gas phase (index “cp”; Sander,
1999). By multiplication with the gas constant and tem-
perature, they can be converted into dimensionless ratios of
condensed phase and gas phase concentrations (index “cc”;
Sander, 1999):

Ksol,cc,Xi = Ksol,cp,Xi R T = [Xi]b,sat/[Xi]g,sat (72)

[X i ]b,sat and [Xi ]g,sat are the equilibrium or solubility satu-
ration number concentrations of Xi in the condensed phase
(particle bulk) and in the gas phase, respectively. Mass
balance implies thatks,b,Xi [X i ]s,sat= kb,s,Xi [X i ]b,sat and
kd,Xi [X i ]s,sat= ka,Xi [X i ]g,sat, which leads to

Ksol,cc,Xi =
ks,b,Xi

kb,s,Xi

ka,Xi

kd,Xi

=
ks,b,Xi

kb,s,Xi

αs,Xi ωXi

4kd,Xi

(73)

Equation (73) is equivalent to an expression previously de-
rived by Hanson (1997), who also pointed out that the frac-
tional surface coverage has to be taken into account in case of

Langmuir-type adsorption with significant surface coverage
but did not explicitly follow up on the implications. The di-
rect proportionality betweenKsol,cc,Xi and αs,Xi , however,
implies a gas phase composition dependence of the solu-
bility, becauseαs,Xi decreases with increasing surface and
gas phase concentration of all competitively co-adsorbing
species. A comparable treatment of the equilibrium between
gas, interface and bulk has also been presented by Donaldson
(1999). This effect limits the applicability of solubilities or
Henry’s law coefficients determined for highly dilute solu-
tions ([Xi ]b≈0, θS≈0, αs,Xi ≈αs,0,Xi , Ksol,cc,Xi ≈Hcc,Xi).
Surface saturation effects are expected to be important at el-
evated concentration levels and for viscous liquids with slow
surface-bulk mass transport (e.g. liquid organic droplets or
particle coatings; Marcolli et al., 2004). They may also
affect aqueous droplets contaminated with organic surfac-
tants (Djikaev and Tabazadeh, 2003; Shunthirasingham et
al., 2007). For such systemsKsol,cc,Xi and Ksol,cp,Xi , re-
spectively, have to be deconvoluted into the underlying gas-
surface and surface-bulk exchange rate coefficients in order
to allow reliable application and extrapolation of solubilities
or Henry’s law coefficients to varying conditions in the atmo-
sphere or in laboratory experiments. Exemplary calculations
of Ksol,cc,Xi as a function of [Xi ]g, αs,0,Xi , kd,Xi , ks,b,Xi , and
kb,s,Xi as well as the time dependence of solubility-driven,
non-reactive gas uptake into liquids are illustrated in a com-
panion paper (Ammann and Pöschl, 2007). Note that the
concentration dependence following from the kinetic model
of gas-particle partitioning is consistent with the thermody-
namic approach of correcting Henry’s law (limiting case for
dilute solutions) by activity coefficients for concentrated so-
lutions.

3.6 Overall gas uptake

Based on Eqs. (15) and (29) the overall flux of net uptake of a
volatile species Xi by the condensed phase can be described
by

Jnet,Xi = Jads,Xi − Jdes,Xi + Lg,gsr,Xi − Pg,gsr,Xi (74)

with

Jads,Xi − Jdes,Xi = d[Xi]s/dt − (Ps,Xi − Ls,Xi)

−(Jb,s,Xi − Js,b,Xi) (75)

Accordingly, the uptake coefficient can be expressed as

γXi = γsor,Xi + γgsr,Xi (76)

with

γsor,Xi =
Jads,Xi − Jdes,Xi

Jcoll,Xi

(77)

γgsr,Xi =
Lg,gsr,Xi − Pg,gsr,Xi

Jcoll,Xi
(78)
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Fig. 4. Double-layer surface model compartments and transport
fluxes for semivolatile species Zk .

The “sorption uptake coefficient”,γsor,Xi , and the “gas-
surface reaction uptake coefficient”,γgsr,Xi , are limited to
γsor,Xi ≤αs,Xi ≤1, γgsr,Xi ≤1, andγsor,Xi +γgsr,Xi ≤1, re-
spectively. For values≥0, these uptake coefficients can
be regarded as the probabilities that a collision of Xi with
the surface leads to net uptake of Xi by adsorption (sur-
face accommodation) and subsequent accumulation or re-
active consumption at the surface or in the bulk of the
particle (γsor,Xi), or by elementary gas-surface reactions
(γgsr,Xi), respectively. Neitherγsor,Xi nor γgsr,Xi , however,
describe the probability for individual gas molecules Xi col-
liding with the surface to be taken up by or react with
the condensed phase. In fact,γsor,Xi and γgsr,Xi can as-
sume negative values if the particle acts as a source of Xi

(Jdes,Xi +Pg,gsr,Xi > Jads,Xi +Lg,gsr,Xi), while at the same
time the probability for an individual molecule colliding with
the surface to be lost from the gas phase may still be larger
than zero.

The probabilities for individual gas molecules colliding
with the surface to be adsorbed or react at the surface are
given by the following terms:αs,Xi for adsorption (surface
accommodation),Lg,gsr,Xi /Jcoll,Xi for elementary gas sur-
face reactions, and (αs,Xi Ls,Xi)/(Ls,Xi+Jdes,Xi+Js,b,Xi) for
adsorption and subsequent surface layer reaction. The prob-
ability for a gas molecule colliding with the surface to enter
the bulk of the particle is given by:

αb,Xi = αs,Xi

Js,b,Xi

Js,b,Xi + Jdes,Xi + Ls,Xi

(79)

In the atmospheric chemistry literature, the probability for a
gas molecule colliding with the surface to enter the bulk of
the particle has usually been designated as the “mass accom-
modation coefficient” with the symbolαXi , but we propose
to use the term “bulk accommodation coefficient” and sym-
bol αb,Xi instead. The proposed terminology shall help to
avoid confusing the overall process of mass transport across
the gas-particle interface, i.e. from the (near-surface) gas
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Fig. 5. Classification of chemical reactions between semivolatile
species at the surface.

phase onto the particle surface and further into the (near-
surface) particle bulk (“bulk accommodation” characterised
by αb,Xi), with its first (quasi-)elementary step (“surface
accommodation” characterised byαs,Xi). This distinction
is particularly important for the understanding of heteroge-
neous chemical reactions and surface saturation effects as de-
tailed below. Especially for the treatment of processes at ice
surfaces, these definitions have not been used in a consistent
way (e.g., Huthwelker et al., 2006; and references therein).
Note thatαs,Xi is the maximum value forαb,Xi as well as for
γsor,Xi but not forγXi andγgsr,Xi , which can exceedαs,Xi in
case of significant gas-surface reactions.

In the final version of this paper we have chosen the
symbolsαs,Xi andαb,Xi for surface and bulk accommoda-
tion coefficients, respectively, in order to maximize the self-
consistency of terminology (greek letters for all quantities
normalized by the gas kinetic flux) and to minimize the
potential for confusion with related but differently defined
quantities in surface science (sticking vs. trapping probabili-
ties; Sect. 3.2).

Note, however, that we had used the alternative symbols
SXi and αXi in the preceding discussion paper (Pöschl et
al., 2005a) to emphasize the compatibility with earlier sur-
face reaction studies in atmospheric science (e.g. Hanson,
1997; Worsnop, 2002; Ammann et al., 2003; Reid and Sayer,
2003; Rudich, 2003; Huthwelker et al., 2006; and references
therein). For convenience and ease of comparison, both vari-
ants are included in the list of symbols (Appendix A).

The development of the model framework presented here
has been targeted primarily at the description of aerosol
surface chemistry. Nevertheless Eqs. (74) to (79) are
equally applicable to systems where the rate of gas up-
take is dominated by particle bulk processes (e.g. liquid
droplets with reactive bulk components and highly dynamic
surfaces). In such cases, the above relations simplify to
γXi ≈ γsor,Xi ≈ (Js,b,Xi − Jb,s,Xi)/Jcoll,Xi and αb,Xi ≈αs,Xi

as discussed below and illustrated with exemplary model cal-
culations in a companion paper (Ammann and Pöschl, 2007).
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3.7 Semivolatile species and condensation/evaporation

Semivolatile chemical species,Zk, could be described and
flexibly included in the double-layer model framework out-
lined above with the following relations:

Zk(gs)

Jads,Zk
−→

←−
Jdes,Zk

Zk(s)

Js,ss,Zk
−→

←−
Jss,s,Zk

Zk(ss)

Jss,b,Zk
−→

←−
Jb,ss,Zk

Zk(bs)

(80)

d[Zk]s/dt = Jads,Zk − Jdes,Zk + Ps,Zk − Ls,Zk

+Jss,s,Zk − Js,ss,Zk (81)

d[Zk]ss/dt = Js,ss,Zk − Jss,s,Zk + Pss,Zk − Lss,Zk

+Jb,ss,Zk − Jss,b,Zk (82)

[Zk]s and [Zk]ss are the concentrations of Zk in the sorption
layer and quasi-static surface layer, respectively (number per
unit area).Jss,s,Zk andJs,ss,Zk are the flux densities of mass
transport from the quasi-static surface layer to the sorption
layer and vice versa (number per unit area and unit time).
All other flux densities on the right hand side of Eqs. (81) and
(82) are analogous to those described above for volatile and
non-volatile species. The relevant processes are illustrated in
Figs. 4 (transport) and 5 (chemical reaction).

Equations (80)–(82) should allow to describe also multi-
layer adsorption (Vinokurov and Kankare, 2002) and bulk
condensation or evaporation within the presented kinetic
model framework. In the sorption layer, Zk would competi-
tively inhibit the adsorption of other semivolatile or volatile
species as described for Xi in Sect. 3.2. In the quasi-static
surface layer, on the other hand, Zk would provide sorp-
tion sites (area) for gas molecules. The extent to which a
semivolatile species at the particle surface acts as an adsor-
bate species or as a quasi-static surface component, i.e. its
effective volatility and gas-particle partitioning, could be de-
scribed by the ratio of the rate parameters governing the re-
versible transfer of Zk between the two surface layers. Trans-
fer from the quasi-static surface layer to the sorption layer is
a (formal) kinetic step which can be pictured as a thermal ac-
tivation process transforming a quasi-static surface compo-
nent (with relatively low potential energy) into an adsorbate
species (with relatively high potential energy) which can ei-
ther desorb into the gas phase or return to the quasi-static
surface (thermal deactivation).

In principle, all species of aerosol and cloud systems could
be treated as semivolatile species Zk, the distinction between
volatile species Xi and non-volatile species Yj could be
abandoned, and formalisms for the calculation of the flux
terms on the right hand side of Eqs. (81) and (82) could
be developed in analogy to the formalisms for volatile and
non-volatile species presented above.Jss,s,Zk and Js,ss,Zk

could be described in a similar way asJb,ss,Yj andJss,b,Yj

(Sect. 3.4.2). A detailed description of semivolatile species,

multilayer adsorption, and bulk condensation or evaporation
is, however, beyond the scope of this manuscript.

For particles consisting of a semivolatile main component
at steady-state (e.g. H2O in liquid or solid cloud particles),
the effects of continuous surface regeneration by condensa-
tion and evaporation of the semivolatile main component can
be convoluted into the effective rate parameters describing
the mass transport of volatile trace species across the gas-
particle interface, and the semivolatile main particle compo-
nent can be regarded as quasi-non-volatile. In fact, this is an
implicit assumption of the traditional resistor model for the
interaction of reactive trace gases with cloud droplets.

4 Model application and special cases

4.1 Composition and time dependence

The flux formalism and rate equations presented above al-
low to describe mass transport, chemical reaction and chang-
ing chemical composition in aerosol and cloud systems with
multiple chemical species and competitive processes under
transient conditions. For such systems the surface mass bal-
ance equations given in Sect. 3.1 lead to a set of coupled
differential equations. These can be solved numerically by
inserting the rate equations given in Sects. 3.2–3.5 or alter-
native/complementary mathematical descriptions of the in-
volved physicochemical processes, provided that the initial
concentrations and relevant mass transport and reaction rate
coefficients are known or can be reasonably estimated. Ex-
emplary practical applications and model calculations will
be presented in a companion paper (Ammann and Pöschl,
2007).

In the rate equations of Sect. 3 gas phase diffusion effects
are implicitly taken into account by considering gas phase
concentrations close to the surface, [Xi ]gs, rather than aver-
age gas phase concentrations, [Xi ]g. As outlined in Sect. 2,
[X i ]gs can be calculated by multiplication of [Xi ]g with the
gas phase diffusion correction factorCg,Xi which is deter-
mined by the uptake coefficientγXi and the Knudsen number
KnXi .

For consistent analysis and interpretation of kinetic mea-
surement data of aerosol and cloud surface chemistry and
gas-particle interactions, and for their application and ex-
trapolation in atmospheric models, it is important to rec-
ognize the (potential) dependence of rate parameters on the
composition of the investigated system. In this respect, the
rate parameters introduced in the presented model framework
(above and in the following sections) can be classified as fol-
lows:

1. Rate parameters which can be influenced by the
gas phase, double-layer surface, and particle bulk
composition of the investigated aerosol (alpha-
betical order): αb,Xi , αs,Xi , γXi , γeff,Xi , γgsr,Xi ,
γsor,Xi , 0b,Xi , 0g,Xi , 0s,Xi , 0s,b,Xi , Cg,Xi , ka,Xi ,
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kb,ss,rx,Yj , kb,ss,Yj , kg,p,Xi , kss,rx, kss,b,rx,Yj , kss,b,Yj ,
ks,Xi, ks,g,Xi, ks,s,Xi, kss,Yj , kss,g,Yj , kss,s,Yj , K

′

ads,Xi ,
Ksol,cc,Xi , Ksol,cp,Xi .

2. Rate parameters which are assumed to be independent
of gas phase and sorption layer composition but can be
influenced by the quasi-static surface layer and near-
surface particle bulk composition:αs,0,Xi , γGSRu,Xi,Xp,
γGSRu,Xi,Yq , τd,Xi , τs,b,Xi , Hcc,Xi , Hcp,Xi , ka,0,Xi ,
kd,Xi , kb,s,Xi , kb,ss,ex,Yj , ks,b,Xi , ks,b,net,Xi , kss,b,ex,Yj ,
ks,ss,Xi, kss,ss,Yj , kSLRv,Xp, kSLRv,Yp, kSLRv,Xp,Xq ,
kSLRv,Xp,Yq , kSLRv,Yp,Yq , kSBRw,Yp,Xr , kSBRw,Yp,Yq ,
Kads,Xi .

3. Rate parameters which are assumed to be indepen-
dent of double-layer surface composition but depend
on gas phase or particle bulk composition, respectively:
Cb,rd,Xi , Db,Xi , Dg,Xi , kb,Xi , lrd,Xi .

Characteristic composition dependences, in particular the ef-
fects of varying gas phase concentrations, are illustrated in a
companion paper (Ammann and Pöschl, 2007).

In transient systems, composition-dependent rate param-
eters are likely to exhibit pronounced time dependences,
which may vary with the chemical nature and physical state
of the aerosol and its components. Exemplary temporal evo-
lutions of aerosol surface composition and rate parameters
are illustrated in a companion paper (Ammann and Pöschl,
2007).

4.2 Temperature dependence and heat transfer

Of course the rate parameters of mass transport and chem-
ical reaction introduced above will exhibit more or less
pronounced temperature dependences, which can be de-
scribed by appropriate mathematical formalisms like Ar-
rhenius equations. This approach has already been intro-
duced and applied for the description of selected adsorp-
tion and reaction processes in stratospheric aerosols at differ-
ent temperatures (Elliott et al., 1991; Tabazadeh and Turco,
1993; Mozurkevich, 1993; Carslaw and Peter, unpublished
manuscript, 1997), and for specific systems the required ther-
mochemical data are available in the scientific literature of
physical chemistry and chemical engineering (e.g. Masel,
1996; and references therein). For detailed and reliable mod-
els of atmospheric aerosol chemistry the temperature depen-
dences of rate parameters will have to be further explored
and characterized in analogy to atmospheric gas phase re-
action rate coefficients (Sander et al., 2002; Atkinson et al.,
2004). Appropriate formalisms and parameters (Arrhenius
equations and activation energies, etc.) can be flexibly in-
cluded in the presented model framework, but a detailed
treatment of this aspect would go beyond the scope of this
paper.

As pointed out in the interactive public discussion of our
manuscript (P̈oschl et al., 2005a, b, c), the development and

presentation of the proposed model framework have been fo-
cussed on consistent description of aerosol and cloud surface
chemistry and gas-particle interactions of reactive trace sub-
stances, rather than on phase transitions of major gas phase
and particle components with substantial uptake/release of
latent heat (bulk condensation or evaporation, melting or
freezing). Nevertheless, the uptake/release of latent heat
upon adsorption/desorption, condensation/evaporation, mix-
ing/dissolution, solvatation/segregation, etc. as well as the
transport of sensible heat in the gas phase, across the inter-
face, and in the particle bulk can be flexibly added by com-
plementing the presented mass balance, mass transport, and
reaction rate equations with analogous energy balance and
heat flux equations. Based on the heat capacities and con-
ductivities of the particles and gas phase in the investigated
aerosol or cloud system, the uptake or release of heat can
be translated into a temperature change, which in turn can
be taken into account in the determination of temperature-
dependent kinetic parameters (Arrhenius equations, etc.).

For example, the release and transport of heat during gas-
liquid condensation of water could be captured with the for-
malism outlined by Winkler et al. (2004), using a “thermal
accommodation coefficient” (αt) to describe the efficiency of
energy equilibration between impinging gas molecules and
particle surface. In agreement with Winkler et al. (2004), but
going beyond their treatment of a simple non-reactive sys-
tem, we emphasize the need for a clear distinction of the
processes and coefficients of thermal accommodation (heat
transfer), surface accommodation (adsorption), and bulk ac-
commodation (absorption) of gas molecules by an aerosol or
cloud particle. Even if the values of these coefficients are
likely to be (near-)identical and close to unity for many at-
mospherically relevant conditions, species, and systems such
as warm water clouds (αt,Xi ≈αs,Xi ≈αb,Xi ≈1; Laaksonen
et al., 2005; Garrett et al., 2006; Winkler et al., 2006), the
underlying processes should not be confused (see Sect. 4.6).

In any case, heat transfer and related temperature changes
can be included in the proposed kinetic model framework
without necessitating a modification of the terminology and
formalisms presented in this paper. A detailed treatment of
these aspects would, however, go beyond the scope of this
paper.

4.3 Special mechanisms and conditions

When only reversible adsorption and surface layer reactions
of volatile species but no gas-surface and surface bulk
reactions or surface-bulk transfer are considered (Pg,gsr,Xi =

Lg,gsr,Xi = Ps,g,Xi = Ls,g,Xi = Jb,s,Xi = Js,b,Xi = 0),
the formalisms outlined above are equivalent to classi-
cal Langmuir-Hinshelwood reaction mechanisms. If, on
the other hand, only elementary gas-surface reactions of
volatile species but no surface-layer reactions and surface-
bulk reactions or surface-bulk transfer are considered
(Ps,s,Xi =Ls,s,Xi =Ps,ss,Xi =Ls,ss,Xi = Jb,s,Xi = Js,b,Xi = 0),
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they are equivalent to classical Eley-Rideal reaction mecha-
nisms. For these two types of reaction mechanisms a wide
range of special cases with different rate limiting steps
(adsorption, desorption, or chemical reaction) and different
types of interacting species have been described in the scien-
tific literature of chemical engineering and catalysis (Masel,
1996). The rate equations for chemical surface reactions
following these mechanistic schemes can be readily inserted
into the presented model framework.

Characteristic effects of reversible adsorption and particle
aging on the concentration- and time-dependence of uptake
coefficients in simple Langmuir-Hinshelwood reaction sys-
tems have already been presented by Ammann et al. (2003).
Further exemplary model systems and calculations involv-
ing multiple chemical species, reactions, and mass transport
processes under transient and steady-state conditions are pre-
sented and discussed in a companion paper (Ammann and
Pöschl, 2007).

In the following sections we present rate equations and
equivalent resistor model formulations derived from the gen-
eral formalisms presented above for several special cases
involving reversible adsorption and reactions at the parti-
cle surface as well as surface-bulk transfer processes un-
der (quasi-)steady-state conditions. They are based on the
assumption of constant gas phase and particle composition
(quasi-steady-state approximation, QSSA), which is gener-
ally applicable to describe chemical kinetics on short time-
scales and can be extended to longer time-scales by iterative
calculations as illustrated in a companion paper (Ammann
and P̈oschl, 2007).

In Sect. 4.4 we consider “adsorption equilibrium” condi-
tions where the surface concentration of volatile species is
determined by reversible adsorption which proceeds much
faster and can be regarded as fully decoupled from all other
involved processes. In Sect. 4.5 we consider “adsorption-
reaction steady-state” conditions where the surface concen-
tration of volatile species is determined by reversible adsorp-
tion, surface reactions, and surface-bulk exchange which pro-
ceed at rates of comparable magnitude and have to be treated
as coupled processes. In Sect. 4.6 we consider systems which
are dominated by “bulk absorption or condensation”, and
where it will normally not be necessary to fully resolve the
surface processes and effects outlined above.

4.4 Adsorption equilibrium conditions

4.4.1 Surface concentration of Xi

At steady state (d[Xi ]s/dt = 0) and when the rates of ad-
sorption and desorption are of similar magnitude and much
higher than the rates of all other processes affecting the sur-
face concentration of a species Xi and its particle-related gas
phase loss, Xi can be assumed to be in adsorption equilib-
rium and [Xi ]s can be approximated by equating the fluxes

of adsorption and desorption:

Jads,Xi ≈ Jdes,Xi � Pg,gsr,Xi + Lg,gsr,Xi + Ps,Xi + Ls,Xi

+Jb,s,Xi + Js,b,Xi (83)

Combining relations (33)–(34) and (38)–(40), and introduc-
ing a (Langmuir) adsorption equilibrium constantKads,Xi

leads to

Kads,Xi [Xi]gs=
θs,Xi

1− θs
=

θs,Xi

1−
∑
p

θs,Xp

(84)

with

Kads,Xi =
σXi ka,0,Xi

kd,Xi

= αs,0,Xi

σXi ωXi

4kd,Xi

(85)

If all other competitively adsorbing species Xp are as-
sumed to be in adsorption equilibrium as well, their
fractional surface coverages can be substituted by
θs,Xp = (θs,Xi Kads,Xp [Xp]gs)/(Kads,Xi [X i ]gs), and the
surface concentration of Xi as well as the overall fractional
surface coverageθs can be expressed as a function of gas
phase concentrations and adsorption equilibrium constants:

[Xi]s = σ−1
Xi

Kads,Xi [Xi]gs

1+
∑
p

Kads,Xp [Xp]gs
(86)

θs =

∑
p

Kads,Xp [Xp]gs

1+
∑
p

Kads,Xp [Xp]gs
(87)

4.4.2 Surface and bulk accommodation and net uptake
of Xi

The surface and bulk accommodation coefficients under ad-
sorption equilibrium conditions follow from relations (32)–
(33), (79), (83), (85) and (87):

αs,Xi =
αs,0,Xi

1 +
∑
p

Kads,Xp [Xp]gs
(88)

αb,Xi = αs,Xi

ks,b,Xi

ks,b,Xi + kd,Xi

(89)

Jayne et al. (1990) derived similar expressions to describe
the dependence of SO2 uptake into aqueous solution droplets
on gas phase concentration and surface coverage. Relations
equivalent to (89) have also been derived by Davidovits et
al. (1995) and Hanson (1997), but they did not explicitly ac-
count for competitive adsorption and assumedαs,Xi to be the
maximum value not only forαb,Xi but also forγXi , neglect-
ing the possibility of gas-surface reactions (Eqs. 74–79).

The net flux of Xi from the gas phase to the condensed
phase under adsorption equilibrium conditions can be calcu-
lated from

Jnet,Xi = Lg,gsr,Xi − Pg,gsr,Xi + Ls,Xi − Ps,Xi

+Js,b,Xi − Jb,s,Xi . (90)
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By inserting Eq. (86) into the formulae presented in
Sects. 3.3 and 3.4, all terms on the right hand side of Eq. (90)
andJnet,Xi can be expressed as explicit functions of the near-
surface gas phase concentrations of all competitively adsorb-
ing volatile species and of the surface and near-surface bulk
concentrations of non-volatile particle components. In the
same wayγsor,Xi , γgsr,Xi , andγXi can be expressed and cal-
culated according to Eqs. (74)–(78).

From relations (74)–(78) and (83) followsγsor,Xi�1,
γgsr,Xi�1, andγXi�1. Provided that the particle diam-
eter is not much larger than the mean free path of Xi and
according to Eqs. (4), (14), (19), and (20),γXi�1 implies
Cg,Xi ≈1, [Xi ]g,s≈ [X i ]g, andγXi ≈ γeff,Xi . Thus the av-
erage gas phase concentration [Xi ]g can be used instead of
[X i ]gs under these conditions.

4.4.3 Surface concentration of Yj

For non-volatile particle components Yj the rate of surface
concentration change, d[Yj ]ss/dt , is given by Eq. (29). Un-
der adsorption equilibrium conditions all terms on the right
hand side of Eq. (94) can be expressed as explicit functions
of the near-surface gas phase concentrations of the competi-
tively adsorbing and reacting volatile species and of the sur-
face and near-surface bulk concentrations of non-volatile par-
ticle components by inserting Eq. (86) into the formulae pre-
sented in Sects. 3.3 and 3.4. In case of significant transforma-
tion of particle components by chemical reaction (chemical
aging of the particle), the change of surface and near-surface
bulk concentrations can feed back into the calculation of sur-
face reaction rates and adsorption equilibrium constants via
Eq. (85), Eq. (35) forαs,0,Xi , and analogous equations for
other rate parameters. Under these conditions, the calcula-
tion of surface and near-surface bulk concentrations has to be
iterated for both volatile and non-volatile species in order to
maintain the quasi-steady-state approximation (assumption
of constant chemical composition) on which Eqs. (86)–(90)
are based.

4.4.4 Special Case A: “adsorption equilibrium and negligi-
ble chemical production at the surface”

Net uptake ofXi

For a species Xi with negligible chemical production at the
particle surface (Pg,gsrXi +Ps,Xi�Ls,Xi +Js,b,Xi +Jb,s,Xi),
Eq. (90) can be reduced to

Jnet,Xi = Lg,gsr,Xi + Ls,Xi + Js,b,Xi − Jb,s,Xi (91)

Based on the formulae of Sect. 3.3, the chemical loss terms
Lg,gsr,Xi andLs,Xi can be described as pseudo-first order pro-
cesses with the following rate equations and parameters:

Lg,gsr,Xi = γgsr,Xi

ωXi

4
[Xi]gs (92)

Ls,Xi = ks,Xi [Xi]s (93)

γgsr,Xi = −

∑
u

cGSRu,g,Xi

∑
p

γGSRu,g,Xi,Xp

Kads,Xp [Xp]gs

1+
∑
q

Kads,Xq [Xq ]gs
+

∑
r

γGSRu,g,Xi,Yr σYr [Yr ]ss
1

1+
∑
q

Kads,Xq [Xq ]gs

 (94)

ks,Xi = ks,g,Xi + ks,s,Xi + ks,ss,Xi (95)

ks,g,Xi = −σXi

∑
u

∑
p

cGSRu,s,Xi γGSRu,Xi,Xp

ωXp

4
[Xp]gs (96)

ks,s,Xi = −

∑
v

cSLRv,s,XikSLRv,Xi +

∑
p

kSLRv,Xi,Xp σ−1
Xp

Kads,Xp [Xp]gs

1+
∑
q

Kads,Xq [Xq ]gs

 (97)

ks,ss,Xi = −

∑
v

∑
q

cSLRv,s,Xi kSLRv,Xi,Yq [Yq ]ss (98)

ks,Xi is the overall pseudo-first-order rate coefficient for the
chemical loss of Xi in the sorption layer.ks,g,Xi , ks,s,Xi , and
ks,ss,Xi are individual pseudo-first-order loss rate coefficients
for gas-surface reactions and surface layer reactions within
the sorption layer or between sorption layer and quasi-static
surface layer, respectively.

According to Sect. 3.5.1, the net surface-bulk transfer of
Xi under steady-state conditions can also be described as a
pseudo-first-order process with a rate coefficientks,b,net,Xi .
Combining Eqs. (70), (77), (86), and (93) leads to

γsor,Xi = αs,Xi

ks,Xi + ks,b,net,Xi

kd,Xi

(99)

The overall uptake coefficient for Xi is given by the sum of
γgsr,Xi andγsor,Xi (Eq. 76).

Surface concentration ofYj

Assuming that there is no or negligible chemical produc-
tion, surface-bulk reaction, and surface-bulk transport of a
non-volatile particle component Yj , its surface concentration
change over time can be described by

d[Yj ]ss/dt = −(Lss,g,Yj + Lss,s,Yj + Lss,ss,Yj )

= −kss,Yj [Yj ]ss (100)

with an overall pseudo-first-order loss rate coefficient
kss,Yj =kss,g,Yj +kss,s,Yj +kss,ss,Yj that comprises individual
pseudo-first-order rate coefficients for gas-surface reactions
and surface layer reactions within the quasi-static layer or
between sorption layer and quasi-static layer, respectively:

kss,g,Yj = −σYj

∑
u

∑
p

cGSRu,ss,Yj γGSRu,Xi,Yj

ωXp

4
[Xp]gs (101)
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kss,s,Yj = −

∑
v

∑
p

cSLRv,ss,Yj kSLRv,Xp,Yj σ−1
Xp

Kads,Xp [Xp]gs

1+
∑
q

Kads,Xq [Xq ]gs
(102)

kss,ss,Yj = −

∑
v

cSLRv,ss,Yj

(
kSLRv,Yj +

∑
q

kSLRv,Yq,Yj [Yq ]s

)
(103)

4.5 Adsorption-reaction steady-state

When the rates of reaction at the surface or surface-bulk ex-
change of a volatile species Xi are of comparable magnitude
as the rate of adsorption, no general explicit analytical ex-
pression like Eq. (86) can be derived to describe the sur-
face concentration of volatile species as a function of their
gas phase concentration. At steady-state, however, the sur-
face mass balance of all competitively adsorbing and react-
ing volatile species Xp (p = 1, . . . ,imax) can be described by
a set ofimax algebraic equations in the general form

Jads,Xp − Jdes,Xp + Ps,Xp − Ls,Xp + Jb,s,Xp

−Js,b,Xp = 0 (104)

After inserting the rate equations and rate coefficients de-
fined in Sects. 3.2–3.4, the near-surface gas phase concentra-
tions of all competitively adsorbing volatile species, and the
surface and near-surface bulk concentrations of non-volatile
particle components, Eq. (104) can be solved for the surface
concentrations [Xp]s, and the uptake coefficientγXi can be
calculated according to Eqs. (74)–(78).

In case of significant net consumption of particle com-
ponents Yq by chemical reaction (chemical aging of the
particle), their surface and near-surface bulk concentration
changes feed back into the calculation of mass transport
and reaction rates at the surface. Under these conditions,
the calculation of surface and near-surface bulk concentra-
tions has to be iterated for both volatile and non-volatile
species in order to maintain the quasi-steady-state approx-
imation (assumption of constant chemical composition) on
which Eq. (104) is based.

In general, Eq. (104) has to be solved numerically; only
under restricted conditions explicit analytical expressions for
[Xp]s, γXp, and d[Yj ]ss/dt can be derived as outlined above
for general adsorption equilibrium conditions.

4.5.1 Special Case B: “adsorption-reaction steady-state and
negligible chemical production at the surface”

Surface concentration ofXi

For a species Xi with negligible chemical production at the
particle surface (Ps,Xi� Jdes,Xi +Ls,Xi + Js,b,Xi + Jb,s,Xi),
the surface mass balance, Eq. (104), can be reduced to

Jads,Xi = Jdes,Xi + Ls,Xi + Js,b,Xi − Jb,s,Xi (105)

Inserting Eqs. (38), (40), (70), and (93) into (105) leads to

ka,0,Xi [Xi]gs

(
1−

∑
p

θs,Xp

)
= θs,Xi σ−1

Xi(
kd,Xi + ks,Xi + ks,b,net,Xi

)
(106)

By introducing an effective adsorption equilibrium constant,
K ′ads,Xi , Eq. (106) can be further rearranged to

K ′ads,Xi [X i]gs=
θs,Xi

1− θs

=
θs,Xi

1−
∑
p

θs,Xp

(107)

with

K ′Xi =
σXi ka,0,Xi

kd,Xi + ks,Xi + ks,b,net,Xi

= αs,0,Xi
σXi ωXi

4(kd,Xi + ks,Xi + ks,b,net,Xi)
(108)

If the assumption of negligible production by surface reac-
tion can be extended to all competitively adsorbing species
Xp (or at least to the species dominating the total sorption
layer coverage), their fractional surface coverages can be
substituted byθXp = (θXi K ′ads,Xp [Xp]gs)/(K ′ads,Xi [X i ]gs),
and [Xi ]s as well asθs can be expressed as a function of
gas phase concentrations and effective adsorption equilib-
rium constants:

[Xi]s = σ−1
Xi

K ′ads,Xi [Xi]gs

1+
∑
p

K ′ads,Xp [Xp]gs
(109)

θs =

∑
p

K ′ads,Xp [Xp]gs

1+
∑
p

K ′ads,Xp [Xp]gs
(110)

Surface accommodation, bulk accommodation, and net up-
take ofXi

For the surface and bulk accommodation coefficients under
adsorption-reaction steady-state conditions follows

αs,Xi =
αs,0,Xi

1+
∑
p

K ′ads,Xp [Xp]gs
(111)

αb,Xi = αs,Xi

ks,b,Xi

ks,b,Xi + ks,Xi + kd,Xi

(112)

Based on Eq. (109) and in analogy to Special Case A
(Sect. 3.2.1, Eqs. 91–99) the following expressions can be
derived for the gas-surface reaction uptake coefficient, the
pseudo-first-order rate coefficient for reactive loss within the
sorption layer, and the sorption uptake coefficient:

γgsr,Xi = −

∑
u

cGSRu,g,Xi

∑
p

γGSRu,Xi,Xp

K ′ads,Xp [Xp]gs

1+
∑
q

K ′ads,Xq [Xq ]gs
+


∑

r

γGSRu,Xi,Yr σYr [Yr ]ss
1

1+
∑
q

K ′ads,Xq [Xq ]gs

 (113)
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ks,s,Xi = −

∑
v

cSLRv,s,XikSLRv,Xi +

∑
p

kSLRv,Xi,Xp σ−1
Xp

K ′ads,Xp [Xp]gs

1+
∑
q

K ′ads,Xq [Xq ]gs

 (114)

γsor,Xi = αs,Xi

ks,Xi + ks,b,net,Xi

ks,Xi + ks,b,net,Xi + kd,Xi

(115)

ks,Xi , ks,g,Xi , ks,ss,Xi , andks,b,net,Xi are defined in analogy to
Special Case A, Eqs. (95), (96), (98), and (71). Again, the
overall particle-related gas phase loss is given by the sum of
γgsr,Xi andγsor,Xi .

Note that the possibility of second order reactions within
the sorption layer (adsorbate cross and self reactions) leads to
a mutual interdependence of the effective adsorption equilib-
rium constantK ′ads,Xi and the pseudo-first-order surface loss
rate coefficientsks,Xi and ks,s,Xi as defined in Eqs. (108),
(94), and (114): ks,s,Xi which is required for the calcu-
lation of ks,Xi and K ′ads,Xi depends itself on the surface
concentration of all adsorbed species [Xp]s and thus on
K ′ads,Xi . As a consequence, no explicit algebraic expres-
sion for K ′ads,Xi can be derived, and generally the surface
concentrations and reaction rates have to be determined nu-
merically. Only when second order sorption layer reac-
tions are negligible against the overall surface reactivity
(
∑
p

cSLRv,s,Xi kSLRv,Xi,Xp[Xp]s� ks,Xi), or when surface re-

activity is negligible against mass transport (ks,Xp� kd,Xp+

ks,b,net,Xp), the effective adsorption equilibrium constant
K ′ads,Xi can be expressed explicitly as a function of volatile
species gas phase concentrations [Xp]gs, non-volatile parti-
cle component surface concentrations [Yq ]ss, and basic rate
coefficients.

Surface concentration ofYj

The surface concentration change of a particle component Yj

with negligible chemical production, surface-bulk reaction,
and surface-bulk mass transport can be calculated accord-
ing to Eq. (100) with the same rate coefficientskss,g,Yj and
kss,ss,Yj as in Special Case A, but with a modified pseudo-
first-order surface reaction rate coefficientkss,s,Yj and re-
placement ofKads,Xp by K ′ads,Xp:

kss,s,Yj = −

∑
v

∑
p

cSLRv,ss,Yj kSLRv,Xp,Yj σ−1
Xp

K ′ads,Xp [Xp]gs

1+
∑
q

K ′ads,Xq [Xq ]gs
(116)

Effects of reversible and competitive adsorption and surface
saturation

Reversible and competitive adsorption on a quasi-static sur-
face implies that the surface accommodation coefficient of

every species Xi decreases with increasing surface concen-
tration and thus with increasing gas phase concentration of
all competitively adsorbing species (surface saturation ef-
fects). Consequently, all rate parameters proportional to
αs,Xi , including bulk accommodation, sorption uptake, and
gas-particle partitioning coefficients (solubilities), will also
exhibit a dependence on gas phase composition which can
only be neglected when the total sorption layer surface cov-
erage is much less than unity (θs�1). For systems in
Langmuir adsorption equilibrium or in adsorption-reaction
steady-state with negligible surface production of volatile
species, the conditionθs�1 is fulfilled when the sum of the
products of (near-surface) gas phase concentration and ef-
fective adsorption equilibrium constant of all volatile species
Xp (including Xi) is much less than unity:∑

p

K ′ads,Xp [Xp]gs� 1 (117)

Under these conditionsαs,Xi can be replaced byαs,0,Xi , and
the relation between gas phase and surface concentration of
Xi becomes quasi-linear, as assumed by Hanson (1997):

[Xi]s ≈ σ−1
Xi K ′ads,Xi [Xi]gs (118)

Relations (117) and (118) may often be valid under atmo-
spheric background conditions. For the modeling of highly
polluted air masses (e.g. fossil fuel combustion or biomass
burning plumes; P̈oschl, 2002b; von Glasow et al., 2003;
Hobbs et al., 2003; Jost et al., 2003; Meilinger et al., 2005)
and for the analysis and extrapolation of laboratory experi-
ments with relatively high trace gas concentrations, however,
non-linear gas phase concentration dependences of rate pa-
rameters caused by reversible and competitive adsorption can
play an important role (e.g. Pöschl et al., 2001; Ammann et
al., 2003; and references therein). Exemplary model calcula-
tions and parameter variations are illustrated in a companion
paper (Ammann and P̈oschl, 2005).

4.5.2 Resistor model formulation of Special Case B

To re-formulate the flux equations describing net gas uptake
in Special Case B (adsorption-reaction steady-state and neg-
ligible chemical production at the surface) in terms of the
traditional resistance model, Eq. (115) can be inverted to

1

γsor,Xi

=
1

αs,Xi

(
1+

kd,Xi

ks,Xi + ks,b,net,Xi

)
(119)

All parameters in Eq. (119) are defined in the same way as in
Sect. 3.2.1, and by inserting Eq. (71) forks,b,net,Xi it can be
further rearranged to

1

γsor,Xi

=
1

αs,Xi

+
1

αs,Xi
ks,Xi

kd,Xi
+

1
1

αs,Xi
ks,b,Xi
kd,Xi

+
1

αs,Xi
ks,b,Xi
kd,Xi

Cb,Xi
√

kb,Xi Db,Xi
kb,s,Xi

(120)
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and

1

γsor,Xi

=
1

αs,Xi

+
1

0s,Xi +
1

1
0s,b,Xi

+
1

0b,Xi

(121)

with

0s,Xi = αs,Xi

ks,Xi

kd,Xi

=
4ka,Xi

ωXi

ks,Xi

kd,Xi

(122)

0s,b,Xi = αs,Xi

ks,b,Xi

kd,Xi

(123)

0b,Xi = αs,Xi

ks,b,Xi

kd,Xi

Cb,Xi

√
kb,Xi Db,Xi

kb,s,Xi

=
4

ωXi

Ksol,cp,Xi NA R T Cb,Xi

√
kb,Xi Db,Xi (124)

Equation (121) is equivalent to earlier resistor model formu-
lations (Hanson, 1997; Davidovits et al., 1995; Worsnop et
al., 2002; Smith et al., 2003; Reid and Sayer, 2003; and
references therein), in which the processes of surface reac-
tion, surface-bulk transfer, and bulk diffusion and reaction
are represented by the “conductance terms” (inverse resis-
tances)0s,Xi , 0s,b,Xi , and0b,Xi .

In Eq. (121) and in most previous resistor model formula-
tions, however, the possibility of elementary gas-surface re-
actions has not been taken into account. To account for such
processes and to obtain a comprehensive expression for the
uptake coefficientγXi , γgsr,Xi as defined in Eq. (113) has to
be added and Eq. (121) has to be extended to

γXi = γgsrXi +
1

1
αs,Xi
+

1
0s,Xi+

1
1

0b,Xi
+

1
0s,b,Xi

(125)

Even though this aspect tends to be obscured by resistance
model formulations such as Eqs. (121) and (125), the gas-
surface reaction probabilityγgsr,Xi is the only parameter in
Eq. (125) which is independent of the surface accommoda-
tion coefficientαs,Xi . Surface layer and bulk reactions are
coupled to the surface accommodation process, and the con-
ductance terms0s,Xi , 0s,b,Xi , and0b,Xi are directly propor-
tional toαs,Xi as shown by Eqs. (122)–(124).

4.6 Bulk absorption or condensation

If the rates of elementary gas-surface reactions and surface-
layer reactions are negligible against uptake into the particle
bulk (γgsr,Xi� γsor,Xi andks,Xi� ks,b,net,Xi), then the terms
γgsr,Xi and0s,Xi can be omitted from Eq. (125). In this case
the resistances 1/αs,Xi and 1/0s,b,Xi can be convoluted into a
“bulk accommodation resistance” 1/αb,Xi to obtain the tradi-
tional resistance model formulation for gas uptake (absorp-
tion) by liquid droplets, Eq. (7), and the bulk accommodation
coefficientαb,Xi is given by Eq. (89).

When surface saturation effects are negligible (Eq. 117,
Sect. 4.5.1) and the rates of surface reaction and desorp-
tion are much lower than the rate of surface-bulk transfer
(ks,Xi + kd,Xi� ks,b,Xi), then bulk and surface accommoda-
tion coefficients are near-identical and independent of gas-
phase composition (αb,Xi ≈αs,Xi ≈αs,0,Xi).

Under such conditions, it will normally not be necessary to
apply the double-layer surface model and to resolve the sur-
face processes and effects outlined above. Accordingly, tra-
ditional definitions of mass accommodation and basic equa-
tions of cloud microphysics are sufficient to calculate con-
densation rates for the growth of water droplets in supersatu-
rated water vapour (e.g., Kulmala and Wagner, 2001; Win-
kler et al., 2004; Laaksonen et al., 2005; Winkler et al.,
2006).

Nevertheless, a lack of consistent and explicit distinction
between surface and bulk accommodation seems to be a
likely explanation for some of the apparent discrepancies be-
tween different studies and values reported for the “mass ac-
commodation” coefficient of water vapour on liquid water:
∼1.0 and not<0.4 (Winkler et al., 2004; Laaksonen et al.,
2005; Winkler et al., 2006) vs.∼0.2 but not>0.3 (Davi-
dovits et al., 2004, 2005). In fact, surface accommodation
followed by rapid isotope exchange reactions at the surface
and partial desorption of the reaction products might explain
why some of the apparent “mass accommodation” coeffi-
cients observed for isotopically labelled water are smaller
than others. Detailed investigations and discussions of this
subject would go beyond the scope of the present manuscript
and will be pursued in follow-up studies.

5 Summary and conclusions

Among the major obstacles on the way to full mechanistic
understanding and reliable prediction of aerosol and cloud
properties and effects on the atmosphere, climate and public
health are not only the limited availability of measurement
data, but also the limited applicability and compatibility of
model formalisms used for the analysis, interpretation, and
description of aerosol and cloud interactions and transfor-
mation. In particular, the kinetics of heterogenous reactions
and multiphase processes (concentration, time, and temper-
ature dependences) are usually not well characterized, and
most experimental and modeling studies involve system- and
method-specific rate equations and parameters, which are
hard to compare and extrapolate.

Comprehensive investigations of atmospheric aerosol
and cloud effects, however, need to include a consis-
tent description of a wide range of components and pro-
cesses: systems with multiple condensed phases, inter-
faces and mixing states (solid/liquid, surface/bulk, ho-
mogeneous/heterogeneous, internal/external mixing); mul-
tiple chemical species (volatile/semivolatile/non-volatile,
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reactive/non-reactive); multiple competing physical and
chemical processes (particle formation/transformation, gas
uptake/release, mass transport, phase transition, chemical re-
action, reversible/irreversible).

For this purpose we have developed and presented a ki-
netic model framework with consistent and unambiguous ter-
minology and universally applicable rate equations and pa-
rameters, which allow to describe mass transport and chem-
ical reactions at the gas-particle interface and to link aerosol
and cloud surface processes with gas phase and particle bulk
processes. The key elements and essential aspects of the ki-
netic model framework can be summarized as follows:

(a) simple and descriptive double-layer surface model
(sorption layer and quasi-static layer);

(b) straightforward flux-based mass balance and rate equa-
tions;

(c) clear separation of mass transport and chemical reac-
tion;

(d) well-defined and consistent rate parameters (uptake and
accommodation coefficients, reaction probabilities, re-
action rate coefficients and mass transport rate coeffi-
cients);

(e) clear distinction between gas phase, gas-surface, and
surface-bulk transport (gas phase diffusion, surface and
bulk accommodation);

(f) clear distinction between gas-surface, surface layer,
and surface-bulk reactions (Langmuir-Hinshelwood and
Eley-Rideal mechanisms);

(g) mechanistic description of concentration and time de-
pendences for all processes and conditions (transient
and steady-state);

(h) flexible addition of unlimited numbers of chemical
species and physicochemical processes depending on
the complexity of the investigated systems;

(i) optional aggregation or resolution of intermediate
species, sequential processes, and surface layers de-
pending on the power and requirements of the applied
experimental and modelling techniques;

(j) full compatibility with traditional resistor model formu-
lations (steady-state approximations).

Following up on the interactive public discussion of our
manuscript (P̈oschl et al., 2005a, b, c), we would like to re-
confirm that the proposed double-layer surface model and
unambiguous definition of elementary steps of mass trans-
port and chemical reactions represent a minimum of detail
and complexity required for the description of aerosol and
cloud surface chemistry, and thus for consistent description

of atmospheric gas-particle interactions including both sur-
face and bulk processes.

Numerous experimental studies referenced above and
in our companion paper Part 2 (Ammann and Pöschl,
2007) have demonstrated that the kinetics of heteroge-
neous reactions at the surface of aerosol particles or sur-
rogate surfaces exhibit non-linear concentration and time-
dependences, which can hardly be described in a physically
meaningful way without invoking competitive co-adsorption
of gas molecules in a sorption layer (Langmuir-Hinshelwood
mechanisms, etc.). Competitive co-adsorption, however, can
hardly be described without assuming a quasi-static surface
layer which determines the quality and quantity of sorption
sites (surface area).

The near-surface gas phase and near-surface particle bulk
as defined in our model framework are essentially the same
as in earlier model formalisms linking interfacial mass trans-
port to diffusion in the gas phase and particle bulk. These
had mostly referred to “concentrations at/near the surface”
without providing a descriptive definition and illustration of
the model domain (compartment) which is effectively char-
acterized by these “concentrations at/near the surface”.

As illustrated by the examples given in our companion pa-
per Part 2 (Ammann and Pöschl, 2007), many of the kinetic
parameters required for consistent description of chemical
reactions and mass transport within and across sorption lay-
ers and quasi-static surface layers can be derived from exist-
ing literature data – not only for solid particles (e.g. soot in-
teracting with O3, NO2, and H2O) but also for liquid droplets
(e.g., aqueous droplets interacting with SO2).

On the other hand, we do not want to suggest that it would
be necessary to resolve the multiple surface layers and the
kinetics of all (quasi-)elementary molecular processes out-
lined above for all types of gas-particle interactions in the
atmosphere. For bulk condensation or evaporation and ab-
sorption of gases by liquid aerosol and cloud particles, it
should normally be sufficient to determine and use a bulk ac-
commodation coefficient (traditional “mass accommodation
coefficient”) to characterize the molecular kinetics of gas-to-
particle mass transfer, and a simple evaporation rate coeffi-
cient for the reverse process. In many cases, it may even be
sufficient to consider only diffusion in the gas phase and/or
condensed phase as the rate limiting process, and to neglect
the molecular kinetics of mass transfer at the surface (gas-
particle interface).

When, however, there is a demand or need to resolve
molecular kinetics at the gas-particle interface (e.g., to ac-
count for effects of surface reaction or surface saturation),
the proposed model framework enables the description and
linkage of elementary steps of molecular motion and interac-
tion as well as macroscopic observables within a consistent
set of terms and formalisms.
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The framework formalism and terminology are suffi-
ciently general and consistent to allow both: detailed investi-
gations of complex systems by resolving individual elemen-
tary processes whenever it is necessary, and efficient descrip-
tion of simple systems by aggregation of multiple elementary
processes whenever it is possible and convenient.

With regard to chemical species, the presented formalisms
allow to resolve the formation, interaction, and decomposi-
tion of unlimited numbers of highly reactive and short-lived
intermediates at the particle surface via consecutive or com-
petitive gas-surface, surface layer, and surface bulk reactions.
This can be important for the atmospheric abundance of haz-
ardous air pollutants in densely populated areas and for the
influence of meteorological conditions, local emissions, and
long range transport on aerosol health effects.

On the other hand, a master mechanism of aerosol chem-
istry based on the proposed kinetic model framework would
also support systematic lumping (grouping) of the hundreds
and thousands of organic species and reactions in air partic-
ulate matter into surrogate species (substance classes with
fairly uniform physicochemical properties) and surrogate re-
actions (reaction types with fairly uniform pathways and ki-
netics), which appear to be appropriate for efficient descrip-
tion of atmospheric aerosol aging and climate effects on
global scales.

Exemplary practical applications and model calculations
illustrating the relevance of the above aspects are presented
in a companion paper (Ammann and Pöschl, 2007). We
hope that the presented model framework will serve as a use-
ful tool and common basis for experimental and theoretical
studies investigating and describing atmospheric aerosol and
cloud surface chemistry and gas-particle interactions. In par-
ticular, it is meant to support

(a) the planning and design of laboratory experiments for
the elucidation and determination of rate parameters
(mapping of most insightful experimental conditions;
identification and characterization of relevant concen-
tration and time dependences);

(b) the establishment, evaluation, and quality assurance of
comprehensive and self-consistent collections of rate
parameters (in analogy to existing evaluated data bases
of gas phase reaction rate coefficients);

(c) the development of detailed master mechanisms for pro-
cess models and the derivation of simplified but yet
realistic parameterizations for atmospheric and climate
models (in analogy to existing master mechanisms and
condensed mechanisms of atmospheric gas phase chem-
istry).
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Appendix A

List of symbols

Symbol Meaning SI Unit

αXi mass accommodation coefficient of Xi

αb,Xi bulk accommodation coefficient of Xi
αs,Xi (SXi) surface accommodation coefficient of Xi

αs,0,Xi (S0,Xi) surface accommodation coefficient of Xi on an adsorbate-free surface
αs,0,Xi,Yp (S0,Xi,Yp) surface accommodation coefficient of Xi on an adsorbate-free surface composed of Yp

αs,0,Xi,Yp,Yq (S0,Xi,Yp,Yq) surface accommodation coefficient of Xi on an adsorbate-free surface composed of Yp on
a particle bulk composed of Yq

αt,Xi thermal accommodation coefficient of Xi

βF continuum flow correction factor based on Fuchs (1964)
βFS continuum flow correction factor based on Fuchs and Sutugin (1971)
γXi uptake coefficient of Xi (normalized by gas kinetic flux of surface collisions)
γeff,Xi effective uptake coefficient of Xi (normalized by average gas kinetic flux)
γGSRu,Xp,Xi , γGSRu,Xp,Yj gas-surface reaction probabilities for gas phase Xp colliding with surface Xi or Yj , respec-

tively
γsor,Xi sorption uptake coefficient of Xi
γgsr,Xi gas-surface reaction uptake coefficient of Xi

0b,Xi resistor model conductance of particle bulk diffusion and reaction of Xi

0g,Xi resistor model conductance of gas phase diffusion of Xi

0s,Xi resistor model conductance of surface reaction of Xi

0s,b,Xi resistor model conductance of surface-bulk transfer of Xi

1Xi average distance from which Xi gas molecules have a straight trajectory to the particle
surface

m

λXi mean free path of Xi in the gas phase m
θs sorption layer surface coverage
θs,Xp fractional surface coverage by Xp (sorption layer)
θss,Yq fractional surface area of Yq (quasi-static layer)
σs,Xp molecular cross section of Xp in the sorption layer m2

σss,Yq molecular cross section of Yq in the quasi-static layer m2

φYq fractional concentration of Yj in the near-surface particle bulk (mole, mass, or volume
fraction)

τd,Xi desorption lifetime of Xi s
τd,Xi,Yp desorption lifetime of Xi on a surface composed of Yp s
τd,Xi,Yp,Yq desorption lifetime of Xi on a surface composed of Yp on a particle bulk composed of Yq s
τs,b,Xi surface-bulk exchange lifetime s
ωXi mean thermal velocity of Xi in the gas phase m s−1

cGSRu,g,Xi stoichiometric reaction coefficient of gas phase Xi in the gas-surface reaction GSRu

cGSRu,s,Xi , cGSRu,ssYj stoichiometric reaction coefficients of surface Xi and Yj in the gas-surface reaction GSRu

cSLRv,s,Xi , cSLRv,ss,Yj stoichiometric reaction coefficients of surface Xi and Yj in surface layer reaction SLRv
cSBRw,ss,Yj stoichiometric reaction coefficients of surface Yj in surface-bulk reaction SBRw
cSBRw,b,Xi, cSBRw,b,Yj stoichiometric reaction coefficients of bulk Xi and Yj in surface-bulk reaction SBRw
Cb,rd,Xi reacto-diffusive geometry correction factor for Xi

Cg,Xi gas phase diffusion correction factor for Xi

dp particle diameter m
Db,Xi particle bulk diffusion coefficient of Xi m2 s−1

Dg,Xi gas phase diffusion coefficient of Xi m2 s−1

Fnet,Xi net flow of Xi from the gas phase to the particle s−1

Hcp,Xi Henry’s law coefficient of Xi (concentration/pressure) mol m−3 Pa−1

Hcc,Xi dimensionless Henry’s law coefficient of Xi

i, j, p, q, r, u, v, w counting variables
Jads,Xi , Jdes,Xi flux of adsorption and desorption of Xi m−2 s−1

Jb,rd,Xi reacto-diffusive flux of Xi in the particle bulk m−2 s−1

Jb,s,Xi , Js,b,Xi flux of bulk-surface and surface-bulk transfer of Xi (sorption layer) m−2 s−1

Jb,ss,Yj , Jss,b,Yj flux of bulk-surface and surface-bulk transfer of Yj (quasi-static layer) m−2 s−1

Jb,ss,ex,Yj , Jss,b,ex,Yj flux of exchange bulk-to-surface and surface-to-bulk transfer of Yj (quasi-static layer) m−2 s−1

Jb,ss,rx,Yj , Jss,b,rx,Yj flux of reactive bulk-to-surface and surface-to-bulk transfer of Yj (quasi-static layer) m−2 s−1

Jcoll,Xi gas kinetic flux of Xi colliding with the surface m−2 s−1

Jcoll,avg,Xi average gas kinetic flux of Xi m−2 s−1

Jnet,Xi net flux of Xi from the gas phase to the condensed phase m−2 s−1

Js,b,net,Xi net flux of surface-bulk transfer of Xi m−2 s−1

Atmos. Chem. Phys., 7, 5989–6023, 2007 www.atmos-chem-phys.net/7/5989/2007/
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Symbol Meaning SI Unit

ka,Xi first-order adsorption rate coefficient of Xi m s−1

ka,0,Xi first-order adsorption rate coefficient of Xi on an adsorbate-free surface m s−1

kb,Xi pseudo-first-order rate coefficient for chemical loss of Xi in the particle bulk s−1

kb,s,Xi first-order rate coefficient for bulk-to-surface transfer of Xi m s−1

kb,ss,Yj first-order rate coefficient for bulk-to-surface transfer of Yj m s−1

kb,ss,ex,Yj first-order rate coefficient for bulk-to-surface transfer of Yj by mutual exchange m s−1

kb,ss,rx,Yj pseudo-first-order rate coefficient for bulk-to-surface transfer of Yj by reactive trans-
formation

m s−1

kd,Xi first-order desorption rate coefficient of Xi s−1

kg,p,Xi pseudo-first-order rate coefficient for gas phase loss of Xi due to gas-particle interac-
tions

s−1

ks,Xi pseudo-first-order rate coefficient for chemical loss of Xi in the sorption layer s−1

ks,b,Xi first-order rate coefficient for surface-to-bulk transfer of Xi s−1

ks,b,net,Xi pseudo-first-order rate coefficient for net surface-to-bulk transfer of Xi s−1

ks,g,Xi , ks,s,Xi , ks,ss,Xi pseudo-first-order rate coefficients for chemial loss of Xi in the sorption layer s−1

by gas-surface reactions and surface layer reactions within the sorption layer or be-
tween sorption and quasi-static layer, respectively

kss,Yj pseudo-first-order rate coefficient for chemical loss of Yj in the quasi-static surface
layer

s−1

kss,b,Yj first-order rate coefficient for surface-bulk transfer of Yj s−1

kss,b,ex,Yj first-order rate coefficient for surface-bulk transfer of Yj by mutual exchange s−1

kss,b,rx,Yj pseudo-first-order rate coefficient for surface-bulk transfer of Yj s−1

by reactive transformation
kss,g,Yj , kss,s,Yj , kss,ss,Yj pseudo-first-order rate coefficients for chemial loss of Yj in s−1

the quasi-static layer by gas-surface reactions and surface
layer reactions within the quasi-static layer or between
sorption and quasi-static layer, respectively

kss,rx pseudo-first-order rate coefficient for reactive transformation s−1

of the quasi-static surface
kSBRw,Yp,Yq , kSBRw,Yp,Xr second-order rate coefficients for surface-bulk reactions of Yp m3 s−1

with Yq , and Yp with Xr , respectively
kSLRv,Xp, kSLRv,Yq first-order rate coefficients for surface layer reactions of s−1

Xp and Yq , respectively
kSLRv,Xp,Xq , kSLRv,Xp,Yq , kSLRv,Yp,Yq second-order rate coefficients for surface layer reactions of m2 s−1

Xp with Xq , Xp with Yq , and Yp with Yq , respectively
Kads,Xi adsorption equilibrium constant of Xi m3

K ′ads,Xi effective adsorption equilibrium constant of Xi m3

Ksol,cp,Xi solubility or gas-particle partitioning coefficient of Xi mol m−3 Pa−1

(concentration/pressure)
Ksol,cc,Xi dimensionless solubility or gas-particle partitioning coefficient of Xi

KnXi Knudsen number for Xi
lrd,Xi reacto-diffusive length for Xi in the particle bulk m
MXi molar mass of Xi kg mol−1

NA Avogadro constant mol−1

Pb,ss,Xi , Lb,ss,Xi chemical production and loss of Xi in the near surface bulk m−2 s−1

by surface-bulk reactions
Pb,ss,Yj , Lb,ss,Yj chemical production and loss of Yj in the near surface bulk m−2 s−1

by surface-bulk reactions
Pg,gsr,Xi , Lg,gsr,Xi chemical production and loss of gas phase Xi by gas-surface reactions m−2 s−1

Pg,p,Xi, Lg,p,Xi gas phase production and loss of Xi due to gas-particle interactions m−3 s−1

Ps,Xi , Ls,Xi chemical production and loss of Xi in the sorption layer m−2 s−1

Ps,g,Xi , Ls,g,Xi chemical production and loss of Xi in the sorption layer by gas-surface reactions m−2 s−1

Ps,s,Xi , Ls,s,Xi , Ps,ss,Xi , Ls,ss,Xi chemical production and loss of Xi in the sorption layer m−2 s−1

by surface layer reactions (reaction partner in sorption
or quasi-static layer, respectively)

Pss,Yj , Lss,Yj chemical production and loss of Yj in the quasi-static surface layer m−2 s−1

Pss,b,Yj , Lss,b,Yj chemical production and loss of Yj in the quasi-static surface layer m−2 s−1

by surface-bulk reactions
Pss,g,Yj , Lss,g,Yj chemical production and loss of Yj in the quasi-static surface layer m−2 s−1

by gas-surface reactions
Pss,s,Yj , Lss,s,Yj , Pss,ss,Yj , Lss,ss,Yj chemical production and loss of Yj in the quasi-static layer by surface layer reactions m−2 s−1

(reaction partner in sorption or quasi-static layer, respectively)
[PS]g particle surface concentration m2 m−3

www.atmos-chem-phys.net/7/5989/2007/ Atmos. Chem. Phys., 7, 5989–6023, 2007



6016 U. P̈oschl et al.: Kinetic model framework for aerosols and clouds – Part 1

Symbol Meaning SI Unit

R gas constant J K−1 mol−1

rp particle radius m
[SS]ss sorption site surface concentration m−2

T absolute temperature K
umax, vmax, wmax total number of gas-surface, surface-layer, and surface-bulk reactions, respectively
Xi volatile molecular species
[Xi]b particle bulk number concentration of Xi m−3

[Xi]bs near-surface particle bulk number concentration of Xi m−3

[Xi]b,sat saturation particle bulk number concentration of Xi m−3

[Xi]g gas phase number concentration of Xi m−3

[Xi]gs near-surface gas phase number concentration of Xi m−3

[Xi]g,sat saturation gas phase number concentration of Xi m−3

[Xi]s surface number concentration of Xi (sorption layer) m−2

[Xi]s,max maximum surface number concentration of Xi (sorption layer) m−2

Yj non-volatile molecular species
[Yj ]ss surface number concentration of Yj (quasi-static layer) m−2

[Yj ]b particle bulk number concentration of Yj m−3

[Yj ]bs near-surface particle bulk number concentration of Yj m−3

Zk semivolatile molecular species
[Zk]s surface number concentration of Zk (sorption layer) m−2

[Zk]ss surface number concentration of Zk (quasi-static layer) m−2
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Pöschl, U.: Interactive comment on “Modeling the chemical effects
of ship exhaust in the cloud-free marine boundary layer” by R.
von Glasow et al., Atmos. Chem. Phys. Discuss., 2, S296–S299,
2002b.
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