
Kinetic modeling of intense, short laser pulses propagating
in tenuous plasmas

Patrick Mora
Centre de Physique The´orique (UPR 14 du CNRS), Ecole Polytechnique, 91128 Palaiseau, France

Thomas M. Antonsen, Jr.
Institute for Plasma Research and Departments of Electrical Engineering and Physics,
University of Maryland, College Park, Maryland 20742

~Received 16 April 1996; accepted 14 October 1996!

Fast time averaged equations are derived for the motion of particles and the generation of
electromagnetic wake fields under the action of the ponderomotive potential of an ultraintense laser
pulse propagating through a tenuous plasma. Based on these averaged equations, a new particle code
is designed which calculates the particle trajectories on the plasma period time scale. The regime of
total cavitation of the plasma is investigated. It is found that stable propagation over a long distance
is possible in this regime, and that energetic electrons are produced with a simple characteristic
dependence of their angle of deflection on energy. This new code allows for computationally
efficient modeling of pulse propagation over great distances. ©1997 American Institute of
Physics.@S1070-664X~97!03301-6#
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I. INTRODUCTION

Channeling of intense optical fields in plasmas is an
portant challenge, with possible applications in the contex
laser plasma accelerators and x-ray lasers. Many nonli
physical processes can be expected to affect the propag
of these intense pulses. In particular, it has been show
recent papers that self-channeled intense laser pulses are
ject to severe instabilities of the Raman type which modu
the laser pulse and erode its tail,1–8or cause the laser pulse t
veer off its axis.9,10 The simulations and theory of Refs. 1–
were based on laser-plasma fluid models corresponding
cold plasma. This prevents one from treating situatio
where the plasma motion reaches the wave breaking l
and where fast electrons are generated in the interaction
addition, these models contain a mathematical singularit
zero plasma electron density which prevents their use w
the electrons are totally expelled from the axis of the la
propagation~electron cavitation!. Such features are stron
limitations of the fluid models in the high intensity regim
An alternative to the fluid models is the particle-in-cell~PIC!
technique.7,8 This technique follows the evolution of the la
ser radiation on the short time scale associated with the l
period, and thus, is computationally intensive and restric
in the parameters that can be studied.

In the following, a novel particle model is used to d
scribe the long-time plasma behavior under the action o
ultrahigh intensity~of the order of 1018 W/cm2 or more!,
short laser pulse~1 ps or less!. Among the results we obtain
we emphasize the following:~i! Relativistic focusing for
short laser pulses is possible over a long distance~.30 zR!
with total electron cavitation in the laser channel and stro
reduction of the Raman type plasma instabiliti
~zR5v0r L

2/2c is the Rayleigh length,v0 is the laser fre-
quency,r L is the laser spot size, andc is the light velocity!.
This self-focused propagation does not need the help
preformed plasma channel,11 which is necessary at modera
intensities.~ii ! Plasma electrons can be ejected with relat
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istic energies in the wake of the laser pulse. The angle
ejection is related simply to the electron energy as a con
quence of momentum and energy conservation.

The organization of this paper is as follows. In Sec.
we will present our kinetic model and discuss the appro
mations used in its derivation. The actual detailed steps
the derivation are included in Appendix A. Properties of t
model are also discussed in both Sec. II and Appendix
Section III contains a discussion of the numerical implem
tation of the model for the case of a cylindrically symmet
laser envelope and plasma wake. Section IV contains s
sample simulations illustrating the versatility of the cod
Finally Sec. V contains our conclusions and a discussion
the direction of future work.

II. MODEL

The model we propose is fully relativistic, nonlinear, a
kinetic.12 In contrast to particle-in-cell techniques, howeve
approximations are made. Specifically, we make the follo
ing assumptions. Electrons interact with the radiation elec
field in two separate ways. First, they jitter in response to
high frequency laser field, and thus contribute to a dielec
constant. Second, they respond to the low frequency p
deromotive potential of the laser field, creating a nonline
wake following the laser pulse. This also modifies the diel
tric constant through modification of the electron density a
relativistic factor. Generally speaking, it is required that t
plasma be tenuous for this separation of responses to
valid. In particular, we assume that the laser wavelength~fre-
quency! is much smaller~greater! than all the other charac
teristic lengths~times! in the system. That isvp!v0 and
r L@c/v0 , where vp5(4pq2n0/m)

1/2 is the plasma fre-
quency based on the ambient densityn0, andq52e andm
are the charge and mass of an electron. These inequa
enable one to expand the equation of motion of the electr
and the wave equation in powers of the small parame
vp/v0.
2173/$10.00 © 1997 American Institute of Physics
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A second approximation that we make with regard to
particle motion is the so-called quasistatic approximat
~QSA!,13 which assumes that the electron transit tim
through the laser pulse is short compared with the charac
istic laser pulse deformation time. This approximation
valid for plasma electrons of sufficiently low energy. F
these electrons, the laser pulse passes over quickly du
which time its shape does not change. For electrons wh
have been accelerated to high energy, and which are tra
ing with the laser pulse, this approximation will fail. W
made sure that in our simulations the number of electrons
which this is the case is zero or negligible.

Finally, consistent with our assumptions of a tenuo
plasma, the plasma contribution to the dielectric const
will be small. Consequently, to lowest order the laser pu
will propagate without changing shape. Over a long dista
and after a long time the shape of the pulse will evolve. T
is treated in the envelope approximation. We will reta
some higher order corrections to the envelope approxi
tion, which allows the laser radiation to be considera
down-shifted in frequency. However, it is still assumed th
the radiation is dominantly forward-propagating. Thus t
development of backscattering instabilities is not treated
the present model.14 Due to the above approximations th
relevant numerical time and space scales are the plasm
riod and the plasma wavelength, instead of the laser pe
and the laser wavelength as in PIC codes. This results
considerable gain in terms of computing time. In additio
due to the separation of the electron response into high
low frequency components, we are able to treat the case
cylindrically symmetric wake and an arbitrarily polarized l
ser pulse. It is believed that cylindrical effects are import
in modeling the evolution of the head of the laser pu
which erodes due to diffraction.13

We begin our presentation with the envelope equat
for the radiation. Here the radiation is written in terms of t
high frequency vector potentialÃ' , which we write in the
form of an envelope modulating a plane wave traveling
the speed of light,

Ã'5Â'~z,x' ,t !exp@ ik0z#1c.c., ~1!

wherek0 is the wave number of the plane wave andz5z2ct
measures the distance back from the head of the pulse. H
the envelope,Â' , depends on time and space and is de
mined by

F2c ]

]t S ik01 ]

]z D1¹'
2 G Â'5

4pq2

mc2 K n̄ḡ L Â' , ~2!

which follows from Eqs.~A32! and ~A34!. In writing the
left-hand side of Eq.~2! we have dropped the term]2/]t2,
which is of order~vp/v0!

2. In doing this we eliminate com
ponents of the radiation which appear to vary rapidly in
laser framez5z2ct. This corresponds to eliminating back
scattered radiation. Note that we have retained the mixedz–t
derivative which is of ordervp/v0 in our simulations. As
discussed in Appendix B and shown in our numerical resu
retention of this term allows one to model the absorption
radiation due to the creation of a plasma wake. Further, it
218 Phys. Plasmas, Vol. 4, No. 1, January 1997
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be shown that inclusion of this term also enables one
model pure forward Raman scattering, which is norma
excluded in the paraxial approximation.

The right-hand side of Eq.~2! represents the dielectri
response of the plasma. The angular bracket represen
ensemble average over a distribution of particles each m
ber of which has a slowly varying in time density,n̄, and
relativistic factor,ḡ. In our numerical modeling this averag
ing will take the form of summing the contributions of th
various simulation particles to the plasma dielectric.

The slowly varying density and relativistic factor are o
tained by solving for the motion of a particle in the combin
fields of the wake and the ponderomotive potential of
laser pulse. Specifically, the particles, in effect, satisfy
modified equation of motion,

dp̄

dt
5qS Ē1

v̄

c
3B̄D2

q2

ḡmc2
“uÂ'u2, ~3!

where the overbar on each quantity signifies that it is slow
varying in time. Here the average relativistic factor is giv
by,

ḡ5A11
1

m2c2 F up̄u212Uqc Â'U2G , ~4!

where the term under the radical involving the laser vec
potential represents the contribution of the jitter motion
the electron to the transverse momentum. The derivation
Eqs.~3! and ~4! for the specific case of interest is present
in Appendix A @see Eqs.~A21! and ~A25!#, where it is
shown that their validity is limited to electrons for whic
12vz/c@vp/v0 ~in particular this excludes trapped pa
ticles from the range of validity of the model!. We have also
used the relation

Uqc Ã'U252Uqc Â'U2,
which follows from averaging the square of expression~1!
over the period of the laser.

The equations of motion~3! can alternatively be written
in Hamiltonian form by introducing vector and scalar pote
tials Ā andF̄ associated with the low frequency wake field
and the canonical momentumP̄5p̄1qĀ/c. In this case the
Hamiltonian is given byH̄5ḡmc21qF̄. In the quasistatic
approximation, the Hamiltonian depends onz and t only in
the combinationz5z2ct. This leads to the constancy o
H̄2cP̄z via

dH̄

dt
5

]H̄

]t
52c

]H̄

]z
52c

]H̄

]z
5c

dP̄z
dt

. ~5!

For electrons which are initially at rest this implies

ḡmc21qF̄2cp̄z2qĀz5mc2. ~6!

Equation~6! along with Eq.~4! can be used to solve alge
braically for the axial momentum of a particle consideri
the perpendicular momentum, and scalar and vector po
tials as known. In particular, introducing the potential

c̄5F̄2Āz , ~7!
P. Mora and T. M. Antonsen, Jr.
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we find

ḡ5
1

2~12qc̄/~mc2!!
H 11

1

m2c2 F up̄'u212Uqc Â'U2G
1S 12

qc̄

mc2D
2J , ~8!

and

p̄z5
mc

2~12qc̄/~mc2!!
H 11

1

m2c2 F up̄'u212Uqc Ā'U2G
2S 12

qc̄

mc2D
2J . ~9!

Thus, in solving the equations of motion, only the perpe
dicular components of momentum for a particle need to
evolved. The axial component can be obtained using Eq.~9!.
Specifically, we imagine solving the equations of motion
a two-or three-dimensional grid. We introduce the coordin
j5ct2z52z so that positivej measures distance back fro
the head of the pulse, or alternatively, time at a fixed ax
position. The evolution of the transverse momentum o
plasma particle as the pulse passes over it is then given

dp̄'

dj
5

1

c~12qc̄/~mc2!! FqḡS Ē1
v̄

c
3B̄D

'

2
q2

mc2
“'uÂ'u2G , ~10!

where we have used

dj

dt
5c2 v̄z5

c

ḡ S 12
qc̄

mc2D ~11!

and Eq.~6! in replacing the derivative with respect to tim
with a derivative with respect to the laser frame coordinatj.
This replacement is useful in numerical solution of the go
erning equations as it allows particle quantities to be defi
on the same axial grid as the field quantities. The traject
of a particle in the transverse plane is then written,

dx'

dj
5

p̄'

mc~12qc̄/~mc2!!
. ~12!

Once the electron trajectories in the~x' ,j! space are deter
mined, the wake current densities and the dielectric cons
for the laser field can be evaluated. As the laser pulse pa
over an electron it contributes to the local density accord
to the amount of time it spends in a particular axial regio
The effective density of the particle is then given by

n̄~x' ,j!5n̄0~x'0!
c

c2 v̄z
5n̄0~x'0!

ḡ

~12qc̄/~mc2!!
,

~13!

wheren̄0~x'0! is the plasma density of the electrons upstre
from the pulse. The density,n̄~x'j!, can be assigned to th
grid in the transverse plane using techniques developed
PIC codes. The electrical current density may also be
signed based on the same procedure using Eq.~13! in Eq.
~A35!.
Phys. Plasmas, Vol. 4, No. 1, January 1997
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We note, in the speed of light frame, all informatio
must propagate from small values ofj5ct2z to large val-
ues. Accordingly we integrate Eqs.~10! and ~11! starting
from j50, the head of the pulse. We must also write t
equations for the wake fields so that they may be integra
in j in the same direction. To do this we rewrite the axial a
transverse components of Eq.~A37! introducing the potential
c̄ defined in Eq.~7!,

4p

c
j̄'5“'

]c̄

]j
1“'~“'–Ā'!2¹'

2 Ā' ~14!

and

4p

c
j̄ z52

]2c̄

]j2
2¹'

2 Āz2
]

]j
~“'–Ā'!. ~15!

Solution of Eqs.~14! and ~15! along with the charge conti
nuity implied by solution of the particle equations then gu
antees that the Poisson equation~A36! is satisfied as well.

The two transverse components of Eq.~14! can also be
thought of as equations for the transverse solenoidal an
rotational parts of the current density~the last two terms on
the right have zero transverse divergence!. For a given cur-
rent density, Eq.~14! can be solved for]c̄/]j andĀ' once a
gauge condition is specified. An obvious choice, which
make here is the transverse Coulomb gauge,“'–Ā'50.
Then we have from Eq.~14!

4p

c
“'–

] j̄'
]j

5¹'
2G, ~16!

whereG is given by

]2c̄

]j2
5G. ~17!

The left-hand side of Eq.~16! is determined from the particle
equations, and Eq.~16! is inverted to findG. With G known,
Eq. ~17! may be integrated axially to determine the potent
C̄, and Eqs.~14! and ~15! ~with “'–Ā'50! inverted to find
Ā.

To summarize, within the stated assumptions, the de
mination of the plasma response to an intense laser puls
as follows. Trajectories of individual particles are obtain
by integrating Eqs.~10! and ~11! forward in j. The axial
momentum and relativistic factor for individual particles a
determined from Eqs.~8! and ~9!. Simultaneously, one inte
grates Eqs.~16! and ~17! to find the potential and then in
verts the transverse Laplacians in Eqs.~14! and ~15! to find
Ā' and Āz . Finally, one computes the plasma dielectric a
integrates Eq.~2! in time to evolve the laser fields. The pro
cedure is then repeated for a fresh group of plasma partic
The realization of this system for a cylindrically symmetr
laser pulse will be discussed in Sec. III.

III. NUMERICAL REALIZATION

We have solved the set of Eqs.~6! and~19!–~22! on both
a two-dimensional Cartesian grid~j,x! and a cylindrical grid
~j,r'! with the computer codeWAKE. The numerical method
is implicit as far as weakly nonlinear terms are concern
and the remaining terms in the equations of motion
219P. Mora and T. M. Antonsen, Jr.
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treated using a predictor corrector scheme. Once the par
trajectories are computed, we collect the terms contribu
to the right-hand side of Eq.~2! to advance the laser field i
time with a time step which is a fraction of the Rayleig
length divided by the light velocity. Finally we also treat th
ions’ motion and contribution to the source in Maxwell equ
tions. However, except for quite long laser pulses, when
ions tend to be expelled from the laser channel by the am
polar field due to the electron expulsion, the simulation
sults are almost insensitive to whether or not the ions
allowed to move.

In the case of two-dimensional geometry the transve
Coulomb gauge condition impliesA'50. Further, we com-
bine Eqs.~15! and ~16! to form the modified equation

4p

c S“'–

] j̄'
]j

1kp
2 j̄ zD 5~¹'

22kp
2!G2kp

2¹'
2 Āz , ~18!

wherekp5vp/c, which is inverted to findG as opposed to
Eq. ~16!. This equation has the feature that in the wea
nonlinear, electrostatic limit it produces the same equatio
fluid theories for the excitation of the plasma wave.

Finally, to simplify matters we have introduced the fo
lowing normalized quantities:a(r ,t)5qÂ'/mc2, p5p̄/mc,
c52qc̄/mc2, r5kpr , j5kpj, and b52q“3Ā/mvpc. In
cylindrical geometry this results in the following equation
motion:

dpr
dj

5
1

11c S g
]

]r
c2

1

2

]

]r
^a2& D2bu , ~19!

dr

dj
5

pr
11c

, ~20!

and the following equations for the wake field;

~D'21!
]2

]j2
c5

1

r

]

]r
r S ] j r

]j
2buD1 j z , ~21!

1

r

]

]r
rbu5

]2

]j2
c1 j z . ~22!

The equations are solved using a finite differen
scheme in which a grid is set up in both axial coordinatj
and radial coordinater . Certain quantities are defined on th
grid or halfway between two grids. For example, among
field quantities the radiation vector potentiala, the normal-
ized wake potentialc and its second derivativeG, the density
n̄ and dielectric constant, and the axial current densityj z are
all defined on both the radial and axial grid. The azimut
magnetic field and radial electric field are defined on
axial grid and halfway between to radial grid points. Th
axial electric field is defined on the radial grid, but halfwa
between two axial grid points, and the radial current den
is defined halfway between both the radial and axial g
points. For the particles, the radial location, relativistic fa
tor, and axial velocity are calculated on the axial gr
whereas the radial momentum is defined halfway betw
two axial grid points.

The following radial boundary conditions are used.
inverting Eq. ~21! it is assumed that the wake potential
regular at the origin and vanishes at a sufficiently large
220 Phys. Plasmas, Vol. 4, No. 1, January 1997
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dius corresponding to the boundary of the simulation v
ume. The azimuthal magnetic field is assumed to be reg
at the origin. Concerning the particles, those which inters
the symmetry axis are specularly reflected. For the laser fi
Eq. ~2! is solved subject to the outgoing radiation bounda
condition discussed in Ref. 1. Numerical solutions of t
above system of equations will be presented in Sec. IV.

IV. SAMPLE RESULTS

We verified that the code gives identical results to Ref
~slab geometry! in the weakly relativistic limit and to Ref. 2
~cylindrical geometry! when the electron flow is laminar. W
also compared the code with the results of a PIC code7 for
values ofvp/v0 as large as 0.2, and in situations where t
QSA is only marginally valid, and the code gave very clo
results, with a lower noise in our case. Sample results fr
this latter case are shown in Fig. 1. The following paramet
were chosen:a053/8, kpr L59, andvp/v050.2. The initial
profile for the laser radiation was selected to be of the fo

a~r ,j,t50!5a0f ~j!exp~2r 2/r L
2!,

where f ~j! increases linearly from 0 to 1 for 0,kpj,30,
f ~j!51 for 30,kpj,50, andf ~j! decreases linearly from 1
to 0 for 50,kpj,80. Figure 1 displays the gray scale plo
of the amplitude of the laser electric field, and the axial lo
frequency wake electric field in thex, j plane at severa
different times. This figure can be compared with Fig. 3
Ref. 7. One can see that the qualitative features of the e
lution of the laser pulse are in good agreement, and

FIG. 1. Contour plots from a two-dimensional planar simulation w
a050.375,v0/vp55.0, kpr L59, andkpL580. The size of the simulation
box shown are 85kp

21 alongz and 63kp
21 in the perpendicular direction:~a!

laser field and~b! axial wake electric field atvpt5100, ~c! laser field, and
~d! axial wake electric field atvpt5150, ~e! laser field, and~f! axial wake
electric field atvpt5250.
P. Mora and T. M. Antonsen, Jr.
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quantitatively there is reasonably good agreement as w
though trapped particles are seen in Ref. 7, while they are
treated in the present model.

We now show the result of a high intensity laser pu
propagating in a tenuous plasma in cylindrical geometry.
tially, the radiation is of the form

a~r ,j,t50!5a0 sin~pj/L !exp~2r 2/r L
2!.

The following parameters were chosen:a050.25, kpL540,
kpr L516, andvp/v050.03, which corresponds to a plasm
of density 1018 cm23 for a 1mm laser light. Figure 2 shows
surface plots of the laser intensity at four times during
simulation. The power is about twice the critical power f
relativistic self-focusing15,16 @Pc516.2(v0/vp)

2 109 W#. As
expected, we observe that the pulse is subject to the Ra
self-focusing instability.1 However we observe that the inst
bility develops slightly slower than predicted by the weak
nonlinear model of Ref. 1. After one Rayleigh length, w
observe that the pulse has been separated into two p
which are still focused and propagate on about 2 Rayle
lengths, and then diffracts quickly after a strong pum
depletion.8 The same case run withvp/v050, that is without
the ]/]z term in Eq.~2!, would propagate on about 10 Ra
leigh lengths, which shows the importance of the pu
depletion and of the forward Raman term here.

Figure 3 corresponds to the same laser power, but
smaller focal spot, i.e.,a051.0, kpr L54. In this case, we
observe a total expulsion of the electrons from the la
channel which stabilizes the Raman instability in the bulk
the laser pulse. As a result, the laser pulse propagates o
large distance~more than 30 Rayleigh lengths! with a radial
profile similar to the one predicted in the model of S
et al.16 The front part of the pulse is eroded as predicted
Sprangleet al.13 The fact that self-focused propagation o
distances much larger than the Rayleigh length is possib
in agreement with recent experimental results.17,18We veri-

FIG. 2. Time evolution of the laser intensity for the case of a mode
intensity and large focal spot~a050.25,kpr L516, kpL540!.
Phys. Plasmas, Vol. 4, No. 1, January 1997
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fied here that the role of the forward Raman term was app
ently smaller in this case. Note however that as the Rayle
length scales asr L

2, the actual distance on which the las
pulse propagates is not much different in the small focal s
case than in the case of Fig. 2.

Figure 4 shows the electron density after one Rayle
length for the same case as Fig. 3. One observes total e
tron cavitation where the laser intensity is large, enhan
ment of the density on the sides of the self-focused chan
and a strong peak behind the laser pulse due to elect
which come back toward the center of the channel under
action of the charge separation field. This behavior is sim
to that observed in the case of the nonlinear plasma w
field.19 Suppression of Raman instabilities may be attribu
to a number of effects. The electron density is reduced wh
the laser intensity is greatest, the plasma channel is inho
geneous which disturbs the plasma wave resonance, an
channel density has a maximum at a radius just greater
the spot size. This last effect contributes to enhancing
diffraction of radiation which is side scattered and thus s
presses side scattering instabilities.20

e
FIG. 3. Time evolution of the laser intensity for the case of a large inten
and small focal spot~a051.0, kpr L54, kpL540!.

FIG. 4. Electron density after one Rayleigh length~same case as Fig. 3!.
The electron density has been limited to 3n0 on this curve.
221P. Mora and T. M. Antonsen, Jr.
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Figure 5 shows sample electron trajectories after the
ser has propagated one Rayleigh length in the plasma. In
example the electron flow is laminar untilkpj'15. For
kpj.15, the radial wavebreaking of the plasma disturba
results in a multipeaked electron distribution function a
the ejection of fast electrons in the MeV range. The valid
of fluid codes would be limited tokpj,15 here. Figure 6
shows the cross sections(E) for the generation of electron
with energy greater thanE. This cross section is generate
after the laser pulse has propagated 30 Rayleigh length
the plasma. It is averaged over the propagation length
normalized tos052p(c/vp)

2. The rate of productionR of
electrons with energy greater thanE is given by

R5s~E!n0c55.331022
s~E!

s0
s21. ~23!

In the example shown in Fig. 6, the maximum Lorentz fac
of the accelerated electrons is of the order of 3, which is w
below the validity limit of the ponderomotive approach@Eq.
~3!#, since herev0/vp533. Due to the constraint, Eq.~6!, the
ejected electrons~for which c50! satisfy the relationpz
5 1

2pr
2. Note that this relation applies to the electrons acc

erated by the ponderomotive force~and self-consisten
plasma fields!, and that it has the same form as the relat
between

FIG. 5. Sample electron trajectories for the case of Figs. 3 and 4, afte
laser pulse has propagated 1 Rayleigh length in the plasma.

FIG. 6. Cross section for the generation of electrons with energy gre
thanE in the case of Figs. 3–5. The fast electrons are collected over the
30 Rayleigh lengths.
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the axial and the radial jitter momentum of an electron in
plane wave.21 It does not apply to longitudinally trappe
electrons which violate the validity limit of the ponderom
tive approach. The relation may be reexpressed in term
the angleu made by the electron with respect to the axis
the laser,

cosu5Ag21

g11
. ~24!

A simple interpretation of this result can also be given by
analysis of the collision of a photon packet~of total energy
E@mc2! with a single electron when the energy loss of t
radiation is small~multiphoton Compton effect with smal
photons deflection!. This relation can be expected to apply
long as the radiation wave vector remains in the forwa
direction. Electrons satisfying this relation were recently o
served by Meyerhoferet al. in a laser-gas experiment.22

A final set of simulations correspond to cases typical
contemporary experiments.18 The parameters of the refer
ence run for this set area051.083, kpr L53.713,
vp/v050.0594, which correspond to 1.058mm laser light,
r L510.54 mm, zR5330 mm, n053.531018 cm23, P510
TW, P/Pc'2.2, andI 055.7331018W cm22 ~whereP is the
laser power andI 0 is the maximum laser intensity when fo
cused in vacuum!. The plasma length is 3 mm long~9 zR!,
including two linear ramps of one Rayleigh length on ea
side. The temporal pulse profile is Gaussian with a full wid
at half-maximum in energy of 300 fs~'31.7 vp

21!. The
simulation box extends to 12r L . In the reference run~curves
A on Figs. 7 and 8! the laser is focused near the entrance
the gas jet, namely atz/zR523.5, wherez50 corresponds
to the center of the gas jet. Figures 7 and 8 show the m
mum intensity attained on the laser axis as a function of
positionz5ct. Due to self-focusing the intensity grows up
approximately 3.5I 0, and the laser pulse then propagates i
self-focused state withI /I 0'2–2.5 until the exit of the jet.
As in the case corresponding to Fig. 3, we have verified t
the self-focused part of the pulse progressively shorten
the pulse propagates in the plasma, while there is a comp
electron density cavitation with the formation of a strong
nonlinear wake. In the case of Figs. 7 and 8, we have va
some parameters compared to the reference case.

For the case of Fig. 7~a! we have varied the laser inten
sity. Curve B corresponds toa050.766, or I 052.8631018

W cm22, P55 TW, P/Pc'1.1. Though the laser power i
still slightly above the critical power, it is not sufficient t
maintain self-focused propagation over a long distance a
the reference case. Curve C corresponds toa050.01 and
shows no nonlinear effect. One recovers in this case
vacuum propagation characteristics.

For the case of Fig. 7~b! we have varied the electro
density. Curve B corresponds to the same laser paramete
curve A except for the density which isn05731018 cm23, so
that P/Pc'4.4. One observes a similar behavior, with
even stronger amplification of the maximum laser intens
which attains 4–6I 0, in a smaller density channel.

For the case of Fig. 7~c! we have varied the focal posi
tion, from near the entrance of the gas jet to near the exi
it. More specifically, the focal position~in vacuum or for
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a0!1! corresponds, respectively, to23.5 ~curve A!, 22.5
~curve B!, 0. ~curve C!, and13.5 ~curve D!. The simulation
box has been extended respectively to 16 and 20r L for the
cases corresponding to curves C and D, respectively.
observes on these curves that the self-focused propagati
favored when the laser is focused near the entrance of the
jet. When focused in the middle of the gas jet~curve C!,
there is still a strong amplification of the maximum las
intensity compared to the vacuum case, but the laser se
to bounce back and almost no self-focusing occurs. We
served, however, that some part of the laser pulse has
focused propagation betweenz/zR52 and 4 with I /I 0'0.2
and a rather large spot. The corresponding density wak

FIG. 7. On-axis maximum intensity~normalized to the maximum intensity
when focused in vacuum! as function of the propagation distance. Curves
always correspond to the following physical parameters,r L510.54 mm,
zR5330mm, n053.531018 cm23, P510 TW ~P/Pc'2.2!, for a 1.058mm
laser light. The plasma length is 3 mm long~9 zR!, including two linear
ramps of one Rayleigh length on each side. The temporal pulse profi
Gaussian with a full width at half-maximum in energy of 300 fs. The la
is focused near the entrance of the gas jet, namely atz/zR523.5, where
z50 corresponds to the center of the gas jet.~a! Same parameters as curv
A except for the laser intensity,P55 TW ~curve B!, andP51 GW ~curve
C!; ~b! same parameters as curve A except for the plasma den
n05731018 cm23 ~curve B!; ~c! same parameters as curve A except for t
focal spot position,z/zR5 22.5 ~curve B!, z/zR50. ~curve C!, and
z/zR513.5 ~curve D!.

FIG. 8. On-axis maximum intensity for cylindrical~curve A! and slab
~curve B! geometries. Parameters correspond to those of curves A of Fi
Phys. Plasmas, Vol. 4, No. 1, January 1997
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still significant, since forz/zR53.5 the wake electron densit
oscillates between 0.6 and 1.5n0.

Figure 8 shows a comparison of cylindrical~curve A!
and slab~curve B! geometry for the same set of numeric
parameters. As expected, and already noticed by Pukhov
Meyer-ter-Vehn in a higher density case,23 the cylindrical
case leads to a higher on-axis intensity than the slab c
Similarly, we verified that the electron density cavitation w
less important in the slab case. These effects have to be
in mind while using slab results to interpret real experimen

Figure 9 shows the laser energy in the simulation b
normalized to its initial value versus the propagation dista
for the parameters of Fig. 7~b! ~i.e.,n053.531018 cm23 cor-
responding to curves a and A, andn05731018 cm23 corre-
sponding to curves b and B!. The radius of the simulation
box is 10r L for curves a and b, and 20r L for curves A and B.
The difference between the lower case and upper case cu
is indicative of the fraction of laser energy side scattered
of the simulation region. At higher density there is a grea
depletion of laser energy associated with creating the pla
wake.

V. CONCLUSION

We have derived the fast time averaged equations for
motion of particles and the generation of electromagne
wake fields under the action of the ponderomotive poten
of an ultraintense laser pulse propagating through a tenu
plasma. Based on these averaged equations, we have
signed a new particle code calculating the particle trajec
ries on the plasma period time scale. This code is able to
with cylindrically symmetric geometry as well as slab geo
etry. As an example of the use of the code we have stud
stable propagation in the regime of total electron cavitati
with relativistic electrons ejected from the wake of the pu
in a cone whose angle decreases with energy. This calc
tion could also help in improving the interpretation of rece
experiments on relativistic self-focusing.17,18

As the code is based on a multiple time and space s
formulation of the governing equations its regime of valid
is restricted to propagation of pulses in tenuous plasm
vp!v0. However, it is this regime which is particularly dif
ficult to treat with PIC codes. Additionally, the assumptio
has been made that the radiation is dominantly forw
propagating, which eliminates the possibility of studying R
man backscattered waves with the present code. Also

is
r

y,

7.

FIG. 9. Laser energy in the simulation box. Curves A and a correspon
the parameters of curve A of Fig. 7~b! ~i.e.,n053.531018 cm23!, and curves
B and b correspond to the parameters of curve B of Fig. 7~b! ~i.e.,
n05731018 cm23!. The radius of the simulation box is 10r L for curves a and
b, and 20r L for curves A and B.
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quasistatic approximation, in which it is assumed that
shape of the laser pulse changes only lightly in the ti
during which a given electron remains in the laser pul
restricts from consideration those electrons which have b
accelerated to high energy, 12vz/c@vp/v0 . Finally, the
code uses the predictor corrector method of calculation of
wake magnetic field. It has been our observation that
extremely intense and relatively long pulses that this can l
to some numerical difficulty.

One of the characteristics of the code is that it ha
particularly low numerical noise. We have taken advanta
of this to study the magnetic field generated in the wake
an ultra-intense field in a separate paper.24 This magnetic
field appears to be of fourth order in power of the laser fi
amplitudeA and may play an important role in the las
wake field accelerator concept.

The code is presently devoted to the study of the in
action of laser pulses with plasmas. In many experime
however the laser pulse primarily interacts with a neutral g
and the ionization processes may play an important role
the laser propagation itself.25 We are currently incorporating
an ionization package in the model to be able to deal w
these aspects. The result will be a versatile and most effic
model to describe ultrashort pulse interaction with gas
preformed plasma.
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APPENDIX A: PONDEROMOTIVE EQUATIONS

In this appendix we derive the fast time averaged eq
tions for the motion of particles in the laser pulse wake a
the electromagnetic wake fields. We begin the derivat
with the equations of motion for relativistic particles in ele
tromagnetic fields described by a scalar and vector poten

d

dt S p1
q

c
AD52q“F1S“ q

c
AD –v, ~A1!

wherep is the particle momentum,g is the relativistic factor,
v5p/(gm) is the particle velocity, andA and F are the
vector and scalar potentials. The total time derivative app
ing in Eq. ~A1! is the Lagrangian derivative following th
particle velocityv. Equation~A1! can be supplemented b
the equation of evolution of particle energy,

d

dt
gmc252qv–S“F1

1

c

]A

]t D , ~A2!

which will be useful in the following derivation.
The fields are determined by Maxwell’s equations wh

are written as

F 1c2 ]2

]t2
2¹2GA5

4p

c
j2“S 1c ]F

]t
1“–AD , ~A3!

“–F“F1
1

c

]A

]t G524pr, ~A4!
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where j and r are the current density and charge dens
respectively. We calculate these by assuming that the pla
consists of an ensemble of cold fluids whose velocities
determined by Eqs.~A1! and~A2!, and whose correspondin
densities are determined by the continuity equation,

]n

]t
1“–nv50. ~A5!

The charge and current densities are then obtained by a
aging over the ensemble of cold fluidsr5^qn& andj5^qnv&.
This averaging will be performed after the averaging ov
the fast time scale of the radiation. Further, we tempora
specialize to the Coulomb gauge where“–A50.

The next step is to transform to laser frame coordina
by introducing the variablez5z2ct. In terms of this new
axial coordinate Eqs.~A1! and ~A2! can be written as

F ]

]t
1~v2cez!–“ G S p1

q

c
AD52q“F1S“ q

c
AD –v,

~A6!

F ]

]t
1~v2cez!–“ Ggmc252qv–S“F1

1

c

]A

]t
2

]A

]z D .
~A7!

Here, the axial component of the gradient operator is und
stood to represent differentiation with respect toz. Further,
Maxwell’s equations in the Coulomb gauge become,

F 1c2 ]2

]t2
2
2

c

]2

]t]z
2¹'

2 GA5
4p

c
j2“S 1c ]F

]t
2

]F

]z D ,
~A8!

and,

¹'
2F1

]2

]z2
F524pr. ~A9!

Rather than solving the three independent components of
~A6!, we consider our system to be the two components
Eq. ~A6! transverse to the direction of propagation of t
laser pulse,

F ]

]t
1~v2cez!–“G S p'1

q

c
A'D

52q“'F1S“'

q

c
AD –v, ~A10!

and the axial component of Eq.~A6! minus Eq.~A7! divided
by the speed of light,

F ]

]t
1~v2cez!–“GFpz2gmc1

q

c
~Az2F!G

52
q

c S ]F

]t
2
v

c
–

]A

]t D . ~A11!

The next step in our derivation is to introduce an expa
sion based on the disparity between the laser and pla
frequencies. We define the small parametere5vp/v0 where
vp is the plasma frequency andv0 is the laser frequency. In
terms of this small parameter the axial,L, and transverse,R,
P. Mora and T. M. Antonsen, Jr.
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sizes of the laser pulse scale asR'L'l0/e, wherel0 is the
laser wavelength. Derivatives with respect to the axial va
ablez are expanded as follows:

]

]z
5

]

]z0
1

]

]z1
, ~A12!

where z0 is a fast variable associated with the laser wa
length]/]z0'1/l0, andz1 is a slow variable associated wit
the laser envelope and the plasma wavelength,]/]z1'e/l0.
The transverse gradient is also assumed to follow the sca
“''e/l0. In the laser frame coordinates all quantities va
slowly in time. Correspondingly, we take the time derivati
to scale as]/]t'e2v0. Next we expand the field quantitiesF
andA in powers ofe. As it turns out, only the lowest orde
terms in each field quantity enter the final equations. Th
we suppress the subscript, 0, for the lowest order quant
but retain it when expressing the higher order quantities.
situations of interest the particle motion is relativistic. Thu
it is appropriate to consider the magnitude of the lowest
der quantitiesF andA to scale asmc2/q. Consequently, the
source terms involvingr and j in Eqs. ~A8! and ~A9! are
second-order quantities scaling ase25~vp/v0!

2.
The leading~zero! order version of the Poisson equatio

]2F/]z0
250, requires that the lowest order electrostatic pot

tial be independent of the fast variablez0, F5F̄~z1,x' ,t!.
Here the overbar indicates that a quantity is averaged o
the fast space scale. Similarly, the lowest order version of
gauge condition,]Az/]z050, requires that the zero-orde
axial component of the vector potential be independent of
fast variablez0, Az5Āz~z1,x' ,t!. This follows from the fact
that the transverse gradient is assumed to be first order.
gether these conditions require that the zero-order axial e
tric field vanish. The first-order version of the Poisson eq
tion, ]2F1/]z0

212]2F/]z0]z150, then indicates that the first
order potential,F1 is also independent of the fast variab
@Note that in the above the second term is identically zero
a result of the lowest order solution,F5F̄~z1,x' ,t!.# Finally,
in second order the charge density enters,

¹'
2 F̄1

]2

]z1
2 F̄1

]2

]z0
2 F25 24pr.

Averaging this equation over the fast scale annihilates
second-order potential and indicates that only the aver
charge density contributes to the lowest order potential.
averaging step will be performed later in the derivation, on
the charge density is determined. The rapidly varying par
the charge density produces a second-order contributio
the electrostatic potential. The physical implication of t
above equations is that in tenuous plasmas large electros
potentials can only develop over distances much greater
the laser wavelength.

The lowest ~zero!-order contribution to the transvers
component of the vector potential has both a rapidly vary
component and an averaged component,

A'5Ã'~z0 ,z1 ,x' ,t !1Ā'~z1 ,x' ,t !. ~A13!

The rapidly varying component is associated with the la
field, and the slowly varying component is associated w
the electromagnetic component of the wake. Both com
Phys. Plasmas, Vol. 4, No. 1, January 1997
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nents are determined by the leading order version of
~A8! which is second order ine. We note that the transvers
components of Eq.~A8! are second order. Thus the avera
of ~A8! will determine the electromagnetic field of the wak
while the rapidly varying part describes the propagation
the laser light. Solution of this equation will also be deferr
until the charge and current densities are determined.

We now consider solution of the particle equation
Within the approximation that quantities evolve slowly in th
laser frame we may neglect the time derivatives in Eq.~A11!
through two orders ine. Further assuming that the partic
velocity satisfies the condition 12vz/c@e, Eq. ~A11! yields

gmc2pz5mc1
q

c
~Āz2F̄!, ~A14!

where we have inserted overbars on the potentialF andAz

indicating that they do not vary on the scale of the la
wavelength. Equation~A14! indicates the constancy of th
quantity H2cPz , where H is the particle Hamiltonian andPz

the canonical momentum, for cases in which the fields
pend on time only in the combinationz2ct. The value of
this conserved quantity is determined from the condition t
the plasma electrons be unperturbed upstream from the
pulse. It is important to note that Eq.~A14! indicates that,
while the quantitiesg and pz have both rapidly and slowly
varying components, their difference is a slowly varyin
quantity. The condition 12vz/c@e requires that one wave
length of the laser field pass by electrons in a time su
ciently short such that their radial motion is negligible. Th
condition ~which will appear again! effectively excludes
from consideration the motion of electrons which have be
trapped and accelerated to high energy by the laser puls

Turning now to the transverse components of the m
mentum, the lowest order version of~A10! gives
]~p'1qA'/c!/]z050. Thus,

p'5p̃'~z0 ,z1 ,x' ,t !1p̄'~z1 ,x' ,t ! ~A15!

where

p̃'~z0 ,z1 ,x' ,t !52
q

c
Ã'~z0 ,z1 ,x' ,t !, ~A16!

is the lowest~zero!-order transverse jitter momentum asso
ated with the laser field. We note that there is also a zero
order longitudinal component of the jitter momentum whi
can be calculated from Eq.~A14! once the rapidly varying
component of the kinetic energy is determined. The avera
transverse momentum~also zero order! is determined from
the first-order version of Eq.~A10!

Fp'–“'1~ p̄z2ḡmc!
]

]z1
G S p̄'1

q

c
Ā'D1~ p̄z2ḡmc!

3
]

]z0
S p'11

q

c
A'1D52qgm“'F̄1S“'

q

c
AD –p.

~A17!

Here we have multiplied bygm, and used Eq.~A14! to re-
placepz2gmc by its average. We have also indicated t
necessary presence of first-order corrections to the transv
225P. Mora and T. M. Antonsen, Jr.



ih

th
.

ct

ge
he

th
ia
in
r

o
in

ic

s
ge

ue

n-
io
b

-

ged

in

s.

st
nsity
ar-

the
of

der

rder
tic
rag-

e

momentum and vector potential. These however, are ann
lated by averaging Eq.~A17! over the fast length scale,

F p̄'–“'1~ p̄z2ḡmc!
]

]z1
G S p̄'1

q

c
Ā'D

52qḡm“'F̄1S“'

q

c
AD –p. ~A18!

Thus, except for the last term on the right-hand side, all
quantities appearing in Eq.~A18! are averaged quantities
The last term on the right is evaluated as follows:

S“'

q

c
AD –p5S“'

q

c
ĀD –p̄2

1

2
“'Uqc Ã'U2, ~A19!

where we have used Eq.~A16! to express the rapidly varying
momentum, and we have used the fact that the axial ve
potential has only a slowly varying component.

We now derive an expression for the fast scale avera
relativistic factor. We begin by writing an expression for t
square of the zero-order relativistic factor,

g2511
1

m2c2 FUp̄'2
q

c
Ã'U21pz

2G , ~A20!

where we have expressed the rapidly varying part of
perpendicular momentum in terms of the vector potent
We then use Eq.~A14! to express the axial momentum
terms of its average and the relativistic facto
pz5 p̄z1mc(g2ḡ). Inserting this expression in Eq.~A20!
and averaging over the fast time scale produces,

ḡ2511
1

m2c2 F up̄'u21 p̄z
21Uqc Ã'U2G . ~A21!

Thus, the average relativistic factor depends algebraically
the average momentum, and radiation vector potential
straightforward way.

We then introduce the fast scale averaged velocity wh
we define via the relation,

v̄[
p̄

ḡm
. ~A22!

With this definition, Eqs.~A18!, ~A19!, and ~A20! may be
combined and rewritten,

~ v̄2ezc!–“S p̄'1
q

c
Ā'D

52q“'F̄1S“'

q

c
ĀD –v̄2

1

2mḡ
“'Uqc Ã'U2. ~A23!

Thus, we recover an averaged equation of motion which i
the same form as the original equation for the unavera
quantities,~A10!, except that time derivatives are absent~re-
placed by a derivative with respect toz in the quasistatic
approximation!, and there is a ponderomotive potential d
to the jitter of electrons in the laser field.

Equation ~A23! describes the evolution of the perpe
dicular components of momentum. The evolution equat
for the parallel component of momentum can be obtained
226 Phys. Plasmas, Vol. 4, No. 1, January 1997
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combining Eq.~A23!, the definition of the average relativis
tic factor Eq.~A21!, and the constant of motion, Eq.~A14!.
The result, after considerable algebra, is

~ v̄2ezc!–“S p̄z1 q

c
ĀzD

52q
]F̄

]z
1S ]

]z

q

c
ĀD –v̄2

1

2mḡ

]

]z U qc Ã'U2, ~A24!

which is again of the same form as the original, unavera
equation of motion,~A10!. Combining Eqs.~A23! and~A24!
one can write all components of the equation of motion
the following form:

~ v̄2ezc!–“p̄5qS Ē1
v̄3B̄

c D 2
1

2mḡ
“U qc Ã'U2, ~A25!

where Ē and B̄ are the wake electric and magnetic field
Finally, using Eqs.~A21!, ~A23!, and~A24! the evolution of
the averaged particle energy is determined by

~ v̄2ezc!–“ḡmc2

52qv̄–S ¹F̄2
]Ā

]z
D 2

c

2mḡ

]

]z U qc Ã'U2. ~A26!

We now focus on the field equations for which we mu
calculate the charge and current densities. The charge de
for each cold fluid in the ensemble is obtained from the p
ticle density which satisfies the continuity equation,~A5!.
Written in laser coordinates Eq.~A5! appears as

“'–p'

n

g
1F ]

]z0
1

]

]z1
G~pz2gmc!

n

g
50, ~A27!

where we have multiplied through by the mass to express
velocities in terms of momenta. The lowest order version
Eq. ~A27!,

]

]z0
~pz2gmc!

n

g
50,

requires that the ration/g be a slowly varying quantity,
n/g 5 n/g. Here we have used the fact that the lowest or
version of pz2gmc is a slowly varying quantity,
pz2gmc5 p̄z2ḡmc. In first order Eq.~A27! becomes

“'–p'S ng D1
]

]z1
~ p̄z2ḡmc!S ng D

1
]

]z0
F ~pz2gmc!

n

gG
1

50,

where we have indicated the necessary presence of first-o
corrections to the density, axial momentum, and relativis
factor. As before these corrections are annihilated on ave
ing over the fast length scale,

“'–p̄'S ng D1
]

]z1
~ p̄z2ḡmc!S ng D50. ~A28!

Given the ration/g is a slowly varying quantity, we conclud
P. Mora and T. M. Antonsen, Jr.
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n̄5ḡS ng D . ~A29!

Introducing the velocity defined in Eq.~A22! we observe
that the average quantities also obey the continuity equa

“'–v'n̄1
]

]z1
~ v̄z2c!n̄50. ~A30!

The space and ensemble averaged density is then insert
the space averaged Poisson equation,

¹'
2 F̄1

]2

]z1
2 F̄524pq^n̄&. ~A31!

Included in the density is the contribution of both electro
and ions.

Finally, we need to calculate current density to be
serted in Eq.~A8!. We separate this equation into its rapid
varying component,

F2c ]2

]t]z0
1¹'

2 G Ã'52
4p

c
j̃' , ~A32!

and its slowly varying component,

¹'
2 Ā52

4p

c
j̄2“S ]F̄

]z1
D . ~A33!

The rapidly varying component of the current density c
then be expressed in terms of the laser vector potential
the average density and relativistic factor,

j̃'5
q

m K S ng D p̃'L 52
q2

mc K n̄ḡ L Ã' , ~A34!

where we have used Eq.~A29!. Similarly, the average cur
rent can be written as

j̄5
q

m K S ng D p̄L 5q^n̄ v̄&. ~A35!

The final system of averaged equations consists of E
~A14!, ~A21!–~A23!, and ~A30!–~A35!. It is interesting to
note that the averaged quantities obey essentially the s
equations as the unaveraged quantities except for the a
tion of the ponderomotive force in Eq.~A25! and the revised
definition of the relativistic factor~A21!. Thus, in solving
these equations, the only quantity that needs to be aver
over the fast space scale is the square of the laser ve
potential appearing in Eq.~A21!. All the other averaged
quantities are derived from this. The additional ensemble
eraging of cold fluids may be done either by solving for t
evolution of an ensemble of particles~as done in this paper!
and computing the charge and current densities on a grid
by introducing a distribution function and the appropria
kinetic equation. We note that the restriction to the Coulo
gauge can easily be lifted by comparing the averaged e
tions to the unaveraged ones. The results are that Eqs.~A31!
and ~A33! are replaced by the following:

¹2F̄2
]

]z1
“–Ā524pq^n̄&, ~A36!
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2 Ā52

4p

c
j̄2“S ]F̄

]z1
2“–ĀD , ~A37!

respectively.
As a final comment we note that the expression for

ponderomotive force in Eq.~A26! has been derived a num
ber of times in the literature previously. In particular, for th
case of circular polarization this result is equivalent to th
published in Refs. 26 and 27. In the case of elliptically
linearly polarized radiation there is an inconsistency betw
our result and those of Ref. 26. However, our results
consistent with earlier derivations,28,29using different appro-
achs to the equations of motion. Further, our results are c
sistent in the fluid limit with those published in Ref. 2. Th
various discrepancies, which are only noticeable when
jitter motion is relativistic, seem to be related to the corre
inclusion of the high frequency component of the axial m
mentum. In particular, the presence of this component of
momentum allows the particularly simple Eq.~A21! to be
derived from Eq.~A20!.

APPENDIX B: CONSERVATION LAWS

In this appendix we derive two conservation laws for o
system of ponderomotive equations; the conservation of la
wave action, and the conservation of particle and field
ergy. Our derivations follow closely those presented in R
8. We begin by writing the radiation field in terms of a ra
idly varying phase and an envelope,

Ã'5Â' exp@ ik0z0#1c.c. ~B1!

The evolution of the envelope is then determined by sub
tuting Eq.~B1! in Eq. ~A32!,

F2c ]

]t S ik01 ]

]z D1¹'
2 G Â'5

4pq2

mc2 K n̄ḡ L Â' . ~B2!

The para-axial approximation consists of neglecting thez
derivative in comparison with the lowest order wave numb
k0. As the plasma density becomes modulated the phas
the laser envelope will develop increasingly rapid variatio
with axial distance, at some point thez derivative will no
longer be negligible. Thus, we will keep this term here as
becomes important with time as the laser field decays and
laser frequency drops. To derive the conservation of w
action we multiply Eq.~B2! by Â'

* , integrate over all vol-
ume, and subtract from that quantity its complex conjuga

d

dt
2ik0E d3xuÂ'u2

12E d3xF Â'
* –

]2

]t]z
Â'2Â'–

]2

]t]z
Â'
* G50. ~B3!

Here we have assumed the laser amplitude vanishes at i
ity so that boundary terms can be neglected. We now use
identity,
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Â'2Â'–
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to rewrite Eq.~B3! as a conservation law,

d

dt H 2ik0E d3xuÃ'u2

1E d3xF Â'
* –

]

]z
Â'2Â'–

]

]z
Â'
* G J 50. ~B4!

The interpretation of the above as conservation of action
lows from the identification of the second term as the shif
wave number from the reference valuek0. Thus, Eq.~B4!
can be viewed as the integral of the product of the local w
number multiplied by the square of the vector potent
Given that wave number and frequency are linearly relate
a low density plasma this corresponds to the action.

To obtain a conservation of energy relation, we form t
energy associated with the laser pulse,

UL5
1

2p E d3xU ik0Â'1
]Â'

]z
U2, ~B5!

which represents the sum of the electric and magnetic en
of the pulse. Differentiation of this quantity with respect
time, and use of Eq.~B2! and its conjugate give,

dUL

dt
5

c

4p E d3x
4pq2

mc2 K n̄ḡ L ]

]z
uÂ'u2, ~B6!

where we have assumed that the radiation field vanishe
the boundary of the volume in carrying out a number
integrations by parts.

The evolution of the particle energy is determined
multiplying Eq. ~A26! for each member of the ensemble
fluids by its corresponding density,n̄, and averaging over the
ensemble,

“–^~ v̄2ezc!n̄ḡ&mc2

52 j̄–S“F̄2
]Ā

]z
D 2

c

2m K n̄ḡ L ]

]z U qc Ã'U2, ~B7!

where the plasma wake current density is given by
~A35!. Using Eq.~A33!, integrating over the simulation vol
ume, and noting cancellations we have

E d3x“–^~ v̄2ezc!n̄ḡ&mc2

5E d3x
c

8p

]

]z
@ u“~F̄2Āz!u21u“'3Ā'u2#

2E d3x
c

2m K n̄ḡ L ]

]z U qc Ã'U2. ~B8!

Replacing the last term in Eq.~B8! using Eqs.~B1! and~B6!,
and noting that the contributions from the remaining tw
terms can be expressed in terms of surface integrals up-
downstream from the laser pulse we obtain,
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dUL

dt
5E d2x'H c

8p
@ u“~F̄2Āz!u21u“'3Ā'u2#

1^~c2 v̄z!n̄ḡ&mc2J
z52`

z5`

. ~B9!

Here, z5` represents a surface upstream from the pu
where the plasma is undisturbed, andz52` is a surface
downstream from the pulse across which the plasma w
passes. Thus, Eq.~B9! shows that energy extracted from th
laser pulse is used to accelerate plasma electrons and to
ate the wake electric and magnetic fields.
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