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Abstract

Biological fixation of atmospheric CO2 via the Calvin–Benson–Bassham cycle has massive ecological impact and 
offers potential for industrial exploitation, either by improving carbon fixation in plants and autotrophic bacteria, or 
by installation into new hosts. A kinetic model of the Calvin–Benson–Bassham cycle embedded in the central car-
bon metabolism of the cyanobacterium Synechocystis sp. PCC 6803 was developed to investigate its stability and 
underlying control mechanisms. To reduce the uncertainty associated with a single parameter set, random sampling 
of the steady-state metabolite concentrations and the enzyme kinetic parameters was employed, resulting in millions 
of parameterized models which were analyzed for flux control and stability against perturbation. Our results show 
that the Calvin cycle had an overall high intrinsic stability, but a high concentration of ribulose 1,5-bisphosphate was 
associated with unstable states. Low substrate saturation and high product saturation of enzymes involved in highly 
interconnected reactions correlated with increased network stability. Flux control, that is the effect that a change in 
one reaction rate has on the other reactions in the network, was distributed and mostly exerted by energy supply 
(ATP), but also by cofactor supply (NADPH). Sedoheptulose 1,7-bisphosphatase/fructose 1,6-bisphosphatase, fruc-
tose-bisphosphate aldolase, and transketolase had a weak but positive effect on overall network flux, in agreement 
with published observations. The identified flux control and relationships between metabolite concentrations and 
system stability can guide metabolic engineering. The kinetic model structure and parameterizing framework can be 
expanded for analysis of metabolic systems beyond the Calvin cycle.

Keywords:  Calvin cycle, cyanobacteria, flux control, kinetic model, metabolic engineering, metabolic model, metabolome, 
parameter sampling, system stability.

Introduction

The Calvin–Benson–Bassham (CBB) cycle of photosynthetic 
plants, algae, and cyanobacteria plays an important role in global 

carbon cycling (Battle, 2000), but also offers potential for indus-
trial usage. There are ongoing efforts for enhancing Calvin cycle 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),  
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Abbreviations: ACCOA, acetyl-CoA; ald, aldolase; ATPSyn, ATP synthase; CBB, Calvin–Benson–Bassham; fba, fructose-bisphosphate aldolase; FBA, flux balance 
analysis; FBP, fructose 1,6-bisphosphate; FBPase, fructose 1,6-bisphosphatase; FCC, flux control coefficient; fMCS, feasible metabolite concentration set; F6P, 
fructose 6-phosphate; gapd, glyceraldehyde 3-phosphate dehydrogenase; PEP, phosphoenolpyruvate; pgk, phosphoglycerate kinase; Pi, inorganic phosphate; 
PPool, phosphate pool; prk, phosphoribulokinase; PYR, pyruvate; R5P, ribose 5-phosphate; RuBP, ribulose 1,5-bisphosphate; Ru5P, ribulose 5-phosphate; S7P, 
sedoheptulose 7-phosphate; SBP, sedoheptulose 1,7-bisphosphate; SBPase, sedoheptulose 1,7-bisphosphatase; tkt1/2, transketolase 1/2; tpi, triosephosphate 
isomerase; xfpk1/2, phosphoketolase 1/2; Xu5P, xylulose 5-phosphate
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flux in plants to improve crop yields (Long et al., 2015), but also 
in cyanobacteria and other autotrophs for potential use as cell 
factories with CO2 as cheap feedstock (Wijffels et  al., 2013; 
Savakis and Hellingwerf, 2015; Torella et al., 2015). Recently, 
the Calvin cycle has been incorporated into Escherichia coli and 
other heterotrophs as a way to impart CO2 fixation capabil-
ity (Guadalupe-Medina et  al., 2013; Antonovsky et  al., 2016; 
Schada von Borzyskowski et al., 2018). One way to improve 
the flux through this subnetwork is to identify the control-
ling catalytic steps, which then become targets for metabolic 
engineering. There have been several experimental efforts to 
identify individual limiting steps in the CBB cycle of plants 
(for a review, see Raines, 2003) and cyanobacteria (Liang and 
Lindblad, 2016), but it remains a significant challenge to pro-
vide a system-wide analysis of metabolic flux control.

Computational models of metabolism that account for rate 
equations and kinetic parameters of the enzymes can aid in 
analyzing metabolic control. Furthermore, these kinetic mod-
els provide valuable information about the dynamic behavior 
of the system and potential for modification (Almquist et al., 
2014). For example, a parameterized kinetic model can be 
used to estimate network stability (i.e. the ability to return to 
a steady state after an infinitesimal perturbation of metabolite 
levels). Metabolic states that are not stable could lead to lethal 
depletion or accumulation of metabolites upon perturbation.

Existing kinetic models of the CBB cycle are either specific 
for chloroplasts (Poolman et al., 2000; Zhu et al., 2007; Arnold 
and Nikoloski, 2011, Girbig et al., 2012) or adaptations of these 
models for cyanobacteria (Jablonsky et al., 2016), but all face 
the obstacle that kinetic models require knowledge about the 
parameter values for each enzymatic reaction. This information 
is scarce, especially for cyanobacteria, and in vitro kinetic param-
eters may not be applicable to in vivo conditions. Several frame-
works have been developed to address this lack of information 
by randomly sampling the parameter space, creating thousands 
of parameter sets describing a specific metabolic state (defined 
here as metabolite concentrations and reaction rates) (Steuer 
et  al., 2006; Tran et  al., 2008; Mišković and Hatzimanikatis, 
2011). Although these approaches differ in their details, they all 
can provide a probabilistic analysis of the dynamic behavior of 
a metabolic system at a certain steady state and thereby identify 
potential flux-controlling steps. While a parameter sampling 
approach for the CBB cycle in chloroplasts has been published, 
it focused on the stability of a single state and did not investi-
gate metabolic control (Girbig et al., 2012).

Here, we created a kinetic model of the CBB cycle of the 
model cyanobacterium Synechocystis sp. PCC 6803 (hereafter 
Synechocystis), accounting for metabolic regulations in cyano-
bacteria reported in the literature as well as enzyme promis-
cuity. To mitigate uncertainties associated with the metabolic 
state due to variability in metabolomics data sets (Asplund-
Samuelsson et al., 2018), we initially sampled the steady-state 
metabolite concentrations followed by filtering based on ther-
modynamic feasibility. The model was subsequently param-
eterized around each of these metabolic states by employing 
random sampling of the parameter space (Fig. 1A) similar to 
Murabito et al. (2014). In contrast to recent parameter estima-
tion and fitting frameworks (Jablonsky et al., 2016), this study 

marks an advanced parameter sampling approach for a kinetic 
model of cyanobacteria, aiming for probabilistic identification 
of properties determining network stability and the distribu-
tion of control. The results confirm the intrinsic stability of the 
CBB cycle over a broad range of parameters as well as the dis-
tribution of control. Predicted trends agree with experimental 
findings and form the basis for further investigations that can 
aid metabolic engineering efforts.

Materials and methods

Input: model structure
A model of the central carbon metabolism of Synechocystis was con-
structed (Fig. 1B). The model comprised 29 reactions with underly-
ing stoichiometries and kinetic rate equations, totaling 36 metabolites 
and 149 kinetic parameters. The model included the 13 catalytic steps 
of the CBB cycle, the phosphoketolase subnetwork, and reactions 
downstream towards acetyl-CoA (ACCOA). Branching points toward 
biomass were included as lumped reactions from the corresponding 
metabolite towards biomass sinks, based on flux balance analysis (FBA) 
results (see Input: computing the steady-state flux distribution). The 
sink reactions were implemented as irreversible Michaelis–Menten 
kinetics, removing the need for thermodynamic information of the 
products while allowing the simulation of different saturation levels. 
To simulate the supply of energy and redox factors in the form of 
ATP and NADPH, respectively, two lumped reactions representing the 
photosystems were included. The drain of phosphorylated metabolites 
via sink reactions required a phosphate supply reaction, providing free 
inorganic phosphate (Pi) from an abstract summation of all phosphate 
sources in the cell, termed the phosphate pool (PPool). The Pi and 
PPool interconversion reaction follows mass action kinetics with equal 
forward and reverse rate constants. The reaction rate is therefore only 
dependent on the rate constant and the difference in concentration 
between Pi and PPool (for details, see Supplementary Protocol S2 at 
JXB online).

With the exception of fructose 1,6-bisphosphatase (FBPase), sedohep-
tulose 1,7-bisphosphatase (SBPase), the sink reactions, and the phosphate 
supply, the rate equations for each reaction follow reversible Michaelis–
Menten-like kinetics, including equilibrium constants according to the 
general scheme:
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for a simple conversion between two compounds A↔B. Rate equation 
formulations are listed in Supplementary Protocol S2.

The metabolic regulations of enzymes were taken from the literature 
and are included in the rate equations as competitive inhibition and/or 
allosteric modifiers (Supplementary Table S1). Modeling of photorespira-
tion (oxygenase function of Rubisco) was abstracted by O2 acting as a 
competitive inhibitor for CO2 binding.

In the case of enzyme promiscuity, where one enzyme catalyzes 
two reactions, the substrates and products of the second reaction were 
included as competitive inhibitors for enzyme-binding sites. For exam-
ple, the reactions FBPase and SBPase are catalyzed by the same enzyme. 
Sedoheptulose 1,7-bisphosphate (SBP) acts as an inhibitor for the FBPase 
reaction from fructose 1,6-bisphosphate (FBP) to fructose 6-phosphate 
(F6P). The value of the inhibition constant in the FBP to F6P reaction 
was set to be the same as the SBP binding constant KM in the reac-
tion of SBP to sedoheptulose 7-phosphate (S7P) (see rate equations 
in Supplementary Protocol S2, where the inhibition constant of SBP 
towards the FBPase reaction is called KM

SBP).
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Input: defining the ‘metabolic state’
The local dynamic properties of the system, such as stability and flux 
control, were determined at specific metabolic (steady) states. Here, a 
metabolic state is defined by the sizes of the metabolite pools and the 
reaction rates (fluxes) connecting these pools at steady state. At steady 
state, the different fluxes acting on a metabolite must be balanced so that 
each metabolite pool stays constant over time.

Input: computing the steady-state flux distribution
Experimental determination of reaction fluxes in Synechocystis is scarce 
due to the challenging traceability of autotrophic metabolism (Young 
et al., 2011; Adebiyi et al., 2015; Hendry et al., 2017, Gopalakrishnan et al., 

2018). We therefore computed a flux distribution at steady state using 
FBA on a genome-scale model of Synechocystis (Knoop et al., 2013) dur-
ing autotrophic growth [COBRA-toolbox (Schellenberger et al., 2011) 
in MATLAB v. R2015a]. A detailed description of the flux simulation 
is provided in Supplementary Protocol S3, and the resulting flux distri-
bution used as input for the parameter-sampling algorithm is listed in 
Supplementary Table S2.

Input: generation of feasible metabolomes using random 
sampling
In addition to the fluxes, the metabolic state of the system is also defined 
by the metabolite concentrations. Published experimental metabolomics 

Fig. 1. Sampling framework and model network overview. (A) Methodology for parameterizing the model structure, adapted and modified from 
Murabito et al. (2014) with addition of metabolite concentration sampling. (B) Schematic overview of all reactions and metabolites covered by the model. 
Reaction arrows represent the input flux directionality. Reactions in purple depict the xfpk subnetwork and reactions in black depict lower glycolysis. Red 
rectangles around metabolites indicate inhibitors, while green rectangles indicate activators. Hexagons represent sink metabolites and blue rectangles 
indicate unbalanced metabolites. 3-Phosphoglycerate (3PG), 1,3-bisphosphoglycerate (BPG), glyceraldehyde 3-phosphate (GAP), dihydroxyacetone 
phosphate (DHAP), fructose 1,6-bisphosphate (FBP), fructose 6-phosphate (F6P), erythrose 4-phosphate (E4P), sedoheptulose 1,7-bisphosphate (SBP), 
sedoheptulose 7-phosphate (S7P), xylulose 5-phosphate (Xu5P), ribose 5-phosphate (R5P), ribulose 5-phosphate (Ru5P), ribulose 1,5-bisphosphate 
(RuBP), 2-phosphoglycerate (2PG), phosphoenolpyruvate (PEP), pyruvate (PYR), acetyl-CoA (ACCOA), acetyl-phosphate (ACETP), inorganic 
phosphate (Pi). Reactions are abbreviated as follows: Ribulose 1,5-bisphosphatase carboxylase/oxygenase (Rubisco), phosphoglycerate kinase 
(pgk), glyceraldehyde 3-phosphate dehydrogenase (gapd), triosephosphate isomerase (tpi), aldolase (ald), fructose 1,6-bisphosphatase (FBPase), 
transketolase 1/2 (tkt1/2), fructose-bisphosphate aldolase (fba), sedoheptulose 1,7-bisphosphatase (SBPase), ribulose-phosphate epimerase (rpi), 
phosphoribulokinase (prk), phosphoglucomutase (pgm), enolase (eno), pyruvate kinase (pyk), pyruvate dehydrogenase (pdh), phosphoketolase 1/2 (xfpk 
1/2), phosphotransacetylase (pta). The abstracted cofactor supply reactions are abbreviated as ATPSyn, NADPase, and Supply_Pi.
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data sets for Synechocystis show high variability under similar cultivation 
conditions (Asplund-Samuelsson et al., 2018).

By employing network-embedded thermodynamic analysis (Kümmel 
et al., 2006; Zamboni et al., 2008), Asplund-Samuelsson et al. (2018) iden-
tified metabolite concentration ranges in which biomass formation in 
Synechocystis was thermodynamically feasible.

To combat the uncertainties associated with the published data sets, 
a random sampling approach was used to cover the whole, thermody-
namically allowable metabolite concentration space. In short, for each 
metabolite, a random value within the concentration ranges was sam-
pled in log space, resulting in sets of metabolite concentrations span-
ning the concentration space evenly. The concentration ranges for each 
metabolite are listed in Supplementary Table S3. The resulting sets were 
tested for their thermodynamic feasibility by calculating the change in 
Gibbs free energy of each reaction (see also Supplementary Protocol S3). 
Concentration sets not providing every reaction with a negative change 
in Gibbs free energy in their pre-defined directions (i.e. thermodynami-
cally infeasible) were discarded. To ensure biologically reasonable metab-
olite concentrations, their total sum could not exceed 100 mM. This limit 
reflects osmotic constraints as well as experimental observations that the 
total metabolite concentration is ~200 mM across several cell types (Park 
et al., 2016), while it also reserves 100 mM for non-CBB metabolites not 
included in the model. The size of the PPool was sampled as a multiple of 
the Pi concentration, ranging between 1.1× and 5×. Cofactor concentra-
tions were sampled with the additional constraint of growth-compatible 
and thermodynamically feasible cofactor pair ratios (ATP/ADP, NADP/
NADPH, and NAD/NADH) (Asplund-Samuelsson et  al., 2018, see 
Supplementary Protocol S3 for details). All feasible metabolite concen-
tration sets (fMCSs) are listed in Supplementary Table S4. The metabolite 
sampling was performed in MATLAB v. R2015b on an Ubuntu 16.04 
Linux system using 16 cores at 2.4 GHz, taking up to 75 min.

Output: sampling of kinetic parameters and testing of system 
stability
To determine the local dynamic behavior of a system at a certain meta-
bolic state, namely its stability and response to perturbation, the kinetic 
parameters of the enzymes must be known. The combination of metabo-
lite concentrations and kinetic parameters also defines the saturation level 
of the enzymes at this steady state.

As there is a general lack of available parameter values and uncer-
tainty in the validity of in vitro parameters in vivo, we used a random 
sampling approach to estimate enzyme parameters for each fMCS, similar 
to Murabito et al. (2014).

Specifically, for each Michaelis–Menten, inhibition, and activation 
constant (KM, Ki, and Ka, respectively) in the model, a value was ran-
domly picked from a range of 0.01× to 100× around the corresponding 
metabolite concentration (translating to 1–99% enzyme saturation).

The sampling was performed in the log space, ensuring an even cover-
age of the whole parameter space.

In essence, the algorithm determined the saturation state of the enzyme 
for the corresponding metabolites, according to

 v V f X K K= ( )×max M,i,a eq, ,  (2)

The Vmax values for each reaction were then determined by matching the 
rate equation containing the previously sampled parameters and concen-
trations (function f) with the steady-state input flux v0 of the correspond-
ing reaction, via

 V v f X K Kmax M,i,a eq= ( )0 / , ,  (3)

This process was repeated 1000 times for each of the metabolite con-
centration sets, leading to sets of kinetic parameters describing a pos-
sible metabolic state of the system that covered most of the allowable 
parameter space.

The stability of each combination of sampled sets was analyzed math-
ematically by determining the eigenvalues of the reduced Jacobian matrix 

at the metabolic state (X0), where a negative real-part for all eigenvalues 
indicated a stable steady state:

 J S
v

X
L

X

a a= ×
∂
∂

×
0

 (4)

where J' represents the reduced Jacobian matrix. S' is the reduced stoi-
chiometric matrix having full rank, and L is the link matrix with S=L×S'; 
see Reder (1988) for a detailed description.

Note that in this context stability refers to the ability of the system to 
return to its initial state after an infinitesimal perturbation of the state 
variables (i.e. the metabolite concentrations).

The parameter sampling was performed in MATLAB v. R2015b on 
an Ubuntu 16.04 Linux system using 16 cores at 2.4 GHz, taking ~1 h.

Output: determining flux control coefficients (FCCs)
Parameterizing the model at a certain stable metabolic state allowed 
determination of control coefficients (Kacser and Burns, 1995) for the 
parameter sets, meaning that for each fMCS, the control coefficients for 
all of the corresponding stable parameter sets of this fMCS were deter-
mined. The coefficients were calculated by linear analysis at the steady 
state via the Jacobian, simulating infinitesimal perturbations in activity, 
as described (Reder 1988; Murabito et al., 2014), with the concentration 
control coefficients defined as:

 C D L J S DX
X v

= − × ×× ×− −
0 0
1 1a a  (5)

 which in turn were used to calculate the flux control coefficients via

 C D
v

X
D CJ

v
X

X
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∂
∂

× × ×−1 0
0

0
1  (6)

with D
X0  and D

v0
 denoting diagonal matrices for metabolite concen-

trations and fluxes, respectively (Reder 1988).

Output: clustering of FCC patterns
Some reactions may be similar in how they exert control over other 
reactions. We performed a hierarchical clustering analysis in R v. 3.4.3 in 
order to investigate the similarity of FCC patterns of effector reactions 
(exerting control, i.e. reactions whose rate is perturbed) as well as target 
reactions (experiencing control, i.e. reactions whose flux is affected by the 
perturbation in the effector reaction rate). To prepare the data for analy-
sis, the FCCs were rounded to zero if the absolute value was <1 × 10–6 
and then inverse hyperbolic sine transformed (function asinh). A  tenth 
of the effector and target FCC patterns, selected by random sampling 
(sample), were used in the subsequent steps due to limited computational 
capacity. To reduce the complexity of the data set further and extract 
the most prominent patterns, which, due to covariance, might not be 
reflected in the FCC medians, principal component analysis (PCA) was 
conducted. The data were scaled (scale), reduced to patterns with finite 
values, subjected to PCA (prcomp), and rotated to the PCs (x variable 
of the prcomp output), yielding 29 by 29 matrices representing the pat-
terns of control exertion or experience for the 29 reactions of the model. 
The matrices containing a reduced representation of the full effector and 
target pattern data sets were hierarchically clustered with multiscale boot-
strap resampling (10 000 bootstraps) using the pvclust function (Suzuki 
and Shimodaira, 2006) at default settings. The clustering was visualized 
as dendrograms, with approximately unbiased P-values indicating signifi-
cantly similar FCC patterns.

All files, input data sets, and scripts used in this study are found in 
Supplementary Protocol S1 and can be accessed at https://github.com/
MJanasch/CBB_Kinetics, allowing for recreating every sampling and 
analysis step [e.g. the >3 million parameter sets generated here (~28 
GB)]. The sampling processes in MATLAB were parallelized using GNU 
Parallel v. 20141022 (Tange, 2011).
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Results and Discussion

The kinetic model of the CBB cycle developed here was used 
to investigate factors influencing stability (i.e. the ability of the 
system to return to a steady state after an infinitesimal pertur-
bation of the metabolite concentrations) and distribution of 
flux control (i.e. how network reactions, when their rates are 
altered, affect the rates of other network reactions). The reac-
tions and metabolites covered by the model are depicted in 
Fig. 1B. The model included enzyme promiscuity for reactions 
catalyzed by the same protein as well as metabolic regulations 
reported for cyanobacteria, which have been found to differ 
from those in chloroplasts (Tamoi et  al., 1998; Yan and Xu, 
2008). The phosphoketolase (xfpk) reactions are not found in 
higher plants and provide a shortcut from CBB cycle interme-
diates towards ACCOA, thus playing a major role in the central 
carbon metabolism in Synechocystis (Xiong et al., 2015) as well 
as engineered pathways (Anfelt et al., 2015).

The workflow for determining enzyme kinetic param-
eters in the CBB model is shown in Fig. 1A and described 
in the Materials and methods. Ideally, a known metabolome 
and flux distribution is used as a basis for parameterization. 
However, experimental data sets in Synechocystis are associ-
ated with a large uncertainty (Asplund-Samuelsson et  al., 
2018). To avoid relying on a single or a small number of 
metabolome data sets and their uncertainty, sets of metabo-
lite concentrations that are thermodynamically feasible were 
generated by random sampling (feasible metabolite concen-
tration sets; fMCSs). Specifically, 5  ×  107 sampling rounds 
resulted in 3135 fMCSs.

Then, random sampling of kinetic parameters (containing 
Vmax and KM for all enzymes) was employed to obtain 1000 
parameter sets for each fMCS, with the constraint that com-
puted flux distributions for each parameter set match those 
obtained by FBA.

Lastly, the stability of each parameter set was checked using 
linear analysis of the Jacobian (Materials and methods), and 
FCCs were determined.

While we focus our analysis on metabolome stability, enzyme 
saturation, and flux control, we emphasize that by providing the 
data sets and scripts to recreate every step, the model and the 
data sets can be further analyzed by the scientific community.

The Calvin cycle is stable across many 
metabolic states

Identifying conditions enabling a stable steady state is crucial 
for engineering modifications of the system. The stability con-
ditions are also indicators of possible real metabolic states of the 
system, as an unstable steady state would not be sustained in 
nature due to accumulation or depletion of essential metabo-
lites upon perturbation (Theisen et al., 2016). Constant envi-
ronmental fluctuations in nature or bioreactors render unstable 
states infeasible and the system moves to a different, possibly 
stable, state. This provides further guidance in metabolic engi-
neering, as modifications moving the metabolism into a state 
of lower stability could cause non-viable cells or low produc-
tivity (Theisen et al., 2016).

A large fraction of the 1000 random parameter sets gener-
ated for each fMCS were stable, ranging from 24.6% to 92.9% 
stable parameter sets, with a median of 66.8%.

The high number of stable steady states, despite the broad 
sampling range for metabolite concentrations and enzyme 
parameters, showed the intrinsic stability of the Calvin cycle 
network structure, which was also found in prior studies for 
chloroplasts (Girbig et al., 2012). All fMCSs and their fraction 
of parameter sets resulting in stable steady states are listed in 
Supplementary Table S4.

The broad sampling of metabolite concentrations included 
values at the edge of or beyond measured physiological values 
and thus enabled the exploration of the whole thermodynami-
cally feasible space. Sampling these metabolite ranges is of spe-
cial interest for metabolic engineering, where the metabolism 
is modified beyond the wild-type ranges.

Figure  2A shows the concentration ranges covered by 
fMCSs for selected metabolites constrained by input ranges 
and thermodynamics (for all metabolites, see Supplementary 
Figs S1 and S2). Some metabolites were constrained to high 
values (3-phosphoglycerate), while other spanned a wide range 
[pyruvate (PYR)]. The ATP/ADP and NADPH/NADP ratios, 
displayed in Fig. 2B, were accumulated in the high end of their 
range. We suspect that this resulted from ATP and NADPH 
mainly being used as substrates, favoring a high concentration, 
and were provided via two lumped reactions with favorable 
thermodynamics, representing the photosystems.

High concentrations of RuBP are associated with 
system instability

The sampling of fMCSs and kinetic parameter sets allowed for 
a probabilistic analysis of the relationship between a metabolite 
concentration and stability. Figure 2A shows the propensities of 
certain metabolite concentrations to correlate with the num-
ber of stable systems (for all metabolites, see Supplementary 
Fig.  S2). Most metabolites showed no distinct tendency 
towards favoring more or fewer stable steady states. However, 
a distinguishable enrichment of stable steady states was evident 
for low concentrations of ribulose 1,5-bisphosphate (RuBP), 
S7P, and F6P. Conversely, there were fewer stable states associ-
ated with low concentrations of phosphoenolpyruvate (PEP), 
xylose 5-phosphate (Xu5P), SBP, and Pi. Of all of these metab-
olites, only RuBP showed no accumulation bias due to the 
thermodynamic constraints on the fMCSs (Supplementary 
Fig. S1).

Additionally, Fig. 2 (and see Supplementary Fig. S2) includes 
data points for published metabolomics data used to determine 
the concentration ranges in Asplund-Samuelsson et al. (2018). 
Most of these data points lie in the areas of high stability, which 
supports the validity of our analysis.

The main function of the CBB cycle is to recycle RuBP for 
another round of CO2 fixation via the carboxylation function 
of Rubisco, thus giving RuBP a central role in the network. 
The association of high RuBP concentrations with instabil-
ity in the Calvin cycle has direct implications for metabolic 
engineering efforts, as modifications that increase the amount 
of RuBP, such as overexpression of phosphoribulokinase (prk) 
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or repression of Rubisco, may render the metabolic network 
less robust. Similar conclusions could be drawn for all distinc-
tive patterns, such as for PEP, Xu5P, and SBP mentioned above.

Interestingly, RuBP ‘toxicity’ has been reported for Escherichia 
coli (Parikh et al., 2006) and Rhodospirillum rubrum (Wang et al., 
2011), where it was mostly associated with an impaired balance 
between prk and Rubisco. RuBP toxicity was also suggested 
in recent failed experimental attempts to overexpress the prk 
gene in cyanobacteria (Kanno et al., 2017). Expression of the 
prk gene without that for Rubisco impaired growth in E. coli 
(Hudson et al., 1992a), as RuBP accumulates as a ‘dead-end’ 
metabolite.

The tendency of high RuBP to lead to reduced stability in 
the CBB cycle could hint at the importance of the balance 
between the activities of prk and Rubisco to be able to react to 
perturbations. Notably, no wild-type value for RuBP has been 
published for values exclusively in the unstable area (Fig. 2), 
and values from mutants might be difficult to obtain due to 
lower viability. Further experimental investigations could pro-
vide insight into the exact mechanisms of the reported RuBP 
toxicity and its association with enzyme balance.

Low substrate saturation and high product saturation 
of promiscuous enzymes favor stability

The sampling of fMCS and kinetic parameter sets also allowed 
for a probabilistic analysis of the relationship between stability 
and enzyme saturation levels, namely [S]/KM for either the for-
ward or reverse reaction. Following Michaelis–Menten-style 
rate laws, a low enzyme saturation results in high sensitivity 
of the reaction rate to the specific metabolite, while changes 
in metabolite concentration at high enzyme saturation have 
less influence. An enzyme with low substrate saturation and 

high product saturation can thus buffer changing substrate 
concentrations since excess metabolite can be used up via an 
increased reaction rate. With high product saturation, product 
pool changes caused by changes in reaction rate will not coun-
teract the buffering effect strongly.

Most enzymes showed equal substrate and product satu-
ration levels for stable and unstable states, smoothly distrib-
uted across the entire possible range (saturation 1–99%), again 
emphasizing the overall high predisposition for stability of the 
CBB cycle (Fig. 3; for all enzymes, see Supplementary Fig. S3). 
However, several enzymes had reactions where low substrate 
saturation and high product saturation were associated with 
stability, including the promiscuous enzymes aldolase (ald) 
and fructose-bisphosphate aldolase (fba), FBPase and SBPase, 
and transketolase 1 (tkt1) and transketolase 2 (tkt2). The xfpk 
reactions were an exception to this trend. Note that FBPase 
and SBPase do not have product saturation since they were 
modeled as irreversible. The reaction pairs catalyzed by these 
enzymes form a highly interconnected part of the CBB cycle 
responsible for RuBP regeneration (upper right in Fig. 1B). 
Each metabolite influenced more than one of the involved 
enzymatic rate equations via the modeled promiscuity; the 
product of one reaction either served as the substrate for 
another, or acted as competitive inhibitors in other reactions. 
Based on the saturation trends described above, a stable state 
was promoted by a consecutive buffering effect through the 
network, reaching prk and Rubisco.

Most trends in Fig. 3 can be exemplified by the saturation 
of ald by its substrates dihydroxyacetone phosphate  (DHAP) 
and glyceraldehyde 3-phosphate (GAP). Increased stability was 
observed when saturation was between 1% and 50%, the lat-
ter corresponding to [S]=KM. Saturation >50% was associated 
with lower stability. This case could mark a compromise in the 
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trade-off between flux sensitivity and efficient enzyme usage, 
as low saturation would necessitate high enzyme abundance 
to enable the flux. This high protein burden is associated with 
metabolic costs and poses possible molecular crowding issues 
(Beg et al., 2007; Bennett et al., 2009).

Another hypothesis is that metabolite concentrations in cen-
tral carbon metabolism have to be close to their associated KM 
values because some reactions must switch directions depend-
ing on carbon source. This hypothesis is supported by systemic 
comparisons of metabolomics data and published KM values 
in E. coli (Bennett et al., 2009) and other heterotrophic organ-
isms (Park et al., 2016). Our data suggest a similar case can be 
observed in cyanobacteria. Dark conditions require breakdown 
of storage compounds mainly via glycolysis and the oxidative 
pentose-phosphate pathway, which employ to a large extent 
the same enzymes used in the Calvin cycle, but in the opposite 
direction (Yang et al., 2002; Knowles and Plaxton 2003).

All sink reactions in the model (excluding R5P and PYR) 
followed the same tendency of low substrate saturation asso-
ciated with stability (Fig.  3). Low saturation for the sink 
reactions agrees with the conclusions of a recent theoretical 
study of the stability of autocatalytic cycles (Barenholz et al., 
2017). That study concluded that at least one of the reactions 
branching off from an autocatalytic cycle (such as the CBB) 
must have a lower saturation, regarding the mutual substrate, 
compared with the autocatalytic reaction that continues the 
cycle. Furthermore, an experimental study showed that stable 
operation of the Calvin cycle in E. coli could only be reached 
after laboratory evolution changed the sink reaction for R5P 
so that the catalyzing enzyme had a lower saturation level 
(Antonovsky et al., 2016). This also explains why there was no 
tendency towards stability for the sink reaction acting on PYR, 
as it is outside any autocatalytic cycle covered by our model. 
The absence of influence of the R5P sink could be explained 
by the high number of sink reactions and only one has to fol-
low the trend identified in Barenholz et al. (2017). Note that 

phosphoglucomutase (pgm) acts as a branching reaction from 
the CBB cycle and also follows the trend.

There are several reports of genetic instability in meta-
bolically engineered cyanobacteria (Jones, 2014), where pro-
duction cells revert to wild type through mutation of the 
heterologous pathway. This instability has been interpreted 
as cells escaping the burden of product toxicity, metabolite 
imbalance, or forced carbon flux away from biomass forma-
tion (Du et  al., 2017), but metabolic instability as described 
here has not been considered. The kinetic model developed 
here could be used to interpret these systems, as a combina-
tion of metabolite draining by the production pathway and 
cultivation conditions could cause production strains to enter 
an unstable metabolic state.

Metabolic control in the Calvin cycle is distributed 
among several enzymes

Engineering improvements to the Calvin cycle is aided by 
knowledge of which enzymes control flux. An FCC is a 
quantitative measure of how a change in the rate of a selected 
reaction (‘effector reaction’) affects the flux through any 
reaction in the system (‘target reaction’). Positive or negative 
FCCs refer to an increase or decrease of the flux following 
a change in enzyme activity, respectively. A  linear approxi-
mation method based on infinitesimal changes in activity 
(not probing activity changes of large magnitudes) was used 
to determine the FCCs for each stable parameter set. This 
approach resulted in distributions of FCCs for each enzyme 
and target reaction pair (median FCC and median absolute 
derivation; Fig.  4). Inspection of these FCC distributions 
revealed that most median FCCs were significantly lower than 
1 (i.e. no one reaction is the ‘bottleneck’ of the Calvin cycle). 
A distributed flux control is expected from highly intercon-
nected and complex metabolic networks (Stephanopoulos 
et al., 1998).
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However, some reactions offered positive control over many 
other reactions, meaning an increase in the rate of the for-
mer corresponded to an increase in flux in the latter. The most 
prominent effector reactions were ATP synthase (ATPSyn), prk, 
phosphoglycerate kinase (pgk), SBPase, and FBPase. Weaker 
effector reactions were glyceraldehyde 3-phosphate dehydro-
genase (gapd), triosephosphate isomerase (tpi), tkt1 and fba.

The positive control of ATPSyn emphasized the direct 
dependence of the CBB cycle on reactions of the photosys-
tems, which generate ATP and NADPH. Similarly, the positive 
control of Supply_Pi underlined the dependency on free inor-
ganic phosphate supply.

The predicted positive effects of increasing the activity 
of SBPase/FBPase, fba, and tkt1 correlated well with recent 
experiments overexpressing these enzymes in Synechocystis 
(Liang and Lindblad, 2016) and Synechococcus sp.  7002 (De 
Porcellinis et al., 2018), and are further supported by findings 
in plants (Raines, 2003; Miyagawa et al., 2001). The artificial 
phosphate supply reaction, Supply_Pi, showed positive con-
trol over reactions in the CBB cycle and negative control over 
reactions in the downstream pathway to ACCOA, probably 
caused by the inhibition of pyruvate kinase by Pi.

Rubisco showed small but positive control over many reac-
tions. This enzyme has received much attention in efforts 
to improve the CBB cycle (Whitney et al., 2011; Ducat and 
Silver, 2012), as it catalyzes the actual carbon fixation reac-
tion. Experimental studies of overexpression of Rubisco 

in cyanobacteria are not conclusive regarding its effect on 
growth rate (Marcus et al., 2011; Liang and Lindblad, 2017; De 
Porcellinis et al., 2018), and several experimental investigations 
of Rubisco activity in plants showed only limited influence 
under a wide range of conditions (Quick et al., 1991; Hudson 
et al., 1992b; Raines, 2003). Taken together, these findings sup-
port the prediction that Rubisco is not a major controlling ele-
ment in the CBB cycle, at least under the conditions covered 
by the model.

Contrary to our results, prk was reported to have no flux 
control in tobacco (Paul et al., 1995), as an effect on growth 
was only detected when activity was reduced by >85%. pgk, 
gapd, and tpi (gluconeogenesis) exerted positive control only 
over the reactions directly in the CBB cycle, and showed only 
a small effect on the downstream reactions towards ACCOA. 
This could be because the reactions constitute the first steps 
in recycling carbon back into the core network finally to 
restore RuBP, enabling another round of fixing a molecule 
of CO2.

Network structure gives rise to group control and non-
trivial relationships

Control can be exerted over parts of the metabolism by reac-
tions that seem to have no direct connection. One example 
of such network effects is prk, which exerted negative control 
over the sinks for R5P and F6P, which are relatively close to 
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prk, but also positive control over the downstream pathway to 
ACCOA, relatively far away in the network. The most proba-
ble explanation was a sequential effect, where the reactions in a 
linear pathway influence each other one after another. Notably, 
Rubisco and pgk were not influenced as strongly by this effect. 
The effect on the sink reaction for F6P might result from the 
connection via Pi through ATPSyn. These non-trivial observa-
tions mark targets for further research, for example through 
experimental investigations and modeling in a larger metabolic 
context where the abstracted sink reaction is formulated in 
more detail.

The patterns of FCCs discernible in Fig. 4 indicate that 
some reactions exert or experience control in a similar fash-
ion. To confirm that this is the case, and also for a wider 
scope than just the medians, we applied PCA and clustered 
the reactions according to their patterns of exerting con-
trol (as effectors) and being controlled (as targets) (Materials 
and methods; Supplementary Fig.  S4, S5). The clustering 
analysis revealed that the main reactions of the CBB cycle 
are controlled in a coupled manner; their fluxes tend to be 
affected together (Supplementary Fig.  S5). The high con-
nectivity between the reactions in these groups may explain 
the coupled control. A  separate clustering was observed 
for downstream reactions towards ACCOA, the sink reac-
tions, and the xfpk subnetwork. The clustering of reactions 
according to their ability to exert control (Supplementary 
Fig.  S4) provides further insight for metabolic engineers 
to choose between different targets to cause similar effects 
upon perturbation.

The phosphoketolase pathway exerts only negligible 
control over other reactions

The xfpk reactions and phosphotransacetylase (pta) exerted vir-
tually no control over any other reaction but themselves. This 
emphasizes the parallel character of the subnetwork formed by 
the xfpk reactions towards ACCOA (Supplementary Fig. S4), 
bypassing the traditional Calvin cycle and downstream reac-
tions that include decarboxylation of PYR (Bogorad et  al., 
2013; Xiong et al., 2015; Anfelt et al., 2015). This shortcut has 
been suggested to assist energy balancing during heterotrophic 
growth, but also to support carbon channeling into the tri-
carboxylic acid (TCA) cycle under photosynthetic conditions 
(Xiong et al., 2015).

The three reactions in the xfpk subnetwork were, how-
ever, affected by many reactions. The negative control of 
tkt1 over xfpk1 could result from a competition for the 
same substrate (i.e. F6P), whereas the positive control on 
xfpk2 could result from the negative effect on xfpk1 com-
bined with the supply of substrate for xfpk2 (i.e. Xu5P). 
Reasons for the reversed control of ald on xfpk1 and xfpk2 
were not as obvious as simple substrate competition, and the 
relationships between the reactions were probably caused 
by the aforementioned non-trivial network effects in com-
bination with the enzyme promiscuity interconnecting the 
two reactions, as they are catalyzed by the same enzyme. 
Further investigations will be necessary to understand this 
relationship fully.

How can we increase the predictive capability of 
kinetic models?

The model reproduced known and reasonable behavior and 
predicted trends that are in good agreement with published 
experimental data, displaying the strength of the random sam-
pling approach and the subsequent probabilistic analysis. The 
capability to explore the whole metabolic and parameter space 
without constraining the search to finding a single data set 
fitted to the input data expands the potential of the obtained 
results and avoids uncertainty-related overfitting issues.

To improve the predictive strength of this framework, 
advanced omics technologies can be employed to constrain 
further the broad sampling boundaries employed here to cap-
ture the physiological metabolic state more accurately.

In addition to the previously discussed benefits of more tar-
geted metabolomics studies (Asplund-Samuelsson et  al., 2018), 
fluxomics data sets from different conditions and mutants would 
aid the understanding of the system in substantial ways; this is an 
ongoing endeavor (Gopalakrishnan et  al., 2018) and especially 
challenging for autotrophic metabolism (Adebiyi et  al., 2015). 
Additionally, the analysis of quantitative proteomic data sets would 
reveal the abundance ratios of enzymes, enabling more accurate 
modeling of in vivo fluxes and the role of enzyme abundance in 
the network context (Reimers et al., 2017; Sánchez et al., 2017).

Computational studies by Jablonsky et al. (2013, 2014, 2016) 
have identified the parallel expression of isoenzymes with differ-
ent kinetic properties as important influencers for metabolic reg-
ulation in the Calvin cycle. The results from our simplified analysis 
could therefore be refined by incorporating ratios between par-
ticular isoenzymes, sampling their specific kinetics individually, 
and investigating their influence on stability of metabolic states. 
The possibility of redundancy caused by several isoenzymes cata-
lyzing the same reaction is furthermore of special interest when 
trying to modify the flux through a certain reaction.

 While the model is formulated with kinetic rate equations 
describing the enzymatic reactions, to the best of our knowl-
edge, complex reaction mechanisms and possible allosteric 
and competitive effectors might not yet have been discovered. 
By randomly assigning different types of regulators, the mod-
eling approach used in this study could provide guidance in 
finding possible regulatory mechanisms influencing state sta-
bility. Furthermore, the activities of several enzymes of the 
Calvin cycle are regulated by protein interaction via thiore-
doxin (Raines, 2003) or CP12 (Tamoi et al., 2005), which play 
important roles in investigating the dynamics between light 
and dark conditions as well as engineering efforts.

Finally, expanding the model to cover larger parts could fur-
ther increase the predictive strength, since it would reveal more 
complex dynamics between the parts of the highly intercon-
nected central carbon metabolism.

Conclusions

Kinetic relationships are crucial in uncovering controlling 
steps in core metabolic networks such as the Calvin cycle. This 
study aids to reduce the uncertainty related to possible meta-
bolic states of the Calvin cycle by employing a kinetic model 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/70/3/973/5145700 by U

.S. D
epartm

ent of Justice user on 17 August 2022

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery382#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery382#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery382#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery382#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery382#supplementary-data


982 | Janasch et al.

and random sampling, which allowed investigation of dynamic 
properties such as stability and the distribution of control. 
Stability correlated with low abundances of the metabolite 
RuBP, suggesting that accumulation of this metabolite is not 
tenable. Furthermore, saturation levels of some promiscuous 
enzymes were also associated with instability. In general, flux 
control over the Calvin cycle is distributed over several reac-
tions. The results of this study can guide further investigations 
into the dynamics of the Calvin cycle as well as its modifi-
cations by metabolic engineering for improved performance 
or transplantation into other hosts. The combination of ther-
modynamic feasibility and steady-state stability presented here 
constrains the solution space of metabolic models towards a 
more realistic description of reaction networks in nature.

Supplementary data

Supplementary data are available at JXB online.
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Protocol S2. List of rate equations for all reactions in 
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Fig. S1. Distribution of sampled metabolite concentrations 
for all thermodynamically feasible sets.

Fig. S2. Tendencies of all metabolite concentrations towards 
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