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Abstract. Proteus mirabilis colonies display striking symmetry and periodic-
ity. Based on experimental observations of cellular differentiation and group
motility, a kinetic model has been developed to describe the swarmer cell
differentiation-dedifferentiation cycle and the spatial evolution of swimmer
and swarmer cells during Proteus mirabilis swarm colony development. A key
element of the model is the age dependence of swarmer cell behaviour, in
particular specifying a minimal age for motility and maximum age for septa-
tion and dedifferentiation to swimmer cells. Density thresholds for collective
motility by mature swarmer cells serve to synchronize the movements of
distinct swarmer cell groups and thus help provide temporal coherence to
colony expansion cycles. Numerical computations show that the model fits
experimental data by generating a complete swarming plus consolidation
cycle period that is robust to changes in parameters which affect other aspects
of swarmer cell migration and colony development. The kinetic equations
underlying this model provide a different mathematical basis for a temporal
oscillator from reaction-diffusion partial differential equations. The modelling
shows that Proteus colony geometries arise as a consequence of macroscopic
rules governing collective motility. Thus, in this case, pattern formation results
from the operation of an adaptive bacterial system for spreading on solid
substrates, not as an independent biological function. Kinetic models similar
to this one may be applicable to periodic phenomena displayed by other
biological systems with differentiated components of defined lifetimes.
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I Statement of the biological problem

Bacterial colonies are excellent experimental material for studying the behav-
ior and evolution of complex self-organizing systems (Shapiro, 1995). The
colonies of Proteus mirabilis are especially interesting because their mor-
phogenesis involves periodic oscillation between phases of migration over the
substrate (swarming) and phases of growth within stationary populations
(consolidation) (Belas, 1997). Proteus colonies present two key problems:
(1) to account for their deceptively simple circular symmetry and regular
terracing (Fig. 1) and (2) to explain the robust periodicity of cyclic behavior
under conditions when the velocity and duration of swarming are variable
(Rauprich et al., 1996). We believe that the two problems are related and will
argue below that they have a common solution in density-dependent collec-
tive motility. With regard to colony periodicity, we particularly wished to
investigate whether the observed robust clock-like behavior could be ex-
plained without invoking dedicated oscillators to control the initiation of each
swarming cycle.

Fig. 1. Two Proteus mirabilis colonies after less than two days’ incubation at 32 °C on our
standard laboratory medium containing 2% agar (Rauprich et al., 1996). The PRM1 colony
on the right was 43 hours old, and the PRM1 colony on the left was 40 hours old. Note that
the phase difference between the two colonies was maintained and that there was no
entrainment of the swarm terraces
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II Formulation of the mathematical model

The most dramatic feature of Proteus colony development is the involvement
of specially differentiated cells in the migratory phase (Hauser, 1885; Russ-
Münzer, 1935; Kvittingen, 1949). In liquid medium, Proteus cultures consist
virtually exclusively of short oligoflagellated ‘‘swimmer’’ cells comparable in
their behavior to motile E. coli. Swimmer cells go through a prototypical
bacterial cell growth and division cycle. On agar medium, however, a second
channel of cellular behavior appears: some cells cease septation but continue
to grow and produce many lateral flagella to form elongated multi-nucleoid
hyperflagellated ‘‘swarmer’’ cells which aggregate in parallel arrays to form
motile multicellular ‘‘rafts’’ (Klieneberger-Nobel, 1947; Hoeniger, 1964, 1965,
1966; Jones and Park, 1967; Williams and Schwarzhoff, 1978). Only swarmer
cells in contact with other cells are capable of translocation over surfaces of
medium containing 71% agar; swimmer cells and isolated swarmer cells are
immobile (Sturdza, 1973b). Thus, swarm motility is an inherently cooperative
process resulting in nonlinear transport of the population characterized by
expansion dependent on bacterial density. After some time migrating,
swarmer cells have been observed to cease movement, septate and produce
groups of swimmer cells which can then undergo the typical cell division cycle
(Klieneberger-Nobel, 1947; Hoeniger, 1964). Thus, in the expanding Proteus
colony, there are two connected patterns of cellular development (Fig. 2). In
addition to these microscopic observations, macroscopic results on the lag
time needed to initiate swarming and the effect of agar concentration on
colony expansion point to density-dependent thresholds in the initiation of
each swarming phase (Moltke, 1929; Rauprich et al., 1996).

A Basic parameters of the model

We make use of three phenomena based on experiment — (i) interlocking cell
cycles, (ii) collective motility and (iii) density-dependent thresholds — to ac-
count for the periodic behavior of Proteus colonies. The local kinetics of
population structure involve the following ingredients:

\ Each swarmer cell is assigned an age, h, so that the continuous descrip-
tion contains a distribution function, o

s
(r, h, t) for the number of swarmers of

a given age h at the point (r, t), where r is the two-dimensional vector
characterizing each point in space at time t. For the present, we ignore the age
distribution of swimmers.

\ 06m61 describes the differentiation factor which is the fraction
of swimmers per division that enter the swarmer development channel with
an initial age h"0. Treating m as a constant would be an obvious oversimpli-
fication because we know that swarmer cell differentiation is regulated, at
least by medium factors and the presence or absence of a high viscosity
environment (Dick et al., 1985; Belas, 1997). Based on the observation that
the inner colony zones are occupied only by swimmers (Russ-Münzer, 1935),
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Fig. 2. Schematic representation of the two interlocking cell cycles of Proteus mirabilis. The
top cycle illustrates the cell growth and division process of swimmers, which cannot migrate
over solid surfaces. The bottom cycle illustrates the differentiation, aging and dedifferenti-
ation of elongated, hyperflagellated swarmers which can assemble in rafts and migrate
collectively over agar medium. The parameters (Model A) are explained in the text

we assume that m"0 at concentration of swimmers above a certain value (see
below).

\ As swarmer development proceeds, h
.*/

denotes the age when the
swarmer cell can participate actively in group migration, i.e. acquires
a ‘‘driver’s license’’. We do not yet have experimental data on swarmer life
spans, but the appearance of large numbers of short swimmers as each new
terrace undergoes consolidation suggests that the typical lifespan is on the
order of the swarming#consolidation cycle (Russ-Münzer, 1935; Kvittingen,
1949). We have modeled swarmer lifespan in two ways. Model A assumes that
swarmers have a fixed maximal age, h

.!9
, and they septate deterministically

upon reaching this age. Model B assumes that there is a constant probability
of septating per unit time, 1/h

.!9
, so that h

.!9
is only an average lifespan.

\ K(h) is the rate at which swarmer cells of age h septate. In Model A the
septation rate is defined only for maximal age, K(h)"d(h!h

.!9
), in Model

B the septation rate does not depend on age at all, K(h)"h~1
.!9

.
\ Swarmers have the same DNA/length ratio as swimmers (Klieneberger-

Nobel, 1947; Hoeniger, 1966), and we assume that biomass increase during
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swarmer development occurs at the same rate as during the swimmer cell
cycle. Thus, a swarmer of age h will be exp(h/q

d
) larger than its parent

swimmer, where q
d
is the characteristic growth time. The number of swarmers

produced in a septation event from a single swarmer is given uniquely by
exp(h

.!9
/q

d
) in Model A and varies as exp(h/q

d
) in Model B.

\ Surface densities of swimmer and swarmer cell populations will be
indicated by the capital letters P

c
and P

s
, respectively (c for consolidation

phase, s for swarming phase). While we do not resolve swimmers in age, the
surface density of swarmers is related to a biomass weighted average over the
ages, with eh@qd being the contribution of age h.

As mentioned above, the process of swarmer cell differentiation doesn’t
occur at concentration of swimmers where P

c
7P

c,4!5
(saturation).

B Description of local kinetics

The equations for local kinetics of Proteus population structure are:

LP
c
(t)

Lt
"

(1!m)P
c
(t)

q
d

#P
t

0

dho
s
(h, t)K (h)eh@qd (1a)

Lo
s
(h, t)

Lt
#

Lo
s
(h, t)

Lh
"

mP
c

q
d

d (h)!o
s
(h, t)K(h) . (1b)

There is no term for nutrient depletion in these equations, and no equation
for nutrient changes. We have chosen to make these omissions because we are
primarily interested in movement of the colony front, and experimental results
indicate that exponential biomass increase continues in the colony interior for
at least two swarming#consolidation cycles (Rauprich et al., 1996). Thus, all
the pertinent dynamics occur in a regime of saturating nutrient, and the
consequences of nutrient depletion are felt only at later stages of colony
morphogenesis, which we do not consider here.

Different terms describe the local kinetics of specific processes. The left-
hand side (LHS) of Eq. (1a) represents the change in time of the swimmer
population based on exponential increase of the non-differentiating fraction
(1!m) and the characteristic growth parameter q

d
(first, right-hand-side

(RHS) term) plus the septation of swarmers distributed in age (hence, integral)
into swimmers with the rate K(h), where each septation event produces eh@qd
swimmers (second RHS term). These relationships keep biomass unchanged
by the alternative cell cycle. The change in time of the swarmers of a given age,
h, is expressed by the first term in the LHS of Eq. (1b). This change is the
combined result of the swarmer aging process (second term on the LHS),
differentiation of the fraction m of the swimmer population to produce
swarmers of age h"0 (symbolized by the delta-function d(h) in the first term
on the RHS), and loss of swarmers due to septation with rate K(h) (second
term on the RHS). Note that the swarmer aging process enters into these
equations in two places: as the integral on the RHS of Eq. (1a) and as the
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second differential term on the LHS of Eq. (1b). These two terms distinguish
Eqs. (1) from partial differential equations (PDEs), as in reaction-diffusion
formulations (Levin and Segel, 1985; Murray, 1993).

The analytical solution of the system (1) for Model A may be written as
a recursion valid at times nh

.!9
6t6(n#1)h

.!9
, where n is a nonnegative

integer:

P
c
(t)"P

c
(nh

.!9
)e

(1~m)(t~nh.!9)
qd #
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q
d

e
(1~m) t`h.!9
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dt@P
c
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P
s
(t)"P

c
(0)e

tqd!P
c
(t) , (2c)

and the initial condition P
c
(0) must be supplied. Applying the recursion rule

many times, a series in powers of t and exponentials is obtained. The solution
of model B may be obtained by a Laplace transform,
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with Eq. (2c) indicating P
s
(t).

Fig. 3. The local kinetics of the swarmer/swimmer biomass ratio P
s
/P

c
over time according

to Eqs. (2) and (3). The heavy line gives the numerical results for Model A, and the thin line
for Model B
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Models A and B display very different temporal dynamics when local
growth begins with a pure swimmer population (Fig. 3). Model A produces
damped oscillations of the swarmer/swimmer ratio, while Model B produces
a smooth curve without oscillations. Observations on the kinetics of swarmer
production by an exceptional Proteus isolate which differentiates in liquid
medium agree with the predictions of Model A (Dick et al., 1985).

C Description of spatially resolved kinetics

After Proteus swimmers are inoculated on agar medium, there is a lag phase
before colony expansion begins, and the length of this delay depends inversely
upon the concentration of the inoculum down to a minimum value character-
istic for each set of conditions (Rauprich et al., 1996). This observation
suggests that a certain threshold concentration of swarmers has to accumulate
before motion begins. Density-dependence of Proteus mobility is also inherent
in the collective nature of swarmer cell movement in rafts (Sturdza, 1973b). We
denote the initial motility threshold as P

s,.!9
and assume that diffusivity of the

population is initially zero at smaller values of the concentration of motile
swarmers, P

s
":h1h.*/

dho
s
(r, h, t), h

1
"h

.!9
in Model A, h

1
"t in Model B.

When swarming begins, however, the rafts spread over the substrate, and their
average concentration diminishes, but motility continues for a particular
length of time depending upon conditions (Rauprich et al., 1996). To describe
this particular kind of nonlinear behavior, we formulate a designated local
memory field, called motility status or m. If P

s
7P

s,.!9
, then m"1 and

remains at that value until P
s
6P

s,.*/
, when m"0. It should be noted that the

memory field, m, is a property of the local swarmer population at each
position, not of individual cells, because it depends on P

s
. We assume the

reason that motility switches off once per swarming phase and does not restart
until after the following consolidation phase is that new swarmers are only
produced from swimmers. Swarmers age but do not divide until they reach the
septation stage, at which point they septate into swimmers rather than into
younger swarmers. Consequently, the leading cohort of swarmers in each
swarm phase is constrained to undergo a decrease in P

s
and move upwards in

age distribution towards septation as it moves outwards from the previous
terrace. The aging process will accelerate the decrease in P

s
as mature

swarmers are lost through dedifferentiation. Since older dense population of
swimmers (P

c
7P

c,4!5
) do not produce swarmers (see above), only the new

swimmer population created by septation events can effectively generate
a new swarmer population with density exceeding P

s,.!9
to initiate the next

swarming phase. The first terrace represents an exception which we do not
consider in detail here.

The existence of P
s,.*/

is justified by the experimental observation that
motility ceases when the expanding population still contains swarmer cells
that can be reactivated to migrate in the subsequent swarm phase (Bisset and
Douglas, 1976). We model the macroscopic motion of the population by
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nonlinear diffusion known to be capable of producing moving fronts (Landau
and Lifshitz, 1987; Murray, 1993). The swarmers’ diffusivity is assumed to be

D(P
c
, P

s
, m)"D

0
m(r, t) f A

P
s

P
s,.!9

B expA!
P
c

P
c, 4!5
B , (4a)

f"(x!x
.*/

)H (x!x
.*/

) . (4b)

In these equations D
0

is the amplitude of diffusivity, x"P
s
/P

s,.!9
,

x
.*/

"P
s,.*/

/P
s,.!9

, H(x) is the step-function: H(x)"1 at x70, and H(x)"0
otherwise. The exponential decay of diffusivity at high concentrations of
immobile cells describes the inability of swarmers to invade zones containing
high concentrations of swimmers, P

c
'P

c, 4!5
; (unpublished videotapes). Other

expressions for diffusivity dependence on swarmer concentration, f"x,
f"x2, f"1, all gave qualitatively similar results to the formulation in (4b) in
our numerical computations. Since f (x) acts in conjunction with thresholds,
even the case of f"1 gives highly nonlinear results.

Diffusion of swarmers can be added to the right-hand-side of Eq (1b) to give
spatially resolved kinetics, and the full system of kinetic equations becomes
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Eqs. (5) indicate that transport of swarmers is cooperative: the rate is
determined by the integral concentration of all different swarmers, and motile
swarmers of all ages move with the raft velocity. The solution of Eqs. (5) with
linear diffusion does not generate continuous oscillations for either model.

III Results of numerical computations based on the model

We have performed numerical integration of Eqs. (5) in one spatial dimension
by a simple difference method. Local kinetics was updated by a first order Euler
scheme, and the time step Dt was maintained not larger than about q

d
/100. We

implemented linear transport along a discretized h axis by shifting over one
lattice site Dh each Dh/Dt time steps. This updating is free from numerical
diffusion along the h axis. The first site (h"0) was filled at each time step by
differentiation of swimmers. Nonlinear diffusion in real space was performed by
determining the motility status, m, at each mesh point in space, transferring the
prescribed amount of swarmers from each motile point individually to neigh-
boring points, and receiving the corresponding amount from those points for
which m"1. The finite difference scheme for Eqs. (5) was simply

P
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Fig. 4. Predicted increase of the colony radius over time at different values of D
0
, P

s,.!9
, and

h
.*/

according to Model A (top panels) or Model B (bottom panels). The fixed parameters in
these computations (unless explicitly specified below) were: m"0.5 (we expect m&O(1)
from the lag phase measurements (Rauprich et al., 1996)); t*"15 h (after this time has
passed upon bacteria arrival at a given location, local nutrient supply is assumed to be
exhausted, and growth is accomplished, cf. Rauprich et al., 1996); q

d
"1.7h (computed from

the lag phase measurements, Rauprich et al., 1996); h
.!9

"4.7 h (Model A, to focus on
differences between q

p
and h

.*/
), and h

.!9
"2.0 h (Model B, to generate realistic values of

q
p
) ; h

.*/
"0.35h

.!9
(to ensure periodicity in both models); P

c,4!5
"exp(4.7/1.7)"

15.8744 a.u. (in arbitrary units) ; P
s,.!9

"10 a.u. (Model A), P
s,.!9

"2.0 a.u. (Model B);
P
s,.*/

"P
s,.!9

/2 (O(1) denominator); D
0
"0.01 cm2/sec (Model A, to generate realistic

expansion rates), D
0
"0.03 cm2/sec (Model B). The variable parameters were the following

(from the top to bottom curves). Influence of D
0
: (Model A) D

0
"(0.045, 0.036,

0.015) cm2/sec; (Model B) D
0
"(0.008, 0.020, 0.035) cm2/sec. Influence of P

s,.!9
: (Model A)

P
s,.!9

"(0.126, 0.252, 0.567)P
c,4!5

; (Model B) P
s,.!9

"(0.063, 0.094, 0.157)P
c,4!5

. Influence of
h
.*/

: (Model A) h
.*/

"(0.15, 0.30, 0.55)h
.!9

, D
0
"0.02 cm2/sec; (Model B) h

.*/
"(0.15, 0.25,

0.35)h
.!9

. The source codes can be found via anonymous ftp at debye.uchicago.edu. Login
name: ftp, password: esipov@franck.uchicago.edu, directory: /pub
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Fig. 5a and b. Effect of varying different parameters on the length of q
p
, the cycle

period (asterisks), and on C, the consolidation phase as a fraction of the complete cycle
(crosses). a Model A. b Model B. Plots from the top row for each model: (first row)
influence of the amplitude of diffusivity, D

0
in cm2/sec; (second row) influence of the upper

swarming threshold, P
s,.!9

, in units of the maximum swimmer concentration for swarmer
differentiation, P

c,4!5
; (third row) influence of the lower swarming threshold, P

s,.*/
, in units of

P
s,.!9

; (fourth row) influence of the ‘‘driver’s license’’ age, h
.*/

, in units of h
.!9

; (fifth row)
influence of the maximal swarmer age, h

.!9
, in hours. The basic set of parameter values used

in the computations is given in the legend to Fig. 4. In several computations, values in this
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set were changed in order to fit the results into a numerical ‘‘Petri dish’’ of 10 cm diameter:
(Model A) (third row) D

0
"0.03 cm2/sec, (fourth and fifth row) D

0
"0.02 cm2/sec; (Model

B) (third row) P
s,.!9

"0.063P
c,4!5

. Numerical values of q
p

were obtained by smoothing the
step-like results of computations (see Fig. 4) and accumulating the time intervals
between the ($) inflection points for each curve. To measure the consolidation time
the histogram of displacements during each period was obtained, and the time
interval corresponding to a 10% contribution to the histogram was computed. This
procedure gives positive values for any discrete periodic curve, but is sufficient to observe
the trends
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Diffusivity is computed according to Eqs. (4) with local values of the fields
involved. The motility status is a local function of the swarmer density as
described above. Here index n refers to discretization in time, m — in space,
k — in age, so that k

.!9
refers to the maximal age group, nh"Dh/Dt. Auxiliary

discrete field J
n,m,k

is the diffusive flux. Where the code generated smooth
fields, we did not exhaustively investigate the range of discretization para-
meters. The results were obtained with lattices containing 7300 spatial mesh
points and 20 age groups (although we tested up to 70 age groups). It took
about 10 minutes on a Silicon Graphics workstation to do a well resolved
simulation.

Figure 4 shows the envelope kinetics produced by the two models at
several values of D

0
, P

s,.!9
, and h

.*/
. While both models produce periodic

motion, only Model A gives oscillations of fixed amplitude similar to experi-
mental results throughout the parameter space we have explored so far. When
the dependence of cycle period, q

p
, on parameters D

0
, P

s,.!9
, P

s,.*/
, h

.*/
, and

h
.!9

was measured for Model A, we found the expected monotonic depen-
dence on h

.!9
but an unexpected robustness to changes in the other four

parameters (610% variation in q
p
). In contrast, the fraction of the total cycle

occupied by the consolidation phase was sensitive to variations in all five
parameters (Fig. 5). This behavior is similar to the observed response of
Proteus colonies to changes in agar concentration (Rauprich et al., 1996). We
know from observation that changing agar concentration alters the rate of
expansion (Rauprich et al., 1996), and it is logical to assume that agar
concentration also affects the cellular and group requirements for motility
represented by P

s,.!9
, P

s,.*/
, h

.*/
. For example, Sturdza has observed that

larger rafts form at the start of swarming on higher agar concentrations
(Sturdza, 1973a). By choosing appropriate values for two (D

0
, P

s,.!9
) out of

five parameters (D
0
, P

s,.!9
, P

s,.*/
, h

.*/
, and h

.!9
) we have produced acceptable

fits to experimental data (Fig. 6).
In contrast to Model A, Model B generates periodic behavior only in

certain parameter ranges. Oscillations of fixed amplitude occur when D
0

and
h
.*/

are high, strengthening the synchronizing effect on nonlinear transport
(see Sect. IVA below). Oscillations are damped for lower values of h

.*/
and D

0
.

In Model B, period dependencies are more pronounced and may indicate
some transitions (Fig. 5).

On the basis of our numerical computations, we believe that Model A
more closely reproduces experimental results and that a fixed swarmer cell
lifespan, h

.!9
, is more likely to be applicable to the cellular differentiation cycle

in actual Proteus colonies.
While it is tempting to assume that robust periodicity in Model A is

a trivial consequence of a fixed h
.!9

, it is important to note that q
p
'h

.!9
, and

that the two do not show a simple linear relationship (Fig. 5). One could
further suppose that the cycle period reflects the time needed for newly
dedifferentiated swimmer cells to re-enter the swarming age dimension, which
is of the order of q

d
/m, but our computations also indicate that

q
p
6h

.!9
#q

d
/m. Thus, the observer, q

p
values for Model A differ from both
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Fig. 6. Numerical fits (Model A) to experimental data for the dependencies of colony radius
on time at 2.0% and 2.5% agar concentration (Rauprich et al., 1996). For 2.0% agar,
D

0
"0.08 cm2/sec, P

s,.!9
"0.47 P

c,4!5
; for 2.5% agar, D

0
"0.05 cm2/sec, P

s,.!9
"0.57 P

c,4!5
.

The other parameters were at the values given in the legend to Fig. 4

trivial expectations and imply a more interesting dynamic based on Eqs. (5)
which produce interlocking oscillations in mobile and immobile cell popula-
tions. These dynamics can be observed in sequential snapshots of the spatially
resolved age distribution (Fig. 7). At the end of swarming and the start of the
consolidation phase (t

1
), there is a bimodal swarmer distribution consisting of

older cells near h
.!9

and younger cells near h"0. As the consolidation phase
continues (t

2
), many of the older swarmers reach h

.!9
and septate, while the

younger swarmers mature and are joined by the newly differentiated cells.
When the swarmer population achieves P

s,.!9
and the next swarming phase

begins (t
3
), the swarmer population is unimodal and biased towards h

.*/
. As

swarming proceeds (t
4
), the swarmer population ages and the peak moves

closer to h
.!9

, so that some of the swarmers begin to septate. This alternation
in the structure of the swarm and consolidation populations corresponds to
the situation described by Bisset and Douglas in Proteus colonies; they found
that some active swarmer cells cease movement at the end of each swarm
phase, do not dedifferentiate, and recover motility at the start of the sub-
sequent swarm phase (Bisset and Douglas, 1976). We have confirmed this by
our own videotape observations.

IV Discussion

A Sources of periodic behavior

Our minimal goal in elaborating a mathematical model was to find out
whether an independent clocklike controller was necessary to explain our
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Fig. 7. Snapshots of the numerically obtained age distribution of the swarmer population,
o(x, h, t) at four successive time points t

1
"20.8h, t

2
"22.4h, t

3
"23.6h, t

4
"24.8h in the

Proteus cycle. The magnitudes of o are shown as inverse gray scale representations (the
larger is o the darker is the corresponding point on the snapshot) in an age-space, (h, x), plot
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at the start of the consolidation phase (t
1
, upper left), the middle of the consolidation phase

(t
2
, upper right), the start of the swarm phase (t

3
, lower left), and the middle of the swarm

phase (t
4
, lower right). The basic parameters used are given in the Fig. 4 caption (Model A).

One parameter was modified: P
c, 4!5

"20 (a.u.)
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observation that the duration of the swarming#consolidation cycle in
Proteus colonies is robust to many treatments which alter the velocity and
duration of the swarming phase (Rauprich et al., 1996). The results of compu-
tations presented in Figs. 4, 5 and 6 show that we can obtain such robust
periodic behavior with a model based on the known phenomena of bacterial
differentiation and multicellular interactions without invoking an extra oscil-
lating system. In other words, at a given temperature and range of agar
concentrations, the Proteus swarm colony is itself a clock.

There are two principle sources for robust periodicity in Model A. The first
source is a fixed lifetime, h

.!9
, for the differentiation-dedifferentiation cycle

(Fig. 1). The importance of a fixed h
.!9

is apparent from comparing the results
of computations based on Models A and B (Fig. 5). In Model A h

.!9
sets

a lower bound for the cycle period, q
p
. The second source of robust periodicity

in both models is the density-dependent nonlinear diffusivity represented in
our model by the motility field, m, and the swarming thresholds P

s,.!9
and

P
s,.*/

. Nonlinear diffusivity is a consequence of the collective nature of
Proteus swarm migration, which involves both the organization of swarmer
cells into multicellular rafts (Sturdza, 1973a; Williams and Schwarzhoff, 1978)
and extracellular polysaccharides shared by the cells within rafts and larger
swarm populations (Stahl et al., 1983; Gygi et al., 1996).

The role of nonlinear diffusivity is to synchronize populations which
would otherwise begin to lose coherence as they accumulate small deviations
in the timing of individual swarmer groups. This synchronizing effect can be
understood intuitively by considering what happens at the end of a particular
consolidation phase. If a local subpopulation near the colony perimeter
achieves P

s,.!9
before its neighbors, its swarmers will begin to migrate out-

wards and enter zones where P
s
is lower and the swarmers are still immobile.

As long as the neighboring subpopulations are below P
s,.*/

, the premature
motion will eventually cease, and such local ‘‘false starts’’ will die out. But
when the neighboring subpopulations approach P

s,.*/
, the swarmers spread-

ing from local centers will stimulate the additional subpopulations to join the
migration. These false starts will tend to equalize local differences in P

s
, and

entire regions will achieve P
s,.!9

and become motile in a more or less
synchronized fashion. In fact, the kind of behavior just described has been
observed in time-lapse videotapes of the second and subsequent swarm phases
in Proteus colonies: shortly before broad swarm groups emerge from the
colony perimeter, rhythmic surface displacements are seen to start locally,
increase in intensity and spread circumferentially around the colony about
0.1 mm inside the edge (Shapiro and Trubach, 1991; unpublished videotapes).

Although we have not yet been able to carry out numerical computations
in two and three dimensions, we anticipate that the thresholds governing
non-linear diffusivity will have a parallel smoothing effect on the colony
circumference. If this inference proves correct, then the remarkable concentric
symmetry and periodicity of Proteus mirabilis colonies on laboratory media
result from the process of collective motility utilizing specialized cells of
defined lifetime, not from a dedicated morphogenetic program.
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B Comparison with reaction-diffusion systems and possible mathematical
novelty

In approaching the task of modelling the periodic behavior of Proteus colo-
nies, we initially expected to apply a series of partial differential equations
(PDEs) of the kind used in reaction-diffusion models (Levin and Segel, 1985;
Murray, 1993). In the reaction-diffusion models, different fields prescribe
a rate of change for the concentration of particular reactants at each point in
space and time, and the future evolution of the system is a function exclusively
of the instantaneous distribution of reactants. Reaction-diffusion PDEs of-
fered no obvious way to incorporate the age distribution characterizing the
swarmer cell differentiation-dedifferentiation cycle. There is no way to reduce
the description from our kinetic equations to reaction-diffusion PDEs because
the future evolution of the density fields is a function both of the present
distribution of microscopic elements (cells) as well as the past sequence of
events (their ages).

We call our model a kinetic model because it is based on a Boltzmann-like
kinetic equation (Boltzmann, 1923) in which there is evolution along an age (h)
axis in addition to evolution along space and time axes. Certain properties of
the system are represented by integrals over h, such as diffusivity [Eq. (4a)].
Our model resembles, in some respects, previous work on spatial diffusion of
age-dependent populations (Gurtin, 1973). Kubo and Langlais (1991) treated
periodic spatial structures, but their analysis used linear diffusion and as-
sumed an external periodic source for new members of the population. In their
analysis of periodic spatial patterns in sea shells, Ermentrout et al. (1986)
invoked difference equations based on pre-existing finite time increments.
Busenberg and Ianelli (1983) and Kim (1996) studied non-linear diffusion in
age-dependent populations but did not address periodic behavior. Thus, to
our knowledge, this is the first attempt to describe periodic non-linear popula-
tion expansion based solely on the internal dynamics of age structure.

C Biological applicability

The kinetic model is based on parameters deduced from the known phe-
nomena of Proteus swarm colony development. While there are many possible
alternative formulations for these parameters, we have not had to introduce
any purely ad hoc elements into the equations. The cellular differentiation-
dedifferentiation cycle and collective motility have been observed directly, and
density-dependent thresholds and nonlinear diffusivity are strongly indicated
by observations on the timing of swarming (Rauprich et al., 1996).

The model predicts that migration initiates as the consequence of popula-
tion dynamics rather than as a response to the depletion of nutrients (Moltke,
1929) or the accumulation of negative chemotactic factors (Lominski and
Lendrum, 1947). Thus, according to the model, the observed dependence of
colony periodicity on temperature and nutritional factors (Rauprich et al.,
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1996) would be explicable as a secondary result of altering cellular growth
dynamics. There is experimental evidence in favor of the idea that swarmer
cell aggregation is sufficient to initiate swarming and that the duration of the
swarming and consolidation phases is independent of direct nutritional con-
trol. Sturdza observe that swarmer cells could initiate migration within
minutes after transplantation to fresh agar medium which was not depleted
and contained no negative chemotactic substances (Sturdza, 1973a, c), and he
demonstrated that the initiation of motility by transplanted swarmers was
density-dependent (Sturdza, 1973b). We found that initial carbon source
concentration (hence the time needed for nutrient depletion) did not affect the
timing of the swarming plus consolidation cycle and that swarming
initiated many hours before exponential growth ceased in the colony interior
(Rauprich et al., 1996). Finally, the absence of entrainment between out-of-
phase colonies (Fig. 1) indicates that timing of the swarming and consolida-
tion phases does not result from response to an external field of diffusible
signals but is internal to each developing colony.

The fact that the kinetic model generates periodic behavior and can
produce numerical computation results which fit experimental observations is
encouraging. However, the ultimate test of the model lies in exploring its
predictions. A bimodal distribution of swarmer cell ages at consolidation plus
quantitative agreement of the observer h

.!9
and cycle period values with the

relationships in Fig. 5 will be strong evidence in favor of the kinetic model.
Natural strains of Proteus differ in their colony morphologies, lag times and
cycle periods (Rauprich et al., 1996; unpublished observations). It is also
possible to obtain Proteus mutants which have altered colony morphogenesis
patterns (Allison and Hughes, 1991; Belas et al., 1991). Applying the kinetic
model, it should be possible to predict which genetically-controlled aspects of
cellular behavior are able to account for the distinct colony phenotypes. Thus,
tests of the model’s validity can be conducted by measuring the values for
parameters such as m and h

.!9
for different Proteus strains. In order to study

swarmer cell age distributions, new methods will need to be developed. These
will involve observations of cell length profiles using microscopes and flow
cytometers. It should also be possible to follow the fate of individual swarmer
cells by fluorescent labelling in non-fluorescent populations (cf. Siegert and
Weijer, 1992; Sager and Kaiser, 1994). In conjunction with these experimental
investigations, it will be important to explore the statistical basis in cell
populations of our continuous averaged macroscopic description.

Bacterial colonies, even of populations derived from a single cell, are
organized structures composed of multiple cell types (Shapiro, 1988, 1995).
They are the simplest experimentally accessible ecosystems. Principles which
apply to colonies may well prove valid for more complex ecologies. It is not
hard to envisage multispecies ecosystems in which functionally specialized
components arise with distributed lifespans. If these components are involved
in expansion, then there would be an ecosystem essentially similar to the
Proteus colony which could display similar kinds of periodic behaviors. Since
the kinetic equations can generate oscillations (Figs. 3 and 4) and are distinct
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from reaction-diffusion PDEs, they may provide new mathematical models
for spatio-temporal oscillators. Thus, we would not be surprised to learn that
formulations similar to these kinetic equations will find applications to sys-
tems other than Proteus colonies.
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