Kinetic modeling of intense, short laser pulses propagating
in tenuous plasmas

Patrick Mora
Centre de Physique Thaque (UPR 14 du CNRS), Ecole Polytechnique, 91128 Palaiseau, France

Thomas M. Antonsen, Jr.
Institute for Plasma Research and Departments of Electrical Engineering and Physics,
University of Maryland, College Park, Maryland 20742

(Received 16 April 1996; accepted 14 October 1996

Fast time averaged equations are derived for the motion of particles and the generation of
electromagnetic wake fields under the action of the ponderomotive potential of an ultraintense laser
pulse propagating through a tenuous plasma. Based on these averaged equations, a new particle code
is designed which calculates the patrticle trajectories on the plasma period time scale. The regime of
total cavitation of the plasma is investigated. It is found that stable propagation over a long distance

is possible in this regime, and that energetic electrons are produced with a simple characteristic
dependence of their angle of deflection on energy. This new code allows for computationally
efficient modeling of pulse propagation over great distances.1987 American Institute of
Physics[S1070-664X97)03301-4

I. INTRODUCTION istic energies in the wake of the laser pulse. The angle of
ejection is related simply to the electron energy as a conse-
Channeling of intense optical fields in plasmas is an im-quence of momentum and energy conservation.
portant challenge, with possible applications in the context of ~ The organization of this paper is as follows. In Sec. II
laser plasma accelerators and x-ray lasers. Many nonlineaye will present our kinetic model and discuss the approxi-
physical processes can be expected to affect the propagatigmations used in its derivation. The actual detailed steps in
of these intense pulses. In particular, it has been shown ithe derivation are included in Appendix A. Properties of the
recent papers that self-channeled intense laser pulses are sutiadel are also discussed in both Sec. Il and Appendix B.
ject to severe instabilities of the Raman type which modulateSection 111 contains a discussion of the numerical implemen-
the laser pulse and erode its taif or cause the laser pulse to tation of the model for the case of a cylindrically symmetric
veer off its axis’*® The simulations and theory of Refs. 1-4 laser envelope and plasma wake. Section IV contains some
were based on laser-plasma fluid models corresponding tosample simulations illustrating the versatility of the code.
cold plasma. This prevents one from treating situationsFinally Sec. V contains our conclusions and a discussion of
where the plasma motion reaches the wave breaking limithe direction of future work.
and where fast electrons are generated in the interaction. In
addition, these models contain a mathematical singularity a“ MODEL
zero plasma electron density which prevents their use when
the electrons are totally expelled from the axis of the laser  The model we propose is fully relativistic, nonlinear, and
propagation(electron cavitation Such features are strong kinetic!? In contrast to particle-in-cell techniques, however,
limitations of the fluid models in the high intensity regime. approximations are made. Specifically, we make the follow-
An alternative to the fluid models is the particle-in-d&lC) ing assumptions. Electrons interact with the radiation electric
techniqué’.® This technique follows the evolution of the la- field in two separate ways. First, they jitter in response to the
ser radiation on the short time scale associated with the laséigh frequency laser field, and thus contribute to a dielectric
period, and thus, is computationally intensive and restrictiveconstant. Second, they respond to the low frequency pon-
in the parameters that can be studied. deromotive potential of the laser field, creating a nonlinear
In the following, a novel particle model is used to de- wake following the laser pulse. This also modifies the dielec-
scribe the long-time plasma behavior under the action of atric constant through modification of the electron density and
ultrahigh intensity(of the order of 16 W/cn? or more, relativistic factor. Generally speaking, it is required that the
short laser puls€l ps or less Among the results we obtain, plasma be tenuous for this separation of responses to be
we emphasize the following(i) Relativistic focusing for valid. In particular, we assume that the laser wavelefigéh
short laser pulses is possible over a long distape80 zg) quency is much smallelgreatey than all the other charac-
with total electron cavitation in the laser channel and strongeristic lengths(times in the system. That igo,<w, and
reduction of the Raman type plasma instabilitiesr, >c/w,, where a)p=(47-rq2n0/m)l’2 is the plasma fre-
(zr=wor  %/2¢ is the Rayleigh lengthgw, is the laser fre- quency based on the ambient densigy andg=—e andm
guency,r, is the laser spot size, aradis the light velocity. are the charge and mass of an electron. These inequalities
This self-focused propagation does not need the help of anable one to expand the equation of motion of the electrons
preformed plasma channéwhich is necessary at moderate and the wave equation in powers of the small parameter
intensities.(ii) Plasma electrons can be ejected with relativ-wp/w,.
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A second approximation that we make with regard to thebe shown that inclusion of this term also enables one to
particle motion is the so-called quasistatic approximatiormodel pure forward Raman scattering, which is normally
(QSA),*® which assumes that the electron transit timeexcluded in the paraxial approximation.
through the laser pulse is short compared with the character- The right-hand side of Eq.2) represents the dielectric
istic laser pulse deformation time. This approximation isresponse of the plasma. The angular bracket represents an
valid for plasma electrons of sufficiently low energy. For ensemble average over a distribution of particles each mem-
these electrons, the laser pulse passes over quickly durifger of which has a slowly varying in time density, and
which time its shape does not change. For electrons whickelativistic factor,y. In our numerical modeling this averag-
have been accelerated to high energy, and which are travahg will take the form of summing the contributions of the
ing with the laser pulse, this approximation will fail. We various simulation particles to the plasma dielectric.
made sure that in our simulations the number of electrons for  The slowly varying density and relativistic factor are ob-
which this is the case is zero or negligible. tained by solving for the motion of a particle in the combined

Finally, consistent with our assumptions of a tenuousfields of the wake and the ponderomotive potential of the
plasma, the plasma contribution to the dielectric constantaser pulse. Specifically, the particles, in effect, satisfy the
will be small. Consequently, to lowest order the laser pulsemodified equation of motion,
will propagate without changing shape. Over a long distance  — — 2
and after a long time the shape of the pulse will evolve. This 9P —q E+ v XE) _A V|A |2 3
is treated in the envelope approximation. We will retain dt c ymc Y

some higher order corrections to the envelope approximggnere the overbar on each quantity signifies that it is slowly

tion, which allows the laser radiation to be considerablyyarying in time. Here the average relativistic factor is given
down-shifted in frequency. However, it is still assumed that,

the radiation is dominantly forward-propagating. Thus the
development of backscattering instabilities is not treated in \/ 1
the present modéf Due to the above approximations the y=\1t m2c2

|p[?+2
relevant numerical time and space scales are the plasma pe- L ,
riod and the plasma wavelength, instead of the laser perioYi’here the term under the radical involving the laser vector

and the laser wavelength as in PIC codes. This results in gotential represents the contribution of the jitter motion of
considerable gain in terms of computing time. In addition the electron to the transverse momentum. The derivation of

due to the separation of the electron response into high arfads:(3) and(4) for the specific case of interest is presented
low frequency components, we are able to treat the case ofl3 Appendix A [see Egs.(A21) and (A25)], where it is
cylindrically symmetric wake and an arbitrarily polarized la- STOWn that their validity is limited to electrons for which
ser pulse. It is believed that cylindrical effects are importantt ~v#/¢>wp/wg (in particular this excludes trapped par-
in modeling the evolution of the head of the laser pu|Set|cles from the_ range of validity of the modeWe have also
which erodes due to diffractioff. used the refation

We begin our presentation with the envelope equation
for the radiation. Here the radiation is written in terms of the
high frequency vector potenti#, , which we write in the
form of an envelope modulating a plane wave traveling aivhich follows from averaging the square of expressian

2

q -~
A | @

the speed of light, over the period of the laser.
- A _ The equations of motioB) can alternatively be written
A=A (zx Hexdikel]+c.c., (D in Hamiltonian form by introducing vector and scalar poten-

. tials A and® associated with_the low frequency wake fields,
wherek, is the wave number of the plane wave afelz— ct . — "
. and the canonical momentuR=p-+gA/c. In this case the
measures the distance back from the head of the pulse. Her, e - — L
~ amiltonian is given byH=ymc®>+qd. In the quasistatic

the envelopeA, , depends on time and space and is deterZalpproximation, the Hamiltonian depends oandt only in

mined by the combination{=z—ct. This leads to the constancy of
cat |\ Kot gz TV AT @A @ 4k m M A dp,
F T S A TR T ©

which follows from Egs.(A32) and (A34). In writing the
left-hand side of Eq(2) we have dropped the ter@t/dt?,  For electrons which are initially at rest this implies
which is of order(wp/wo)z. In doing this we eliminate com- o -

ponents of the radiation which appear to vary rapidly in the ~ YM&+q®—cp,—qA,=mc. (6)

laser frame§=.z.— ct. This corresponds to e_Iiminating back- Equation(6) along with Eq.(4) can be used to solve alge-
scattered radiation. Note that we have retained the mixéd  prajcally for the axial momentum of a particle considering

derivative which is of ordemwy/w in our simulations. As  he nerpendicular momentum, and scalar and vector poten-
discussed in Appendix B and shown in our numerical resultsyzis as known. In particular, introducing the potential
retention of this term allows one to model the absorption of

radiation due to the creation of a plasma wake. Further, it can I:dT—A_Z, @
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we find We note, in the speed of light frame, all information

2 must propagate from small values &&ct—z to large val-

Y= ! [1+ 21 5 | [p.|2+2 EAL ues. Accordingly we integrate Eq§10) and (11) starting
2(1—qyl(mc?)) m-c c from £=0, the head of the pulse. We must also write the
— 2 equations for the wake fields so that they may be integrated
+1- %) } , (8  in &inthe same direction. To do this we rewrite the axial and
mc? transverse components of E&37) introducing the potential
and ¢ defined in Eq(7),
_ mc 1 | —1? Am— 3 — —
p,= [1-1— > |pi|2+29Al } TJL:VL &_§+VL(VL'AL)_VEAL (14
2(1-qyl(mc?) m“c c
( q_ 2 and
- 1- . (9) 2,
m_c,é) ] Am— Y _,— —
< =g VA G (VA (15

Thus, in solving the equations of motion, only the perpen-

dicular components of momentum for a particle need to be&olution of Egs.(14) and (15) along with the charge conti-

evolved. The axial component can be obtained using®q. nuity implied by solution of the particle equations then guar-

Specifically, we imagine solving the equations of motion onantees that the Poisson equati@386) is satisfied as well.

a two-or three-dimensional grid. We introduce the coordinate  The two transverse components of Ef}4) can also be

é=ct—z=—{so that positiveé measures distance back from thought of as equations for the transverse solenoidal and ir-

the head of the pulse, or alternatively, time at a fixed axiafotational parts of the current densitthe last two terms on

position. The evolution of the transverse momentum of ahe right have zero transverse divergénéer a given cur-

plasma particle as the pulse passes over it is then given byent density, Eq(14) can be solved fooy/dé andA | once a

dn. — gauge condition is specified. An obvious choice, which we

p. 1 — Vv .

—_— q?(EJr—xE) make here is the transverse Coulomb gau¥e;A, =0.

dé  c(1-qy/(mc?) ¢ /. Then we have from Eq14)
2

q

- A |2 — RS v
2 V. A7, (10) Ve Fr: ViT, (16)
where we have used wherel is given by
_ —
dé __c q %Y
P ——p=—al1-25 —=T. 1
dt C—v, 7( mcz) (11) (952 ( 7)

and Eq.(6) in replacing the derivative with respect to time The left-hand side of Eq16) is determined from the particle
with a derivative with respect to the laser frame coordigate €quations, and Eq16) is inverted to findl". With I known,
This replacement is useful in numerical solution of the gov-EQ. (17) may be integrated axially to determine the potential
erning equations as it allows particle quantities to be defined?. and Eqs(14) and(15) (with V, -A, =0) inverted to find
on the same axial grid as the field quantities. The trajectory-

of a partide in the transverse p|ane is then written, To summarize, within the stated assumptions, the deter-
_ mination of the plasma response to an intense laser pulse is
diz PL (12) as follows. Trajectories of individual particles are obtained
dé  mo(l—qy/(mc®))’ by integrating Eqs(10) and (11) forward in & The axial

Once the electron trajectories in the, ,¢) space are deter- momentum and relativistic factor for individual particles are
R ]

mined, the wake current densities and the dielectric constaﬁjtetermmed from Eq<(8) and_(9). Simultanepusly, one int_e-
for the laser field can be evaluated. As the laser pulse passggates Eqs(16) and (17) to find the potential and then in-

over an electron it contributes to the local density accordind’—ertS tge_tran_swlalrse Laplacians in Eqmi and(1d5_) lto f|r_1d q
to the amount of time it spends in a particular axial region.*: @ndA;. Finally, one computes the plasma dielectric an

The effective density of the particle is then given by integratgs Eq(2) in time to evolve the laser fields. The pro-
- cedure is then repeated for a fresh group of plasma particles.

TOXL L £) =Tio(X, o) C — (X, o) Y The realization of this system for a cylindrically symmetric
(XL ,€)=No(X,0 c—v, o(XLo (1—qyl(m))’ laser pulse will be discussed in Sec. III.
1

13
whereny(x, o) is the plasma density of the electrons upstream“l' NUMERICAL REALIZATION

from the pulse. The densityy(x, &), can be assigned to the We have solved the set of Ed$) and(19)—(22) on both
grid in the transverse plane using techniques developed fa two-dimensional Cartesian grig,x) and a cylindrical grid
PIC codes. The electrical current density may also be ag<,r ) with the computer codevake. The numerical method
signed based on the same procedure using(E$).in Eq. is implicit as far as weakly nonlinear terms are concerned,
(A35). and the remaining terms in the equations of motion are
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treated using a predictor corrector scheme. Once the particle
trajectories are computed, we collect the terms contributing
to the right-hand side of Eq2) to advance the laser field in
time with a time step which is a fraction of the Rayleigh
length divided by the light velocity. Finally we also treat the
ions’ motion and contribution to the source in Maxwell equa-
tions. However, except for quite long laser pulses, when the
ions tend to be expelled from the laser channel by the ambi-
polar field due to the electron expulsion, the simulation re-
sults are almost insensitive to whether or not the ions are
allowed to move.

In the case of two-dimensional geometry the transverse
Coulomb gauge condition implie&, =0. Further, we com-
bine Egs.(15) and(16) to form the modified equation

4 Jj —] _
- (vl. aj—g+k§jz) =(VZ-KkOI—kiViA,, (18
wherek,= w,/c, which is inverted to find" as opposed to
Eq. (16). This equation has the feature that in the weakly
nonlinear, electrostatic limit it produces the same equation as
fluid theories for the excitation of the plasma wave.

Finally, to simplify matters we have introduced the fol-
lowing_normalized quantitiesa(r,t)=gA,/mc,_p=p/mc,

_ _ _ __ FIG. 1. Contour plots from a two-dimensional planar simulation with
i . q_l’MmCZ’ r kpr’ f kpg’ an_d b qVXA/meC' _In 89=0.375, wg/w,=5.0, kpr =9, andk,L=80. The size of the simulation
cylindrical geometry this results in the following equation of pox shown are 8%, alongz and 63k, * in the perpendicular directioria)
motion: laser field andb) axial wake electric field ab,t =100, (c) laser field, and

(d) axial wake electric field ab,t=150, (¢) laser field, andf) axial wake

dp; 1 Jd 19 ) electric field atw,t=250.

9 1+ Yo ¥ 5 5 (a9 | by, (19

dr o dius corresponding to the boundary of the simulation vol-

d_gz m (20 ume. The azimuthal magnetic field is assumed to be regular
) ) _ at the origin. Concerning the particles, those which intersect

and the following equations for the wake field; the symmetry axis are specularly reflected. For the laser field

92 19 (dj, _ Eqg. (2) is solved subject to the outgoing radiation boundary

(A, —-1) Frz =1 f((?—g—bo iz (21)  condition discussed in Ref. 1. Numerical solutions of the

above system of equations will be presented in Sec. IV.
14 32 _
T ar Pe=gg vt (22 . SAMPLE RESULTS

The equations are solved using a finite difference  We verified that the code gives identical results to Ref. 1
scheme in which a grid is set up in both axial coordingte (slab geometryin the weakly relativistic limit and to Ref. 2
and radial coordinate. Certain quantities are defined on the (cylindrical geometrywhen the electron flow is laminar. We
grid or halfway between two grids. For example, among thealso compared the code with the results of a PIC Edde
field quantities the radiation vector potental the normal-  values ofwy/w, as large as 0.2, and in situations where the
ized wake potential and its second derivatiig, the density QSA is only marginally valid, and the code gave very close
n and dielectric constant, and the axial current densigre  results, with a lower noise in our case. Sample results from
all defined on both the radial and axial grid. The azimuthatlthis latter case are shown in Fig. 1. The following parameters
magnetic field and radial electric field are defined on thewere chosena,=3/8, k,r =9, and w,/wy=0.2. The initial
axial grid and halfway between to radial grid points. The profile for the laser radiation was selected to be of the form,
axial electric field is defined on the radial grid, but halfway o 2,2
between two axial grid points, and the radial current density a(r,£,t=0)=aof (&)exp(—r/ri),
is defined halfway between both the radial and axial gridwhere f(¢) increases linearly from 0 to 1 for<Ck,£<30,
points. For the particles, the radial location, relativistic fac-f(¢§)=1 for 30<k,§<50, andf(¢) decreases linearly from 1
tor, and axial velocity are calculated on the axial grid,to O for 50<k,£<80. Figure 1 displays the gray scale plots
whereas the radial momentum is defined halfway betweenf the amplitude of the laser electric field, and the axial low
two axial grid points. frequency wake electric field in the, ¢ plane at several

The following radial boundary conditions are used. Indifferent times. This figure can be compared with Fig. 3 of
inverting Eq.(21) it is assumed that the wake potential is Ref. 7. One can see that the qualitative features of the evo-
regular at the origin and vanishes at a sufficiently large ratution of the laser pulse are in good agreement, and that
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FIG. 2. Time evolution of the laser intensity for the case of a moderatez:]?j'Sarﬁ;:r?gcz\l/zgj&:nf;tgekla:siinftitig)r the case of a large intensity
intensity and large focal spé#,=0.25,k,r =16, k,L=40). o E R LT e :

fied here that the role of the forward Raman term was appar-
quantitatively there is reasonably good agreement as welkntly smaller in this case. Note however that as the Rayleigh
though trapped particles are seen in Ref. 7, while they are ndéngth scales as?, the actual distance on which the laser
treated in the present model. pulse propagates is not much different in the small focal spot
We now show the result of a high intensity laser pulsecase than in the case of Fig. 2.
propagating in a tenuous plasma in cylindrical geometry. Ini-  Figure 4 shows the electron density after one Rayleigh
tially, the radiation is of the form length for the same case as Fig. 3. One observes total elec-
—0)= ; _r2p2 tron cavitation where the laser intensity is large, enhance-
a(r,£,1=0)=ag sin(m¢/L)exp(—r7ry). ment of the density on the sides of the self-focused channel,
The following parameters were choseay=0.25,k,L=40, and a strong peak behind the laser pulse due to electrons
kor =16, andw,/wy=0.03, which corresponds to a plasma which come back toward the center of the channel under the
of density 16° cm™ for a 1 um laser light. Figure 2 shows action of the charge separation field. This behavior is similar
surface plots of the laser intensity at four times during theto that observed in the case of the nonlinear plasma wake
simulation. The power is about twice the critical power for field.!® Suppression of Raman instabilities may be attributed
relativistic self-focusing’*®[P.=16.2(wg/w,)* 10° W]. As  to a number of effects. The electron density is reduced where
expected, we observe that the pulse is subject to the Ramahe laser intensity is greatest, the plasma channel is inhomo-
self-focusing instability. However we observe that the insta- geneous which disturbs the plasma wave resonance, and the
bility develops slightly slower than predicted by the weakly channel density has a maximum at a radius just greater than
nonlinear model of Ref. 1. After one Rayleigh length, wethe spot size. This last effect contributes to enhancing the

observe that the pulse has been separated into two pulsgifraction of radiation which is side scattered and thus sup-
which are still focused and propagate on about 2 Rayleiglresses side scattering instabilitf@s.

lengths, and then diffracts quickly after a strong pump
depletion® The same case run with,/wy=0, that is without
the d/d term in Eq.(2), would propagate on about 10 Ray-
leigh lengths, which shows the importance of the pump
depletion and of the forward Raman term here.

Figure 3 corresponds to the same laser power, but to a
smaller focal spot, i.e.2,=1.0, k,r_=4. In this case, we
observe a total expulsion of the electrons from the laser
channel which stabilizes the Raman instability in the bulk of
the laser pulse. As a result, the laser pulse propagates over a
large distancémore than 30 Rayleigh lengthwith a radial
profile similar to the one predicted in the model of Sun
et al1® The front part of the pulse is eroded as predicted by
Sprangleet al!® The fact that self-focused propagation on

FJistances mUCh_larger than the Rayleigh length is posgible I81G. 4. Electron density after one Rayleigh lengdame case as Fig).3
in agreement with recent experimental restit® We veri-  The electron density has been limited tm@on this curve.
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the axial and the radial jitter momentum of an electron in a

5 TTT T I 11717 T TrIrTrreT rrrjaarrorura TTTTTTTT

- : A /4 3 plane wave?! It does not apply to longitudinally trapped

- 4 electrons which violate the validity limit of the ponderomo-
4 C |

C "‘. E tive approach. The relation may be reexpressed in terms of
3 E 4 E the angled made by the electron with respect to the axis of

r /‘*‘ - E the laser,

= LT ]
2 - ’_/ i fy—l

C . cosf=\/—-. (24
1 E ] y+1

F ] A simple interpretation of this result can also be given by the

0 b ' e b oo analysis of the collision of a photon packef total energy
0 10 20 30 40 . .
£ E>mdc®) with a single electron when the energy loss of the
radiation is small(multiphoton Compton effect with small
FIG. 5. Sample electron trajectories for the case of Figs. 3 and 4, after thPhotons deflection This relation can be expected to apply so
laser pulse has propagated 1 Rayleigh length in the plasma. long as the radiation wave vector remains in the forward
direction. Electrons satisfying this relation were recently ob-

Figure 5 shows sample electron trajectories after the 1aS€7Ved by Meyerhofeet al. in a laser-gas experimeftt.

ser has propagated one Rayleigh length in the plasma. In this A final set of sim_ulations correspond to cases typical of
example the electron flow is laminar unf,¢~15. For contemporary experiment&. The parameters of the refer-

ko&>15, the radial wavebreaking of the plasma disturbancé"¢® un for this set area,=1.083, kpr,=3.713,
results in a multipeaked electron distribution function and®p/®0=0.0594, which correspond to 1.098m laser light,

the ejection of fast electrons in the MeV range. The validiter:lo'54 pmm, zg=330 pm, n81§3'5><19;8 e, F_’:10

of fluid codes would be limited td&,§<15 here. Figure 6 TW, P/P~2.2, an_dl 0:5'73X_1 Wem _(whe_reP is the
shows the cross sectiar(E) for the generation of electrons laser power and, is the maximum Iasgr intensity when fo-
with energy greater thak. This cross section is generated CUS€d in vacuum The plasma length is 3 mm lon§ zg),
after the laser pulse has propagated 30 Rayleigh lengths fic!uding two linear ramps of one Rayleigh length on each

the plasma. It is averaged over the propagation length anﬁjde' The temporal pulse profile is Gaussian with a full width

; ; -1
normalized too,=2m(c/w,)? The rate of productiomR of at half-maximum in energy of 300 f6~31.7 ;). The
electrons with energy greater th&nis given by simulation box extends to 12. In the reference rufcurves

A on Figs. 7 and Bthe laser is focused near the entrance of
a(E) o1 23 the gas jet, namely a/zg=—3.5, wherez=0 corresponds
oy ' to the center of the gas jet. Figures 7 and 8 show the maxi-

- . mum intensity attained on the laser axis as a function of the
In the example shown in Fig. 6, the maximum Lorentz factor_ .. . . .
. L ositionz=ct. Due to self-focusing the intensity grows up to
of the accelerated electrons is of the order of 3, which is welg roximately 3.6, and the laser pulse then propagates in a
below the validity limit of the ponderomotive approaldtq. P Y %, P bropag

91 Snc rerafay 99, Due e consant £, re  Soio0s e Se W 255 et of et
ejected electrongfor which ¢=0) satisfy the relationp, P 9 g2

=1p?. Note that this relation applies to the electrons accel-the self-focused part of the pulse progressively shortens as

erated by the ponderomotive forcand self-consistent the pulse propagates in the plasma, while there is a complete

. . . electron densit vitation with the formation of a strong|
plasma fields and that it has the same form as the relationc <. O density cavitatio me formation ot-a strongly
between nonlinear wake. In the case of Figs. 7 and 8, we have varied

some parameters compared to the reference case.

For the case of Fig.(@ we have varied the laser inten-
sity. Curve B corresponds ta,=0.766, orl,=2.86x10'®
Wem 2, P=5 TW, P/P.~1.1. Though the laser power is
still slightly above the critical power, it is not sufficient to
maintain self-focused propagation over a long distance as in
the reference case. Curve C correspondsage0.01 and
shows no nonlinear effect. One recovers in this case the
vacuum propagation characteristics.

For the case of Fig. (B) we have varied the electron
density. Curve B corresponds to the same laser parameters as
curve A except for the density whichiig=7x10"® cm™3, so
that P/P.~4.4. One observes a similar behavior, with an
even stronger amplification of the maximum laser intensity,
which attains 4—§,, in a smaller density channel.

FIG. 6. Cross section for the generation of electrons with energy greater. For the case of Fig.(@) we have Var.IEd the focal pOS!-
thanE in the case of Figs. 3—5. The fast electrons are collected over the firsiON, from near the entrance of the gas jet to near the exit of
30 Rayleigh lengths. it. More specifically, the focal positiofin vacuum or for

R=o(E)nyc=5.3x 10?2
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3 FIG. 9. Laser energy in the simulation box. Curves A and a correspond to
3 the parameters of curve A of Fig(tj (i.e.,ny=3.5xX10" cm3), and curves
\ 3 B and b correspond to the parameters of curve B of Fig) Ti.e.,
A\ 4 no=7x10" cm3). The radius of the simulation box is f,0for curves a and
3 b, and 2@, for curves A and B.

still significant, since foz/zz=3.5 the wake electron density
oscillates between 0.6 and hp
Figure 8 shows a comparison of cylindric@urve A

X and slab(curve B geometry for the same set of numerical

sS4zl 012348 parameters. As expected, and already noticed by Pukhov and
R Meyer-ter-Vehn in a higher density caSethe cylindrical

FIG. 7. On-axis maximum intensitinormalized to the maximum intensity C?.S? leads to a_hlgher on-axis intensity than th_e S!ab case.

when focused in vacuunas function of the propagation distance. Curves A Similarly, we verified that the electron density cavitation was

always correspond to tr;e folgowing physical parameters;10.54 um, less important in the slab case. These effects have to be kept

2=330 um, Ny=8.5x10* cm *, P=10 TW (P/P¢~2.2), for a 1.058um i mind while using slab results to interpret real experiments.

laser light. The plasma length is 3 mm loig zz), including two linear Ei 9 sh the | in th . lati b

ramps of one Rayleigh length on each side. The temporal pulse profile is |g_ure S OWS € laser energy in the Slm_u a I(_)n 0X

Gaussian with a full width at half-maximum in energy of 300 fs. The laserNormalized to its initial value versus the propagation distance

is focused near the entrance of the gas jet, namely/zt=—3.5, where  for the parameters of Fig(B) (i.e., ny=3.5x10' cm 2 cor-

z=0 corresponds to the center of the gas (@t.Same parameters as curve responding to curves a and A ang=7><1018 cm™2 corre-

A except for the laser intensitfy=5 TW (curve B, andP=1 GW (curve di b d BTh di f th imulati

C); (b) same parameters as curve A except for the plasma density,sPor.] ing to curves b and) e radius of the simulation

ne=7x10" cm~2 (curve B; (c) same parameters as curve A except for the box is 1@ for curves a and b, and Qfor curves A and B.

focal spot position,z/zz= —~2.5 (curve B, z/zz=0. (curve O, and  The difference between the lower case and upper case curves

7/zg=+3.5 (curve D. is indicative of the fraction of laser energy side scattered out

of the simulation region. At higher density there is a greater

depletion of laser energy associated with creating the plasma

ay,<1) corresponds, respectively, t63.5 (curve A), —2.5  Wake.

(curve B), 0. (curve Q, and+3.5 (curve D. The simulation

box has been extended respectively to 16 and 206r the V. CONCLUSION

cases corresponding to curves C and D, respectively. .On? We have derived the fast time averaged equations for the

observes on these curves that the self-focused propagation is .. : . )
motion of particles and the generation of electromagnetic

favored when the laser is focused near the entrance of the 9%ake fields under the action of the ponderomotive potential
jet. When focused in the middle of the gas jetrve Q, P P

there is still a strong amplification of the maximum IaserOf an ultraintense laser pulse propagating through a tenuous

) ) lasma. Based on these averaged equations, we have de-
intensity compared to the vacuum case, but the laser seems . : . .

) signed a new particle code calculating the particle trajecto-
to bounce back and almost no self-focusing occurs. We ob-

ﬁjes on the plasma period time scale. This code is able to deal
served, however, that some part of the laser pulse has S€With cylindrically symmetric geometry as well as slab geom-
focused propagation betweehzz=2 and 4 withl/1,~0.2 y y sy 9 y 9

. : etry. As an example of the use of the code we have studied
and a rather large spot. The corresponding density wake 1S S ; -
Stable propagation in the regime of total electron cavitation,

with relativistic electrons ejected from the wake of the pulse
in a cone whose angle decreases with energy. This calcula-
tion could also help in improving the interpretation of recent
experiments on relativistic self-focusing*®

As the code is based on a multiple time and space scale
formulation of the governing equations its regime of validity
is restricted to propagation of pulses in tenuous plasmas,
w,<wg. However, it is this regime which is particularly dif-
ficult to treat with PIC codes. Additionally, the assumption
has been made that the radiation is dominantly forward
FIG. 8. On-axis maximum intensity for cylindricaturve A and slab ~ Propagating, which eliminates the possibility of studying Ra-
(curve B geometries. Parameters correspond to those of curves A of Fig. anan backscattered waves with the present code. Also the
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guasistatic approximation, in which it is assumed that thevherej and p are the current density and charge density,
shape of the laser pulse changes only lightly in the timeespectively. We calculate these by assuming that the plasma
during which a given electron remains in the laser pulseconsists of an ensemble of cold fluids whose velocities are
restricts from consideration those electrons which have beedetermined by EqgA1) and(A2), and whose corresponding
accelerated to high energy,—b,/c>wy/w,. Finally, the  densities are determined by the continuity equation,

code uses the predictor corrector method of calculation of the

wake magnetic field. It has been our observation that for ‘9_”+V,m,:0_ (A5)
extremely intense and relatively long pulses that this can lead  dt

to some numerical difficulty. The charge and current densities are then obtained by aver-

Qne of the charagteristic_s of the code is that it has 3ging over the ensemble of cold fluigs:-(qn) andj =(qnv).
particularly low numerical noise. We have taken advantagel-his averaging will be performed after the averaging over

of this to study the magnetic field generated in the wake Ofo tast time scale of the radiation. Further, we temporarily
an ultra-intense field in a separate paffelhis magnetic specialize to the Coulomb gauge wha&feA=0

field appears to be of fourth order in power of the laser field * 5 hayt step is to transform to laser frame coordinates
amplitude A and may play an important role in the laser ,, jyiroducing the variablg=z—ct. In terms of this new

wake field accelerator concept. ; . .
axial coordinate EqQ9A1) and(A2) can be written as
The code is presently devoted to the study of the inter- QAL (A2)

action of laser pulses with plasmas. In many experiments d q q
however the laser pulse primarily interacts with a neutral gas, | g; (Y~ C&)"V ( Pts A) =—qVe+|{V oA
and the ionization processes may play an important role in (AB)
the laser propagation itséff.We are currently incorporating

an ionization package in the model to pe able to deal .vv.ith i+(v—cez)-V}ymcz= —qV-(V(D+ } %_ %)
these aspects. The result will be a versatile and most efficient | Jt cadt I
model to describe ultrashort pulse interaction with gas or (A7)
preformed plasma.

.V1

Here, the axial component of the gradient operator is under-
stood to represent differentiation with respect/td~urther,
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and,
APPENDIX A: PONDEROMOTIVE EQUATIONS
2

In this appendix we derive the fast time averaged equa- Vi + ‘97 d=—4mp. (A9)

tions for the motion of particles in the laser pulse wake and 29

the electromagnetic wake fields. We begin the derivationk ey than solving the three independent components of Eq.

with the equations of motion for relativistic particles in elec- A6), we consider our system to be the two components of
tromagnetic fields described by a scalar and vector potenti q. (A6) transverse to the direction of propagation of the

q q laser pulse,
—|p+t=-A =—chI>+(V—A -V, (A1)
dt c c 9 q
wherep is the particle momentumy is the relativistic factor, | gt T(v=ce)-Vi|pt c AL)
v=p/(ym) is the particle velocity, andA and & are the
yect_or and scala}r potentials. The total _timg derivativg appear- - _qv o+(V, q Al-v, (A10)
ing in Eq. (Al) is the Lagrangian derivative following the c

particle velocityv. Equation(Al) can be supplemented by

h ial f EGR i Eq.(A7) divi
the equation of evolution of particle energy, and the axial component of E(A6) minus Eq.(A7) divided

by the speed of light,

d = (Vq>+ ! aA) A2 d q
gt yme=-av c ot)’ (A2) E+(v—cez)-V} p,— ymc+E (AZ—CID)}
which will be useful in the following derivation.
The fields are determined by Maxwell's equations which _ q (@_ v . %) (A11)
are written as cldt c ot
1 92 ) Aar 109 The next step in our derivation is to introduce an expan-
c2 ot :TI_V EE*’V'A ' (A3)  sion based on the disparity between the laser and plasma
frequencies. We define the small parametew,/w, where
10A i i
vV ver =2 = amp, (A4) wy is the p[asma frequency ang, is the laser frequency. In
c ot terms of this small parameter the axill,and transversey,
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sizes of the laser pulse scaleResL~\y/€, wherehyis the  nents are determined by the leading order version of Eq.

laser wavelength. Derivatives with respect to the axial vari{A8) which is second order ia. We note that the transverse

able ¢ are expanded as follows: components of EQLA8) are second order. Thus the average
J J J of (A8) will determine the electromagnetic field of the wake,
—_—=t —, (A12)  while the rapidly varying part describes the propagation of
d¢ 9o 9Ly the laser light. Solution of this equation will also be deferred

where £, is a fast variable associated with the laser waveuntil the charge and current densities are determined.

length d/dy~1/\,, and{; is a slow variable associated with We now consider solution of the particle equations.

the laser envelope and the plasma wavelengii,~ e/\. Within the approximation that quantities evolve slowly in the

The transverse gradient is also assumed to follow the scalindggser frame we may neglect the time derivatives in @d.1)

V, ~él\o. In the laser frame coordinates all quantities varythrough two orders ire. Further assuming that the particle

slowly in time. Correspondingly, we take the time derivative velocity satisfies the condition-1v /c>¢, Eq. (A11) yields

to scale ag/dt~€e w,. Next we expand the field quantitids

andA in powers ofe. As it turns out, only the lowest order ymec—p,=mc+ a (A_z—a), (A14)

terms in each field quantity enter the final equations. Thus, c

we suppress the subscript, 0, for the lowest order quantiliegnere we have inserted overbars on the potedtiandA,
but retain it when expressing the higher order quantities. Fofndicating that they do not vary on the scale of the laser
situations of interest the particle motion is relativistic. Thusvwavelength. EquatiofA14) indicates the constancy of the

it is apprqp_riate to consider the magnitude of the lowest Orguantity H-cP,, where H is the particle Hamiltonian aiRj
der quantitiesP andA to scale asnc®/q. Consequently, the he canonical momentum, for cases in which the fields de-

source terms involving andj in Egs. (A8) and (A9) are  peng on time only in the combinatian-ct. The value of
second-order quantities Scal'ng,%(‘“p/"’o) ‘. _ this conserved quantity is determined from the condition that
Th2e leadingzerg order version of the Poisson equation, {he plasma electrons be unperturbed upstream from the laser
#®l3(5=0, requires that the lowest order electrostatic potenyise. It is important to note that E¢AL4) indicates that,
tial be independent of the fast variabl, ®=®(f;x, .).  \hile the quantitiesy and p, have both rapidly and slowly
Here the overbar indicates that a quantity is averaged OV'?Jarying components, their difference is a slowly varying
the fast space scale. Similarly, the lowest order version of thauantity. The condition % v,/c>e requires that one wave-
gauge condition,dA,/9f,=0, requires that the zero-order gngth ‘of the laser field pass by electrons in a time suffi-
axial component of the vector potential be independent of th@jenly short such that their radial motion is negligible. This
fast variableso, A,=A,({1.X, ,b). This follows from the fact congition (which will appear again effectively excludes
that the transverse gradient is assumed to be first order. Te-,1 consideration the motion of electrons which have been

gether these conditions require that the zero-order axial elequapped and accelerated to high energy by the laser pulse.
tric field vanish. The first-order version of the Poisson equa- Turning now to the transverse components of the mo-

tion, d,/9¢5+25®19¢,0L,=0, then indicates that the first- mentum, the lowest order version ofA10) gives
order potential ®, is also independent of the fast variable A(p, +GA, c)laty=0. Thus
[Note that in the above the second term is identically zero as + * ’

a result of the lowest order solutio=® (Z;,x, ,t).] Finally, P =P (Lo, {1, X 1)+ P (L1,% 1) (A15)
in second order the charge density enters,
where
9?2 g2
VZP+ —5 O+ — Oy,= —4mp. N q -~
g 9% pL(§O!§11XLit):_EAJ_(§Oi§1!XJ_ 1), (A16)

Averaging this equation over the fast scale annihilates the
second-order potential and indicates that only the averagé the lowest(zerg-order transverse jitter momentum associ-
charge density contributes to the lowest order potential. Thated with the laser field. We note that there is also a zeroth-
averaging step will be performed later in the derivation, onceorder longitudinal component of the jitter momentum which
the charge density is determined. The rapidly varying part ofan be calculated from E¢A14) once the rapidly varying
the charge density produces a second-order contribution gPmponent of the kinetic energy is determined. The averaged
the electrostatic potential. The physical implication of thetransverse momentuitalso zero orderis determined from
above equations is that in tenuous plasmas large electrostatfte first-order version of EqA10)

potentials can only develop over distances much greater tha[n

q
pJ_+EA

- 1%

the laser wavelength. p, -V, +(p,— ymc) —

The lowest(zerg-order contribution to the transverse 941
component of the vector potential has both a rapidly varying

q — q
component and an averaged component, Xf p 1t c A |=—qymV ®+|V, c Al-p.
~ S 0

A=A (Lo:l1X DFAL(LX ). (A13) (AL7)
The rapidly varying component is associated with the laseHere we have multiplied bym, and used Eq(Al4) to re-
field, and the slowly varying component is associated withplace p,— ymc by its average. We have also indicated the
the electromagnetic component of the wake. Both componecessary presence of first-order corrections to the transverse

+(p,~ ymo)
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momentum and vector potential. These however, are annihcombining Eq.(A23), the definition of the average relativis-
lated by averaging EqAL17) over the fast length scale, tic factor Eq.(A21), and the constant of motion, EA14).
The result, after considerable algebra, is

_ 91— q—
PV, +(p,— Ymc)ag pL+EAL>

(v_—eZC)-V(E+gA_z)

=—qymV,d+|V, gA) p. (A18) B
A o B

Thus, except for the last term on the right-hand side, all the
quantities appearing in EqA18) are averaged quantities. which is again of the same form as the original, unaveraged
The last term on the right is evaluated as follows: equation of motion(A10). Combining Eqs(A23) and(A24)

> one can write all components of the equation of motion in

a Q4 — 1 q-~ i .
(Vl - A) 'P=<VL - K) P35 v, - A, (a19) the following form:

where we have used EGA16) to express the rapidly varying (v—ec)-Vp=q

momentum, and we have used the fact that the axial vector

potential has only a slowly varying component. whereE and B are the wake electric and magnetic fields.
We now derive an expression for the fast scale averageginally, using Eqs(A21), (A23), and(A24) the evolution of

relativistic factor. We begin by writing an expression for the the averaged particle energy is determined by
square of the zero-order relativistic factor,

T~ |2
q A, (A25)

E+ _&B_ Lyl
c 2my L

(v—ec)-Vymce

' (A20) ( _ aA_) c 0
v B

2

+p2 2

— g~
2_ + —_— —

1 m2c2 P CAL _EK
2my dl [ct

Vo-—-—
where we have expressed the rapidly varying part of the 9%
perpendicular momentum in terms of the vector potential.  We now focus on the field equations for which we must
We then use Eq(Al14) to express the axial momentum in calculate the charge and current densities. The charge density
terms of its average and the relativistic factor, for each cold fluid in the ensemble is obtained from the par-
p,=p,+mc(y— 7). Inserting this expression in EGA20) ticle density which satisfies the continuity equatigA5).

(A26)

and averaging over the fast time scale produces, Written in laser coordinates E¢A5) appears as
1 | q-~ |? n. d n
= 2,72 |2 n n_
V=1t g et AL (A21) VP ot gt g (p;=ymo) =0, (A27)

Thus, the average relativistic factor depends algebraically omhere we have multiplied through by the mass to express the
the average momentum, and radiation vector potential in &elocities in terms of momenta. The lowest order version of
straightforward way. Eq. (A27),

We then introduce the fast scale averaged velocity which
we define via the relation, 2 (p,— ym0) n_
24 Y
(A22)  requires that the ratio/y be a slowly varying quantity,
_ _ o n/y = n/vy. Here we have used the fact that the lowest order
With this definition, Eqs(A18), (A19), and(A20) may be  version of p,—ymc is a slowly varying quantity,

P
ym

combined and rewritten, p,— ymc=p,— ymc. In first order Eq.(A27) becomes
A s _ Tl
(v—ec)-V pL+CAL) V,-p, p +a—gl(pz—'ymc)<;)

B — g — 1 q~|? d n

= qVLqD‘F VL EX)V WVL EAL (A23) +(9_§0[(p2_7mc); =0,

1
Thus, we recover an averf’:\ged equatlpn of motion which is of here we have indicated the necessary presence of first-order
the same form as the original equation for the unaverage\g

" . S orrections to the density, axial momentum, and relativistic
quantities,(A10), e xc_ept th_at time derlvafuves are ab'_s(anet-_ factor. As before these C())/rrections are annihilated on averag-
placed by a derivative with respect min the quasistatic ing over the fast length scale
approximation, and there is a ponderomotive potential due '
to the jitter of electrons in the laser field. _In

Equation(A23) describes the evolution of the perpen- Vio-pl o
dicular components of momentum. The evolution equation Y
for the parallel component of momentum can be obtained bysiven the ratin/y is a slowly varying quantity, we conclude

+ 2 (=7 @—o A28
57, (P 7o) | =0, (A28)
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_ In and
:f(—) . (A29) _
Y — 4n— (oD

VfAz——j—V(——V-AT), (A37)

Introducing the velocity defined in EqA22) we observe c L,

that the average quantities also obey the continuity equation, )
respectively.

- J - As a final comment we note that the expression for the
Vivin+ 94 (v,~¢)n=0. (A30) ponderomotive force in EA26) has been derived a num-
o ) ber of times in the literature previously. In particular, for the

The space and ensemble averaged density is then insertediQsa of circular polarization this result is equivalent to that

the space averaged Poisson equation, published in Refs. 26 and 27. In the case of elliptically or

,— 2 . linearly polarized radiation there is an inconsistency between
Vid+ P &= —4mq(n). (A31)  our result and those of Ref. 26. However, our results are
1

consistent with earlier derivatior&2° using different appro-
Included in the density is the contribution of both electronsachs to the equations of motion. Further, our results are con-
and ions. sistent in the fluid limit with those published in Ref. 2. The
Finally, we need to calculate current density to be in-various discrepancies, which are only noticeable when the
serted in Eq(A8). We separate this equation into its rapidly jitter motion is relativistic, seem to be related to the correct

varying component, inclusion of the high frequency component of the axial mo-
5 2 4o mentum. In particular, the presence of this component of the
- +Vf ZL:_ _TL' (A32) momentum allows the particularly simple EGA21) to be
C dtddy c derived from Eq.(A20).

and its slowly varying component,
VIA=——j-V f ) (A33) APPENDIX B: CONSERVATION LAWS
c 1

. . . In this appendix we derive two conservation laws for our
The rapidly varying component of the current density can

hen b qi f the | ol W?/Stem of ponderomotive equations; the conservation of laser
then be expressed in terms 0 t € laser vector potential angfy, e action, and the conservation of particle and field en-
the average density and relativistic factor,

ergy. Our derivations follow closely those presented in Ref.
~ q n\ 9 /ni~ 8. We begin by writing the radiation field in terms of a rap-
jl== < (—)”‘ > = <j_>AL , (A34) idly varying phase and an envelope,

Y

“m\ 157" e

where we have used E¢A29). Similarly, the average cur- A=A, exdikelo]tc.c. (B1)

rent can be written as The evolution of the envelope is then determined by substi-

g T tuting Eqg.(B1) in Eq. (A32),
=ikt 2|+ V2 A =— 5 (A, (B2)
The final system of averaged equations consists of Egs. LC 9t 4 m Y

(A14), (A21)~(A23), and (A30)—(A35). It is interesting 10 The para-axial approximation consists of neglecting ¢he

note that the averaged quantities obey essentially the sam@.yative in comparison with the lowest order wave number

equations as the unaveraged quantities except for the adqi: ' ag the plasma density becomes modulated the phase of
tion of the ponderomotive force in EGA25) and the revised  he |aser envelope will develop increasingly rapid variations

definition of. the relativistic factgn(AZl). Thus, in solving  \yith axial distance, at some point tizederivative will no
these equations, the only quantity that needs to be averaggthger pe negligible. Thus, we will keep this term here as it

over the fast space scale is the square of the laser vectg omes important with time as the laser field decays and the

potential appearing in EqA21). All the other averaged |5ser frequency drops. To derive the conservation of wave
guantities are derived from this. The additional ensemble av: A

. . i ) action we multiply Eq.(B2) by AT, integrate over all vol-
eraging of cold fluids may be done either by solving for theume and subtract from that quantity its complex conjugate
evolution of an ensemble of particléas done in this paper ’ ’

and computing the charge and current densities on a grid, o s (2 12

by introducing a distribution function and the appropriatey; 2'kof d*x|A |

kinetic equation. We note that the restriction to the Coulomb

gauge can easily be lifted by comparing the averaged equa- 2 . P2 .
+2 f d® *1=0. (B3)

P P
XA Srag A AL Grar AL

tions to the unaveraged ones. The results are that(Bg4)
and(A33) are replaced by the following:

Here we have assumed the laser amplitude vanishes at infin-
V2P — 7 V-A=— 4mq(ny (A36) ity so that boundary terms can be neglected. We now use the
281 identity,

Phys. Plasmas, Vol. 4, No. 1, January 1997 P. Mora and T. M. Antonsen, Jr. 227



2 2
f dox A LA A, LA &:szx V(@A) 2+ |V, XA, |?]
Logtar Tt T atag TE dt Ll 87 z Lo
19 S RO B S =
——— | d3|/A*. — A —A, . — A* +{(c—v,ny)ymc . B9
5 o0 | A A %AL A, a{Al , ((c—vny) ]Z_w (B9)
to rewrite Eq.(B3) as a conservation law, Here, z=x represents a surface upstream from the pulse
d 5 where the plasma is undisturbed, apd—« is a surface
_ [Zikof d3x|A, | downstream from the pulse across which the plasma wake
dt passes. Thus, EqB9) shows that energy extracted from the
U R T laser pulse is used to accelerate plasma electrons and to cre-
+f d3x| AY. o A —A - F AY ] =0 (B4)  ate the wake electric and magnetic fields.
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