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Abstract

A gas inside the microsystems or the porous media is in its non-equilibrium state, due to the fact

that the molecular mean free path is comparable to the characteristic dimension of the media.

The same state of a gas, called rarefied, is found at high altitude or in the vacuum equipment

working at low pressure. All these types of flow can be described by the kinetic models derived

from the Boltzmann equation. This thesis presents the development of the numerical tools for

the modeling and simulations of the rarefied gas flows. The two models of the full Boltzmann

equation, the Shakhov model (S-model) for the single gas and the McCormack model for the gas

mixture, are considered. The discrete velocity method is used to the numerical discretization

in the molecular velocity space and the TVD-like scheme is implemented in the physical space.

The main aspect of this work is centered around the transient properties of the gas flows and,

especially, on the transient heat and mass transfer behaviors. However, for some configurations

only steady-state solutions are considered and the implicit scheme is developed to reduce the

computational cost. Using the proposed numerical approach several types of the transient

rarefied single gas flows as well as the binary mixture of the monoatomic gases are studied.
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Résumé

Un gaz à l’intérieur d’un microsystème ou d’un milieu poreux est dans un état hors équilibre, car

le libre parcours moyen des molécules est comparable à la dimension caractéristique du milieu.

Ce même état degaz, appelé raréfié, se retrouve en haute altitude ou dans un équipement de

vide à basse pression. Ces gaz raréfiés suivent des types d’écoulements qui peuvent être décrits

par des modèles cinétiques dérivés de l’équation de Boltzmann. Dans ce travail nous présentons

les principaux modèles et leurs mises en oeuvre numériquepour la simulation des écoulements de

gaz raréfiés. Parmi les modèles utilisés nous présentons les deux modèles complets de l’équation

de Boltzmann, le modèle de Shakhov(S-model) pour un gaz monoatomique et le modèle de Mc-

Cormack pour un mélange de gaz toujours monoatomiques. La méthode des vitesses discrètes

est utilisée pour la discrétisation numérique dans l’espace des vitesses moléculaires et le schéma

de type TVD est mis en œuvre dans l’espace physique. L’aspect original de ce travail se situe sur

les régimes transitoires et, en particuliersur les comportements non-stationnaires des transferts

de chaleur et de masse. Cependant, pour certaines configurations nous considérons uniquement

les conditions stationnaires des écoulements et un schéma implicite est développé afin de réduire

le coût de calcul. En utilisant ces approches numériques, nous présentons les résultats pour

plusieurs types d’écoulements non-stationnaires, de gaz raréfiés monoatomiqueset de mélanges

binaires de gaz monoatomiques.
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Résumé Français

La compréhension des phénomènes de transport à l’échelle micro et nanométrique n’est pas

seulement intéressante sur le plan fondamental, mais elle est aussi de plus en plus nécessaire

pour la poursuite du développement de nombreux domaines. Parmi ces domaines on trouve

les industries chimiques (séparation de gaz, filtration, stockage, etc...), la microélectronique

(micro échangeur de la chaleur pour le refroidissement des composants et tous les systèmes

de type MEMS (MicroElectroMecanical Systems)), la médecine (lab-of-chip pour l’extraction

et l’analyse d’échantillons biologiques), l’espace (micro-actuateur pour le contrôle actif des

écoulements, les vols en haute altitude). Un autre domaine en forte expansion qui relève de

l’approche du gaz raréfié est la technologie du vide avec toutes les applications technologiques (le

dépôt de couches minces, spectromètre, valves de dosage, capteurs de pression, etc. . . ). Enfin

cette problématique se retrouve dans le projet ITER où l’installation principale fonctionne dans

des conditions de vide poussé.

La caractéristique principale des écoulements gazeux aux petites échelles ou aux basses

pressions est leur raréfaction caractérisée par le rapport entre le libre parcours moyen des

molécules (λ) et la dimension caractéristique du problème (L), appelé nombre de Knudsen : Ce

nombre sans dimension devient important (plus grand que un) dans deux situations : soit, à

l’échelle micrométrique, quand la dimension caractéristique d’un problème est petite, soit, dans

le domaine de basse pression, quand le libre parcours moyenne de molécules est très grand. Dans

le premier cas, à l’échelle micrométrique, la deuxième propriété de l’écoulement apparait plus

clairement : le rapport surface-volume devient beaucoup plus grand que dans un écoulement

classique, et donc la description réaliste des collisions gaz-surface devient très importante.

Un gaz à l’intérieur d’un microsystème ou d’un milieu poreux est dans un état hors

équilibre, (i.e. éloigné de toute situation d’équilibre local) car le libre parcours moyen des

molécules est alors comparable à la dimension caractéristique du milieu. Ce même état de gaz,

appelé raréfié, se retrouve en haute altitude ou dans un équipement de vide à basse pression.

Suivant la suggestion de Schaaf et Chambre datant de 1961 [1], on peut schématiser

le classement des différents régimes de raréfaction en fonction du nombre de Knudsen. Les
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valeurs des bornes limitant chaque régime ne représentent qu’un ordre de grandeur, car la

transition entre deux régimes n’est pas brutale mais progressive. On distingue donc habituelle-

ment: Le régime hydrodynamique (défini par Kn ≤ 10−3), où le modèle continue (traduit

par les équations de Navier-Stokes) est valide, associé à des conditions limites de paroi, clas-

siques : conditions limites d’adhérence pour la vitesse et de continuité pour la température.

Le régime de glissement (10−3 ≤ Kn ≤ 10−1), où le modèle continue est encore convenable

à condition d’être alors associé à des conditions limites de glissement (de vitesse) et de saut

(pour la température). Le régime transitionnel (10−1 ≤ Kn ≤ 10), où le modèle continu n’est

plus valide. Pour ce régime la simulation numérique est basée sur la résolution de l’équation de

Boltzmann par différents approches. Le régime moléculaire libre (Kn ≥ 10), où l’écoulement de

gaz est fortement raréfié. Dans ce régime les collisions intermoléculaires sont nettement moins

nombreuses que les collisions du gaz avec la surface solide. L’écoulement est donc « piloté »

par l’interaction gaz-paroi. Un écoulement de gaz peut être décrit à deux niveaux d’analyse

différents: le niveau microscopique et le niveau macroscopique. Au niveau macroscopique, le

gaz est considéré comme un milieu continu. Le modèle macroscopique, basé sur le système des

équations de Navier-Stokes, fournit une description détaillée du comportement des paramètres

macroscopiques du gaz, tels que la densité, la vitesse macroscopique, la pression et la tempéra-

ture. Au niveau microscopique, la structure moléculaire du gaz est prise en compte et, en plus

de l’espace physique et du temps, paramètres utilisés dans les modèles macroscopiques, l’espace

des vitesses moléculaires est également pris en compte et on considère donc l’espace de phases

à six dimensions.

Le modèle physique le plus général, mis en oeuvre à l’échelle microscopique, est basé sur

l’équation de Boltzmann, qui décrit statistiquement le comportement macroscopique d’un gaz.

Du point de vue mathématique l’équation de Boltzmann est une équation intégro-différentielle

où la fonction de distribution moléculaire dépend, en général, de sept variables : un vecteur

de position, un vecteur de vitesse moléculaire, les deux dans l’espace de phases, et un temps.

Sa résolution est donc un problème très difficile. Par conséquent, il convient de définir les

conditions dans lesquelles sa solution est vraiment indispensable, ce qui signifie, les conditions

dans lesquelles les modèles continus perdent leur validité. En même temps, plusieurs modèles

cinétiques de l’équation de Boltzmann sont proposés à partir des années soixante. Ces modèles

sont moins couteux au point de vue numérique par rapport à la résolution de l’équation de

Boltzmann, mais ils reflètent aussi plus ou moins bien les propriétés de cette équation. Il et

donc, indispensable de tester la capacité de ces modèles à suivre les propriétés de l’équation de

Boltzmann.

L’équation de Boltzmann décrit une évolution de la fonction de distribution moléculaire

et elle est théoriquement valable pour toute valeur du nombre de Knudsen. Mais sa solution

analytique n’est possible que pour très peu de cas particuliers et sa solution numérique est très
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coûteuse en termes de ressources informatiques. Les difficultés de sa résolution proviennent du

caractère intégro-différentiel de cette équation et aussi de sa forte dimensionnalité. La solution

numérique de l’équation de Boltzmann a représenté un défi pendant plusieurs décennies, mais

il n’est pas facile de construire un schéma numérique qui maintienne les principales propriétés

de l’équation de Boltzmann: la positivité de la fonction de distribution, la conservation des

moments macroscopiques, les propriétés d’entropie, etc.

Aujourd’hui, les méthodes les plus connues pour la résolution numérique de l’équation

de Boltzmann sont: la simulation directe de Monte-Carlo (Directe Simulation Monte Carlo

(DSMC)), la méthode des vitesses discrètes (Discrete Velocity Method (DVM)) et la méthode

spectrale rapide (Fast Spectral Method (FSM)), proposé récemment. Chacune d’elles s’applique

pour une gamme particulière de paramètres d’écoulement.

La méthode la plus universelle et la plus largement utilisée en pratique est la méthode

de simulation directe de Monte-Carlo (DSMC). Cette méthode est très populaire en raison de

son efficacité et de sa flexibilité, mais les fluctuations statistiques, présentes dans cette méthode,

en ont fait une approche inexacte pour les simulations des écoulements instationnaires ou pour

les écoulements à faible vitesse. Par exemple, pour un écoulement de gaz avec un nombre

de Mach 0, 001 (fréquemment rencontré dans les micro-dispositifs), environ 108 échantillons

indépendants sont nécessaires pour réduire l’erreur de 1% quand il y a 100 particules simulées

dans une cellule [2]. Aussi, le DSMC est-elle une méthode inefficace pour le régime de glissement

puisque les dimensions de cellules spatiales et les pas de temps doivent être respectivement plus

petits que le libre parcours moyen et le temps collisionnel. Des progrès ont été faits pour

surmonter ces difficultés: pour le cas de faibles variations de quantités macroscopiques, la

méthode de préservation de l’informations (information preservation) [3] et la méthode DSMC

de la faible variance (low variance) [4, 5] ont été proposées.

Bien que le principe de la méthode des vitesses discrètes ait été proposé dès l’année

1960, ce n’est qu’aujourd’hui que cette méthode commence à être appliquée pour la simulation

numérique des écoulements de gaz raréfiés. Cette possible mise en œuvre récente est surtout due

au développement considérable de la technique de calculs parallèles au cours des deux dernières

décennies, qui a permis la réalisation de calculs, auparavant impossibles. La méthode des

vitesses discrètes est une méthode déterministe et elle n’a donc pas de fluctuations statistiques,

de plus elle bien adaptée pour la simulation de l’écoulement à faible vitesse et de l’écoulement

instationnaire.

Récemment, la méthode spectrale rapide (FSM) a été développée pour résoudre numérique-

ment l’équation de Boltzmann pour un gaz monoatomiques [6, 7, 8, 9]. Elle utilise une dis-

crétisation de Fourier Galerkin dans l’espace des vitesses, et traite les collisions binaires dans

l’espace des fréquences correspondant. Comme cette méthode permet les discrétisations de
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vitesses non uniforme, et comme le nombre de nœuds de fréquence peut être beaucoup plus

petit que le nombre de nœuds de vitesse [9], le FSM est bien adapté pour résoudre les écoule-

ments de gaz très raréfiés, où un grand nombre de nœuds de vitesse sont utilisés pour capturer

des discontinuités de la fonction distribution de vitesse moléculaires. Le FSM peut être 50 fois

plus rapide que la méthode DSMC de faible variance [9].

Comme on le sait, une solution numérique de l’équation de Boltzmann complète reste

encore une tâche difficile, aujourd’hui, alors même que de puissants ordinateurs sont disponibles.

Pour simplifier l’intégrale de collisions, en gardant l’essentiel de ses propriétés, un certain nom-

bre de modèles cinétiques ont été proposés. Chacun de ces modèles cinétiques possède ses

propres avantages et ses inconvénients. Ainsi, le modèle cinétique de Bhatnagar–Gross–Krook

(BGK modèle) [10] propose une forme approchée de l’intégrale de collision relativement simple,

mais ce modèle donne un nombre de Prandtl inapproprié, ce qui provoque une erreur sur les

calculs de flux de chaleur. Dans le même temps, les équations cinétique modèle BGK [10], aussi

S modèle [11] et ES modèle [12] (où un nombre de Prandtl correct est obtenu) peuvent être un

des outils efficaces et largement utilisées pour les calculs pratiques.

Dans la pratique les mélanges de gaz sont plus utilisés que les gaz purs et, il existe

peu de modèles satisfaisants pour ces mélanges [13, 14, 15, 16, 17, 18]. La modélisation des

phénomènes de transport dans les mélanges gazeux est beaucoup plus complexe que celle des

gaz purs et, ceci pour plusieurs raisons. Tout d’abord, les écoulements de mélange gazeux

nécessitent la détermination de plus de paramètres que les écoulements de gaz purs. Outre les

paramètres de raréfaction des gaz, la pression et la température, les écoulements de mélange

de gaz dépendent des compositions des espèces du mélange et de leurs affinités relatives avec

la phase solide. Deuxièmement, en plus des forces classiques telles que les gradients de pres-

sion et de température, des forces additionnelles apparaissent dans les mélanges, fonctions du

gradient des fractions molaires. Troisièmement, plusieurs nouveaux phénomènes transversaux

apparaissent dans un mélange tel que, par exemple, la diffusion thermique. En raison de cette

complexité, la difficulté de modélisation des écoulements de mélanges gazeux augmente consid-

érablement par rapport à celle d’un gaz pur.

L’objectif principal de ce travail de thèse est le développement d’approches efficaces

pour les simulations numériques de cas pratiques d’écoulements de gaz raréfiés purs et de

mélanges de gaz sur la base des équations cinétiques modèles et de la mise en oeuvre de la

méthode des vitesses discrètes (DVM).

La méthode des vitesses discrètes est utilisée pour la discrétisation numérique dans

l’espace des vitesses moléculaires et le schéma de type TVD est mis en œuvre dans l’espace

physique. L’aspect original de ce travail se situe sur les régimes transitoires et, en partic-

ulier pour les comportements non-stationnaires des transferts de chaleur et de masse. Cepen-
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dant, pour certaines configurations nous considérons uniquement les conditions stationnaires

des écoulements et nous développons un schéma implicite afin de réduire le coût de calcul.

Dans le cadre de ces approches numériques, nous présentons les résultats pour plusieurs types

d’écoulements non-stationnaires, de gaz raréfiés monoatomiques et de mélanges binaires de gaz

monoatomiques.

Nous avons présenté la comparaison détaillée des résultats de la simulation numérique

de plusieurs types d’écoulements de gaz raréfié, obtenus à l’aide des équations cinétiques modèle

linéarisées et non linéaires, avec les résultats correspondants obtenus à partir de l’équation de

Boltzmann : tant ceux de l’équation Boltzmann complète (résolue par la méthode DSMC) que

ceux de l’équation de Boltzmann linéarisée. Nous avons ainsi montré que ces équations modèles

fournissent des résultats fiables pour de modestes efforts de calcul et qu’elles peuvent donc être

très efficaces pour les applications pratiques.

Chapter 2

Le transfert de chaleur à travers un gaz raréfié a été étudié depuis l’étude fondamentale

de Maxwell [19]. Le cas particulier du transfert de chaleur à travers un gaz raréfié placé entre

deux sphères concentriques a été étudié théoriquement Réf. [20]. Les solutions analytiques

ont été obtenues en résolvant l’équation cinétique et en prenant en compte l’accommodation

thermique incomplète à la surface de la sphère interne [21]. Une expression du flux de chaleur

en régime transitoire a été proposée dans la Réf. [22] en modifiant l’expression correspon-

dante, obtenue pour la géométrie d’écoulements entre deux plaques parallèles. Le problème

du transfert de chaleur d’une sphère à son environnement, comme un cas limite du transfert

entre deux sphères, a également été étudié dans les Refs. [23, 24], respectivement pour les gaz

monoatomiques et poly-atomiques.

Au cours des dernières années, l’intérêt pour le problème du transfert de chaleur a

surgi une fois de plus en liaison avec le développement rapide des MEMS et NEMS. En raison

de la petite taille caractéristique de ces dispositifs le gaz à l’intérieur est raréfié et leur gestion

thermique devient importante et particulière. La configuration des deux sphères concentriques

peut également être utilisée comme une configuration simple pour les mesures du coefficient

d’accommodation thermique [25]. Dans ce Chapitre, le transfert de chaleur entre deux sphères

concentriques est considéré pour une large variation du degré de raréfaction du gaz, du rap-

port de températures des surfaces des sphères et du rapport des rayons de ces surfaces. Les

expressions analytiques des températures et flux de chaleur radiaux, dans les régimes de glisse-

ment et moléculaire libre, sont proposés pour un coefficient d’accommodation arbitraire entre

le gaz et les deux surfaces sphériques. Dans le régime d’écoulement transitionnel, le modèle

cinétique (S-modèle) a été résolu numériquement à l’aide de la méthode des vitesses discrètes.

L’approximation « upwind » est utilisée pour les dérivées spatiales. L’algorithme implicite,
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développé dans ce travail nous permet de réduire considérablement le temps de calcul lorsque

la solution stationnaire est nécessaire.

Les comportements des paramètres macroscopiques (de flux de chaleur, de tempéra-

ture, de pression et de densité numérique) sont examinés en détail pour divers rapports de

températures des surfaces sphériques et pour différents rapports des rayons de ces surfaces. Un

comportement non monotone du flux de chaleur en fonction du paramètre de raréfaction est

obtenu dans le cas du fort rapport de température des surfaces des sphères. Pour les petites et

moyennes valeurs du paramètre de raréfaction on trouve une variation de pression importante

dans le sens radial.

Des expressions analytiques pour la température et le flux de chaleur dans le régime

de glissement ont été obtenues pour des rapports arbitraires de températures et de rayons des

sphères et un très bon accord a été trouvé entre ces expressions analytiques et la solution

numérique de l’équation cinétique S-modèle.

Une expression approchée du flux de chaleur, valable pour tous les régimes d’écoulement

et pour des rapports arbitraires de températures et de rayons des sphères, est proposée dans

l’hypothèse d’une réflexion spéculaire-diffuse sur la surface de la sphère interne et d’une réflexion

totalement diffuse sur la sphère externe.

Chapitre 3

Le problème du transfert de chaleur entre deux cylindres coaxiaux a été largement

étudié au cours des dernières décennies à la fois expérimentalement et théoriquement. Cette

configuration a été considérée pour l’étude des "grands nombres de Knudsen" i.e. lorsque le

libre parcours moyen des molécules de gaz est nettement plus grand que le rayon du cylindre

interne. Il a été montré que pour le régime moléculaire libre, le coefficient d’accommodation

thermique peut être facilement exprimé à l’aide de la différence de température entre les surfaces

des deux cylindres et de la pression qui règne entre eux. Ces résultats constituent la base de

l’utilisation de la "méthode de basse pression», qui est l’une des techniques de mesure classique

du coefficient d’accommodation thermiques réalisés dans [26].

Le transfert de chaleur à travers un gaz raréfié entre deux cylindres concentriques a été

étudié par de nombreuses auteurs [27, 28, 29, 30, 31, 32, 33]. Dans la plupart des cas, l’analyse

a été effectuée en utilisant les modèles cinétiques linéarisées, ce qui est tout à fait justifié

lorsque la différence de température entre les cylindres est faible [27, 28, 31] ou le rapport

des rayons des cylindres est grande [32]. Pour la grande différence de température entre les

cylindres l’approche non linéaire a également été mis en œuvre [29, 30, 34, 33]. Cependant,

toutes ces études portent sur des conditions d’écoulement en état stationnaire. Néanmoins, les
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informations sur le transfert de chaleur transitoire (instationnaire) sont très importantes du

point de vue scientifique et pratique. Dans les phases de conception et de développement des

jauges de Pirani [35], l’évaluation de la pression dans le temps est une information vitale pour un

ajustement des caractéristiques du capteur. Il faut noter que la géométrie de ce type de jauges

reproduit la géométrie de deux cylindres coaxiaux. Les jauges de Pirani sont souvent utilisées

dans des chambres de transfert dans l’industrie des semi-conducteurs ou dans des chambres

de ventilation avec des cycles rapides. Dans les applications de ventilation rapide les capteurs

de Pirani indiquent temporairement une pression qui est supérieure ou inférieure à la pression

réelle. Cet effet est dépendant de la géométrie du capteur et de la façon dont la compensation

de température est mise en oeuvre. Il serait utile dans la phase de conception de modéliser ces

comportements instationnaires de pression et de flux de chaleur afin d’optimiser la conception

des jauges de Pirani. En outre, les jauges de Pirani de l’impulsion dépendent à la fois de la

conductivité thermique du gaz et de la capacité calorifique du fil et du gaz. Une meilleure

compréhension de la physique sous-jacente et l’amélioration correspondante de la modélisation

peuvent être utilisées ici pour optimiser les différents modes de fonctionnement.

Quelques articles consacrés aux simulations des propriétés transitoires d’un gaz raréfié

doivent être cités [36, 37, 38]. Le sujet, plus proche de la présente étude, est considérée dans

la Réf. [36], où les auteurs étudient le transfert de chaleur transitoire entre deux plaques

parallèles en raison du chauffage ou du refroidissement rapide de l’une de ces deux plaques. Les

simulations sont réalisées dans le régime d’écoulement de glissement mettant en application à

la fois les approches continue et cinétique (basée sur la méthode DSMC).

Le but du présent travail est d’étudier l’évolution transitoire du transfert de chaleur à

travers un gaz raréfié confiné entre deux cylindres coaxiaux pour une large gamme du degré de

raréfaction du gaz. Le modèle cinétique (S-modèle) instationnaire est résolu numériquement

pour simuler l’évolution temporelle des paramètres de gaz. Le temps nécessaire pour atteindre

les conditions de régime permanent pour les différents paramètres du gaz est évalué pour dif-

férents niveaux de raréfaction et pour divers gaz. Dans le régime d’écoulement de glissement

le flux de chaleur est calculé à partir du bilan énergétique et il est comparé au flux obtenu à

partir de l’équation modèle cinétique.

Les simulations ont été effectuées à partir de l’écoulement moléculaire libre jusqu’au

régime hydrodynamique pour différents rapports de rayons des deux cylindres et différents ra-

tios de températures des surfaces. On constate que, pour le plus petit ratio de température

T = 1, 3 le temps pour atteindre l’état d’équilibre, pour le flux de chaleur moyen, varie d’environ

2, 5 à 44 fois le temps caractéristique lorsque l’on passe du régime d’écoulement moléculaire

libre au régime l’hydrodynamique. Un minimum a été observé au début du régime transition-

nel d’écoulement. En comparant le comportement des gaz monoatomiques dans la géométrie
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réelle d’une jauge de pression on obtient que, pour une même pression, pour le Xénon le temps

nécessaire pour atteindre l’état d’équilibre est 6 fois plus long que pour l’Hélium. Lorsque le

rapport de la température augmente jusqu’à T = 2 le temps pour atteindre l’état d’équilibre

diminue d’environ 5%. Dans le régime d’écoulement de glissement le temps pour atteindre

l’état d’équilibre peut également être trouvé à partir de la solution de l’équation de l’énergie

complétée par les conditions aux limites de saut de température.

Chapitre 4

L’écoulement de gaz à travers d’un orifice est un problème d’un grand intérêt pra-

tique pour la conception de l’équipement du vide, les applications spatiales ou de la microflu-

idique. Les jets sous-détendus à travers les orifices sont principalement utilisés dans les systèmes

d’analyse de particules pour séparer et isoler des molécules ou des ions pour déterminer leurs

propriétés physiques et chimiques. Les caractéristiques temporelles de ces jets sont importantes

pour la recherche du temps de réponse des jauges à vide, qui se développent pour les mesures

des variations rapides de pression [39].

Les écoulements stationnaires à travers des orifices, des fentes et des tubes courts ont

été étudiés avec succès en appliquant la méthode DSMC et les équations cinétiques [40, 41,

42, 43, 44, 45, 46, 47]. Toutefois, seulement quelques résultats sur les écoulements raréfiés

instationnaires à travers d’un orifice [48], d’un tube court [38], d’un long tube [49] ou d’une

fente [50] peuvent être trouvés dans la littérature. Les conditions d’écoulement dans la Réf.

[48] sont limités à nombre de Mach élevé ou modéré à cause du bruit statique significatif propre

à la méthode de DSMC. Les auteurs de la Réf. [39] ont également étudié expérimentalement

et numériquement l’écoulement transitoire de gaz, mais entre deux réservoirs de volumes fixes.

Lorsque l’on utilise des pressions de grande amplitude variant rapidement dans le temps, on

trouve que des temps caractéristiques pour atteindre l’état d’équilibre de ce système sont de

l’ordre de quelques secondes.

L’écoulement transitoire de gaz raréfié à travers un orifice est étudié sur la base de

S-modèle non-linéaire de l’équation cinétique. Cette équation cinétique non-linéaire instation-

naire est résolue numériquement par la méthode de vitesses discrètes (DVM) pour obtenir la

variation du débit massique et des paramètres macroscopiques en fonction du temps. Les sim-

ulations sont réalisées pour tous les régimes de l’écoulement : du régime moléculaire libre au

régime hydrodynamique, pour quatre valeurs de rapport de pression entre les deux réservoirs.

L’évolution du débit massique dans le temps est analysée et il se trouve que le temps nécessaire

pour atteindre la valeur de débit massique stationnaire dépend essentiellement du rapport de

pression entre les deux réservoirs et du régime d’écoulement de gaz dans le réservoir de sortie.

Ce temps pour atteindre les conditions de l’état d’équilibre pour le débit de masse est estimé. Il

faut de 2, 35 à 30, 37 fois la durée du temps caractéristique pour obtenir le débit de masse à l’état
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d’équilibre. Le temps maximal pour atteindre l’état d’équilibre est trouvé dans le régime de

glissement pour un rapport de pression de 0, 9 entre les réservoirs. Une méthode d’interpolation

simple est réalisée pour calculer le débit massique dans le régime d’écoulement transitionnel.

Une expression empirique simple est proposée pour l’évaluation de débit massique en fonction

du temps. On montre numériquement que l’écoulement à travers l’orifice dans les conditions

considérées ne devient jamais vraiment « choked ».

La technique développée a été utilisée pour la simulation de l’écoulement de vapeur de

rubidium dans le domaine de très basse pression dans le cadre du projet AWAKE du CERN.

Chapitre 5

L’écoulement de gaz à travers un canal long de section rectangulaire est un problème

pratique fréquemment rencontré dans les MEMS et les applications de la technologie du vide.

Ce type de l’écoulement a été largement étudié sur la base de la théorie cinétique et la revue

détaillée de ces études peut être trouvée dans la Réf. [51]. Une grande quantité d’expériences

sur les microconduits avec des sections transversales diverses, mais uniformes, ont été réalisées

dans les dernières décennies [52, 53, 54, 55, 56, 57, 58]. Cependant, dans de nombreuses

applications pratiques la section transversale varie le long du canal. Comme exemple de ce

genre d’écoulement on peut citer la fuite du gaz à travers une soupape de compresseur [59] et

l’écoulement dans un micro palier [60, 61]. Quelques résultats des simulations numériques de

l’écoulement à travers de canaux de sections coniques variables [62] et de sections rectangulaire

et coniques [63] peuvent être trouvés dans la littérature.

Une méthode simple, proposée précédemment par d’autres auteurs, est appliquée ici

pour calculer le débit massique de gaz à travers un canal de section rectangulaire variable. Les

calculs sont basés sur les résultats de la solution numérique du S-modèle de l’équation cinétique

linéarisée, obtenus par d’autres auteurs, et complétés ici en utilisant la même approche. La

technique proposée permet de calculer le débit massique à travers un long canal de section

rectangulaire variable pour des rapports de pressions et de températures arbitraires et pour une

large gamme de raréfaction du gaz. Des expressions analytiques explicites sont proposées dans

le cas du régime hydrodynamique et du régime moléculaire libre. Une méthode d’interpolation

simple est réalisée pour calculer le débit massique dans le régime d’écoulement transitionnel.

Chapitre 6

Certains auteurs [64, 65, 58] ont trouvé expérimentalement que la perméabilité d’un

canal d’une section variable est plus élevée lorsque ce canal est perfusé dans la direction conver-

gente. Dans un sens plus général, un comportement non-symétrique de l’écoulement suivant la

direction (effet de diode) a d’abord été trouvé et étudié dans les écoulements de liquide, notam-
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ment par les auteurs des Réfs. [66, 67]. Plus récemment, dans le cas des écoulements gazeux,

on a trouvé que cet effet de diode augmente avec la raréfaction dans le régime de glissement

et disparaît dans le régime hydrodynamique [58]. Lorsque les deux extrémités d’un canal des

sections variables sont dans le régime moléculaire libre, cet effet théoriquement ne devrait pas

exister [32, 68].

Des mesures du débit massique à travers un canal d’une section rectangulaire variable

ont été effectuées par des collègues de l’université de Bremen. Différents gaz, CO2, N2, Ar ont

été utilisés pour les une large gamme de pressions dans les entré et sortie du canal. L’effet de

diode donnant un débit plus grand dans la direction convergente (jusqu’au 15%) a été observé

expérimentalement.

Basé sur ces observations expérimentales précédentes nous présentons ici un modèle

analytique de l’écoulement isotherme dans un conduit de section transversale variable. Nous

appliquons l’approche basée sur la solution de l’équation de Stokes avec les conditions lim-

ites de glissement de vitesse. Cette équation a été résolue analytiquement et des expressions

de débit massique qui différent pour les deux sens de perfusions du canal ont été trouvées.

En même temps l’approche numérique, décrite dans la Chapitre 5, a été utilisée pour la sim-

ulation numérique de l’écoulement dans le canal de section variable, dans les deux sens de

l’écoulement et pour la gamme de pression considérée expérimentalement. Les résultats des

trois approches expérimentale, analytique et numérique, sont en bon accord et ils nous perme-

ttent de confirmer, décrire et comprendre le phénomène de la diodicité de l’écoulement de gaz.

Par le biais des deux approches analytique et numérique nous pourrions prédire le débit mas-

sique à travers un long canal de section rectangulaire variable pour des gradients de pression

arbitraires.

L’effet de diode analysé ici est essentiellement un phénomène physique et soulève donc

la question académique de l’explication du phénomène. Toutefois, il pourrait être applicable,

par exemple dans les futures MEMS si l’effet diode peut être poussé jusqu’à des valeurs signi-

ficatives. Des applications probables sont à prévoir dans les dispositifs de dosage et de pompage

des écoulements de gaz où des « diodes réelles » ne permettent la circulation que dans un seul

sens.

Chapter 7

Dans de nombreuses applications pratiques comme la technologie du vide, les milieux

poreux et l’industrie chimique, les informations sur le transfert de chaleur et de masse des

mélanges de gaz raréfiés sont indispensables. Dans ce contexte, les cas-test de référence sont

d’une grande importance car ils peuvent nous aider à valider de nouveaux modèles numériques,

développés pour la description des écoulements de mélanges gazeux ou de tester la validité des
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approches existantes dans les diverses conditions physiques. Ici, les écoulements de Couette et

de Fourier entre deux plaques parallèles sont choisis comme les cas-tests de référence car ils

constituent des problèmes classiques de la mécanique des fluides. Bien que des solutions pour

un gaz pur puissent être trouvées dans la littérature [69] et [70], seulement quelques articles

sont consacrés à des mélanges gazeux.

L’écoulement de Couette pour des mélanges gazeux binaires est d’abord étudié dans

les Refs. [71, 72, 73, 74, 75] sur la base des modèles cinétiques de l’équation de Boltzmann, tels

que le modèle de Hamel [13] pour les molécules maxwelliennes et le modèle McCormack pour

un potentiel intermoléculaire arbitraire [14]. Notamment, en utilisant le modèle de McCor-

mack, nous étudions l’influence des interactions intermoléculaires sur la vitesse et la contrainte

de cisaillement pour les trois mélanges (Ne-Ar, He-Ar et He-Xe) [74] ainsi que l’influence de

l’interaction gaz-surface sur les propriétés de l’écoulement du mélange He-Ar entre les plaques

de molybdène et de tantale [75]. Plus tard, l’équation de Boltzmann linéarisée (LBE) pour le

modèle de l’interaction moléculaires de sphère dures (HS) a été résolue à l’aide d’une version

analytique de la méthode des ordonnées discrètes (ADO méthode) [76], et la précision de la

méthode de McCormack a été évaluée pour un mélange de He-Ar: le modèle McCormack est

capable de prédire la contrainte de cisaillement de chaque composant et la vitesse de l’espèce

plus lourde avec la précision suffisante (1- 3 chiffres de précision) [75, 76], cependant, la vitesse

de l’espèce la plus légère et, plus encore le flux de chaleur deviennent très différents des ré-

sultats donnés par la solution de l’équation Boltzmann linéarisé (différence bien au-dessus de

100% pour certains cas).

Très peu d’articles sont consacrés au transfert de chaleur à travers un mélange de gaz.

L’écoulement de Fourier est d’abord simulé en résolvant l’équation de Boltzmann non linéaire

à l’aide d’une technique de différences finies itérative [77]. Ensuite, le transfert de chaleur entre

deux plaques planes avec une petite différence de température est étudié en utilisant le modèle

McCormack [78] et une équation de Boltzmann linéarisée [79]. On trouve un premier résultat

surprenant à priori : le flux de chaleur normalisée pour les mélanges Ne-Ar et He-Xe, obtenue

à partir des équations linéarisées, sont trouvés en accord avec les résultats de l’équation de

Boltzmann complète non-linéaire avec un écart relatif maximal d’environ 4%. Par contre, entre

le modèle McCormack et l’équation de Boltzmann linéarisée, on trouve de grandes différences

dans les profils de densité et de température: pour la densité, on observe jusqu’à 15% pour le

mélange Ne-Ar et 51% pour le mélange He-Xe, alors que pour la température les différences

maximales observées sont 12% et 20% pour les mélanges Ne-Ar et He-Xe, respectivement.

L’influence des potentiels intermoléculaires sur le flux de chaleur entre deux plaques parallèles

est étudié pour trois mélanges binaires de nobles gaz (Ne-Ar, He-Ar, He-Xe) sur la base du

modèle de McCormack [80]: le flux de chaleur est sensible au potentiel intermoléculaire, et la

différence entre le modèle des sphères dures et le Potentiel Réalistique [81] peuvent atteindre
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15% en régime hydrodynamique.

Pour résumer, on trouve seulement deux articles consacrés à la comparaison entre le

modèle McCormack et l’équation Boltzmann linéarisée pour les mélanges de Ne-Ar et He-Xe

[79] et He-Ar [76]. Par conséquent, de nouvelles comparaisons systématiques entre le modèle

McCormack et l’équation Boltzmann linéarisée seront utiles pour la poursuite du développe-

ment des outils mathématiques et numériques pour la simulation des écoulements de mélange

gazeux.

Les écoulements de Couette et de Fourier entre les deux plaques parallèles sont simulés à

l’aide du modèle cinétique de McCormack, de l’équation de Boltzmann linéarisée et de l’équation

de Boltzmann non-linéaire. Deux types de mélange de gaz sont considérés: l’un avec des masses

moléculaires similaires (Ne-Ar) et une autre avec des masses moléculaires très différentes (He-

Xe). Trois valeurs de concentrations sont considérées et les simulations sont réalisées pour

divers régimes : régime moléculaire libre, transitionnel et de glissement. Pour les écoulements

de Couette et de Fourier de mélange gazeux, le modèle McCormack donne des solutions fiables,

qui sont en bon accord avec les solutions de l’équation de Boltzmann linéarisée.

Chapitre 8

L’écoulement de Couette stationnaire a été largement étudié pour une large gamme de

la raréfaction du gaz en utilisant l’équation de Boltzmann stationnaire ou les modèles cinétiques

[82, 83, 84, 85, 86]. Les écoulements de Couette oscillatoires, plus complexes, ont été également

simulés à l’aide de la méthode de Monte Carlo [87, 88], en résolvant les équations cinétique

modèle [89, 90, 91, 92] ou par l’application de la méthode Lattice Boltzmann [93]. Dans

le régime d’écoulement hydrodynamique le problème peut être facilement résolu sur la base

de l’équation de Navier-Stokes [94]. Plusieurs solutions ont été proposées pour le régime de

glissement, en utilisant les conditions aux limites du première [87, 90, 92] et du second ordre

[88]. Dans certains articles, [95, 96], les oscillations transversales de l’une des deux plaques

parallèles ont été considérées. Cependant, toutes ces simulations ont été réalisées pour un gaz

pur. Un seul article a été trouvé dans la littérature, [97], où l’écoulement oscillatoire transversal

du mélange de gaz a été simulé en utilisant le modèle linéarisé de type BGK pour le mélange

gazeux. A la connaissance de l’auteur, le modèle McCormack n’a pas été appliqué à l’écoulement

oscillatoire d’un mélange de gaz. Or ce modèle permet de capturer l’évolution de paramètres de

l’écoulement dans le temps, naturellement sans aucune hypothèse supplémentaire sur la forme

de la fonction de distribution.

Malgré l’absence des simulations des écoulements de mélange gazeux oscillants, le spec-

tre de leurs applications pratiques apparait large, y compris dans divers dispositifs MEMS,

comme les micro accéléromètres, et aussi les capteurs inertiels (inertial sensing), la transduction
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acoustique (acoustic transduction), la manipulation de signaux optiques (optical signal manipu-

lation), les filtres résonants (resonant filters) et les composantes de fréquence radio (the radio fre-

quency components). Des appareils comme les résonateurs à l’échelle nanométrique, les commu-

tateurs (switches) ou les vannes (valves) ont des applications dans des tâches aussi diverses que

le traitement de l’information, la manipulation moléculaire, et la détection [98, 99, 100, 101].

Le but de ce travail est d’élargir l’approche, développée dans [102, 103] pour la simu-

lation d’écoulement de gaz transitoire, dans le cas de l’écoulement oscillatoire d’un mélange de

gaz. Dans ce Chapitre, on donne tout d’abord une brève description du modèle de McCormack

pour un mélange de gaz, avec des commentaires sur l’approche numérique pour le problème

oscillatoire mis en œuvre. L’approche développée a d’abord été testée pour deux problèmes

classiques: l’écoulement de Couette stationnaire d’un mélange de gaz et l’écoulement de Couette

oscillatoire d’un gaz pur. Les résultats de ces cas-tests sont comparés avec les résultats obtenus,

au préalable, par les autres auteurs. On trouve un très bon accord, avec ces résultats obtenus

précédemment. Puis, les deux mélanges, Ne-Ar et He-Xe, sont simulés en utilisant l’approche

numérique proposée et le comportement dynamique de l’écoulement de Couette oscillatoire pour

les mélanges est étudié. Pour le mélange Ne-Ar on constate que les caractéristiques du mélange,

comme les amplitudes de contrainte de cisaillement du mélange et les vitesses de mélange, sont

très proches de celles trouvées pour l’écoulement oscillant d’un gaz pur et, donc, les résultats

pour un gaz pur peuvent être utilisées pour les estimations de paramètres des mélanges dans

le cas, où les masses moléculaires des composants sont relativement proches l’un de l’autre.

Toutefois, dans le cas du mélange He-Xe les résultats sont très différents (jusqu’à 30%) par

rapport aux résultats pour un gaz pur. On a ainsi trouvé dans ce cas que, l’amplitude de la

contrainte de cisaillement du mélange est inférieure à celle du gaz pur. On a également constaté

que, même pour une valeur relativement importante du rapport entre fréquence de collision et

fréquence de l’oscillation de la plaque paramètre de vitesse d’oscillation, qui correspond à des

oscillations lentes, les résultats pour le mélange Ne-Ar sont très différentes de celles pour le cas

de l’écoulement stationnaire correspondant.

En conclusion, comme perspectives de ce travail de thèse, nous pouvons citer les points

suivants :

Développement d’un solveur de l’équation cinétique dans un logiciel open source tels

que OpenFOAM.

Développement d’une approche numérique hybride qui couple l’équation cinétique avec

les équations de Navier-Stokes pour simuler l’écoulement de gaz-liquide à deux phases.

Développement d’un outil numérique sur la base de l’équation cinétique pour simuler

l’écoulement de gaz raréfié en milieu poreux qui peut avoir de nombreuses applications dans
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l’ingénierie du pétrole et dans l’ingénierie membranaire.
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Chapter 1

Introduction

A gas flow may be described in two levels: microscopic and macroscopic levels. At the macro-

scopic level, a gas is considered as a continuous medium. The system of the Navier-Stokes

equations, the macroscopic model, provides the detailed description of the behavior of the gas

macroscopic parameters such as density, bulk velocity, pressure and temperature. However

this macroscopic approach does not work anymore, when the gas rarefaction increases, i.e., the

ratio between the mean free path λ of the molecules and the characteristic dimension ℓ of the

problem, the Knudsen number,

Kn = λ/L (1.1)

becomes important. Contrarily to the macroscopic approach, at the microscopic level, the

interactions of the gas molecules are taken into account and, in addition to the physical space

and time, parameters used in the macroscopic models, the molecular velocity space is also

considered.

What approach is better to use for the gas flow simulations? The answer can be done

considering the value of the Knudsen number ranges.

Conventionally four different flow regimes can be distinguished:

• Hydrodynamic flow regime, where the continuum approach is valid; Kn < 0.001;

• Slip flow regime, where the continuum approach still keep applicable, but has to be

completed by the velocity slip and temperature jump boundary conditions; 0.001 < Kn <

0.1

• Transitional flow regime, where the continuum approach is not valid anymore and the

1
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approaches based on the kinetic simulations have to be applied; 0.1 < Kn < 10

• Free molecular flow regime, where only the kinetic approach is valid; Kn > 10.

Taking into account this classification of the flow regimes the high Knudsen number flows take

place in two physical conditions: either the molecular mean free path is large which is the case

of the low pressure flow (vacuum and space applications), or the characteristic dimensions of

the flow is small. This case corresponds to the flows at the microscale (microelectromechanical

systems (MEMS) and porous media). Due to the micrometer or nanometer characteristic

dimension of the MEMS or NEMS devices or pore sizes a gas flow inside is often in the slip,

transitional or even in the free molecular regime, even at the atmospheric pressure. In addition,

at this small scale, the surface-to-volume ratio is much larger than that of the conventional case,

therefore the gas-surface interaction starts to play an essential role.

From the presented classification of the gas flow regimes it is clear that when the Knud-

sen number of a gas flow becomes larger than 0.1 the kinetic approach starts to be indispensable

to be used for the correct description of the single gas and the gas mixture flows. The main

equation allowing the description the gas flow at the microscopic level and to provide in the

same time the macroscopic flow parameters is the Boltzmann kinetic equation. This equation

can be written down for a single gas and also for a gas mixture. The mathematical modeling of

transport phenomena in gaseous mixtures is far more complicated than in a single gas for several

reasons. First, gaseous mixture flows are determined by more parameters than single gas flows.

Besides the parameters for gas rarefaction, pressure, and temperature, a mixture flow depends

upon the species composing a mixture and their relative affinities to the solid phase. Second, in

addition to the typical driving forces like pressure and temperature gradients, additional forces

arise in mixtures from mole fraction gradient. Third, several new cross phenomena appear in

a non-equilibrium mixture such as thermo-diffusion, diffusion thermoeffect, etc. As a result

of this complexity, the computational effort to model gaseous mixture drastically increases in

comparison to that of a pure gas.

1.1 Kinetic theory of gases and Boltzmann equation

The kinetic theory of gases is dedicated to the analysis of the macroscopic properties of gases

taking into account the properties at the microscopic (molecular) level. Daniel Bernoulli, who

published the expression p = ρu2/3 relating the gas pressure to the mean square velocity of gas

molecules in 1738, was a pioneer in the applications of the mathematical methods to the kinetic

theory of gases [108]. More than a century later, a fundamental concept of mean free path λ of

gas molecules was introduced by Rudolf Clausius in 1858. In 1860, James Clerk Maxwell, who
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is regarded as the founder of the modern kinetic theory of gases, proposed the concept of the

molecular velocity distribution function (VDF) fM
0 for an equilibrium gas [109]

fM
0 (v) = n0

(

m

2πkT0

)3/2

exp

[

−m (v − u0)2

2kT0

]

, (1.2)

where k is Boltzmann constant; m, v are the mass and velocity of a gas molecule, respectively;

while n0, u0, T0 are the equilibrium number density, bulk velocity and temperature of the gas.

For the non-equilibrium gas, the VDF f (r, v, t) is defined in such a way that f (r, v, t) drdv

is the number of molecules in a phase space volume drdv which have the velocities between

dv and v + dv during a time interval dt. The macroscopic quantities of a gas, e.g., number

density n, bulk velocity u, temperature T , stress tensor P and heat flux q are calculated from

the moments of the VDF as following

n (r, t) =

ˆ

R3

f (r, v, t) dv,

u (r, t) =
1

n

ˆ

R3

vf (r, v, t) dv,

T (r, t) =
m

3nk

ˆ

R3

V 2f (r, v, t) dv,

Pij (r, t) = m

ˆ

R3

ViVjf (r, v, t) dv,

q (r, t) = m

ˆ

R3

VV 2f (r, v, t) dv,

(1.3)

where V = v − u is the peculiar velocity.

In the same year, Maxwell also published the formulae for the transport coefficients of

a gas: the viscosity µ, thermal conductivity κ and D diffusion coefficient, derived from his own

concept of the VDF and Clausius’ mean free path [110]. Maxwell’s works highly influenced

Ludwig Boltzmann to conduct the research on the non-equilibrium gas behaviors. In 1872,

Boltzmann derived the equation of the molecular transport [111], which can be considered as

a key component of the kinetic theory of gases

∂f

∂t
+ v · ∂f

∂r
+ F · ∂f

∂v
= I(f, f∗). (1.4)

The Boltzmann equation (BE) (1.4) describes the temporal (t) and spatial (r) evolution of

the molecular VDF f (r, v, t). Here F represents an external force exerted on the molecules

per mass unit. The first three terms in the BE (1.4) the unsteady, convective and external

force terms, respectively, are analogous to those of the Navier-Stokes equations. However, the

collision term I(f, f∗) on the right hand side of eq. (1.4) [112, 70], representing the rate at
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which the distribution functions f , f∗ vary due to the collisions, is the most challenge one

I(f, f∗) =

ˆ

R3

ˆ

S2

(

f
′

f
′

∗ − ff∗
)

gbdbdǫdv∗. (1.5)

In Eq. (1.5), the functions f, f∗, f
′

, f
′

∗ are the velocity distribution functions corresponding

to the pre-collision (v, v∗) and post collision
(

v
′

, v
′

∗

)

molecular velocities, g = v − v∗ is the

relative molecular velocity of a pair of molecules before the collision, b and ǫ are the impact

parameters, the distance of the closest approach, usually bounded by a certain value bm, and

the azimuth angle, respectively.

The collision integral (1.5) can be decomposed into the gain I+ and lost I− terms as

I(f, f∗) = I+ − I−, which represent the molecule balance in the velocity space.

I+ =

ˆ

R3

ˆ

S2

f
′

f
′

∗gbdbdǫdv∗, (1.6)

while the lost term I− represents the rate at which molecules lost (change) their velocity v

after collision

I− = ν (v) f. (1.7)

Here the collision frequency ν (v) is determined by

ν (v) =

ˆ

R3

ˆ

S2

f∗gbdbdǫdv∗. (1.8)

In the same article of Boltzmann [111], the H-theorem was introduced

dH

dt
≤ 0, (1.9)

where the H-function is defined as

H =

ˆ

R3

f ln fdv. (1.10)

The H-theorem (1.9) implies that a gas system alway tends to evolute to an equilibrium state,

where the equality in expression (1.9) is obtained and the absolute Maxwellian distribution

function (1.2) becomes the unique solution [113].
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In more general case the BE has seven dimensions: three in spatial space, three in

molecular velocity space and one in time. Moreover, the exceedingly complicated structure

of the fivefold collision integral in the right hand side of the integro-differential BE equation

(1.4) makes it extremely hard to be solved. Nearly a half century after the BE was derived,

the first attemp to solve it was published by Sydney Chapman [114, 115] and David Enskog

[116]. They obtained independently the solution of the BE by approximating the VDF in the

form of an infinite series. The zero, first and second orders of Chapman-Enskog expansion

applied to the BE yields to the Euler, Navier-Stokes and Burnett equations, respectively [112].

Another method to solve the BE was developed by Harold Grad in 1949 [117]. First, the VDF

is approximated by expanding into the series of Hermitian polynomials around an equilibrium

distribution function. All coefficients in those polynomials depend only on the set of moments,

determining a gas state (n, u, T, P, q in Grad 13 moment method). The closed system of

moment equations is then obtained from the approximated VDF. More a gas is rarefied higher

number of moments is required to obtain a solution.

The continuum model, i.g., the system of the Navier-Stokes equations, can also be

obtained from the BE by multiplying Eq. (1.4) by the quantities
{

m, mv, 1
2
m‖v‖2

}

and then

integrating over the molecular velocity space. It is to note that the corresponding moments

of the collision integral in eq. (1.5) vanish
´

R3 φ (v) I(f, f∗)dv = 0 for the collision invariants

φ (v) = {1, v, ‖v‖2}. By this way one obtains the macroscopic conservation equations of mass,

momentum and energy. Nevertheless, these conservation equations are not closed due to lacking

of the expressions for the stress tensor and heat flux (and diffusion flux in the case of a gas

mixture) via the macroscopic parameters. The so-called transport coefficients can be obtained

to close the macroscopic conservation equation system for a given intermolecular potential.

The analytical approaches for the Boltzmann equation are absolutely restricted to

very simple situations, hence, numerical simulations are commonly employed to deal with a

wide range of issues. Furthermore, advances in computer technology paved the way for the

development of the new numerical methods for the solution of the BE. These numerical ap-

proaches can be classified into the statistical and deterministical methods. The DSMC method

[118, 107, 119] is a statistic method, in which the simulated molecules represent the larger

number of real molecules and the collisions are calculated in probabilistic manner. The DSMC

method works well for the strong non-equilibrium flows and it is widely used in practice, never-

theless it suffers from statistical fluctuations, when the gas flow is not far from equilibrium (low

Knudsen number regimes and slow flows). In addition, the DSMC method becomes exceedingly

expensive for the non-stationary flows. In the other hand, the BE can be deterministically ap-

proximated by the Discrete Velocity Method (DVM) [120, 121]. When using this method the

infinite molecular velocity space are limited to a finite set of the molecular velocities. The DVM

approach simplifies the collision integral to a series of quadratic terms, and consequently the
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BE is reduced to a system of simultaneous discrete nonlinear first-order differential equations.

Though the DVM offers accurate fluctuation-free solutions, it requires expensive computational

efforts in order to keep (project) the post-collision velocities into the nodes, already existing for

the pre-collision velocities. Other deterministic method, the Fourier spectral method based on

a Fourier-Galerkin approximation of the BE is proposed recently [122]. This method offers a

very accurate discretization in velocity space with reasonable computational efforts [123]. This

method is further generalized to the Fast Spectral Method to reduce the computational cost

[6]. This method allows also taking into account easily the various intermolecular potential in

the collision kernel [8].

1.2 Kinetic model equations

Because of the exceedingly complicated structure of the fifth order collision integral in the right

hand side of the integro-differential BE (1.4), only few exact solutions have been obtained so far

under very particular conditions. The direct numerical solutions of the Boltzmann equation,

by a statistical or a deterministically methods are also very time consuming. Hence, many

attempts were undertaken to construct the kinetic models [10, 12, 11, 124, 125], where the

collision integral (1.5) is simplified by a following relaxation form:

Imod (f) = νmod
(

fmod − f
)

(1.11)

The model collision term Imod(f) of the collision integral I(f, f∗) is proportional to the dif-

ference between the molecular VDF f and the local equilibrium distribution function fmod.

The coefficient of proportionality is determined to be the relaxation rate νmod of the collision

frequency ν (v). Only for the pseudo Maxwell molecules, molecules with inverse power-five

potential, the collision frequency ν (v) does not depend on the molecular velocity v and it is

completely defined by the temperature and density of a gas. The model collision term Imod(f)

retains the qualitative and average properties of the collision integral I(f, f∗) [126]: (i) con-

servation of mass, momentum and energy, (ii) fulfilling H-theorem, (iii) the local equilibrium

distribution function is held in equilibrium state, (iv) reproducing the correct transport co-

efficients in the continuum limit. The kinetic equation (1.4), where the collision term (1.5)

is replaced by a collision model (1.11), is then called a model kinetic equation. This thesis

aims to implement the kinetic models, in which the relaxation rate νmod is independent of the

molecular velocity, as they are commonly used in rarefied-gas-dynamics research community.

Further details on the kinetic models with velocity-dependent relaxation rate can be found in

Refs. [127, 128, 129, 130].
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Recently, the Fokker-Planck based kinetic models are proposed to approximated the

BE [131, 132, 133]. The Fokker-Planck model has the collision term described by a diffusion-

type process in velocity space instead of jump-type process, eq. (1.11), in the traditional kinetic

models of the BE. This model allows coarser grid in time and physical space; consequently, it

is computationaly efficient, especially in the slip and transitional flow regimes.

1.2.1 BGK model

In 1954, the first kinetic model equation, called BGK (Bhatnagar-Gross-Krook) or BKW

(Boltzmann-Krook-Welander) equation, was suggested independently in Refs. [10] and [134].

In this model, the local equilibrium distribution function fBGK is simply the local Maxwellian

distribution function

fM = n (r)

(

m

2πkT (r)

)3/2

exp

[

− mV2

2kT (r)

]

. (1.12)

The relaxation rate νBGK is a free parameter determined by different reasoning. For isothermal

flow problems, it can be chosen in such a way that the viscosity coefficient µ, obtained by

applying the Chapman-Enskog expansion to the BGK model, has the same expression as that

derived from the BE by the same procedure

νBGK =
p

µ
. (1.13)

For pure heat transfer problem, the relaxation rate can be selected to retrieve the thermal

conductivity κ coefficient instead of the viscosity µ coefficient. In case of a monoatomic gas it

leads to

νBGK =
2

3

p

µ
. (1.14)

The two previous examples of the relaxation rate choices reveal that the correct viscosity and

thermal conductivity coefficients cannot be recovered simultaneously, when the BGK model is

used. Consequently, the main drawback of the BGK model is that it yields the wrong Prandlt

number (Pr = 1) instead of 2/3 for the monoatomic gases. Nonetheless, the BGK model has

been widely used due to its simplicity, modest computational cost and satisfactory results for

the momentum and thermal-dominated flow problems.
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1.2.2 S-model

Various kinetic models have been proposed to provide a correct Prandlt number [12, 11, 124].

In 1968, Shakhov proposed a generalization of the BGK model, so-called S-model [11]. In this

model the collision term has the same form as in eq. (1.12), but the equilibrium distribution

function is defined

fS = fM

[

1 +
2mVq

15n(kT )2

(

mV2

2kT
− 5

2

)]

. (1.15)

This model is constructed with the requirement that some number of the first moment equa-

tions, obtained from the approximate equation (1.11), coincide with the exact Boltzmann equa-

tions. Since the differential parts of the full Boltzmann equation and the model kinetic equation

coincide, the differential parts of the moment equations will also coincide. Consequently, the

necessary condition for coincidence of the moment equations amounts to equality of the corre-

sponding moments of the exact and approximate collision operators.

The new local equilibrium distribution function fS is expanded by Hermitian series

around the local Maxwellian distribution function fM . This Hermitian series is then restricted

to the third-order polynomial to restore up to third-order moments. The coefficients of the

Hermitian polynomial are then determined by equalizing several first moments of the model

collision operator with the corresponding moments of the full collision operator calculated by

the third-order, thirteen-moment approximation to the VDF.

The relaxation rate νS for the S-model kinetic equation is determined as in eq. (1.13).

The technique proposed by Shakhov can be applied to an arbitrary N-oder moment approxi-

mation providing that the N-oder moments of the full collision integral are available. The BGK

model is recovered from the second-order moment approximation.

It should be noted that the H-theorem for this model has been proved only for its

linearized form. In addition, the Shakhov local equilibrium distribution function fS (1.15) may

become negative, due to the terms proportional to the third order of the molecular velocity.

Nevertheless, the S-model has been frequently and successfully used for simulation of rarefied

gas flows in various geometrical configurations.

1.2.3 McCormack model

In 1973, McCormack presented a linearized kinetic model for s-component monatomic mixture

[14]
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∂hα

∂t
+ vα · ∂hα

∂r
=

s
∑

β=1

L
(N)
αβ , (1.16)

where α, β are the gas specie indexes; hα is the perturbation distribution function of specie

α around its absolute Maxwellian. The N -order model collisional term L
(N)
αβ composes of lost

term, −γαβhα, and gain term, which is expressed in a series of orthonormal polynomials. The

coefficients of these polynomials are determined by equalizing the moments of the model colli-

sion operator with corresponding moments of the full linearized collision operator calculated by

the Grad moment approximation to the VDF. The third-order collision term of the McCormack

model Lαβ = L
(3)
αβ is given by expression (7.11).

McCormack model reproduces correctly all the transport coefficients in a gas mixture,

i.e. viscosity, heat conductivity, diffusion and thermal diffusion coefficients. Moreover, various

intermolecular interaction laws (Hard Sphere, Lennard-Jones [70] and Realistic potential [81])

can be specified via the omega integrals Ω
(ij)
αβ (see eq. (A.3). The McCormack model satisfies

H-theorem and indifferentiability principle, i.e. when the all species are identical, the model

reduces to model of single gas (S-model in the case of McCormack model). Recently, this model

is extended to the non-linear collision operator [17]. Other kinetic models describing rarefied

gaseous mixtures can be found in [135, 13, 15, 16, 18].

1.3 Thesis objective and outline

This thesis aims to develop various numerical tools for simulation of rarefied gas flows based

on the kinetic model equations and discrete velocity method. Two model kinetic equations

(S-model, McCormack model), in which the collisional term of the full Boltzmann equation

is replaced by the more simple relaxation term, are chosen for the simulation of the single

gas flows and the flows of the gas mixtures. The both steady state and transient flows are

considered. For the steady state flows the implicit numerical scheme are developed, which allows

to obtain the steady state solution rapidly. To simulate the transient flows the explicit scheme

is used, allowing to follow the time evolution of the macroscopic flow parameters. The proposed

approaches are tested for various geometrical configurations. The obtained numerical results

are compared with the data, found in the open literature, and with the available analytical

solutions. For several geometrical configurations the comparison with the experimental data

are carried out.

This thesis is organized into 9 Chapters:

• Chapter 1 gives a description of the physical conditions, where a gas is considered to be
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rarefied and therefore the traditional continuum description breaks down and so the other

approaches, based on the kinetic theory, have to be applied. Then, a brief introduction

to the Boltzmann equation and its kinetic models is provided. Thesis objectives and

structure are also listed in this Chapter.

• Chapter 2 reports the complete study of the steady heat transfer through a rarefied

gas confined between two concentric spheres. In the slip and free molecular flow regimes

the analytical expressions are provided for the arbitrary temperature and radius ratios.

The limits of the analytical expressions applicability are established by confronting the

numerical and analytical solutions. These results will be then used for the experimental

extraction of the energy accommodation coefficient. The experimental two concentric

spheres configuration, contrarily to the most frequently used two coaxial cylinders config-

uration, allows to analyze the non-metal surfaces, which are very difficult to test in the

two cylinders geometry.

• In Chapter 3, we study the transient behavior of the heat flux between two coaxial

cylinders. The steady state time, as a time of steady state flow establishment, is investi-

gated for a large range of the gas rarefaction. The transient heat flux evolution, derived

from the energy balance allows to estimate the time of steady state flow establishment in

the slip flow regime. The analytical solution is derived also in the slip flow regime. This

study allows the estimation of the time needed to the Pirani pressure sensors to have the

stable pressure measurements. This work was done in collaboration with the INFICON

company (http://www.inficon.com/), the world leader in the Pirani sensor fabrication.

This approach allows us also to develop the new two dimensional numerical model of a

loaded used nuclear fuel canister filled with helium gas to predict the cladding temper-

ature during vacuum drying conditions. This last work was carried out in collaboration

with University of Reno, Nevada, US.

• In Chapter 4, we focus on the transient flow of rarefied gas through an orifice caused by

various pressure ratios between the reservoirs in a wide range of the gas rarefaction. The

time of steady flow establishment and the steady state distribution of the flow parameters

are compared with previously reported data obtained by the DSMC method. The nu-

merical code, developed in this chapter was also used for the numerical simulation of the

rubidium vapor expansion in the very low pressure domain in the frame of the AWAKE

project in CERN.

• Chapter 5 studies the mass flow rate of rarefied gas driven by pressure and/or temper-

ature gradients through a long rectangular channel of variable cross-section aspect ratio.

Some examples of the isothermal and non-isothermal flows through the channels with

variable rectangular cross sections are given. The analytical expressions in the case of
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the hydrodynamic and free molecular flow regimes are proposed. These results are used

in the next chapter to simulate the experimentally found "diode effect". In Chapter 6,

we apply the numerical method developed in the previous Chapter to calculate the mass

flow rate in diverging and converging flow directions for arbitrary pressure gradients. The

numerical results are compared with analytical solutions and measurement data, provided

by the Center for Environmental Research and Sustainable Technology (UFT) of the Bre-

men University, Germany. The gas flow "diode effect": the mass flow rate is significantly

higher when the duct is perfused in converging direction, firstly found experimentally,

was then confirmed by the numerical simulations.

• Chapter 7 deals with binary mixture of monoatomic gas. The numerical approach, based

on the McCormack model, is developed for the simulations of the two simple, one dimen-

sional in the physical space, configurations: Couette flow and Fourier flow. The detailed

comparison is carried out between the obtained here numerical results and the solution of

the linearized Boltzmann equation for the binary gas mixture of the monoatomic gases.

The influence on the gas-surface interaction is also studied. The obtained here results are

also compared with the solution of the non-linear Boltzmann equation for the gas mixture

in order to establish the limit of the applicability of the linearized approach.

• The oscillatory gas flow of the gas mixture is simulated in Chapter 8. The transient and

oscillation gas mixture flow behaviors are analyzed and the analogy between the single

gas flows are found under several flow conditions. The limits of the applicability of the

steady state and transient solutions are established.

• The general conclusions and the outlook on future work are given in Chapter 9.



Chapter 2

Heat transfer between two concentric spheres

The heat transfer through rarefied gases was investigated since the fundamental study of

Maxwell [19]. The particular case of the heat transfer between two concentric spheres at

arbitrary rarefied condition was first studied theoretically in Ref. [20]. The analytical solutions

were obtained by solving kinetic equation in the four-moment approximation. Then, these

analytical solutions were extended in Ref. [21] to taken into account the incomplete thermal

accommodation at the internal sphere. The expression of heat flux in transitional regime was

proposed in Ref. [22] by modifying the analogous expression for two parallel plate geometry.

The problem of heat transfer from a sphere to surrounding environment, as a limiting case of

two spheres problem, was also investigated in Refs. [23, 24] for monoatomic and polyatomic

gases, respectively. However, all these studies were restricted to the small temperature differ-

ence between the spheres. The results for an arbitrary temperature difference was obtained in

Ref. [104] for free molecular regime using the revised theory of thermal transpiration. The au-

thors of Ref. [136] used the four moment technique similar to that used in Ref. [20], expanding

the unknown parameters in terms of the temperature difference between two spheres. The au-

thors retained the additional terms in these expansions, up to the second order terms, in order

to predict the heat flux in the case of larger temperature difference between two spheres.

During the last few years interest in the heat transfer problem has arisen once again and

it is related to the fast development of the MEMS and NEMS. Due to the small characteristic

size of these devices the gas inside is rarefied and their thermal management becomes important.

The two concentric sphere configuration can also be used as a simple set-up for the measurement

of the thermal accommodation coefficient [25].

In the present paper the heat transfer between two concentric spheres is considered for

a broad range of the gas rarefaction, of the temperature and radius ratios between the spherical

surfaces.

12
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The analytical expressions for the radial temperature and heat flux distributions in the

slip and free molecular flow regimes are provided for the arbitrary accommodation between the

gas and the spherical surfaces. In the transitional flow regime the S-model kinetic equation is

solved numerically.

2.1 Problem statement

Two concentric spheres with the radii R′
H and R′

C (R′
H < R′

C) containing a monoatomic gas at

rest between them are considered. The internal and external spheres are kept at the tempera-

tures T ′
H and T ′

C , respectively. The heat transfer through rarefied gas in these configurations

is governed by following dimensionless parameters: the temperature T and radius R ratios of

the two surfaces

T =
T ′

H

T ′
C

, R =
R′

C

R′
H

, (2.1)

and the rarefaction parameter δ0 defined as following

δ0 =
R0

ℓ
, ℓ =

µ0υ0

p0

, υ0 =
√

2kT0/m. (2.2)

Here R0 is the reference length of the problem, ℓ is the equivalent mean free path, p0 is the

reference pressure, µ0 and υ0 are the gas viscosity and the most probable molecular velocity at

the reference temperature T0, respectively; k is the Boltzmann constant and m is the molecular

mass of the gas. For convenience, the reference values in Eq. (2.2) are taken as follows

T0 = T ′
C , R0 = R′

C − R′
H . (2.3)

It is to note that the gas rarefaction parameter δ0 in Eq. (2.2) is inversely proportional to

the Knudsen number. The cases of δ0 = 0 and δ0 → ∞ correspond to the free molecular and

hydrodynamic flow regimes, respectively.

We assume that the heat transfer problem, considered here, is spatially symmetric and

therefore the macroscopic parameters depend on the r′ coordinate only.

The heat transfer between two parallel plates or between two coaxial cylinders is anal-

ogous to that between two concentric spheres in term of one-dimensional in physical space. In

the following Sections, the general expressions for the three geometries (plates, cylinders and

spheres) will be provided when they are available. In those expressions, the geometry index
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a = 0, 1, 2 corresponds to the plate, cylinder, sphere geometries, respectively.

2.2 Continuum approach

In the hydrodynamic and slip flow regimes the temperature variation between two surfaces may

be obtained from the energy balance

∂

∂r′

(

r′aκ′ ∂T ′

∂r′

)

= 0, (2.4)

where r′ is the radial coordinate of physical region between the spheres, κ′ is the gas thermal

conductivity. It is to note that here the hypothesis of zero macroscopic gas velocity is used and

only the conduction heat transfer is considered. The Fourier law can be applied to calculate

the heat flux

q′
r = −κ′ dT ′

dr′ , (2.5)

where q′
r is the radial component of the heat flux vector. For the monoatomic gases the gas

thermal conductivity is related to the gas viscosity as follows

κ′ =
15

4

k

m
µ′. (2.6)

In order to define the dependence of the viscosity on the temperature the molecular interaction

potential must be specified. In the following we will use the inverse power law potential [107].

This model leads to a power law temperature dependence for the viscosity coefficient

µ′ = µ0

(

T ′

T0

)ω

, (2.7)

where ω is the viscosity index, which is equal to 0.5 for the Hard Sphere model and 1 for the

Maxwell model.

In the hydrodynamic flow regime the temperature continuity may be assumed on the

spheres’ walls. However, in the slip flow regime the temperature jump conditions [69] must be

used as the boundary conditions for Eq. (2.4)

T ′
g = T ′

w + ξℓ
dT ′

dr′

∣

∣

∣

∣

w
, (2.8)
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where T ′
g is the gas temperature near the wall, T ′

w is the wall temperature, ξ is the tempera-

ture jump coefficient [137]. This coefficient depends on the gas nature and the surface state

through the accommodation coefficient. The values of the temperature jump coefficient ξ were

obtained from the solution of the kinetic equations (BGK and Boltzmann equations) by several

authors [134, 138, 139, 140, 141, 142]. These values, derived under assumption of the complete

accommodation of the molecules at the surface, vary in the narrow range 1.931 − 1.954 [143].

The expressions, allowing the calculation of the temperature jump coefficient for the non com-

plete accommodation in the frame of the Maxwell diffuse-specular scattering, are provided in

[134, 138, 139].

It is convenient to introduce the dimensionless variables as follows

r =
r′

R0

, n =
n′

n0

, T =
T ′

T0

, p =
p′

p0

, qr =
q′

r

p0υ0

, µ =
µ′

µ0

. (2.9)

The reference number density n0 is taken as the average over the physical space value of the

number density n′
av

n0 = n′
av =

a + 1

R′a+1
C − R′a+1

H

ˆ R′
H

R′
C

n′r′adr′. (2.10)

The average density number is used as the reference value instead of number density on the

cold surface for the following reasons. First, the average value of number density can be easier

related to the measurements of the pressure between the two surfaces. Second, in the numerical

simulation, the average number density is kept as constant, while the number density on the

cold surface, generally, varies at every time step. The reference pressure p0 is defined by the

equation of state.

Using the dimensionless variables (2.9) and expression for the heat flux (2.6) we obtain

the dimensionless form of the energy conservation equation, Eq. (2.5), as following

∂(raqr)

∂r
= 0, where qr(r) = − 15

8δ0

µ
dT

dr
. (2.11)

Below the analytical solutions of Eq. (2.11) are provided in the slip and hydrodynamic flow

regimes derived for the arbitrary temperature and radius ratios.
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2.2.1 Slip flow regime

In the slip flow regime Eq. (2.11) subjected to the temperature jump boundary conditions can

be solved analytically. The dimensionless form of the temperature jump boundary conditions

on the walls, Eq. (2.8), becomes

T =











TH + ξH

δ0
T ω+1/2 dT

dr
, r = RH ,

TC − ξC

δ0
T ω+1/2 dT

dr
, r = RC .

(2.12)

Here ξH and ξC are the temperature jump coefficients on the hot and cold surfaces, respectively.

The assumption of the constant value of the pressure between the spheres is used to obtain

the previous expressions. It is to note that the dimensionless value of the bottom plate or the

external cylinder/sphere temperature is equal to 1, see Eqs. (2.3,2.9), but in the following the

notation TC is retained for the convenience of presentation.

To write the completely explicit expression of the temperature distribution between

the spheres a linearization of the temperature is carried out and the terms of the order of ε2

are neglected, where ε = Tw−Tg

Tw
, Eq. (2.8). The temperature profile between the surfaces with

the accuracy ε2 reads

T (r) =
{

1

2

[

T ω+1
gH + T ω+1

gC + AKR1

]

}
1

ω+1

, (2.13)

where

A =
T ω+1

H − T ω+1
C

KR2 + 1
δ0

(

ξH

Ra
H

T
ω+1/2
H + ξC

Ra
C

T
ω+1/2
C

) , (2.14)

T ω+1
gH = T ω+1

H [1 − BH ] , T ω+1
gC = T ω+1

C [1 − BC ] , (2.15)

BH =
ξH

δ0

A
Ra

H

√
TH

, BC = −ξC

δ0

A
Ra

C

√
TC

, (2.16)
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KR1 =























2r − RH − RC , a = 0

2 ln r − ln RH − ln RC , a = 1

2
r

− 1
RH

− 1
RC

, a = 2

KR2 =























RC − RH , a = 0

ln RC − ln RH , a = 1

1
RH

− 1
RC

, a = 2.

(2.17)

When the parameters A, BH , BC , TgH
and TgC

are calculated via Eqs. (2.14 - 2.17) the

temperature distribution may be found using Eq. (2.13). It is to note that the temperature

distribution (2.13) is obtained here for the arbitrary temperature and radius ratios.

The heat flux between the surfaces now can be found from Eqs. (2.11) and (2.13):

qr(r) =
15

8δ0

1

ω + 1

A
ra

. (2.18)

2.2.2 Hydrodynamic regime

In the hydrodynamic flow regime the gas temperature near a wall is equal to the wall temper-

ature, so equation (2.11) may be solved analytically and the temperature profile yields:

T (r) =
{

1

2

[

T ω+1
H + T ω+1

C + AKR1

]

}
1

ω+1

, (2.19)

where

A =
T ω+1

H − T ω+1
C

KR2

, (2.20)

The heat flux distribution may be found from Eqs. (2.11) and (2.19):

qr(r) =
15

8δ0

1

ω + 1

A
ra

. (2.21)
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2.3 Kinetic model equation

In the transitional and free molecular flow regimes, the S-model kinetic equation [11] is solved.

The S kinetic model was recently successfully used for simulation of flow of rarefied gases in

various geometrical configurations [144, 145, 146, 33, 147, 42, 50]. However, it should be noted

that the H-theorem for this model has been proved only for its linearized form. Considering

the symmetry of the problem relatively to the center point, the time-dependent S-model kinetic

equation for sphere geometry reads

∂f ′

∂t′ + υp cos θ
∂f ′

∂r′ − υp sin θ

r′
∂f ′

∂θ
= ν ′(fS′ − f ′). (2.22)

Here, the physical space of sphere geometry is described by the spherical coordinate sys-

tems (r, Θ, φ). In the other hand, the molecular velocity space is described by the spheri-

cal coordinate systems (υp, θ, ϕ). In Eq. (2.22), f ′(t′, r′, v) is the molecular velocity distri-

bution function; ν ′ is the molecular collision frequency; t′ is the time. The molecular ve-

locity vector v has three components projected on the physical coordinate system as v =

(υp cos θ, υp sin θ cos ϕ, υp sin θ sin ϕ). The Shakhov equilibrium distribution function fS′

in Eq.

(2.22) has the form

fS′

(n′, T ′, V, q′) = fM ′

[

1 +
2mVq′

15n′(kT ′)2

(

mV2

2kT ′ − 5

2

)]

,

fM ′

(n′, T ′, V) = n′
(

m

2πkT ′

)3/2

exp

(

−mV2

2kT ′

)

,

(2.23)

where V = v − u′ is the peculiar velocity vector; u′ = (u′
r, 0, 0) is the bulk velocity vector;

q′ = (q′
r, 0, 0) is the heat flux vector; fM ′

is the local Maxwellian distribution function

fM ′

= n′ (r)

(

m

2πkT ′ (r)

)3/2

exp

[

− mV2

2kT ′ (r)

]

. (2.24)

In this model, the molecular collision frequency is assumed to be independent of the molecular

velocity and can be evaluated [11] by

ν ′ =
p′

µ′ . (2.25)

The bulk and molecular velocities are normalized by the most probable molecular

velocity υ0, Eq. (2.2)
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u =
u′

υ0

, c =
v

υ0

, (2.26)

where c is the dimensionless molecular velocity vector. The dimensionless distribution function

and time are defined as follows

f =
f ′υ3

0

n0

, t =
t′

t0

, t0 =
R0

υ0

. (2.27)

Incorporating the dimensionless quantities (2.9), (2.26), (2.27) into S-model kinetic

equation (2.22), the dimensionless form of the governing equation is obtained

∂f

∂t
+ cp cos θ

∂f

∂r
− cp sin θ

r

∂f

∂θ
= δ0nT 1−ω(fS − f). (2.28)

On the hot and cold surfaces, the Maxwell-type diffuse-specular condition is employed

as

f (t, RH , cp, θ) = (1 − αH) f (t, RH , cp, π − θ) + αHfM (t, nwH
, TH , cp) , 0 < θ <

π

2
,

f (t, RC , cp, θ) = (1 − αC) f (t, RC , cp, π − θ) + αCfM (t, nwC
, TC , cp) ,

π

2
< θ < π,

(2.29)

where αC and αH are the accommodation coefficients at the external and internal surfaces,

respectively. The number densities for the part of diffuse reflected molecules, Eq. (2.29), at the

surfaces are calculated from the non-penetration conditions

nwC
=

´ 2π

0

´ π/2

0

´∞
0

cp cos θf (t, RC , cp, θ) dc

(πTC)−3/2 ´ 2π

0

´ π

π/2

´∞
0

cp cos ϕ exp
(

−c2
p/TC

)

dc
,

nwH
=

´ 2π

0

´ π

π/2

´∞
0

cp cos θf (t, RH , cp, θ) dc

(πTH)−3/2 ´ 2π

0

´ π/2

0

´∞
0

cp cos ϕ exp
(

−c2
p/TH

)

dc
,

(2.30)

here dc = c2
p sin θdcpdθdφ is the the volume element in the molecular velocity space.

The macroscopic flow parameters are defined in terms of the distribution function as
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n (t, r) =

2π
ˆ

0

π
ˆ

0

∞̂

0

f (t, r, cp, θ) dc,

ur (t, r) =
1

n

∞̂

−∞

2π
ˆ

0

π
ˆ

0

∞̂

0

cp cos θf (t, r, cp, θ) dc,

T (t, r) =
2

3n

2π
ˆ

0

π
ˆ

0

∞̂

0

[

(cp cos θ − ur)
2 + (cp sin θ)2

]

f (t, r, cp, θ) dc,

qr (t, r) =

2π
ˆ

0

π
ˆ

0

∞̂

0

cp cos θ
[

(cp cos θ − ur)
2 + (cp sin θ)2

]

f (t, r, cp, θ) dc.

(2.31)

2.3.1 Free molecular flow regime

In the free molecular regime the kinetic equation (2.28) can be solved analytically for arbitrary

temperature and radius ratio. We assume here the diffuse-specular reflection, Eqs. (2.29), with

the accommodation coefficient αH , αC on the hot and cold surfaces, respectively. The number

density, temperature and heat flux profiles between the two surfaces read

n(r) =
1 − Kα1KT 1K

(a)
R1

1 − Kα1KT 1K
(a)
R2

, (2.32)

T (r) =
1 − Kα1KT 2K

(a)
R1

1 − Kα1KT 1K
(a)
R1

, (2.33)

qr(r) =
1√
π

Kα2KT 3K
(a)
R3

1

1 − Kα1KT 1K
(a)
R2

. (2.34)

Here Kα, KT are the coefficients determined by accommodation coefficients and by temperature

of the two surfaces, respectively
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Kα1 =
αH (2 − αC)

αH + αC − αHαC

,

Kα2 =
αHαC

αH + αC − αHαC

,

KT 1 = 1 −
√

T −1,

KT 2 = 1 −
√

T ,

KT 3 = T − 1.

(2.35)

The coefficients K
(a)
R are determined by the geometry of the problem, in which the index

a = 0, 1, 2 correspondes to the plate, cylinder, sphere geometries, respectively

K
(0)
R1 =

1

2
,

K
(1)
R1 =

1

2

arcsin (RC/r)

π/2
,

K
(2)
R1 =

1

2

[

1 −
√

1 − (RC/r)2
]

,

K
(0)
R2 =

1

2
,

K
(1)
R2 =

1

2

{

1 − 1

π/2

[

arccos (R−1)

1 − R−2
− 1√

R2 − 1

]}

,

K
(2)
R2 =

1

2

[

1 − (R + 1)
√

R2 − 1

R2 + R + 1

]

,

K
(a)
R3 =

(

RC

r

)a

.

(2.36)

In the free molecular flow regimes, the analytical expressions for number density, tem-

perature and heat flux were obtained previously using the revised theory of thermal transpira-

tion [148, 104, 149]

n(r) =
1 − KT 1K

(a)
R1

1 − KT 1K
(a)
R2

, (2.37)

T (r) =
1 − KT 2K

(a)
R1

1 − KT 1K
(a)
R1

, (2.38)

qr(r) =
1√
π

K
(a)
αRKT 3K

(a)
R3

1

1 − KT 1K
(a)
R2

. (2.39)

In contrast to Eqs. (2.32-2.34), here in the Eqs. (2.37-2.39), the influence of accommodation

coefficients Kα is taken into account implicitly in the coefficient KT by means of replacing
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surface temperature (TH , TC) with gas temperature vicinity to the walls (TgH , TgC)

KT 1 = 1 −

√

√

√

√

√

T
(a)
gC

T
(a)
gH

,

KT 2 = 1 −

√

√

√

√

√

T
(a)
gH

T
(a)
gC

,

KT 3 = (T − 1)
√

TgC ,

(2.40)

where

T
(a)
gH =

αH [αC (1 − R−a) + R−a] T + (1 − αH)αC

αC + αH (1 − αC) R−a
,

T
(a)
gC =

αH (1 − αC) R−aT + αC

αC + αH (1 − αC) R−a
.

(2.41)

In addition, in the formulation of heat flux (2.39) the coefficient KαR is defined by

K
(a)
αR =

αHαC

αC + αH (1 − αC) R−a
(2.42)

The profiles (2.37-2.39) are derived under the same conditions as in the present study

(2.32-2.34): the steady state condition of a simple gas at rest in a closed system under no

external forces; the surface temperature distribution is assumed to be arbitrary but independent

of time. However the author of Ref. [148, 104, 149] used different Maxwell type model for the

gas-surface interaction with two accommodation coefficients. The reflection of the molecules

from the surface was assumed to be completely diffuse, so the accommodation coefficient of

the tangential momentum is equal to one and it was also assumed to have arbitrary thermal

accommodation. In the frame of this model the molecules reflect from the surface according

to the Maxwellian distribution function, however the temperature of the reflected molecules

is equal to the surface temperature only when the thermal accommodation coefficient is equal

to 1. This approach with two accommodation coefficients in the frame of the Maxwellian

scattering kernel was used in several papers [20, 148, 104, 136, 149, 23, 24, 22]. It is evident

that our approach with fully diffusive reflection boundary condition and Wu’s approach with

perfect thermal accommodation yield the identical expressions for the profile of the macroscopic

parameters. However, in general case of non-complete accommodation the both approaches

yield different profiles for the macroscopic quantities, which will be illustrated in Section 2.5.

The obtained number density, temperature and heat flux profiles are compared in

Section 2.5 with the numerical solution of Eq. (2.28) subjected to the Maxwellian specular-
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diffuse boundary conditions on the internal sphere and to the diffuse boundary condition (αC =

1) on the external sphere.

2.3.2 Approximate relation for all flow regime

The number density, temperature and heat flux profiles, valid in the full range of rarefaction

parameter δ0, but only for the small temperature ratio (T → 1) were obtained in Ref. [20] by

the moment method, where complete thermal accommodation was assumed. The generalization

of these results for the case of non-complete accommodation on the internal cylinder/sphere

surface was developed by Springer and Wan [21], where the heat flux expression is found in the

following form:

qr (r) =
qHyd

r (r)

1 + 1
α

15
8

√
π

δH
K

(a)
R

, (2.43)

where δH is the rarefaction parameter calculated according to expression (2.2), where the refer-

ence parameters with the subscript 0 are taken on the hot plate/cylinder/sphere, i.e. R0 = RH ,

T0 = TH and p0 = pH . The coefficient K
(a)
R corresponding to cylinder and sphere geometries are

K
(1)
R = 1/ ln R, K

(2)
R = RC , respectively. The heat flux in the hydrodynamic regime qHyd

r can

be taken from Eq.(2.21).

In several papers [150, 151, 152] it was proposed to invert expression (2.43) by writing

it in the form

1

qr (r)
=

1

qHyd
r (r)

+
1

qF M
r (r)

, (2.44)

where qF M
r is the heat flux in free molecular regimes.

The advantage of the heat flux presentation in form (2.21) is that we can calculate

separately analytical expressions in the hydrodynamic and free molecular flow regimes for the

arbitrary temperature ratio. Here we propose to use Sherman’s expression (2.44) with qHyd
r and

qF M
r defined by Eqs. (2.21), (2.34), respectively, to cover all range of the possible temperature

ratio.

The both relations (2.43) and (2.44) will be compared with the numerical solution of

the S-model kinetic equations (2.28) in Section 2.5.3.
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2.4 Numerical scheme for kinetic equation

In this Section, only the numerical technique used to solve S-model kinetic equation (2.28) for

cylinder geometry is described in detail due to analogy with that for plate and sphere geometries.

First, the discrete velocity method (DVM) is applied to split the continuum molecular velocity

space cp in the governing equation (2.28) into discrete velocity set cpl
, l = 1, 2, .., NcP

. These

velocities cpl
are taken to be the roots of the Hermite polynomial of order NcP

accordingly

mapped from (−∞, ∞) to [0, ∞). Then the set of NcP
kinetic equations, corresponding to

NcP
values of discrete velocity cpl

, is discretized in time and space by finite difference method

(FDM). The orientation angle θ of the molecular velocity (0 ≤ θ ≤ π) is divided into Nθ uniform

segments defined by θm, m = 0, 1, .., Nθ. The gap between the cylinders is separated into Nr

equal intervals characterized by ri, i = 0, 1, .., Nr. Let us denote the numerical solution of Eq.

(2.28) at the time level s as f s
i,l,m = f (ts, ri, cpl

, ϕm) and define ∆ts = ts+1 − ts, ∆ri = ri+1 − ri,

∆θm = θm+1 − θm, ∆f s = f s+1
i,l,m − f s

i,l,m.

In this study we are interested only in the steady-state situation, therefore the fully

time-implicit Godunov-type scheme is applied [153, 154]

(

1

∆ts
+ nδ0T

1−ω + cp cos θ
∂

∂r
− cp sin θ

r

∂

∂θ

)

∆f s = RHSs,

RHSs = nδ0T
1−ω

(

fSs − f s
)

− cp cos θ
∂f s

∂r
+

cp sin θ

r

∂f s

∂θ
.

(2.45)

The left hand side of Eq. (2.45) is the implicit part, where the spacial derivatives are ap-

proximated by the first order upwind scheme. The advantage of this discretization is that the

solution ∆f s can be obtained directly, i.e., without calculation of the inverse matrix, just by

marching in appropriate direction. The right hand side of Eq. (2.45) (RHSs) is the explicit

part, where the spacial derivatives are approximated by the second order accurate TVD upwind

scheme. As an example for the case of cos θm > 0 and sin θm > 0, Eq. (2.45) is approximated

by

∆f s
i,l,m

∆ts
+ niδ0T

1−ω
i + cpl

cos θm

∆f s
i,l,m − ∆f s

i−1,l,m

∆ri−1

− cpl
sin θm

ri

∆f s
i,l,m+1 − ∆f s

i,l,m

∆ϕl

= niδ0T
1−ω
i

(

fSs
i,l,m − f s

i,l,m

)

− cpl
cos θm

F s
i+1/2,l,m − F s

i−1/2,l,m

0.5 (ri+1 − ri−1)
+

cpl
sin θm

ri

F s
i,l,m+1/2 − F s

i,l,m−1/2

0.5 (θm+1 − θm−1)
,

(2.46)

where
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F s
i+1/2,l,m =











f s
i,l,m + 0.5∆riminmod

(

Ds
i+1/2,l,m, Ds

i−1/2,l,m

)

, cos θm > 0

f s
i+1,l,m − 0.5∆riminmod

(

Ds
i+3/2,l,m, Ds

i+1/2,l,m

)

, cos θm < 0

F s
i,l,m+1/2 =











f s
i,l,m + 0.5∆ϕmminmod

(

Ds
i,l,m+1/2, Ds

i,l,m−1/2

)

, sin θm > 0

f s
i,l+1,m − 0.5∆ϕmminmod

(

Ds
i,l,m+3/2, Ds

i,l,m+1/2

)

, sin θm < 0

(2.47)

Ds
i+1/2,l,m =

f s
i+1,l,m − f s

i,l,m

∆ri

,

Ds
i,l,m+1/2 =

f s
i,l,m+1 − f s

i,l,m

∆θm

.

(2.48)

Here the nonlinear limiter minmod introduced in [155, 156] is given by

minmod (a, b) = 0.5 [sign (a) + sign (b)] min (| a |, | b |) . (2.49)

Once obtaining values of the distribution function, the integrals in Eqs. (2.31) are

evaluated by applying Gauss-Hermite quadrature for
´

dcp and Simpson 3/8 rule for
´

dϕ.

The developed numerical method allows to have the second order accuracy for the

derivation in the physical space by using the TVD approximation. By keeping the time deriva-

tion we can simulate the time-dependent phenomena. However, in the case of steady-state

problem the implementation of the implicit scheme allows to reduce considerably the compu-

tational time.

2.5 Results and discussion

In this Section first the numerical parameters used in the simulation will be provided together

with the range of the three dimensionless governing parameters of the heat transfer problem,

Eqs. (2.1, 2.2). Then, the influence of these dimensionless parameters on the distribution of

the macroscopic parameters is considered. Next, in Section 2.5.3 the limits of the provided

solutions in the slip and free molecular flow regimes are discussed. Finally, in Section 2.5.4 the

influence of the gas-surface interaction is studied in the frame of the Maxwell diffuse-specular

scattering.



26

Table 2.1: Numerical grid parameters.

Nr × Nθ Nr × Ncp

δ0 < 10 δ0 ≥ 10 T = 1.1, 1.5 T = 5

3200 × 1602 6400 × 798 8 24

2.5.1 Numerical parameters

The numerical simulations are conducted for three values of temperature ratio T = 1.1, 1.5, 5,

three values of radius ratio R = 1.1, 2, 10 and for a wide range of rarefaction parameter δ0 vary-

ing from 0.01 to 100. After the various numerical tests the optimal dimensions of the numerical

grid are found (shown in Table 2.1), which guarantees the accuracy for energy conservation law

(r2qr = constant) of the order of 0.1%.

It is to note that the similar total number of numerical grid points (Nr × Nθ) are

needed for the case of small (δ0 < 10) and large (δ0 ≥ 10) values of the rarefaction parameter.

However, for the small δ0 values more important grid in the molecular velocity space (for the

angle θ) is required while for the large δ0 values larger number of points in the physical space

is needed. In the case of large temperature ratio between two surfaces the number of the grid

points for the magnitude of the molecular velocity Ncp
is essentially larger than for the case

of the small and moderate temperature ratios. This fact is related to an error, which appears

when one replaces the infinite integration interval, in Eqs. (2.31), by the finite one. Usually the

integration interval is chosen as [0, a
√

Tmax], where a ≈ 4. Therefore, for the larger temperature

ratio the larger number of points is required to ensure the same integration accuracy.

One comment can be added concerning also the number of points in physical (Nr) and

molecular velocity (Ncp
× Nθ) spaces: these numbers are more important in comparison to the

similar case of the flow between two coaxial cylinders [102]. It is related to the form of the

conservation law: for the two concentric spheres the quantity r2qr has to be conserved instead

of rqr for two coaxial cylinders that requires much more computational points to achieve the

same accuracy.

2.5.2 Bulk quantities

In this subsection the influence of the three dimensionless governing parameters of the problem,

namely rarefaction parameter, temperature ratio and radius ratio, Eq. (2.1), on the behavior

of the bulk quantities is studied. The Hard Sphere model is used, so the viscosity index ω in

Eq. (2.7) is equal to 0.5. The complete accommodation at the both surfaces of the spheres is

assumed here, αC = αH = 1.
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Table 2.2: Dimensionless heat flux at the internal sphere qr(RH) for the temperature ratio
T = 1.1, 1.5, 5 and radius ratio R = 1.1, 2, 10 and complete accommodation. The
heat flux values for the rarefaction parameter equal to 0 are calculated using the
analytical expression (2.34).

R δ0
qr (RH)

T = 1.1 1.5 5

1.1

0. 5.737 × 10−2 3.017 × 10−1 2.807
0.01 5.701 × 10−2 3.004 × 10−1 2.816
0.1 5.555 × 10−2 2.945 × 10−1 2.851
1. 4.393 × 10−2 2.355 × 10−1 2.440
10. 1.514 × 10−2 8.185 × 10−2 9.413 × 10−1

100. 2.032 × 10−3 1.106 × 10−2 1.336 × 10−1

2

0. 5.676 × 10−2 2.889 × 10−1 2.430
0.01 5.652 × 10−2 2.880 × 10−1 2.432
0.1 5.612 × 10−2 2.866 × 10−1 2.450
1. 5.159 × 10−2 2.661 × 10−1 2.409
10. 2.473 × 10−2 1.294 × 10−1 1.287
100. 3.653 × 10−3 1.974 × 10−2 2.309 × 10−1

10

0. 5.644 × 10−2 2.825 × 10−1 2.266
0.01 5.624 × 10−2 2.816 × 10−1 2.265
0.1 5.618 × 10−2 2.814 × 10−1 2.268
1. 5.553 × 10−2 2.786 × 10−1 2.275
10. 4.751 × 10−2 2.373 × 10−1 1.927
100. 1.550 × 10−2 8.020 × 10−2 7.325 × 10−1

The numerical solution of the kinetic equation (2.28) is obtained for three values of

temperature ratio T = 1.1, 1.5, 5, three values of radius ratio R = 1.1, 2, 10 and for a wide

range of rarefaction parameter δ0 varying from 0.01 to 100.

Table 2.2 provides the values of the heat flux at the internal sphere qr(RH) for a wide

range of rarefaction parameter δ0 and for three values of the temperature ratio and three values

of the radius ratio. Using the heat flux conservation equation (2.11) and the data from Table

2.2 the values of the heat flux may be found in any point between the spheres.

From dimensionless heat flux qr provided in Table 2.2, one can calculate easily the cor-

responding dimensional heat flux q′
r by using Eq. (2.9). For example, considering He confined

between two concentric spheres that have radii R′
H = 5mm, R′

C = 50mm and temperatures

T ′
H = 330K, T ′

C = 300K, the most probable molecular velocity and viscosity coefficient are

υ0 = 1116.05m/s and µ0 = 1.985 · 10−5Nsm−2 [107], respectively. If one considers reference

pressure p0 = 0.4923Pa, then the gas is in transitional regime (δ0 = 1. calculated from Eqs.

(2.2), (2.3)). The dimensionless heat flux at the internal sphere (case T = 1.1, R = 10 in Table

2.2) is equal to 5.553 · 10−2 and the corresponding dimensional heat flux is 30.51W/m2.
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Figure 2.1: Heat flux at the internal sphere qr(RH) as a function of rarefaction parameter δ0

for three sphere’ radius ratios R = 1.1, 2 and 10. Three temperature ratios are
plotted: (a) T = 1.1, (b) 1.5 and (c) 5.

The behavior of the heat flux at the internal sphere qr(RH) as a function of rarefaction

parameter δ0 is presented in Fig. 2.1 for temperature ratio T = 1.1, 1.5, 5 and radius ratio

R = 1.1, 2, 10. It is seen that in most cases the dimensionless heat flux decreases monotonically

with δ0 increased. In particular, the heat flux is decreased very slowly for δ0 < 1, while its

decreasing becomes much faster for δ0 > 1. However, it is seen that in the case of large

temperature ratio T = 5 the behavior of the heat flux is non monotonic, see Fig. 2.1c, with a

maximum which location depends on the sphere radius ratio R. It is to note that the similar

behavior of the heat flux was found in Ref. [33] in the case of the two coaxial cylinders with

the large temperature ratio.

However, in the range of the rarefaction parameter 0 ≤ δ0 ≤ 0.1, the behavior of the

heat flux between two spheres is different from that between two cylinders. The later is found

in Ref. [33] to be independent from the radius ratio for both small and large temperature

ratios. But it is not the case for two concentric spheres, see Fig. 2.1 and relation (2.34), where

the influence of the radius ratio on the heat flux can be seen explicitly. This result can be

explained by the difference in choice of the reference number density n0 used in normalization
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of the heat flux. If we chose n0 = n′
wC

(number density on the external sphere calculated from

the non-penetration boundary conditions (2.30)) instead of n0 = n′
av, Eq. (2.10), we obtain the

following equation

q′
r (r)

n′
wC

kT0υ0

=
α√
π

(T − 1)
(

RH

r

)2

(2.50)

instead of Eq. (2.34) for dimensionless heat flux with an arbitrary radius ratio R. This

expression is analogous to Eq. (B.7) in Ref. [33] and we cannot see the influence of the sphere

radius on the heat flux as it was reported in Ref. [33]. Therefore it is worth to underline that

the choice of the reference parameter is very important and the choice of the average number

density allows us to have the more precise description of the heat transfer properties.

The temperature profiles T (r) between two spheres are shown in Fig. 8.1. First,

the influence of the temperature ratio T is analyzed for small radius ratio R = 1.1. The

temperature distributions are plotted for four values of the rarefaction parameter δ0 = 0.1, 1,

10 and 100, see Fig. 8.1 (a), (c) and (e), left column. The temperature distributions have quasi

linear shape, which changes only slightly when the temperature ratio increases. The shape

of the temperature profiles changes considerably when the radius ratio changes. On Fig. 8.1

(b), (d) and (f), right column, the temperature profiles are presented for the large radius ratio

R = 10 and all three temperature ratios. For the all considered rarefaction parameters, except

δ0 = 100, the temperature decreases rapidly with r increases and it differs only in less than 5%

from the cold sphere temperature for r > 0.5. The temperature jump is clearly seen for all three

parameters determining the heat transfer problem, Eqs. (2.1, 2.2). The temperature jump is

larger near to the internal sphere surface and it increases with increasing of the temperature

ratio and decreasing of the rarefaction parameter.

The pressure profiles p(r) are shown in Fig. 2.2. The pressure decreases monotonically

from the internal to the external sphere. The ratio of the pressure near to the hot and cold

spheres (pH/pC) increases with the decrease in δ0. For the small radius ratio R = 1.1, see Fig.

2.2 (a), (c) and (e), left column, this pressure ratio varies maximum from ∼ 1% for T = 1.1

to ∼ 17% for T = 5. In the case of the large radius ratio R = 10, see Fig. 2.2 (b), (d) and

(f), right column, this pressure ratio varies maximum from ∼ 2.5% for T = 1.1 to ∼ 64% for

T = 5. The pressure is constant in the region far enough from the internal sphere; however, it

increases drastically near to the internal sphere, especially in the rarefaction parameter range

0 ≤ δ0 ≤ 10.

The density number profiles n(r) are shown in Fig. 2.3. We found anew, as for the

temperature and pressure profiles, two different types of behavior: for the small and for the

large radius ratios, shown in Fig. 2.3, left and right column, respectively.
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It should be noted that the behaviors of the macroscopic parameters shown in Figs.

8.1-2.3 have been also observed in the two surfaces geometries as the two parallel plates and

two coaxial cylinders, see for example Refs. [146], [33].

2.5.3 Range of validity of the analytical approaches and approximate expressions

The analytical expressions for the heat flux, obtained in previous Sections for the slip and

free molecular flow regimes, are compared with the numerical solution of the S-model kinetic

equation (2.28) for the case of the complete accommodation of the molecules with the both

internal and external surfaces (αC = αH = 1), see boundary conditions (2.29). The corre-

sponding curves for the heat flux on the internal sphere surface are plotted on Figure 2.4. The

expressions derived for the all rarefaction parameter range in Refs. [150, 151, 20, 152, 149],

Eqs. (2.43, 2.44), are also plotted on Figure 2.4 for the rarefaction parameter δ0 ranging from

0.01 to 100. Various pairs of the temperature and radius ratio are considered.

In the free molecular regime the good agreement is found between the obtained here

analytical solution, Eq. (2.34), and the numerical solution of the S-model equation for all

considered pairs of the temperature and radius ratios. The analytical free molecular solution

is very close to the numerical solution. In the case of the large radius ratio R = 10 the both

solutions practically coincide up to δ0 ∼ 0.3.

In the slip flow regime very good agreement between analytical and numerical solutions

is observed for T = 1.1 and 1.5 and R = 1.1 up to δ0 ∼ 2, see Fig. 2.4 (a),(c). It is to note

that for the calculation of the analytical solution the both temperature jump coefficients in

Eqs. (2.14 - 2.16) are equal to 1.95. However, when the radius ratio increases up to R = 10 the

both solutions start to deviate for the rarefaction parameter larger than δ0 ∼ 70, see Fig. 2.4

(b),(d). This fact can be explained by the behavior of the pressure distribution between the

spheres, which is not constant for the rarefaction parameter less than 100, see Fig. 2.2(b).

When considering the large temperature ratio T = 5, Fig. 2.4 (e),(f), even for the small

radius ratio R = 1.1 the both solutions start to deviate from δ0 ∼ 70. The pressure behavior

between the spheres is more or less constant, see Fig. 2.2(e), and the deviation of both solutions

cannot be explained, as previously, by the fails of the hypothesis of the pressure constancy,

which was used to derive the analytical solution. In this case of the large temperature ratio,

T = 5, the definition of the rarefaction parameter δ0, which is based on the external sphere

temperature, cannot characterize correctly the problem and the definition based on the mean

temperature between two surfaces has to be used in order to apply correctly the analytical

solution for the heat flux prediction. The both points, evoked above, lead to the disagreement

between the numerical and analytical solutions for the case of T = 5 and R = 10: the pressure
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constancy hypothesis is not valid from δ0 ∼ 100 and the rarefaction parameter has to be defined

using the mean temperature in order to taken into account the large variation of temperature

between the spheres’ surfaces.

On Fig. 2.4 the expressions derived for the all rarefaction parameter range in Refs.

[150, 151, 20, 152, 149], are also plotted. The good agreement is found between the numerical

solution of the S-model kinetic equation and Eq. (2.43), which was derived for the small

temperature differences between the spheres, for T = 1.1 and even for T = 1.5. To predict the

heat flux values for the all rarefaction range and an arbitrary temperature and pressure radius

ratio we propose here to use Eq. (2.44), derived previously, with the here obtained expressions

in the hydrodynamic and free molecular regimes, Eqs. (2.21), (2.34), respectively. Surprisingly

good agreement is found for all considered here temperature and radius ratios when Eq. (2.44)

is used. The similar good agreement with relation (2.44) was found by the authors of Ref. [157]

in the two cylinders geometry case.

The analytical temperature and heat flux profiles between two spheres in slip flow

regime obtained here, Eqs. (2.13, 2.18), are shown in Fig. 2.5 together with the numerical

results for various values of the rarefaction parameters (δ0 = 7, 20, 70) and T = 1.5, R = 2.

Very good agreement between analytical and numerical profiles is observed on Figure 2.5 for

δ0 = 20 and 70. However, when δ0 decreases up to 7 the analytical temperature profile starts

to deviate from the numerical one near the both hot and cold surfaces. However, the analytical

and numerical heat flux profiles still keep close shape also for this relatively low value of the

rarefaction parameter.

2.5.4 Influence of gas-surface interaction

The influence of gas-surface interaction on the macroscopic quantities of a gas between two

spherical surfaces is investigated by varying of the accommodation coefficient on the inter-

nal sphere from 0.6 to 1.0. The complete accommodation is assumed on the external sphere

surface.

In Fig. 2.6 the dimensionless heat flux at internal sphere as a function of rarefaction

parameter is plotted for three values of the accommodation coefficient at the internal sphere

surface (αH = α = 0.6, 0.8 and 1.), Eq. (2.29), and complete accommodation at the external

sphere (αC = 1.). The numerical solution of the S-model kinetic equation is compared with the

derived here analytical solution in free molecular regime, Eq. (2.34), which takes into account

the non-complete accommodation of the molecules on the internal sphere surface. The case of

R = 2 is chosen, because the other radius ratios (R = 1.1, 10) are already shown on Fig. 2.4,

but only for α = 1. It is clear from Fig. 2.6 that accommodation coefficient has significant
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influence on heat flux in the free molecular and transitional flow regimes. This influence is

reduced in slip regime and vanished completely in hydrodynamic regime. As it was shown on

Fig. 2.4 for the complete accommodation of the molecules on the internal and external spheres

surfaces the good agreement is also found between the numerical solution of the S-model kinetic

equation and the approximate expression Eq. (2.44) with Eqs. (2.21), 2.34), which allow taking

into account the various accommodation on the internal sphere surface.

Fig. 2.7 shows the profile of density number, temperature and heat flux between the

two spheres in the near free molecular regime (δ0 = 0.01) for two values of the accommodation

coefficient at the internal sphere (αH = α = 0.6 and 1.0) and complete accommodation at the

external sphere. Here the numerical solution of S-model kinetic equation with the Maxwell

type, Eqs. (2.29), boundary conditions are compared with the two analytical solutions for free

molecular regime: the Eqs. (2.37-2.39) obtained previously in Ref. [104] and here derived

expressions Eqs. (2.32-2.34). It is to note that the author of Ref. [104] used a Maxwell

type model of the boundary conditions, which is different from that used here, Eqs. (2.29).

The accommodation process is separated in two stages with two corresponding accommodation

coefficients: first the accommodation of tangential momentum, coefficient α in Eqs. (2.29),

is assumed to be complete, however the accommodation of energy is taken into account by

assuming the temperature of the reflected molecules to be different from that of the surface

and related with the later through the thermal accommodation coefficient. It is evident that

for the complete accommodation the both approaches give the same results, however they are

different for the non-complete accommodation.

In the case of small temperature difference (T = 1.1), see Fig. 2.7, all the profiles are

very close to each other. For the large temperature difference (T = 5.) and α = 0.6, the profiles

given by the S-model kinetic solution and present analytical expression are still very close to

each other. However, the number density and temperature profiles from Ref. [104] deviate form

the two other results, especially in the region near to the internal sphere. It is interesting to

note that, although the density number and temperature profiles, given by author of [104], are

different the heat flux profiles are identical to the results, obtained here.

Fig. 2.8 illustrates the value of the number density, temperature and heat flux of

the internal, middle and external points as a function of accommodation coefficient. The two

analytical solutions in free molecular regime are compared: the approach proposed in Ref. [104]

and the here derived expressions Eqs.(2.32-2.34). It is shown anew that the results for the heat

flux are very close for the two approaches. In contrast, the density number and temperature

distributions between two spherical surfaces given by the two approaches are only identical for

the two limit values of the accommodation coefficient (α = 0. and 1.0) and the deviation has a

maximum for α ≈ 0.4. The difference between two solution is evidently maximal on the internal
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sphere surface. From the comparison, presented in this Section, it is difficult to conclude what

boundary conditions are preferable. Up to now only heat flux values are available from the

measurements, but the both Maxwell-type boundary conditions give similar results for the

heat flux. Therefore the more detailed experimental investigations are needed to establish the

correct simulation of the non-complete accommodation of the molecules with the wall.

2.6 Conclusions

The heat flux between two concentric spheres is simulated using the nonlinear form of the

S-model kinetic equation for the large range of the rarefaction parameter. Small, moderate

and large temperature and radius ratios are considered. The classical Maxwell diffuse-specular

boundary conditions are used at the internal sphere surface and the complete accommodation is

assumed on the external sphere. The time-dependent governing equations are discretized based

on the discrete velocity method. The upwind approximation is used for the spatial derivatives.

The implicit algorithm allows us to reduce considerably the computational time when only

steady state solution is needed.

The behaviors of the macroscopic parameters (heat flux, temperature, pressure and

number density) are examined in details for various temperature ratio between the sphere

surfaces and for different sphere radius ratio. Non monotonic behavior of the heat flux as a

function of the rarefaction parameter δ0 is found in the case of the strong temperature ratio

between the spheres’ surfaces. The essential pressure variation in the radial direction is found

for the small and moderate values of the rarefaction parameter.

The analytical relations for the temperature and the heat flux in the slip flow regime is

obtained for the arbitrary temperature and radius ratio and very good agreement has been found

between these analytical expressions and the numerical solution of the S-model equation.

The approximate expression for the heat flux valid for all flow regimes and arbitrary

temperature and radius ratio and under an assumption of the diffuse-specular reflection on the

internal sphere and diffuse reflection on the external sphere is proposed.
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Figure 2.2: Pressure profiles p(r) as a function of the distance r between the spheres for three
sphere’ radius ratios R = 1.1, 2 and 10 and three temperature ratios T = 1.1, 1.5
and 5.
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Figure 2.3: Density number profiles n(r) as a function of the distance r between the spheres for
three sphere’ radius ratios R = 1.1, 2 and 10 and three temperature ratios T = 1.1,
1.5 and 5.
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Figure 2.4: S-model solutions in all flow regimes are compared with analytical expression (2.43),
valid in all flow regimes, provided by Springer and Wan [21] in the case of small
temperature difference T → 1; Sherman’s expression (2.44), valid also in all flow
regimes, with the expressions (2.21, 2.34), proposed here for general case of the
temperature and radius ratios; the free molecular regime solution, derived in the
present study (2.34) and the obtained here analytical solution in the slip regime
(2.18) valid for all temperature and radius ratios.
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Figure 2.6: The dimensionless heat flux at the internal sphere surface. The complete accommo-
dation on the external sphere surface is assumed and the Maxwell diffuse-specular
reflection is assumed on the internal sphere surface with the accommodation coef-
ficient equal to 0.6, 0.8 and 1.0.
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Figure 2.7: The profiles of the number density, temperature and heat flux between the two con-
centric spheres in free molecular regime for the case of the complete accommodation
on the external sphere surface and for the accommodation equal to 0.6 and 1.0 on
the internal sphere surface. Two solutions are compared: Eqs. (2.37-2.39) obtained
by Wu [104] and the here derived expressions Eqs. (2.32-2.34). The two approached
are compared with the numerical solution of the S-model kinetic equation.
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Chapter 3

Unsteady heat transfer between two coaxial cylinders

The heat conduction through a rarefied gas between two concentric cylinders has been investi-

gated by many researches[27, 28, 29, 30, 31, 32, 33]. In the most cases, the analysis has been

carried out using the linearized kinetic models, which is completely justified when the temper-

ature difference between the cylinders is small [27, 28, 31] or the cylinders’ radius ratio is large

[32]. For the large temperature difference between the cylinders the nonlinear approach has

also been implemented [29, 30, 34, 33]. However, all these studies concern the steady state flow

conditions. Nevertheless, the information about the transient heat transfer is very important

from the scientific and practical point of view. In the design and development stages of the

Pirani gauges [35], the pressure evaluation in time is vital information for an adjustment of the

sensor characteristics. Pirani sensors are often used in transfer chamber in the semiconductor

industry or in chambers with rapid venting cycles. In rapid venting applications Pirani sen-

sors show temporarily a pressure that is higher or lower than the true pressure. This effect is

dependent on the sensor’s geometry and the way temperature compensation is implemented.

It would be helpful in the design phase to be able to model these pressure and heat pulses in

order to optimize the design of Pirani gauges. In addition, for pulsed Pirani gauges the signal

depends on both the thermal conductivity of the gas and the heat capacity of wire and gas. A

better understanding of the underlying physics and the corresponding modeling can be used to

optimize different operating modes.

A few papers devoted to the simulations of the transient properties of a rarefied gas

have to be cited [36, 37, 38]. The topic, the more close to the present study, is considered in

Ref. [36], where the authors investigate the transient heat transfer between two parallel plates

due to the rapid heating or cooling of one of these two plates. The simulations are carried out

in the slip flow regime applying both the continuum and kinetic (based on the DSMC method)

approaches.

The aim of the present study is to investigate the transient evolution of the heat transfer

40
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through the rarefied gases confined between two coaxial cylinders over a broad range of the gas

rarefaction. The unsteady S-model kinetic equation is solved numerically to simulate the time

evolution of gas parameters. The time to reach the steady state conditions for the averaged

over the distance between two cylinders gas characteristics is evaluated for different rarefaction

level and for various gases. In the slip flow regime the transient heat flux evolution is calculated

from the energy balance and it is compared to that obtained from the model kinetic equation.

3.1 Problem statement

Two coaxial cylinders containing a gas at rest are considered, with the radii R′
H and R′

C for the

internal and the external cylinder, respectively, R′
H < R′

C . These cylinders are supposed to be

of an infinite length and kept initially at the same temperature T ′
C , then instantaneously the

temperature of the internal cylinder increases up to T ′
H (T ′

H > T ′
C) and this new temperature

difference is maintained over time. We are interested in the evolution of the gas parameters

between these two coaxial cylinders as a function of time.

The governing parameters and continuum approach are analogous to heat transfer

problem between two concentric spheres, which is studied in Chapter 2. The unsteady version

of dimensionless energy conservation Eq. (2.11) written for two coaxial cylinder geometry

∂T

∂t
=

5

4δ0

T
1

r

∂

∂r

(

µr
∂T

∂r

)

. (3.1)

3.2 Kinetic model equation

For the simulation of the transient heat transfer in the transitional and near free molecular

flow regimes the S-model kinetic equation [11] is used. Considering the axial symmetry of the

problem the S-model kinetic equation in the completely conservative form may be written as

[158, 145]

∂

∂t′ (r′f ′) +
∂

∂r′ (r′f ′υp cos ϕ) − ∂

∂ϕ
(f ′υp sin ϕ) = r′ν ′

(

fS′ − f ′
)

. (3.2)

Here, the physical space is described by the cylindrical coordinate systems (r, φ, z). In

the other hand, the molecular velocity space are described by the cylindrical coordinate systems

(υp, ϕ, υz). The molecular velocity vector v has three components projected on the physical
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coordinate system as v = (υp cos ϕ, υp sin ϕ, υz). The similar procedure to Eqs. (2.23-2.27) is

applied in order to obtain the dimensionless form of the governing equation

∂

∂t
(rf) +

∂

∂r
(rfcp cos ϕ) − ∂

∂ϕ
(fcp sin ϕ) = rνδ0nT 1−ω

(

fS − f ′
)

. (3.3)

In order to reduce the computational effort, the dependence of distribution function f

on cz component of the molecular velocity vector may be eliminated by introducing two reduced

distribution functions

Φ =

∞̂

−∞

fdcz, Ψ =

∞̂

−∞

fc2
zdcz. (3.4)

More detail on the projection procedure can be found in [146] for plate geometry and in [159]

for cylinder geometry.

The numerical method used to solve Eq. (3.3) is similar to that presented in Section

2.4. Here we choose numerical grid Nr ×Ncp ×Nϕ = 1600×12×100 for most of the simulation

cases. However, when the δ0 < 0.5, a finer mesh in molecular velocity space is essential,

therefore Ncp = 25 is implemented.

3.3 Results and discussion

The following conditions are chosen for the numerical simulations of the transient heat transfer.

At time moment t = 0 the temperature of both cylinders is supposed to be equal to TC , then

the temperature of the internal cylinder increases instantaneously and becomes TH = T TC ,

where T = 1.3 and 2. The cylinders radius ratio is chosen to be equal to RC/RH = 50. The

gas rarefaction varies from the near free molecular (δ0 = 0.01) to the hydrodynamic (δ0 = 100)

flow regime. The calculations stop when the convergence criterion, defined as follows,

||qr||L2
=

√

√

√

√

Nr
∑

i=0

(ql+1
ri

− ql
ri

)2/

√

√

√

√

Nr
∑

i=0

(ql+1
ri

)2 (3.5)

and calculated using the L2 norm, becomes smaller than ε, a positive number (taken here

10−8). The number of time steps needed to reach the steady state is given in the next Section

for various values of the rarefaction parameter.

The heat flux Qa(t), pressure Pa(t) and velocity Ua(t), averaged over the space coordi-
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Figure 3.1: Averaged dimensionless heat flux Qa(t) (a) and pressure Pa(t) (b) between the
cylinders as functions of time, T = 1.3. The rarefaction parameter δ0 varies from
0.01 to 100.

Table 3.1: The dimensionless time to reach the steady state value ts for the averaged heat flux
between the cylinders as a function of the gas rarefaction.

δ0 0.01 0.05 0.1 0.5 1 5 10 50 100
ts 2.50 2.49 2.47 2.88 3.45 5.94 8.92 29.50 44.33

nate r, are calculated as follows:

Ga(t) =
2

R2
C − R2

H

ˆ RC

RH

g(t, r)rdr, (3.6)

where Ga = Qa, Pa, Ua and g = qr, p, or ur. The time dependent behavior of the averaged heat

flux Qa(t), pressure Pa(t) and velocity Ua(t) for various values of the rarefaction parameter are

shown on Figs. 3.1 and 3.2. The time evolution of the averaged heat flux changes slightly from

the near free molecular (δ0 = 0.01) to the transitional flow regime (δ0 = 1). For the small

values of the rarefaction parameter δ0 = 0.01, 0.05 and 0.1 the averaged heat flux reach its

steady state after small oscillations (see Fig. 3.1a). For the δ0 values ranging from 1 to 100 the

monotone increase of the averaged heat flux is observed.

In Table 3.1 the time to reach the steady state flow ts is defined as the moment, when

the averaged flow characteristic (heat flux) differs from its steady state value for less than 1%.

Analyzing Table 3.1 one may conclude that this time ts preserves its almost constant value from

the free molecular to the transitional flow regime. Then, this time starts to increase passing

by a minimum value for the rarefaction parameter δ0 varying between 0.1 and 0.5. When one

approaches the hydrodynamic regime this time ts is approximately 18 times higher than its

minimum value. It is to underline that the dimensionless value of the time to reach the steady
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Figure 3.2: Averaged dimensionless velocity Ua(t) between the cylinders as function of time,
T = 1.3. The rarefaction parameter δ0 varies: (a) from 0.01 to 5, (b) from 10 to
100.

Table 3.2: The dimensionless time to reach the criterion (3.5) and the corresponding number
of the time steps.

δ0 0.01 0.05 0.1 0.5 1 5 10 50 100
Time to reach

10.78 8.35 8.28 7.04 7.75 11.24 15.77 44.23 72.11
criterion (3.5)

Number of
225 223 202 163 245 351 495 1412 2316

time steps (×103)

state flow ts is reported in Table 3.1 and this time is proportional to the characteristic time

t0 = R0/υ0 of the problem, introduced by Eq. (2.27). When the time to reach the steady

state ts is equal, for example, to 2.47, it means that the heat flux needs 2.47 times of the

characteristic time to reach its steady state value.

In Table 3.2 the information about the total dimensionless time required by the nu-

merical calculations to satisfy convergence criterion (3.5), together with the total number of

the computational steps is given. It is clear from Table 3.2 that the minimum of this time is

reached for δ0 = 0.5.

The evolution of the averaged pressure Pa(t) between the cylinders as a function of

time is presented on Fig. 3.1b). The averaged pressure increases monotonically with time and

reaches the higher values for the larger value of the rarefaction parameter δ0. Since the total

pressure variations in time are relatively small and do not exceed 1% of their steady state

values for the rarefaction parameter varying from 0.01 to 5, then it is difficult to apply the

same criteria as it was used for the averaged heat flux (1% of its steady state value) in order

to calculate ts. However, from the visual comparison of the averaged heat flux and pressure

evolutions we can conclude that the time to reach the steady state values for both quantities
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is comparable.

The time evolution of the averaged velocity Ua(t) is shown on Fig. 3.2: for the values

of the rarefaction parameter δ0 varying from 0.01 to 5 on Fig. 3.2a) and from 10 to 100 on Fig.

3.2b). It is evident that the sudden temperature change of the internal cylinder wall induces

macroscopic gas motion in the gap between the cylinders. The amplitude of this oscillation

increases with the rarefaction parameter increasing. The velocity disturbances go down after a

few oscillations.

The simulations are also carried out for the temperature ratio between the cylinders’

walls T = 2 and the similar qualitative behaviors of the averaged parameters’ evolution are

found. However the values the averaged parameter increase with increasing the temperature

ratio. The time to reach the steady state keeps the same tendency with δ0 varying, as for

the temperature ratio T = 1.3, but this time ts decreases by approximately 5% with the

temperature ratio increasing up to TH/TC = 2.

Figure 3.3: The time to reach the steady state conditions ts (in µs) for different gases: Xenon
(dashed line), Argon (solid line), Nitrogen (dash-dot line), Helium (dash-dot-dot
line) is plotted as a function of the pressure (in mbar).

In order to have an idea about the real physical time to reach the steady state for the

averaged heat flux this time is calculated for the following data. The internal and the external

cylinders’ radii and their temperatures are equal to 50µm and 2.5mm, and 110◦C and 20◦C,

respectively. The time to reach the steady state value for four gases (Helium, Argon, Nitrogen

and Xenon) is plotted on Fig. 3.3 as a function of pressure. The minimum value of this time

t′
s varies from 6.2µs for Helium to 36µs for Xenon. The time t′

s characterizes the response

time of the system, when the external condition (temperature in our case) changes. It is to

note that the time to reach the steady state ts is obtained from the numerical simulations in

dimensionless form, therefore in order to obtain the real time in seconds this time is multiplied
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by the characteristic time t0 (Eq. (2.27)): t′
s = tst0, which is inversely proportional to the most

probable molecular velocity (and through it to the molecular mass).

Figure 3.4: The time evolution of the dimensionless heat flux on the internal (a) and external
(b) cylinders. The rarefaction parameter δ0 varies from 0.01 to 100, T = 1.3.

The time evolutions of the heat flux on internal and external cylinders are shown in

Fig. 3.4a) and Fig. 3.4b), correspondingly. It is to note that the heat flux on the internal

cylinder decreases monotonically in time for all considered values of the rarefaction parameter,

contrarily to the external cylinder, where the heat flux reaches its steady state after several

oscillations, see Fig. 3.4b).

In the slip flow regime the unsteady energy equation (3.1) subjected to the jump

boundary conditions (2.12) is solved. The temperature jump coefficients ξH and ξC on the

internal and external cylinders, respectively, are equal to 1.95 [137, 143]. As it was pointed out

in Section 2.2.1, in order to obtain the temperature profile from eq. (3.1), the pressure between

the cylinders is supposed to be constant. The results of the averaged heat flux evolution in time

Qa(t) are plotted on Fig. 3.5 together with the corresponding results obtained from the solution

of the S-model kinetic equation for three values of the rarefaction parameter δ0 = 10, 50 and

100. As can be seen in Figure 3.5a) the qualitative behavior of the averaged heat flux evolution,

given by both approaches, is very similar: the averaged heat flux increases monotonically to

reach its steady state value. However the absolute values of the averaged heat flux are different.

If we scale the solution of eq. (3.1) to the steady state solution of the kinetic equation we can

observe on Fig. 3.5b) that the time to reach the steady state value ts, given by two approaches,

is practically the same (for example, ts = 29.5, for δ0 = 50, see Table 3.1). Therefore this

continuum approach may be successfully used for the estimation of the time ts in the slip flow

regime.

The comparison of the steady state distribution of the temperature obtained by the
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Figure 3.5: Averaged dimensionless heat flux as a function of time for δ0 = 10, 50, 100 and
T = 1.3; the solution of Eq. (3.1) with the jump boundary conditions (2.12) (solid
line), the solution of the S-model kinetic equation (dotted line). (b) The steady
state solution of the kinetic equation is plotted as the solid horizontal line; the
solution of Eq. (3.1) is scaled to the steady state value obtained from the S-model
kinetic equation.

continuum and kinetic approaches together with the analytical solution (2.13) is presented in

Fig. 3.6 for TH/TC = 1.3 and the rarefaction parameter equal to δ0 = 5 (a) and δ0 = 50 (b).

It is clear that for δ0 = 50 the three results are in very good agreement. However, when delta

decreases (δ0 = 5) the kinetic solution starts to be different from the continuum solutions,

especially in the Knudsen layer. If the steady state pressure distribution between the cylinders

is analyzed (Fig. 3.7) it is clear that for δ0 = 5 the assumption of the constant pressure between

the cylinders is not valid anymore. Therefore, the analytical temperature distribution between

the cylinders (2.13) can be used in the slip flow regime to predict the temperature distribution

until the values of δ0 ≥ 50 with an error smaller than 3% near the wall of the internal cylinder.

However, when the temperature ratio between the cylinders increases up to T = 2 the difference

between the continuum solution and the solution of the S-model kinetic equation increases and

the error of the gas temperature prediction on the internal cylinder’s wall increases up to 10%

for δ0 = 50 and up to 24% for δ0 = 5, see Fig. 3.8.

3.4 Conclusions

The transient behavior of the heat flux between two coaxial cylinders due to the sudden change

of the internal cylinder temperature is studied on the basis of the S-model kinetic equation.

The simulations have been carried out from the near free molecular to the hydrodynamic flow

regimes for one cylinders radius ratio and two cylinders’ walls temperature ratios. It is found
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Figure 3.6: The steady state dimensionless temperature distribution between two cylinders,
T = 1.3. The solution of the S-model kinetic equation (dash-dotted line), the
solution of Eq. (3.1) (dashed line), the analytical expression (2.13) (solid line). All
the curves are plotted for δ0 = 5 (a) and for δ0 = 50 (b).

that for the smallest temperature ratio T = 1.3 the time to reach the steady state value for the

averaged heat flux varies approximately from 2.5 to 44 of the characteristic times between the

near free molecular and the hydrodynamic flow regimes and it has a minimum in the beginning

of the transitional flow regime. Comparing the monoatomic gases behavior in a real geometry

it is obtained that at the same working pressure the time needed for Xenon to reach its steady

state is 6 times longer than that for Helium. When the temperature ratio increases up to T = 2

the steady state time decreases approximately by 5%. In the slip flow regime the time ts can

also be found from the solution of the energy equation subjected to the temperature jump

boundary conditions.
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Figure 3.7: The steady state dimensionless pressure distribution between two cylinders, T =
1.3, δ0 = 5 (dash-dotted line) and δ0 = 50 (solid line).

Figure 3.8: The steady state dimensionless temperature distribution between two cylinders,
T = 2.. The solution of the S-model kinetic equation (dash-dotted line), the solution
of Eq. (3.1) (dashed line), the analytical expression (2.13}) (solid line). All the
curves are plotted for δ0 = 5 (a) and for δ0 = 50 (b).



Chapter 4

Unsteady gas flow through a thin orifice

The nonequilibrium flows of gases appear in different technological domains like the vacuum

equipment, high altitude aerodynamics and in a relatively new field as the microelectromechani-

cal systems (MEMS). The deviation of a gas from its local equilibrium state can be characterized

by the Knudsen number, which present the ratio between the molecular mean free path and

the characteristic length of the problem. For the relatively large values of the Knudsen number

the classical continuum approach fails to describe the gas behavior and the kinetic equations,

like the Boltzmann equation or model kinetic equations, must be solved to simulate the gas

flows.

The gas flow through a thin orifice is a problem of a large practical interest for the

design of the vacuum equipment, space or the microfluidic applications. The under-expanded

jets through the orifices are predominately used by particle analyzer systems to separate and

isolate molecules, ions of substances for analyzing their physical and chemical properties. The

time dependent characteristics of these jets are important for the investigation of the response

time of the vacuum gauges developed for the measurements of the rapid pressure changes [39].

The steady state flows through the orifice, slit and short tube have been successfully

studied applying the DSMC method and the kinetic equations [40, 41, 42, 43, 44, 45, 46, 47].

However, only a few results on the transient rarefied flows through an orifice [48], a short tube

[38], a long tube [49] or a slit [50] may be found in open literature. The flow conditions in [48]

are limited to high and moderate Mach number owing to significant statical noise of DSMC

method at low Mach number. The authors of [39] also studied experimentally and numerically

the transient gas flow, but between two tanks of the fixed volumes. The rapid high amplitude

pressure changings in time are examined and their characteristic time was found to be of the

order of few seconds.

The aim of this work is to analyze the transient properties of gas flow through an

50
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orifice induced by various values of the pressure ratio over a broad range of gas rarefaction.

The unsteady nonlinear S-model kinetic equation is solved numerically by Discrete Velocity

Method (DVM) to obtain the mass flow rate and macroscopic parameters as a function of time.

The time to reach the steady state conditions for the mass flow rate is also estimated. An

empirical expression for evaluation of time-dependent mass flow rate is proposed.

4.1 Problem formulation

Consider an orifice of radius R0 contained in an infinitesimally thin wall, which isolates two in-

finite reservoirs. Both the upstream and downstream reservoirs are filled with a monatomic gas

but maintained at different pressures p0 and p1, respectively, with p0 > p1. The temperatures

of the wall and of the gas in the reservoirs are equal to T0. At time t = 0, the orifice is opened

instantly and the gas starts to flow from the upstream reservoir to the downstream one.

Figure 4.1: Lateral section and computational domain of the flow configuration

Let us introduce a cylindrical coordinate system r′ = (r′, φ, z′) for the physical space

with the origin positioned at the center of the orifice and the Oz′ axis directed along the axis of

the reservoirs (see the lateral section shown in Fig. 4.1). We assume that the flow is cylindrically

symmetric and does not depend on the angle φ and therefore the problem may be considered

as two dimensional in the physical space with the position vector s′ = (r′, z′).

The gas-surface interaction has a very small impact on an orifice flow [105]; conse-

quently, this flow is governed by two principal parameters: the pressure ratio p1/p0 and gas

rarefaction δ0 determined as
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δ0 =
R0p0

µ0υ0

, υ0 =

√

2kT0

m
, (4.1)

where µ0 is the viscosity coefficient at the temperature T0, υ0 is the most probable molecular

speed at the same temperature; m is the molecular mass of the gas; k is the Boltzmann

constant. It is to note that the gas rarefaction parameter is inversely proportional to the

Knudsen number; i.e., when δ0 varies from 0 to ∞, the flow regime changes from the free

molecular to the hydrodynamic regime.

It is convenient to define the characteristic time t0 of the flow as follows

t0 =
R0

υ0

. (4.2)

The unsteady S-model kinetic equation [11] is used to simulate the transient rarefied

gas flow through the orifice. The conservative formulation of this equation [158], [102] is

implemented

∂

∂t′ (r′f ′) +
∂

∂r′ (r′f ′υp cos ϕ) − ∂

∂ϕ
(f ′υp sin ϕ) +

∂

∂z′ (r′f ′υz) = r′ν ′
(

fS′ − f ′
)

. (4.3)

The main unknown is the molecular velocity distribution function f ′(t′, s′, v). Here, the

physical space is described by the cylindrical coordinate systems (r, φ, z). In the other hand,

the molecular velocity space are described by the cylindrical coordinate systems (υp, ϕ, υz).

The molecular velocity vector v has three components projected on the physical coordinate

system as v = (υp cos ϕ, υp sin ϕ, υz). The molecular collision frequency ν ′ is supposed to be

independent on the molecular velocity and can be evaluated [11] by Eq. (2.25).

The equilibrium distribution function fS′

[11] in Eq. (4.3) is defined in Eq. (2.23).

In additional to two coaxial cylinder problem, here the component in z − direction of (vector)

macroscopic parameters is included, i.e, bulk velocity vector u′ = (u′
r, 0, u′

z), the heat flux

vector q′ = (q′
r, 0, q′

z). It is useful to define the dimensionless variables as follows

t =
t′

t0

, s =
s′

R0

, c =
v

υ0

, u =
u′

υ0

, n =
n′

n0

,

T =
T ′

T0

, p =
p′

p0

, q =
q′

p0υ0

, µ =
µ′

µ0

, f =
f ′υ3

0

n0

,

(4.4)

with the help of the state equation p0 = n0kT0. In relations (4.4), the dimensionless molecular
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velocity vector c is equal to (cp cos ϕ, cp sin ϕ, cz).

In this study, the inverse power law potential is employed as the molecular interaction

potential; therefore, viscosity can be calculated by power law temperature dependence as

µ = T ω, (4.5)

where ω is the viscosity index, which is equal to 0.5 for Hard Sphere model and 1 for the

Maxwell model [107].

Incorporating dimensionless quantities (4.4) into S-model kinetic equation (4.3), the

dimensionless conservative form of governing equation is obtained

∂

∂t
(rf) +

∂

∂r
(rfcp cos ϕ) − ∂

∂ϕ
(fcp sin ϕ) +

∂

∂z
(rfcz) = rδnT 1−ω

(

fS − f
)

. (4.6)

The above equation is subjected to the following boundary conditions. The distribution

function of outgoing from the axis molecules f+ is calculated from the distribution function of

incoming to the axis molecules f− taking into account the axisymmetric condition as

f+
r=0 (t, z, r, ϕ, cp, cz) = f−

r=0 (t, z, r, π − ϕ, cp, cz) , (4.7)

where the superscripts + and − refer to the outgoing and incoming molecules, respectively.

It is supposed that the computational domain is large enough for obtaining the equilibrium

far-field. Hence, we assume that the molecules entering the computational domain are dis-

tributed according to the Maxwellian law with the parameters determined by the zero-flow at

the pressure and temperature corresponding to each reservoir as follows

f−
r=RL

(t, z, r, ϕ, cp, cz) = f−
z=−ZL

(t, z, r, ϕ, cp, cz)=
1

π3/2
exp

(

−c2
p − c2

z

)

,

f−
r=RR

(t, z, r, ϕ, cp, cz) = f−
z=ZR

(t, z, r, ϕ, cp, cz) =
p1

π3/2
exp

(

−c2
p − c2

z

)

,
(4.8)

here RL, RR and ZR, ZL are the radial and axial dimensions of the left and right reservoirs,

respectively.

Since the influence of the gas-wall interaction on the flow is weak (see Ref. [105]) , the

fully diffuse scattering is implemented for the molecules reflected from both sides of the wall,
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which separates the two reservoirs, i.e.

f+
z=0∓,r>1 (t, z, r, ϕ, cp, cz) =

n∓
w

π3/2
exp

(

−c2
p − c2

z

)

, (4.9)

where the superscripts ∓ refers the left (−) and the right (+) sides of the wall. The un-

known values of the number density at the wall surfaces n∓
w are found from the impermeability

conditions

n∓
w,z=0∓,r>1 (t, z, r) = ±4

√
π

∞̂

0

π
ˆ

0

∞̂

0

czf∓
z=0∓ (t, z, r, ϕ, cp, cz) dc, (4.10)

where dc = cpdcpdϕdcz.

The dimensionless macroscopic flow parameters are defined through the distribution

function as follows

n (t, z, r) = 2

∞̂

−∞

π
ˆ

0

∞̂

0

fdc, T (t, z, r) =
4

3n

∞̂

−∞

π
ˆ

0

∞̂

0

Cfdc,

ur (t, z, r) =
2

n

∞̂

−∞

π
ˆ

0

∞̂

0

cp cos ϕfdc, uz (t, z, r) =
2

n

∞̂

−∞

π
ˆ

0

∞̂

0

czfdc,

qr (t, z, r) = 2

∞̂

−∞

π
ˆ

0

∞̂

0

cp cos ϕCfdc, qz (t, z, r) = 2

∞̂

−∞

π
ˆ

0

∞̂

0

czCfdc,

(4.11)

where C = (cp cos ϕ − ur)
2 + (cp sin ϕ)2 + (cz − uz)2 .

The mass flow rate is practically the most significant quantity of an orifice flow and

can be calculated as

Ṁ (t′) = 2πm

R0
ˆ

0

n′ (t′, 0, r′) u
′

z (t′, 0, r′) r′dr′. (4.12)

The steady state mass flow rate into vacuum p1/p0 = 0 under the free molecular flow conditions

(δ0 = 0) was obtained analytically in Refs. [160, 161, 107] as

Ṁfm =
R2

0

√
π

υ0

p0, (4.13)
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and this quantity is used as reference value for the reduced mass flow rate

W (t′) =
Ṁ (t′)

Ṁfm

. (4.14)

The dimensionless mass flow rate is obtained by substituting Eqs. (4.4,4.12,4.16) into Eq.

(4.14)

W (t) = 4
√

π

1
ˆ

0

n (t, 0, r) uz (t, 0, r) rdr. (4.15)

Initially the upstream and downstream reservoirs, separated by a diaphragm, are maintained

at the pressures p0 and p1, respectively, and at the same temperature T0. At time t = 0, just

after the diaphragm opening, the mass flow rate is equal to W = 1 − p1/p0.

In the next sections we present the numerical approach for the solution of the kinetic

equation (4.6).

4.2 Method of solution

Firstly, the discrete velocity method (DVM) is used to separate the continuum molecular mag-

nitude velocity spaces cp = (0, ∞), cz = (−∞, ∞) in the kinetic equation (4.6) into discrete

velocity sets cpm
, czn

, which are taken to be the roots of Hermite polynomial. The polar angle

velocity space ϕ = [0, π] is equally discretized into set of ϕl. Next, the set of independent kinetic

equations corresponding to discrete velocity sets cpm
, czn

is discretized in time and space by

Finite difference method (FDM).

For each reservoir its radial and axial dimensions are taken here to be equal (RL = ZL

and RR = ZR), and equal to DL and DR, respectively. The influence of the dimensions

DL and DR on the macroscopic parameters distribution is discussed in Section 4.3.6. In the

physical space, the uniform grid (2NO ∗ NO) with square cells is constructed near the orifice

(z = (−1, 1),r = (0, 1)), where NO is the number of the grid points through the orifice. At

the remaining computational domain (z = (−ZL, −1)∪ (1, ZR),r = (1, RL/R)), the non-uniform

discretization using increasing power-law of 1.05 is implemented for both radial and axial di-

rections, as it is illustrated in Fig. 4.1.

The spacial derivatives are approximated by one of two upwind schemes: the first-

order accurate scheme or second-order accurate TVD type scheme. The time derivative is
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approximated by the time-explicit Euler method. The combination of a second-order spatial

discretization with forward Euler time-marching is unstable, according to a linear stability

analysis [156]. However the presence of the non-linear limiter keeps it stable [156, 162]. The

details of the implemented approximations are discussed in Section 4.3.1.

As an example the second-order accurate TVD upwind scheme with the time-explicit

Euler approximation is given for the case of cos ϕl > 0, sin ϕl > 0 and czn
> 0, when the kinetic

equation (4.6) is replaced by the set of independent discretized equations

rjf
k+1
i,j,l,m,n − rjf

k
i,j,l,m,n

∆tk
+ cpm

cos ϕl

F k
i,j+1/2,l,m,n − F k

i,j−1/2,l,m,n

0.5 (rj+1 − rj−1)

− cpm

fk
i,j,l+1,m,n sin ϕl+1/2 − fk

i,j,l,m,n sin ϕl−1/2

2 sin(∆ϕl/2)
+ czn

F k
i+1/2,j,l,m,n − F k

i−1/2,j,l,m,n

0.5 (zi+1 − zi−1)

= rjδnk
i,j

(

T k
i,j

)1−ω
(

(

fS
i,j,l,m,n

)k − fk
i,j,l,m,n

)

,

(4.16)

where fk
i,j,l,m,n = f

(

tk, zi, rj, ϕl, cpm
, czn

)

, ∆tk = tk+1 − tk, ∆zi = zi − zi−1, ∆rj = rj − rj−1,

∆ϕl = ϕl − ϕl−1. In Eq. (4.16), the approximation of derivative of axisymmetric transport

term (with respect to ϕ) is implemented with trigonometric correction [163], which helps to

reduce considerably the total number of grid points Nϕ in the polar angle velocity space ϕ.

The second-order edge fluxes in the point of physical space i, j are computed as

F k
i±1/2,j,l,m,n = fk

i±1/2,j,l,m,nrj, F k
i,j±1/2,l,m,n = fk

i,j±1/2,l,m,nrj±1/2, (4.17)

fk
i+1/2,j,l,m,n =











fk
i,j,l,m,n + 0.5∆zi+1minmod(Di+1/2,j,l,m,n, Di−1/2,j,l,m,n) if czn

≥ 0,

fk
i+1,j,l,m,n − 0.5∆zi+1minmod(Di+3/2,j,l,m,n, Di+1/2,j,l,m,n) if czn

< 0,

fk
i,j+1/2,l,m,n =











fk
i,j,l,m,n + 0.5∆rj+1minmod(Di,j+1/2,l,m,n, Di,j−1/2,l,m,n) if cos ϕl ≥ 0,

fk
i,j+1,l,m,n − 0.5∆rj+1minmod(Di,j+3/2,l,m,n, Di,j+1/2,l,m,n) if cos ϕl < 0.

(4.18)

where rj+1/2 = 0.5 (rj + rj+1) and

Di+1/2,j,l,m,n =
fk

i+1,j,l,m,n − fk
i,j,l,m,n

∆zi+1

, Di,j+1/2,l,m,n =
fk

i,j+1,l,m,n − fk
i,j,l,m,n

∆rj+1

. (4.19)
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Table 4.1: Numerical grid parameters

Phase space Reservoir Total number of grid points

Physical space z, r
Left

NO = 40
Nzl × Nrl = 96 × 96

Right Nzr × Nrr = 101 × 101
Molecular velocity space ϕ, cp, cz Left & Right Nϕ × Ncp × Ncz = 40 × 16 × 16

The slope limiter minmod introduced in [155, 156] is given by

minmod(a, b) = 0.5(sign(a) + sign(b)) min(|a| , |b|). (4.20)

The details of computational grid parameters are given in Table 4.1.

Concerning the temporal discretization, the time step should satisfy the classical Courant-

Friedrichs-Lewy (CFL) condition [164] and must also be smaller than the mean collision time,

or relaxation time, which is inverse of the collision frequency ν. Consequently, the time step

must satisfy the following criterion

∆t ≤ CFL/ max
i,j,l,m,n

(

cpm

∆rj

+
cpm

r1∆ϕl

+
czn

∆zi

, νi,j

)

. (4.21)

As the mass flow rate is the most important characteristic of the flow through an orifice the

convergence criterion is defined for this quantity as follows

∣

∣

∣W
(

tk+1
)

− W
(

tk
)∣

∣

∣

W (tk) ∆tk
≤ ε, (4.22)

where ε is a positive number and it is taken equal to 10−6. It is to note that this convergence

criterion differs from that used in Ref. [50], where the transient flow through a slit is simulated.

Here we introduce the time step in the expression of the convergence criterion. It allows us to

have the same convergence criterion when the size of the numerical grid in the physical space

and consequently the time step according to the CFL condition (4.21) change. The expression

of the convergence criterion (4.22) may be considered as the criterion on the velocity of the

mass flow rate changes. The time moment, when the criterion (4.22) is achieved, is notified

as tε and the corresponding mass flow rate as W = W (tε). It is to underline that the mass

flow rate was chosen here as the convergence parameter, as it is the most important and useful

characteristic of the flow. However the calculation were conducted in the most cases, except

p1/p0 = 0.9 and δ = 10, until time equal to 40, when the criterion (4.22) was already satisfied,

in order to observe the steady state flow establishment in the flow field far from the orifice.

The comments on the whole steady state flow field establishment are given in Section 4.3.3.
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The numerical method is implemented as follows. First, the distribution function

fk+1
i,j,l,m,n in the internal grid points at the new time step k + 1 is calculated explicitly by Eq.

(4.16) from the data of the current time step k. At the boundaries, the distribution function

is calculated using the boundary conditions (4.7-4.9). Once the distribution function is known,

the values of the macroscopic parameters for the new time step are obtained by evaluating the

integrals in Eqs. (4.11). To do that, the Gauss-Hermite quadrature formulas are applied to

calculate the integrals over cp, cz spaces, while the trapezoidal rule is used for the approximation

of the integrals over ϕ space. After that, the mass flow rate for the new time step is evaluated

by applying the trapezoidal rule for the integral in Eq. (4.15). The macroscopic parameters

and the mass flow rate are recorded as a function of time. This procedure is iterated until

the convergence criterion (4.22) is met; i.e., steady flow conditions for the mass flow rate are

reached.

It is to be noticed that the problem is six-dimensional in the phase space: two variables

in the physical space, three variables in the molecular velocity space and the time. In order

to obtain the reasonable computational time the numerical code in parallelized by using the

OpenMP technology. From the resolution of system (4.16) the velocity distribution function

f can be calculated at the new time level separately for each value of the molecular velocity,

so these calculations are distributed among the separated processors units. The final results

on the macroscopic parameters are obtained by the summation of the corresponding quantities

over all processors.

The parallelization gives the opportunity to run the program code on multi-core pro-

cessor. To have an estimation about computational effort and speedup, the wall-clock times

for executing the numerical code are recorded. The second-oder accurate TVD scheme requires

434 seconds for the first 100 time steps with 8 cores of processors AMD 8435 2600MHz and

4Gb of memory for each core, whereas the first-order accurate scheme takes 242 seconds for the

same task. These wall-clock times are 2585 and 1518 seconds for second-oder accurate TVD

scheme and first-order accurate scheme, respectively, when only 1 core is used.

4.3 Results and discussion

The numerical simulations are conducted for four values of the pressure ratio p1/p0 = 0, 0.1, 0.5, 0.9

which correspond to flow into vacuum, flow of strong, medium and weak non-equilibrium. For

each value of pressure ratio p1/p0 the calculations are carried out with four values of rarefac-

tion parameter δ0 = 0.1, 1, 10, 100; i.e., from the near free molecular to hydrodynamic flow

regimes.
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Table 4.2: Dimensionless flow rate W (4.15) vs rarefaction parameter δ0 and pressure ratio
p1/p0. Present results W = W (tε), the results from Ref. [43] (W a), where the
steady BGK-model kinetic equation was solved using the fixed point method, the
results obtained in Ref. [105] (W b) by the DSMC technique.

δ0
p1/p0 = 0. 0.1 0.5 0.9
W W a W b W W b W W a W b W W a W b

0.1 1.020 1.020 1.014 0.919 0.910 0.515 0.515 0.509 0.1039 0.105 0.1025
1. 1.150 1.152 1.129 1.054 1.032 0.636 0.635 0.613 0.1356 0.140 0.1297
10. 1.453 1.472 1.462 1.427 1.435 1.188 1.216 1.188 0.4009 0.432 0.4015
100. 1.527 1.508 1.534 1.519 1.524 1.339 1.325 1.344 0.6725 0.669 0.6741

4.3.1 Different approximations of the spatial derivatives

Two numerical schemes are implemented for the approximation of the spatial derivatives: the

first-order accurate scheme and the TVD scheme with minmod slope limiter. The CFL number

for both schemes was equal to 0.95. The computational time per time step by using the same

computational grid is in 70% longer for TVD scheme than for the first-order accurate scheme.

However, in order to reach the same uncertainty of the mass flow rate the four times larger

number of grid points in each dimension of physical space is needed for the first-order accurate

scheme, NO = 160, instead of 40 for the TVD scheme. Therefore all simulations are carried out

by using the TVD scheme.

After the various numerical tests the optimal dimensions of the numerical grid are

found (shown in Table 4.1), which guarantee the numerical uncertainty for the mass flow rate

of the order of 1%. The time step, determined by Eq. (4.21), depends crucially on the classical

CFL condition subjected to the additional restriction for the time step to be smaller than the

mean collision time. However, for the chosen numerical grid in the physical space, see Table 4.1,

the latter restriction is satisfied automatically. Therefore a unique time step ∆t = 0.1543×10−4

is used for all the presented here cases.

4.3.2 Mass flow rate

The steady-state values of the mass flow rate W = W (tε) are presented in Table 4.2. These

values are in good agreement with the results of Refs. [43, 105] obtained from the solution of

the stationary BGK-model kinetic equation by the fixed point method [43] and by applying the

DSMC approach [105]. The discrepancy is less than 5% for all considered cases.

The values of mass flow rate W (t) at several time moments, from t = 0. to 40., are

given in Table 4.3. The column (tε) corresponds to the time needed to reach the convergence
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criterion (4.22).
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Figure 4.2: The time evolution of residual for p1/p0 = 0. (a), p1/p0 = 0.1 (b), p1/p0 = 0.5 (c),
p1/p0 = 0.9 (d)

To have an estimation of the computational efforts required to achieve the convergence

criterion (4.22) the corresponding dimensionless time tε and the number of the time steps

are presented in Tables 4.3 and 4.4, respectively. The time evolution of the residual, defined

according to Eq. (4.22), is shown on Fig. 4.2 for different pressure ratios to illustrate the

convergence velocity of the numerical technique. The slowest convergence rate for p1/p0 = 0.

and 0.1 is corresponding to hydrodynamic regime, whilst that for p1/p0 = 0.5 and 0.9 is in

slip regime. Nevertheless, the fastest convergence rate is observed at transitional regime for all

pressure ratios.

The evolution of the mass flow rate W (t) to its steady state value (given in Table 4.3)

is also demonstrated in Fig. 4.3 for different pressure ratios. The time interval shown in Fig.

4.3 is restricted to the time equal to 40 even if the flow does not completely establish for this

time moment in the case of pressure ratio equal to 0.9. The common behavior is observed for
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Figure 4.3: The time evolution of mass flow rate W curve and steady state solution (horizontal
dashed line) for p1/p0 = 0. (a), p1/p0 = 0.1 (b), p1/p0 = 0.5 (c), p1/p0 = 0.9 (d)

the pressure ratios 0. and 0.1 with relatively rapid mass flow rate establishment. It is to note

that, in the hydrodynamic regime, the slope of the mass flow rate evolution reduces sharply

for both pressure ratios near the time equal to 3 whilst this slope reduction is smooth for other

pressure ratios. We can observe anew the longer time of the steady state flow establishment

for p1/p0 = 0.9 in whole range of the rarefaction parameter, see Fig. 4.3d).

In the hydrodynamic flow regime the mass flow rate has a maximum, than it decreases

to reach after its steady state value from above. This tendency is visible in the hydrodynamic

regime, but the same trend appears in all other regimes, though there it is less apparent because

the amplitude of the mass flow rate changes is smaller. The non-monotonic behavior of the

residual, see Fig. 4.2, confirms the oscillatory character of the mass flow rate conducting in

time. This behavior is related to the propagation of the initial perturbations created by the

orifice opening toward the boundary of the computational domain. It is to note that the similar

behavior of the mass flow rate was observed also in [48].
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To characterize the mass flow rate evolution in time we introduce also the time ts as

the last time moment when the mass flow rate differs by 1% from its steady state value W (tε).

The values of ts for various pressure ratios and the rarefaction parameters are provided in Table

4.3. The two main trends for time ts, column (ts) in Table 4.3, are found: for the pressure ratios

0, 0.1 and 0.5 the longest time to reach the steady state is needed under the transitional flow

regime (δ0 = 1.), whilst for the pressure ratio 0.9 this maximum of time ts appears in the slip

flow regime (δ0 = 10.). For the all considered pressure ratios the minimum of ts corresponds to

the near free molecular flow regime (δ0 = 0.1). It is to note that the exceptionally long time to

steady state flow establishment is found in the case p1/p0 = 0.9 and δ0 = 10..

The time to steady state mass flow rate establishment, ts, is compared to the corre-

sponding quantity t∗
s, obtained by DSMC method in Ref. [48], see the last column of Table 4.3.

The values of t∗
s provided in Ref. [48] are slightly smaller than those obtained in the present

simulations. The largest difference between two values in more than 2 times, corresponds to

the pressure ratio equal to 0.5 in the near hydrodynamic regime (δ0 = 100), see Table 4.3. It is

noteworthy that due to the statistical scattering of the DSMC technique the estimation of the

time to establish the steady flow is more difficult from the DSMC results than by applying the

DVM method.

From dimensionless time ts provided in Table 4.3, one can calculate easily the dimen-

sional time t′
s needed to obtain the steady-state mass flow rate by using Eqs. (4.1,4.2,4.4).

For example, He at room temperature T0 = 300K has the most probable molecular speed

υ0 = 1116.05m/s and viscosity coefficient µ0 = 1.985 × 10−5Nsm−2 (provided in [107]) . If

one consider an orifice of the radius R0 = 0.5mm and pressure in the upstream reservoir

p0 = 44.31Pa, the gas flow is in transitional regime (δ0 = 1.). The dimensionless time of the

expansion into vacuum (case p1/p0 = 0 in Table 4.3) is equal to 6.95 and the corresponding

dimensional time is 3.11µs.

The mass flow rate as a function of time was fitted using the following model

W (t) = Wt=0 + (Wt=tε
− Wt=0) (1 − exp (−t/τ)) , (4.23)

where the value at the time moment t = 0 is calculated as Wt=0 = 1 − p1/p0 and Wt=tε
is the

value of the mass flow rate corresponding to the time moment t = tε where the convergence

criterion (4.22) is achieved. Both the values are given in Tables 4.2 and 4.3. The fitting

parameter (characteristic time) τ for various pressure ratios and rarefaction parameters are

provided in Table 4.5 with the corresponding uncertainty. It is to note that very similar values

of τ are found for the pressure ratios 0 and 0.1 for all rarefaction range. For the pressure

ratios 0.5 and 0.9 and for the high level of gas rarefaction also the similar values of the fitting
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Table 4.3: Mass flow rate W for different time moments. The time ts of the steady state flow
establishment as a function of the rarefaction parameter δ0 and the pressure ratio
p1/p0; t∗

s corresponds to the data from Ref. [48]. Time ts is here the dimensionless
value, obtained using Eqs. (4.2) and (4.4).

p1/p0 δ0
W

tε ts t∗
st = 0. 1. 5. 10. 20. 40.

0.

0.1 1. 1.003 1.016 1.019 1.020 1.020 19.71 2.35
1. 1. 1.028 1.126 1.146 1.149 1.148 15.77 6.95
10. 1. 1.120 1.423 1.455 1.453 1.456 20.60 6.15
100. 1. 1.171 1.511 1.528 1.522 1.527 35.26 5.07

0.1

0.1 0.9 0.903 0.915 0.918 0.919 0.919 20.48 2.61
1. 0.9 0.928 1.027 1.049 1.054 1.053 16.87 7.84 6.4
10. 0.9 1.035 1.383 1.427 1.427 1.429 20.94 7.05 7.3
100. 0.9 1.145 1.500 1.520 1.514 1.519 26.94 5.24 4.4

0.5

0.1 0.5 0.503 0.512 0.514 0.515 0.515 22.39 3.64
1. 0.5 0.523 0.607 0.629 0.635 0.635 18.76 9.91 8.7
10. 0.5 0.623 1.060 1.177 1.191 1.189 26.94 9.84 9.1
100. 0.5 0.756 1.309 1.351 1.339 1.342 23.59 5.54 14.0

0.9

0.1 0.1 0.1007 0.1030 0.1036 0.1039 0.1039 22.82 4.44
1. 0.1 0.1059 0.1275 0.1338 0.1356 0.1354 19.20 10.83
10. 0.1 0.1292 0.2602 0.3396 0.3893 0.3991 152.6 30.37
100. 0.1 0.1571 0.4248 0.6222 0.6943 0.6727 36.10 26.02

Table 4.4: Number of time steps to satisfy convergence criterion (4.22)

δ0
Total number of time steps N (×100)
p1/p0 = 0. 0.1 0.5 0.9

0.1 1277 1327 1451 1479
1. 1022 1093 1216 1244
10. 1335 1357 1746 9889
100. 2285 1746 1529 1339
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parameter τ are found. However in the slip and hydrodynamic flow regimes these values become

larger, see Table 4.5.
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Figure 4.4: The time evolution of mass flow rate W obtained from S-model (solid line) and fit
model Eq. (4.23) (dashed line) for p1/p0 = 0., δ0 = 1. (a), p1/p0 = 0., δ0 = 100. (b),
p1/p0 = 0.9, δ0 = 1. (c), p1/p0 = 0.9, δ0 = 100. (d)

Figure 4.4 demonstrates that the exponential representation in form of Eq. (4.23)

gives the good estimation for the time evolution of the mass flow rate. The coefficient of

determination R2 of the fitting curve is equal, for example, to 0.990 for the case p1/p0 = 0.9

and δ0 = 1 and decreases to 0.973 for p1/p0 = 0.9 andδ0 = 100. The maximal difference between

the values of the mass flow rate, given by the fitting curve and by the numerical solution of the

S-model kinetic equation, is less than 5% for the case p1/p0 = 0.9 and δ0 = 100 and it is of the

order of 0.3% for the same pressure ratio and δ0 = 1..
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Table 4.5: Characteristic time τ with 99% confidence interval obtained from fit model Eq. (4.23)

δ0
Characteristic time τ

p1/p0 = 0. 0.1 0.5 0.9

0.1 3.415±0.029 3.484±0.028 3.546±0.024 3.561±0.023
1. 2.940±0.034 3.112±0.031 3.429±0.028 3.551±0.028
10. 2.286±0.032 2.393±0.030 3.269±0.039 6.459±0.013
100. 1.879±0.032 1.731±0.019 2.072±0.037 5.597±0.083

4.3.3 Flow field

After the diaphragm opening the gas starts to flow toward the downstream reservoir. However,

even in the upstream reservoir the flow field becomes perturbed from its initial state. From

the near free molecular (δ0 = 0) to the slip flow regime (δ0 = 10) for all considered pressure

ratios p1/p0 = 0 − 0.9 the time behavior of the macroscopic parameters are very similar. The

two typical examples of the macroscopic parameters variation in time are presented in Fig. 4.5

for the cases p1/p0 = 0.1 and 0.5 and δ0 = 1. The number density n smoothly changes from its

value in the upstream reservoir to its downstream value. The temperature drops through the

orifice due to the flow acceleration and increases up to its initial value far from the orifice in

the downstream reservoir. The temperature drop is larger for the smaller values of the pressure

ratio: the temperature decreasing just after the orifice is of the order of 25% for p1/p0 = 0.1

and δ0 = 1 and it becomes very small (less than 1%) when the pressure ratio increases up to

0.9. The macroscopic flow velocity increases through the orifice and its rise depends also on

the pressure ratio: for the smaller value of the pressure ratio the flow acceleration is higher.

Far from the orifice in the upstream and downstream reservoirs the flow velocity goes down

to zero. It is to note that for the larger pressure ratio p1/p0 = 0.9 even in the case of the

near hydrodynamic flow regimes, δ0 = 100, the time dependent behaviors of the macroscopic

parameters are similar to the previously described.

The results obtained in Ref. [48] by using the DSMC technique are also shown in

Fig. 4.5. The provided here DSMC data correspond to the steady state solution. Its is clear

that both techniques give very similar results. Only the temperature behaviors for p1/p0 = 0.5

are slightly different which can be related to the influence of the boundary conditions in the

downstream reservoir.

4.3.4 Near hydrodynamic regime

Completely different behavior is observed for the all considered pressure ratios, except the case

of p1/p0 = 0.9, in the near hydrodynamic flow regime (δ0 = 100). For the pressure ratio
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p1/p0 = 0.5, see Fig. 4.6, the shock wave appears in the right reservoir and it moves toward

the downstream boundary.

For the pressure ratio (p1/p0 = 0.1) the particular flow behavior is observed: the spatial

cell structure of axisymmetric mildly under-expanded jet appears, formed by the system of

incident and reflected shock and compression waves, see Fig. 4.7. The distribution of the

macroscopic flow parameters for this case is shown on Fig. 4.8. In contrast with the previous

case, the first cell shock structure does not move and the second shock wave forms after the first

one with time. The shock wave position may be determined by the maximum of the number

density gradient which is located at zM/R0 = 4.31. This position can be estimated also from

the empirical relation [53]

zM/R0 = 1.34
√

p0/p1, (4.24)

which predicts the Mach disk location at zM/R0 = 4.24 from the orifice, so very good agreement

is found between the numerical result and empirical relation (4.24).

The streamlines for the case p1/p0 = 0.1 are provided in Fig. 4.9. It can be seen

that the flow field is non symmetric and that the streamlines are not parallel to the axis of

symmetry.

In the case of the gas expansion into vacuum (p1/p0 = 0) the shock wave does not

appear any more. Expression (4.24) predicts also that the shock wave position tends to infinity

(zM/R0 → ∞). In this case the flow velocity reach its maximal value, which depends only on

the gas temperature in the inlet reservoir. Under the hypothesis of the adiabatic expansion and

the energy conservation the following expression for the macroscopic velocity was obtained in

Ref. [165]:

uzmax
=

√

5kT0

m
. (4.25)

The numerical value of the maximal macroscopic velocity is equal to 1.588 which is very close

to that predicted by Eq. (4.25).

4.3.5 Choked conditions

It is well known that a choked flow is a limiting condition which occurs when the mass flow

rate will not increase with a further decrease in the downstream pressure environment while

upstream pressure is fixed [166]. Under the conditions p1/p0 < (p1/p0)∗, where (p1/p0)∗ is the
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critical pressure ratio, the further decrease in the downstream pressure reservoir does not lead

to the increase of the mass flow rate and the flow becomes "choked". However, for the case

of the flow through a thin orifice the flow never becomes "choked". For the first time it was

discovered in Ref. [167] in the case of the flow through a thin, square-edged orifice. Finally

the physical point at which the choking occurs for adiabatic conditions is that the exit plane

velocity is at sonic conditions. But in the case of the thin orifice flow the "sonic surface" has

a convex shape and located in the downstream reservoir, see Fig. 4.10, where two cases of the

pressure ratio p1/p0 = 0 and 0.1 are shown. Therefore the flow is not sonic through the orifice

and it does not becomes really choked: the mass flow rate continue to increases when pressure

ratio decreases, see Table 4.3 and Fig. 4.11, especially for the low values of the rarefaction

parameter. The evaluation in time of the temperature and Mach number profiles in the orifice

section are shown on Fig. 4.12, where one can see that the flow remains subsonic through the

orifice with the maximum velocity near the orifice wall.

4.3.6 Influence of the computational domain dimensions

The study of an influence of the computational domain dimensions on the numerical results is

carried out and the optimal dimensions of the left and right reservoirs are found as DL = 8 and

DR = 10, respectively.

Fig. 4.13 shows the comparison of the macroscopic profiles evolution in time along

the symmetrical axis for p1/p0 = 0.1 and δ0 = 100 obtained for two sizes of the downstream

reservoir DR = 10 and 20. It is clear from these results that the both solutions coincide until

distance z/R0 ∼ 8 from the orifice and that the mass flow rate evolution is not affected at all

by the dimension of the right computational domain. It is interesting to note that in the case

of the flow through a slit much more larger computational domain must be chosen to obtain

the numerical solution independent from the size of the computational domain.

4.4 Conclusions

Transient flow of rarefied gas through an orifice is studied on the basis of nonlinear S-model

kinetic equation. The simulations are conducted from the free molecular to hydrodynamic

regimes for four values of pressure ratio between reservoirs. The mass flow rate evolution in

time is analyzed and it is found that the time to reach the steady state mass flow rate depends

essentially on the pressure ratio between the reservoirs and on the gas flow regime in the left

reservoir. It needs from 2.35 to 30.37 characteristic times to obtain the steady state mass flow

rate, the maximal time to reach the steady state is found in the slip regime for the largest
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pressure ratio 0.9. The simple fitting formula for the time dependence of the mass flow rate is

proposed. It is shown numerically that the flow through the thin orifice never becomes really

choked.
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Figure 4.5: Distribution of density number (a,b), axial velocity (c,d), temperature (e,f) along
the axis at several time moments for p1/p0 = 0.1, δ0 = 1. (a,c,e) and p1/p0 =
0.5, δ0 = 1. (b,d,f). The hollow circles correspond to the results obtained in [48] by
DSMC method.
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Chapter 5

Gas flow through a channel of varying rectangular

cross-section

The gas flow through a long channel of a rectangular cross section is a practical problem in the

MEMS and vacuum technology applications. This kind of flow was largely studied on the basis

of the kinetic theory and the detailed review may be found in Ref. [51]. However in several

applications a cross section varies along the channel. As examples of such kind of flow the

leakage through compressor valves [59] and the flow in the micro bearing [60, 61] may be given.

A few results of the numerical simulations of the flow through variable conical cross section [62]

and rectangular and conical sections [63] were found in the literature.

In this work we apply the approach, proposed in Ref. [62] and implemented to the flow

through the tube of a variable radius, to the channel of a variable rectangular cross section.

The proposed technique allows to calculate the mass flow rate through a long channel with

variable rectangular cross section for arbitrary pressure and temperature ratios in large range

of gas rarefaction.

5.1 Problem statement

Consider two reservoirs containing the same gas and connected by a long rectangular channel

of variable cross-section aspect ratio. The channel width w is supposed to be the same, but

the channel height h varies continuously along the channel. Its value is equal to h1 in the first

reservoir and h2 in the second reservoir. We assume that the relation max(h) ≤ w keeps along

the channel. The first reservoir is maintained at the pressure p1 and temperature T1, while the

pressure and temperature in the second reservoir are p2 and T2, respectively. We will calculate

the mass flow rate through this channel in the whole range of the gas rarefaction. The results

will be given in terms of reduced mass flow rate defined as follows

77
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G =
L

h2
1wp1

√

2kT1

m
Ṁ, (5.1)

here L is the channel length, m is the molecular mass of the gas, k is the Boltzmann constant,

Ṁ is the mass flow rate through the channel.

We assume the channel to be long enough (max(h) ≪ L) that the end effects can be ne-

glected. According to Refs. [168, 169], the end influence in the hydrodynamic regime has the or-

der of max(h)/L, while in the free-molecular regime [170] its order is (max(h)/L) ln(L/ max(h)).

These estimations are confirmed by the numerical results for a tube flow [46].

The second assumption is that the pressure and temperature gradients can be consid-

ered small in any cross section of the channel

ξP =
h

p

dp

dx
, |ξP | ≪ 1, ξT =

h

T

dT

dx
, |ξT | ≪ 1, (5.2)

where x is the longitudinal coordinate in the flow direction with the origin in the first reservoir,

h = h(x) is a local channel’s height, p = p(x) and T = T (x) are a local pressure and tempera-

ture, respectively. Under such a condition the mass flow rate in a cross section is calculated as

[106]

Ṁ = hwp

√

m

2kT
(−GP ξp + GT ξT ), (5.3)

where the coefficients GP and GT depend on the local gas rarefaction parameter δ, defined as

δ =
hp

µ(T )

√

m

2kT
, (5.4)

µ is the gas viscosity, which depends on the local temperature T (x).

The values of the coefficients GP = GP (δ) and GT = GT (δ) in the case of the gas

flow through a rectangular cross section channel for different flow regimes were obtained by

different authors from the solution of the linearized BGK and S-model kinetic equations, or

from the linearized Boltzmann equation for the diffuse or diffuse-specular boundary conditions

[171, 172, 84, 173]. The detailed review on these numerical results may be found in Ref. [51].

The results used in this work will be given in the next section.

Following Ref. [62], from Eqs. (5.1-5.4) the differential equation is obtained
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G =
L

p1

(

h

h1

)2
√

T1

T

(

−GP (δ)
dp

dx
+ GT (δ)

p

T

dT

dx

)

. (5.5)

If we assume that the temperature distribution along the channel is known we can obtain the

corresponding pressure distribution and the reduced total mass flow rate G through the channel.

Equation (5.5) is solved numerically using the following finite difference scheme [62]:

pi+1 = pi +
∆x

GP (δi)



GT (δi)
pi

Ti

Ti+1 − Ti

∆x
− p1G

L

(

h1

hi

)2√

Ti

T1



 . (5.6)

In the previous equation ∆x = L/N is the grid step in the x direction, 0 ≤ i ≤ N , pi, Ti, hi

are the pressure, temperature and channel height in i grid point, respectively. The rarefaction

parameter δi is calculated as

δi = δ1
pihiµ(T1)

p1h1µ(Ti)

√

T1

Ti

, δ1 =
p1h1

µ(T1)

√

m

2kT1

. (5.7)

Equation (5.6) is solved numerically by the shooting method (Ref. [174], Section 7.3) with the

boundary condition p(x = 0) = p1. G is a parameter of Eq. (5.6) which is found satisfying the

second boundary condition p(x = L) = p2.

5.2 Determination of coefficients GP and GT

5.2.1 Free molecular regime

In the free molecular regime (δ = 0) the coefficient GP was found analytically in Ref. [175]

GP =
1√
π





w

h
ln





h

w
+

√

1 +
h2

w2



+ ln





w

h
+

√

1 +
w2

h2



− 1

3

(

w

w +
√

w2 + h2
+

w

h +
√

w2 + h2

)





(5.8)

The coefficient GT for the case of δ = 0 is equal to

GT = GP /2. (5.9)

In the case h/w → 0 the two coefficients become [106]
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GP =
1√
π

(

ln
2w

h
+

1

2

)

, GT = GP /2. (5.10)

5.2.2 Hydrodynamic regime

In the hydrodynamic flow regime (δ → ∞) the reduced mass flow rate is equal to [176]

GPh
=

δ

6

(

1 − 192

π5

h

w

∞
∑

n=0

tanh(0.5π(2n + 1)w/h)

(2n + 1)5

)

. (5.11)

In the slip flow regime the slip correction must be added, which was found in Refs. [177, 175,

178]

GPslip
= σp

[

4

3
− 256

π5

h

w

∞
∑

n=0

tanh(0.5π(2n + 1)w/h)

(1 + 2n)5
− 32

π4
(1 − h

w
)

∞
∑

n=0

tanh(0.5π(2n + 1)w/h)

(1 + 2n)4

]

.

(5.12)

Therefore the coefficient GP for the hydrodynamic and slip regimes (δ > 40) becomes

GP = GPh
+ GPslip

. (5.13)

The thermal creep coefficient in these flow regimes is equal to [106]

GT =
σT

δ
. (5.14)

The coefficients σp and σT in Eqs. (5.12), (5.14) are the velocity slip and the thermal slip

coefficients, equal to 1.016 [179] and 1.175 [180], respectively. It is to be noticed that expressions

(5.12) and (5.14) are valid for any slip coefficients, e.g., for non-diffuse scattering or gaseous

mixtures [143].

5.2.3 Transitional flow regime

In order to solve numerically Eq. (5.6) we need to known the values of the rarefaction parameter

at arbitrary couple of two values: the rarefaction parameter and the channel cross-section aspect

ratio (δ, h/w). The two-dimensional grid of values GP (δ, h/w) and GT (δ, h/w) is formed from

the numerical data of Ref. [106], where the quantities GP (δ) and GT (δ) are calculated for
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Table 5.1: Coefficient GP obtained in Ref. [106] and in present work* from the numerical
solution of the linearized S-model kinetic equation.

δ
h/w

0.[106] 0.0367* 0.05[106] 0.1[106] 0.25* 0.5* 0.75* 1[106]

0.001 4.273 2.510 2.344 1.978 1.496 1.150 0.962 0.837
0.01 3.050 2.345 2.218 1.910 1.465 1.134 0.951 0.831
0.02 2.713 2.238 2.132 1.860 1.442 1.122 0.942 0.826
0.04 2.400 2.101 2.018 1.790 1.412 1.105 0.930 0.816
0.05 2.306 2.051 1.975 1.763 1.400 1.099 0.925 0.812
0.08 2.120 1.940 1.879 1.702 1.373 1.084 0.915 0.801
0.1 2.038 1.886 1.832 1.671 1.359 1.076 0.909 0.796
0.2 1.823 1.724 1.688 1.573 1.315 1.053 0.892 0.779
0.4 1.651 1.591 1.567 1.486 1.279 1.037 0.880 0.768
0.5 1.613 1.560 1.537 1.465 1.271 1.036 0.879 0.766
0.8 1.561 1.517 1.498 1.438 1.270 1.043 0.885 0.769
1. 1.549 1.511 1.493 1.437 1.277 1.054 0.892 0.774
1.5 1.565 1.530 1.513 1.462 1.312 1.088 0.920 0.793
2. 1.606 1.573 1.556 1.505 1.359 1.131 0.953 0.818
4. 1.855 1.820 1.801 1.746 1.584 1.324 1.114 0.933
5. 2.000 1.961 1.941 1.882 1.709 1.429 1.210 0.995
8. 2.456 2.411 2.384 2.313 2.105 1.758 1.491 1.189
10. 2.772 2.722 2.690 2.609 2.378 1.987 1.692 1.323
15. 3.577 3.513 3.470 3.364 3.071 2.563 2.174 1.662
20. 4.393 4.316 4.262 4.129 3.771 3.146 2.660 2.006
30. 6.040 5.916 5.847 5.639 5.171 4.301 3.602 2.698
40. 7.695 7.533 7.451 7.214 6.501 5.336 4.269 3.395

large range of the gas rarefaction parameter and for four different h/w aspect ratios h/w =

0, 0.5, 0.1, 1, where h/w = 0 corresponds to the case of the flow between two parallel plates.

To complete the data of Ref. [106] the same approach is applied to obtain a solution of

the linearized S-model kinetic equation [11]. The additional values of the channel cross-section

aspect ratios h/w = 0.0367, 0.25, 0.5, 0.75 and for the rarefaction parameter varies from 0.001

to 40 are calculated. The 1000 × 1000 grid in the physical space is implemented, the polar

coordinates are used in the molecular velocity space with 200 points for the velocity directions

and 25 points in the velocity magnitude distributed according to the Gaussian rule. The values

of the GP and GT coefficients obtained in the present work are presented in Tables 5.1, 5.2.

The method of two-dimensional interpolation is employed to calculate the values GP

and GT in an arbitrary point (δ∗, (h/w)∗) from two-dimensional grid of GP (δ, h/w) and GT (δ, h/w)

values. Below we explain the interpolation steps realized to calculate the value of GP (δ∗, (h/w)∗)

in a point (δ∗, (h/w)∗), which does not coincide with any values of δ and h/w reported in two-

dimensional Table 5.1. The interpolation is accomplished by the following steps.
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Table 5.2: Coefficient GT obtained in Ref. [106] and in present work* from the numerical
solution of the linearized S-model kinetic equation.

δ
h/w

0.[106] 0.0367* 0.05[106] 0.1[106] 0.25* 0.5* 0.75* 1[106]

0.001 1.8550 1.2390 1.1620 0.9839 0.7451 0.5736 0.4800 0.4181
0.01 1.2460 1.0860 1.0440 0.9165 0.7120 0.5558 0.4678 0.4110
0.02 1.0780 0.9975 0.9662 0.8658 0.6874 0.5416 0.4576 0.4037
0.04 0.9200 0.8854 0.8656 0.7960 0.6524 0.5210 0.4425 0.3912
0.05 0.8719 0.8462 0.8291 0.7695 0.6385 0.5128 0.4364 0.3857
0.08 0.7754 0.7615 0.7483 0.7078 0.6051 0.4925 0.4214 0.3716
0.1 0.7320 0.7212 0.7089 0.6763 0.5871 0.4815 0.4132 0.3637
0.2 0.6105 0.6006 0.5968 0.5814 0.5231 0.4408 0.3825 0.3390
0.4 0.4955 0.4911 0.4881 0.4806 0.4492 0.3910 0.3441 0.3071
0.5 0.4620 0.4583 0.4453 0.4490 0.4239 0.3731 0.3301 0.2953
0.8 0.3953 0.3923 0.3894 0.3848 0.3692 0.3327 0.2982 0.2684
1. 0.3633 0.3621 0.3593 0.3553 0.3428 0.3122 0.2818 0.2545
1.5 0.3092 0.3086 0.3060 0.3029 0.2946 0.2732 0.2499 0.2275
2. 0.2719 0.2718 0.2693 0.2667 0.2606 0.2443 0.2258 0.2070
4. 0.1870 0.1876 0.1856 0.1842 0.1818 0.1738 0.1644 0.1539
5. 0.1621 0.1628 0.1609 0.1598 0.1582 0.1521 0.1443 0.1366
8. 0.1154 0.1161 0.1148 0.1141 0.1131 0.1097 0.1049 0.1017
10. 0.0966 0.0972 0.0961 0.0956 0.0947 0.0921 0.0881 0.0868
15. 0.0682 0.0688 0.0680 0.0677 0.0671 0.0654 0.0628 0.0632
20. 0.0526 0.0530 0.0524 0.0522 0.0517 0.0505 0.0486 0.0495
30. 0.0358 0.0367 0.0357 0.0354 0.0354 0.0347 0.0336 0.0344
40. 0.0270 0.0279 0.0270 0.0269 0.0276 0.0274 0.0272 0.0263
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Table 5.3: Coefficients GP , GT obtained from the numerical solution of the S-model kinetic
equation for case h/w = 0.0367 and from 2nd order interpolation in h/w-direction.

δ
GP GT

S-model Interpolation S-model Interpolation

0.001 2.510 2.706 1.2390 1.2965
0.01 2.345 2.389 1.0860 1.0906
0.02 2.238 2.257 0.9975 0.9949
0.04 2.101 2.105 0.8854 0.8816
0.05 2.051 2.052 0.8462 0.8422
0.08 1.940 1.937 0.7615 0.7568
0.1 1.886 1.883 0.7212 0.7160
0.2 1.724 1.722 0.6006 0.6006
0.4 1.591 1.589 0.4911 0.4901
0.5 1.560 1.557 0.4583 0.4478
0.8 1.517 1.515 0.3923 0.3908
1. 1.511 1.508 0.3621 0.3604
1.5 1.530 1.527 0.3086 0.3068
2. 1.573 1.569 0.2718 0.2700
4. 1.820 1.815 0.1876 0.1860
5. 1.961 1.957 0.1628 0.1612
8. 2.411 2.403 0.1161 0.1150
10. 2.722 2.712 0.0972 0.0962
15. 3.513 3.498 0.0688 0.0681
20. 4.316 4.297 0.0530 0.0525
30. 5.916 5.900 0.0367 0.0357
40. 7.533 7.515 0.0279 0.0270

Table 5.4: Coefficients GP , GT obtained from the numerical solution of the S-model kinetic
equation for case h/w = 0.0367 and from 2nd order interpolation in δ-direction.

δ
GP GT

S-model Interpolation S-model Interpolation

0.03 2.1614 2.1567 0.9340 0.9306
3. 1.6876 1.6815 0.2215 0.2171
25. 5.1115 5.0543 0.0435 0.0416
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• A block of the reduced mass flow rate GP (δi, (h/w)j)i=1..m+1,j=1..n+1 values containing a

point (δ∗, (h/w)∗) is searched and extracted using the bisection method (Chapter 3 of

Ref. [181]) from the ordered tabular data, see Table 5.1, which contains the numerical

values of GP obtained on the basis of kinetic equation [106]. Here, i and j are the indexes

for the row δ and the column h/w, respectively. The values m and n are the orders of

interpolation in δ-direction and in h/w-direction, respectively.

• Using n + 1 values of GP in h/w direction, the nth order interpolation with Neville’s

algorithm (given in Chapter 3 of Ref. [181]) is carried out for each of m + 1 extracted

values in δ direction and a set of values GP (δi, (h/w)∗)i=1..m+1 is obtained.

• Then mth order interpolation in the δ-direction is performed in order to obtain the value

of GP (δ∗, (h/w)∗).

The value of GT at an arbitrary point (δ∗, (h/w)∗) is calculated by the interpolation in the same

fashion as for the value of GP .

The accuracy of the interpolation in the h/w direction is evaluated by comparing the

results of the numerical solution of the linearized S-model kinetic equation for the h/w = 0.0367

and the interpolation results for the same values of h/w ratio, see Table 5.3. Analyzing the

results of Table 5.3 one can see that the accuracy of the interpolation is of the order of 2%.

The similar verification was carried out for the interpolation in the δ direction. The same type

of the comparison were carried out by comparing the solution of the linearized kinetic equation

and the interpolation results. When analyzing the results given in Table 5.4 one can see that

the difference between the corresponding values does not also exceed 2%. However, when δ → 0

(for the small values of h/w) or δ → ∞ the coefficients GP and GT change steeply and the use

of the sparse grid rises up the interpolation error.

In the following Sections the results of the isothermal and non isothermal flows simu-

lations are given.

5.3 Isothermal flow

The most simple case is the isothermal flow, when the gas temperature anywhere in a system

is equal to the temperature in the first reservoir: T (x) = T1.

In the case, when the both inlet and outlet channel’s cross sections are in the hydrody-

namic flow regime (δ1 → ∞ andδ2 → ∞) and the outlet section is large enough (h2/w → 0, two

parallel plates), the analytical solution may be found and the reduced mass flow rate becomes
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Table 5.5: Reduced mass flow rate G for the isothermal case and for the h2/w = 0 channel, the
channel’s height aspect ratio is h2/h1 = 10.

δ1
p2/p1

0. 0.01 0.1 0.5 0.9

0.001 93.34 92.41 38.46 20.72 4.024
0.01 33.47 32.18 27.45 13.95 2.674
0.05 24.51 23.87 20.75 10.62 2.035
0.1 21.63 21.10 18.34 9.448 1.824
0.5 16.80 16.44 14.52 7.897 1.591
1. 15.83 15.54 13.94 7.951 1.656
5. 19.06 18.93 18.00 11.88 2.725
10. 25.82 25.74 24.95 17.40 4.140
50. 85.35 85.30 84.15 62.58 15.61
100. 161.1 161.0 159.2 119.4 30.02

G =
δ1

6







1

2



1 −
(

p2

p1

)2














1

L

ˆ L

0

(

h1

h(x)

)3

dx





−1

. (5.15)

To obtain the previous expression we used Eq. (5.11) which gives GP = δ/6 when h/w → 0.

If we assume the linear variation of the channel height

h(x) = h1 +
x

L
(h2 − h1), (5.16)

from the integration of Eq. (5.15) one obtains

G =
δ1

6



1 −
(

p2

p1

)2




(h2/h1)
2

(h2/h1) + 1
. (5.17)

The same results (5.17) may be obtained from the solution of the Stokes equation subjected to

the non-slip boundary conditions, see Ref. [60].

In the case of the free molecular flow regime (δ → 0) and always for the case of the flow

between two parallel plates (h2/w → 0) the integration of Eq. (5.5) can be done analytically.

In the case of h/w → 0 the coefficient GP may be found using Eq. (5.10) and the reduced mass

flow rate becomes:

G =
1√
π

(

1 − p2

p1

)(

1

L

ˆ L

0

h2
1dx

h(x)2(ln (2w/h(x)) + 0.5)

)−1

. (5.18)

The last integral in previous expression may be evaluated numerically.
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Table 5.6: Reduced mass flow rate G for the isothermal case and for the h2/w = 1 channel, the
channel’s height aspect ratio is h2/h1 = 10.

δ1
p2/p1

0. 0.01 0.1 0.5 0.9

0.001 15.36 15.21 13.83 7.670 1.532
0.01 15.02 14.86 13.47 7.418 1.474
0.05 14.14 13.98 12.62 6.897 1.368
0.1 13.67 13.52 12.20 6.681 1.327
0.5 12.68 12.54 11.36 6.393 1.306
1. 12.60 12.47 11.41 6.657 1.401
5. 16.35 16.27 15.54 10.35 2.381
10. 22.53 22.47 21.82 15.26 3.631
50. 74.86 74.82 73.76 54.88 13.70
100. 141.3 141.3 139.6 104.8 26.34

In order to obtain the values of the reduced mass flow rate in the transitional flow

regime Eq. (5.5) must be solved numerically. In Table 5.5 the results on the reduced mass flow

rate G are given for the case of the flow in very large channel (h2/w → 0, two parallel plates)

and when the channel height increases in the flow direction by 10 times (h2/h1 = 10).

In Table 5.6 the results on the reduced mass flow rate G are given for the case of the

flow through the channel of the square outlet cross section (h2/w = 1) and when the channel

height increases in the flow direction by 10 times (h2/h1 = 10).

5.4 Non-isothermal case

The non-isothermal flow is considered: the temperature in the second reservoir is supposed to

be higher and equal to T2 = 1.5T1. The temperature gradient along the channel is supposed to

be linear.

In Table 5.7 the results on the reduced mass flow rate are given for the case of the

flow through the square (h2/w = 1) outlet cross-section channel and when the channel height

increases in the flow direction in 10 times (h2/h1 = 10), as for the second isothermal case, see

previous section. If comparing the results of Tables 5.6 and 5.7, obtained under isothermal and

non-isothermal conditions, we can observed very small influence of the temperature gradient

on the reduced mass flow rate for small values of the gas rarefaction and the small values of

the pressure ratio between the reservoirs. However, for the larger values of the rarefaction

parameter the difference in the reduced mass flow rate becomes significant even for the gas

expansion into vacuum. The influence of the temperature gradient along the channel is also

large for the pressure ratio close to 1 and small values of the rarefaction parameter. In this case
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Table 5.7: Reduced mass flow rate G for the non-isothermal case and for the h2/w = 1 channel,
the channel’s height aspect ratio is h2/h1 = 10, T2/T1 = 1.5.

δ1
p2/p1

0. 0.01 0.1 0.5 0.9

0.001 15.35 15.23 14.11 9.073 4.046
0.01 15.01 14.88 13.74 8.739 3.797
0.05 14.12 13.98 12.84 8.020 3.314
0.1 13.61 13.49 12.38 7.668 3.038
0.5 12.51 12.39 11.36 6.907 2.295
1. 12.35 12.23 11.27 6.894 2.047
5. 15.56 15.48 14.73 9.818 2.418
10. 21.17 21.10 20.43 14.27 3.472
50. 69.44 69.39 68.29 50.75 12.68
100. 130.8 130.7 129.1 96.86 24.36

the mass flow rate due to the thermal creep phenomenon (due to the temperature gradient)

is directed from the cold reservoir to the hot one, that means in the same direction as the

pressure-driven Poiseuille flow.

5.5 Conclusions

The simple method, proposed previously by other authors, is applied here to calculate the gas

mass flow rate through the channel of the variable rectangular cross section. The calculations

are based on the results of the numerical solution of the linearized S-model kinetic equation

obtained by other authors and completed using the same approach in the present paper. The

explicit analytical expressions are proposed in the case of the hydrodynamic and free molecular

flow regimes. The simple interpolation method is realized to calculate the mass flow rate in the

transitional flow regime.



Chapter 6

The gas flow diode effect in microchannel

The flow of rarefied gases through a long channel with rectangular cross section is a practical

problem in the field of micro electromechanical systems (MEMS) and in vacuum technology

applications. This kind of flow was widely studied on the basis of the kinetic theory and a

detailed review is given in Ref. [51]. Also a vast amount of experiments on microducts with

various but uniform cross section were performed in the last decades [52, 54, 55, 56, 57, 58].

In several applications, however, the cross section varies alongside the channel. As

examples of such kind of flow the leakage through compressor valves [59] and the flow in the

micro bearing [60, 61] may be given. Only few numerical simulations are carried out on the

flow through ducts with variable conical and tapered rectangular cross sections [64, 32, 63, 68].

It was found that the permeability is higher when the duct is perfused in converging direction

[64, 65, 58]. In a more general sense the non-symmetric behavior of the flow following the

direction (diode effect) was firstly investigated in the liquid flows, notably by the authors of

[66, 67]. More recently, in case of gaseous flows, this gas flow diode effect was found to increase

with rarefaction in the slip flow regime and to disappear in the continuum regime [58]. When

the both ends of a channel are in the free molecular regime, this effect theoretically should not

exist, too [32, 68].

Based on these considerations and previous experimental observations [65, 58] we

present an analytical model for the isothermal pressure driven flow in ducts with alongside

varying cross section. In this work we apply the approach based on the solution of the Stokes

equation subjected to the velocity slip boundary condition. We solve this model for the predic-

tive calculation of the flow through a long channel with variable rectangular cross section.

In addition, and for further validation, the numerical approach developed in Ref. [68]

is used. This approach allows to calculate the mass flow rate through a long channel with

variable rectangular cross section for arbitrary pressure and temperature drops over a wide

88



89

range of gaseous rarefaction.

Both, analytical and numerical solutions are compared with one another and with

experimental data for the CO2, N2, and Ar gas flow through a micro-milled channel of varying

rectangular cross section.

6.1 Model development

6.1.1 Problem statement

Ix

iy

Ih
1

Ih
2

IL

Iβ

Figure 6.1: Lateral cross section of the tapered channel. The width w is supposed to remain
constant and is large compared to h(x). In positive x-direction the channel is
referred to as a diffusor whereas in negative x-direction it is termed nozzle.

A long channel of variable cross section connects two reservoirs containing the same gas.

The channel width w is supposed to remain constant alongside the channel, while the channel

height h varies from h1 in the first reservoir to h2 (h2 ≥ h1) in the second reservoir, with

max(h) ≤ w (Fig. 6.1). One reservoir is maintained at the pressure p1, while the pressure in

the other reservoir is p2, respectively. We further assume isothermal conditions in the complete

system and the channel to be long enough (max(h) ≪ L) so that the end effects can be

neglected.

6.1.2 Analytical solution for the slip flow regime

In this section we derive the analytical model for the previously stated flow configuration. Here

we assume that max(h) ≪ w to treat the flow as two-dimensional.

In the hydrodynamic flow regime (Kn → 0) the flow velocity u in the x direction

through a channel cross section is obtained from the solution of the Stokes equation

∂2u

∂y2
=

1

µ

dp

dx
, (6.1)
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where p = p(x) is the local pressure, subjected to the symmetry condition on the axis of

symmetry and the non-slip condition on the upper wall:

∂u

∂y

∣

∣

∣

∣

y=0
= 0, u(x, y)|y=0.5h(x) = 0. (6.2)

In Eq. (6.1) µ is the gaseous viscosity. By integrating twice Eq. (6.1) with the boundary

conditions according to Eqs. (6.2) one obtains the streamwise velocity as

u(x, y) = − 1

2µ

dp

dx





(

h

2

)2

− y2



 . (6.3)

The mass flow rate is obtained by integrating the velocity profile over the channel cross section

Ṁ = 2w

ˆ 0.5h(x)

0

ρu(x, y)dy, (6.4)

whereby ρ is the density of the gas. Taking account of the state equation of an ideal gas

ρ = p/(RT ), with R the specific gas constant, the previous equation yields

Ṁ = −2

3
w

p

µRT

dp

dx

(

h

2

)3

. (6.5)

Using the property of the mass conservation in any channel cross section and integrating ex-

pression (6.5) from 0 to L we obtain

ṀHyd =
p2

1 − p2
2

12µRTL
w

h2
1h

2
2

h1 + h2

, (6.6)

giving us an analytical expression for the mass flow rate through the channel in the hydrody-

namic regime. To obtain the previous expression we assumed here that the local channel height

h = h(x) varies constantly along the channel

h(x) = h1 +
x

L
(h2 − h1). (6.7)

This assumption is made for the further comparison with experimental data. The developed

approach, however, can be applied for the case of the other dependencies (non-linear) of the

local channel height from the longitudinal coordinate.

Let us consider now the slip flow regime. In this case the second of the two boundary

conditions (6.2) for the Stokes equation (6.1) must be changed in slip boundary condition in
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the form

u(x, y)
∣

∣

∣

∣

y=0.5h(x)
= −σp

µ

p

√
2RT cos β

(

∂u

∂y

)

∣

∣

∣

∣

y=0.5h(x)
, β = arctan(0.5(h2 − h1)/L). (6.8)

This boundary condition takes account of the different inlet and outlet cross sectional areas by

means of the angle β (see Fig. 6.1). In case of h2 = h1 Eq. (6.8) yields the well-known slip

boundary condition for uniform ducts.

In the previous equation σp is the velocity slip coefficient. In the case of the diffuse

reflection of the molecules from the surface its value was obtained from the solution of the BGK

[179], S-model [180], and the Boltzmann [182] kinetic equations. So obtained values of the σp

coefficient lie in the narrow range 0.968 ≤ σp ≤ 1.03.

By integrating the Stokes equation with the symmetry boundary condition (first expres-

sion in Eq. (6.2)) and velocity slip boundary condition according to Eq. (6.8), the streamwise

velocity is obtained as

u(x, y) = − 1

2µ

dp

dx





(

h

2

)2

− y2 + 2σp
µ

p

√
2RT cos β

(

h

2

)



 . (6.9)

The mass flow rate through a cross section is found by replacing in Eq. (6.4) the

velocity expression according to Eq. (6.9):

Ṁ = − pw

µRT

dp

dx





2

3

(

h

2

)3

+ 2σp
µ

p

√
2RT cos β

(

h

2

)2


 . (6.10)

In order to deduce mass flow rate values from the reservoir pressures it is necessary to integrate

Eq. (6.10) along the channel from 0 to L, as it was done for Eq. (6.5). But here the calculation

is not so easy as that of Eq. (6.5). To obtain an explicit expression for the mass flow rate in

the slip flow regime let us first introduce the Knudsen number

Kn = λ/h1, where λ = kλ
µ

p

√
2RT. (6.11)

Here λ is the molecular mean free path, kλ is the coefficient which depends on the molecular

interaction model. Then, the dimensionless variables are defined as following
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X =
x

L
, H =

h

h1

, P =
p

p0

, Q = Ṁ
µ(T )RTL

p2
0(0.5h1)3w

, (6.12)

where the average pressure p0 = 0.5(p1 +p2). Using these dimensionless variables the mass flow

rate in the hydrodynamic regime, Eq. (6.6), is transformed into the following non-dimensional

form:

QHyd =
2

3
(P 2

1 − P 2
2 )

H2
2

H2 + 1
, (6.13)

where H2 = h2/h1.

To obtain the mass flow rate in the slip flow regime Eq. (6.10) is transformed into a

non-dimensional form using relations (6.12)

Q = −2

3
H(X)2

(

P
dP

dX
H(X) + bKn

dP

dX

)

, (6.14)

where the Knudsen number is defined according to Eq. (6.11). Finally the coefficient b yields

b = 6
σp cos β

kλ

. (6.15)

Then we eliminate the X variable, using the H(X) profile as stated in Eq. (6.7),

i.e., dH = (H2 − 1)dX. In the transformed equation we introduce a double variable change:

first using Z = 1/H, and so transforming Eq. (6.14) into a classical homogeneous first order

differential equation following P (Z). Then to solve this new P (Z) equation, the classical way

is the use of a new function change: Π(Z) = P/Z. Thus the equation is finally integrated along

the X axis, from 0 to 1.

We omit here the relatively long calculations with rather cumbersome expressions and

we will give only the results. As it was mentioned above we can distinguish two directions: the

diffusor and the nozzle directions as noted in the caption of Fig. 6.1.

6.1.3 Diffusor configuration

In the case of the diffusor configuration, after the previously described double variable changes

and after integration from 0 to 1, Eq. (6.14) reads:
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Kln(H2) = γ2 ln

(

Π2 − γ1

Π1 − γ1

)

− γ1 ln

(

Π2 − γ2

Π1 − γ2

)

, (6.16)

where

K2 = (bKn0)
2 + 6Q/(H2 − 1), γ1 = −0.5bKn0 + 0.5K, γ2 = −0.5Kn0 − 0.5K. (6.17)

Here Π1 and Π2 are the values of function Π calculated for the inlet and outlet cross sections,

Kn0 is the Knudsen number according to Eq. (6.11), calculated with p = p0. Theoretically

Q may be obtain directly from (6.16) through expression of K (see Eq. (6.17)), but K is

implicitly included in different terms of Eq. (6.16) and therefore it is difficult to obtain it

analytically. Therefore we linearize Eq. (6.16) according to the Knudsen number. Indeed the

present analytical method is only pertinent in the slip flow regime and the boundary condition

(6.8) is a first order in Knudsen number condition: thus, in anyway only a first order Knudsen

number precision is implicitly guaranteed on the parameter extracted from Eq. (6.16). Thus,

changing in fact the unknown function we put

Qdif = QH(1 + AdifKn0), (6.18)

then K, and thus γ1 and γ2 are so linearized and Adif is finally obtained from an algebraic

equation of first power following AdifKn0.

After long but trivial calculations we obtain:

Adif = b

[

(P 2
2 H2

2 − B2)(P 2
1 − B2)

2B(P1 − P2H2)
ln

(P1 + B)(P2H2 − B)

(P1 − B)(P2H2 + B)
+ P1P2H2 + B2

]

/(P1 + P2H2)/B2,

(6.19)

where

B2 =
3

2

QHyd

H2 − 1
. (6.20)

6.1.4 Nozzle configuration

In the case of the nozzle configuration the variable changes performed for Eq. (6.14) lead finally

to a complete equation, different from Eq. (6.16), but of the same complexity: the difference
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is due to the different sign of dH/dX. We effectuate then the same linearization process as

described above, i.e.:

Qnoz = QHyd(1 + AnozKn0). (6.21)

In a same way as in the diffusor direction case, we obtain

Anoz = b

[

((P1H2)
2 + B2)(P 2

2 + B2)

B(P1H2 − P2)

(

arctan
(

P1H2

B

)

− arctan
(

P2

B

))

− (P1P2H2 + B2)

]

/(P1H2+P2)/B

(6.22)

Of course, as expected from our previous comments the A first order coefficients are different

depending on the flow direction.

6.1.5 Diodicity

In order to define an explicit value for the disparity in both flow directions we introduce the

diodicity D as the ratio of the mass flow rates Ṁ to the difference of the squaring of the inlet

and outlet pressures:

D =
Ṁnoz/

(

(pnoz
1 )2 − (pnoz

2 )2
)

Ṁdif/
(

(

pdif
1

)2 −
(

pdif
2

)2
) , (6.23)

where pdif
1 , pdif

2 , pnoz
1 , pnoz

2 are the inlet and outlet pressure for the diffusor and nozzle directions

respectively. Using expressions (6.12), (6.13), (6.18), (6.21) and assuming that the inlet and

outlet pressures are the same for the diffusor and nozzle cases the diodicity of a moderately

rarefied gas flow becomes

D =
1 + AnozKn0

1 + AdifKn0

. (6.24)

Hence we obtain a predictive expression for D being a function only of the Knudsen number

and the A first order coefficients according to Eqs. (6.19) and (6.22). From Eq. (6.24) it can

be seen that D approaches unity with decreasing rarefaction (Kn → 0: hydrodynamic flow

regime). This result is in agreement with that obtained in the hydrodynamic regime: from

Eqs. (6.12) and (6.13) it is clear that the mass flow rate does not depend on the direction of

perfusion.
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In Section 6.4 the solutions obtained by means of the analytical approach are compared

to a numerical approach addressed in the following section and in detail presented in Ref. [68].

Both approaches are used to calculate the mass flow rate through a tapered channel and these

numerical results are compared with experimental data.

6.2 Numerical approach

The numerical approach [68] is based on the implementation of the solution of the linearized

S-model kinetic equation, obtained in [106, 68]. One additional assumption is needed when

applying the linearized kinetic equation: the reduced pressure gradient has to be small in any

cross section of the channel

h

p

dp

dx
≪ 1, (6.25)

where x is the longitudinal coordinate in the flow direction with the origin in the first reservoir,

see Fig. 6.1. It is to note that condition (6.25) is always satisfied for the microchannels:

h

p

dp

dx
∼ h

p

|p1 − p2|
L

=
h

L

|p1 − p2|
p

≪ 1. (6.26)

The last expression in Eq. (6.26) is always satisfied because for the micro channel h ≪ L and

therefore condition (6.25) is satisfied for any pressure gradient.

Then using the data [106, 68] on the dimensionless coefficient G(δ) for various h/w ra-

tios and the simple interpolation method [68] the mass flow rate is obtained from the differential

equation

Ṁ = − h2w√
2RT

GP (δ, h/w)
dp

dx
, (6.27)

that is solved by means of the shooting method. In Eq. (6.27) the dimensionless coefficient

GP depends on the channel height to width ratio h/w, local channel height h and the gas

rarefaction parameter (local pressure), which is calculated according to

δ =
hp

µ
√

2RT
. (6.28)

It is to note that this rarefaction parameter is inversely proportional to the Knudsen number

δ ∼ 1/Kn, see Eq. (6.11). The detailed description of this approach may be found in Ref. [68].
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It is to underline that contrarily to the analytical approach, presented in Section 6.1.2, this

numerical method allows to obtain the mass flow rate for any values of the Knudsen numbers

laying from the hydrodynamic to the free molecular flow regime.

In order to compare both approaches, the resulting mass flow rates of carbon dioxide,

nitrogen, and argon for several values of the inlet and outlet pressures are given in Tables

6.2 - 6.7 for the diffusor and nozzle flows, respectively. Also, the deviation of the numerical

simulation from the experiment is provided in Tables 6.2 - 6.7, too. The experiment is described

in the following section.

6.3 Experiment

0.96 mm

I(b)

1mm

I(a)

11mm

252.8 mm

Figure 6.2: Tapered channel used in experiment. The test channel accrues by assembling one
aluminum block with a micromilled notch with a plain block (a). The channel length
corresponds to the block thickness. High quality optical surfaces act as sealing. The
channel with alongside varying height is visualized by optical profilometry (b). This
figure is adapted from Ref. [58]

The tapered channel with alongside varying height was manufactured by milling a long

notch into a piece of aluminum (AlMg3) using raster fly-cutting. As schematically shown in

Fig. 6.2a, the notch was capped with another plain piece of aluminum with high quality optical

surface. Both parts were screwed together and sealed by means of the perfectly plain surfaces.

All parts were manufactured by the LFM (Laboratory for Precision Machining, University of

Bremen) using a Nanotech 350FG (Moore Nanotechnolgy Systems, Keene, NH, USA). The

micromilled notch with a significant inclination was visualized by optical profilometry Fig.

6.2b.

The notch of the channel has a length of L = 11.05 ± 0.1,mm which corresponds to
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the thickness of the aluminum block. The height is changing from h1 = 0.96 ± 0.18 µm to

h2 = 252.80 ± 0.16 µm while the width of w = 1007.50 ± 3.13 µm is constant, see also Fig.

6.1. Notch width and depth were measured 200 times using optical profilometry (PL µ2300,

Sensofar) and arithmetic mean and uncertainty were calculated. The length was measured by

means of direct light microscopy (20 times for calculation of arithmetic mean and uncertainty).

The measurements were conducted by Thomas Veltzke at Center for Environmental

Research and Sustainable Technology (UFT), University of Bremen. Detail description of the

experimental apparatus is given in Refs. [58].

6.4 Results and discussion

The analytical and numerical simulations are carried out for the tapered channel according to

Fig. 6.1. This configuration is slightly different from that used for the measurements which is

due to the manufacturing process as described in Chapter 5 of Ref. [58]. From the measurement

both inlet and outlet temperatures are identical and therefore the flow can be considered as

the isothermal flow and the average temperature value T0 = 0.5(T1 + T2) was taken for the

simulations. For a calculation of Ṁ the velocity slip coefficient σp in Eq. (6.8) was set to 1.016

for all three gases. It is to note that this value σp ∼ 1 corresponds to the completely diffuse

reflection of the molecules from the solid surface. This value increases when the reflection

becomes more specular. Some experimental data on the values of the velocity slip for different

surfaces and various gases may be found in [57, 183].

6.4.1 Validation of analytical approach

First, expressions (6.18) - (6.22) are used to obtain the analytical solutions in diffusor and

nozzle directions. The Variable Hard Sphere model (VHS) [107] is used as the intermolecular

potential which leads to the following expression of the kλ coefficient in Eq. (6.11): kλ =

(7 − 2ω)(5 − 2ω)/(15
√

π). For the viscosity the power law dependence from temperature

according to the VHS is adopted

µ = µref

(

T

Tref

)ω

. (6.29)

Here ω is the viscosity index depending on the gas nature. The required parameters ω and µref

for Tref = 273.15K are stated in Table 6.1.
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Table 6.1: Properties of gases used for experiments. The reference viscosities are those for
Tref = 273.15K. Values are taken from Bird [107].

Gas R(J kg−1 K−1) µref (10−5 Pa s) ω kλ

CO2 188.96 1.380 0.93 0.607
N2 296.93 1.656 0.74 0.731
Ar 207.85 2.117 0.81 0.684

Table 6.2: Experimental results obtained in diffusor direction on the tapered channel according
to Fig. 6.2 with CO2 as working gas, analytical solution, numerical solution. Mea-
surements were performed in triplicate and arithmetic mean and standard deviation
are calculated. The deviation α of the numerical solution to the experimental results
is: |(Ṁexp/Ṁnum) − 1| · 100%.

p1(kPa) p2(kPa) T0(
◦C)

Ṁ(10−9 kg s−1) α(%)
exp. anal. num. num.

23.0389 ± 0.0963 3.0266 ± 0.0949 20.04 2.411 ± 0.047 2.6041 2.7810 13.3
28.3679 ± 0.0852 3.3626 ± 0.0943 20.03 3.404 ± 0.045 3.5473 3.7466 9.1
33.7133 ± 0.0746 3.7084 ± 0.0721 20.05 4.513 ± 0.047 4.6146 4.8329 6.6
39.0586 ± 0.0887 4.0720 ± 0.0768 20.05 5.733 ± 0.049 5.8039 6.0353 5.0
44.4236 ± 0.0821 4.4461 ± 0.0797 20.05 7.067 ± 0.059 7.1204 7.3634 4.0
55.1305 ± 0.0816 5.1696 ± 0.0639 20.07 10.049 ± 0.074 10.1177 10.3803 3.2
66.1574 ± 0.0712 5.9504 ± 0.0662 20.06 13.653 ± 0.080 13.7189 13.9981 2.5

As shown in Fig. 6.3 the analytical, numerical, and experimental results are in good

agreement for the diffusor case. In the nozzle direction, however, the both numerical and

analytical approaches systematically overestimate the experimental results, see Tables 6.2 -

6.7. For all gases it can be observed that the mass flow rate in nozzle direction is slightly

but significantly higher compared to the diffusor direction. This is a reasonable result since the

amount of molecules entering the channel aperture (cross-sectional area) is higher. Nevertheless,

the finding is indeed intriguing because it vanishes in the hydrodynamic regime [65, 58] and is

postulated to be absent in the free molecular regime [62, 68].

Further, the reasonable agreement of the analytical model to the numerical model and

the experiments (see Tables 6.2 - 6.7 and Fig. 6.3) indicates the validity of the presented

approach. It is noteworthy that the analytical solutions are obtained here in the Knudsen

number range from 0.0471 to 0.2263, where the highest value is really in the limit of the

applicability of the approach. However, even for this relatively high Knudsen number the

agreement with the measurements is surprisingly good.
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Table 6.3: Experimental results obtained in nozzle direction on the tapered channel according
to Fig. 6.2 with CO2 as working gas, analytical solution, numerical solution. Mea-
surements were performed in triplicate and arithmetic mean and standard deviation
are calculated. The deviation α of the numerical solution to the experimental results
is: |(Ṁexp/Ṁnum) − 1| · 100%.

p1(kPa) p2(kPa) T0(
◦C)

Ṁ(10−9 kg s−1) α(%)
exp. anal. num. num.

23.0154 ± 0.0459 3.0140 ± 0.0358 20.10 2.588 ± 0.042 3.1587 3.2192 19.6
28.3679 ± 0.0530 3.3753 ± 0.0374 20.10 3.656 ± 0.052 4.2626 4.3396 15.8
33.7229 ± 0.0596 3.7466 ± 0.0415 20.10 4.847 ± 0.046 5.4891 5.5829 13.2
39.0837 ± 0.0634 4.1230 ± 0.0514 20.07 6.139 ± 0.061 6.8407 6.9516 11.7
44.4620 ± 0.0603 4.5079 ± 0.0442 20.07 7.542 ± 0.053 8.3193 8.4468 10.7
55.1912 ± 0.0522 5.2426 ± 0.0376 20.08 10.662 ± 0.065 11.6449 11.8047 9.7
66.2069 ± 0.0694 6.0228 ± 0.0435 20.05 14.354 ± 0.099 15.5730 15.7628 8.9

Table 6.4: Experimental results obtained in diffusor direction on the tapered channel according
to Fig. 6.2 with N2 as working gas, analytical solution, numerical solution. Measure-
ments were performed in triplicate and arithmetic mean and standard deviation are
calculated. The deviation α of the numerical solution to the experimental results is:
|(Ṁexp/Ṁnum) − 1| · 100%.

p1(kPa) p2(kPa) T0(
◦C)

Ṁ(10−9 kg s−1) α(%)
exp. anal. num. num.

25.5150 ± 0.0955 3.3040 ± 0.0581 20.08 1.722 ± 0.044 2.0490 2.2330 22.9
31.4279 ± 0.0680 3.6811 ± 0.0295 20.08 2.431 ± 0.040 2.7513 2.9595 17.9
37.3339 ± 0.0457 4.0762 ± 0.0531 20.05 3.223 ± 0.011 3.5326 3.7636 14.4
43.2610 ± 0.0577 4.4717 ± 0.0475 20.06 4.095 ± 0.013 4.3972 4.6453 11.8
49.1804 ± 0.0175 4.8795 ± 0.0108 20.07 5.048 ± 0.034 5.3408 5.6053 9.9
61.0077 ± 0.0474 5.6739 ± 0.0210 20.06 7.178 ± 0.043 7.4699 7.7561 7.5
73.2224 ± 0.0176 6.5315 ± 0.0254 20.06 9.751 ± 0.023 10.0061 10.3127 5.4

Table 6.5: Experimental results obtained in nozzle direction on the tapered channel according
to Fig. 6.2 with N2 as working gas, analytical solution, numerical solution. Measure-
ments were performed in triplicate and arithmetic mean and standard deviation are
calculated. The deviation α of the numerical solution to the experimental results is:
|(Ṁexp/Ṁnum) − 1| · 100%.

p1(kPa) p2(kPa) T0(
◦C)

Ṁ(10−9 kg s−1) α(%)
exp. anal. num. num.

25.4982 ± 0.0234 3.3167 ± 0.0131 20.08 1.848 ± 0.027 2.5415 2.5966 28.8
31.4365 ± 0.0376 3.7172 ± 0.0181 20.12 2.611 ± 0.019 3.3859 3.4543 24.4
37.0293 ± 0.0284 4.0850 ± 0.0142 20.10 3.462 ± 0.019 4.2574 4.3394 20.2
42.9162 ± 0.0304 4.4908 ± 0.0212 20.26 4.384 ± 0.034 5.2477 5.3447 18.0
48.8057 ± 0.0230 4.9114 ± 0.0696 20.26 5.387 ± 0.012 6.3192 6.4314 16.2
60.6650 ± 0.0216 5.7264 ± 0.0327 20.31 7.615 ± 0.023 8.7218 8.8644 14.1
72.7721 ± 0.0331 6.5730 ± 0.0234 20.09 10.252 ± 0.020 11.5187 11.6916 12.3
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Table 6.6: Experimental results obtained in diffusor direction on the tapered channel according
to Fig. 6.2 with Ar as working gas, analytical solution, numerical solution. Measure-
ments were performed in triplicate and arithmetic mean and standard deviation are
calculated. The deviation α of the numerical solution to the experimental results is:
|(Ṁexp/Ṁnum) − 1| · 100%.

p1(kPa) p2(kPa) T0(
◦C)

Ṁ(10−9 kg s−1) α(%)
exp. anal. num. num.

24.1557 ± 0.0517 3.1894 ± 0.0273 20.29 1.855 ± 0.035 2.2111 2.4305 23.7
29.8508 ± 0.0545 3.5046 ± 0.0275 20.30 2.619 ± 0.053 2.9675 3.2207 18.7
35.0942 ± 0.0649 3.8842 ± 0.0242 20.30 3.494 ± 0.049 3.7328 4.0099 12.9
40.4200 ± 0.0402 4.2844 ± 0.0281 20.29 4.440 ± 0.039 4.5815 4.8817 9.0
46.0627 ± 0.0674 4.6966 ± 0.0457 20.30 5.459 ± 0.057 5.5599 5.8788 7.1
57.1809 ± 0.0531 5.4635 ± 0.0570 20.30 7.762 ± 0.072 7.7283 8.0797 3.9
68.6523 ± 0.0605 6.2922 ± 0.0259 20.48 10.537 ± 0.073 10.2871 10.661 1.2

Table 6.7: Experimental results obtained in nozzle direction on the tapered channel according
to Fig. 6.2 with Ar as working gas, analytical solution, numerical solution. Measure-
ments were performed in triplicate and arithmetic mean and standard deviation are
calculated. The deviation α of the numerical solution to the experimental results is:
|(Ṁexp/Ṁnum) − 1| · 100%.

p1(kPa) p2(kPa) T0(
◦C)

Ṁ(10−9 kg s−1) α(%)
exp. anal. num. num.

23.9157 ± 0.0294 3.2167 ± 0.0346 20.08 1.998 ± 0.023 2.7266 2.7895 28.4
29.4861 ± 0.0311 3.5476 ± 0.0420 20.06 2.822 ± 0.023 3.6227 3.6999 23.7
34.8385 ± 0.0409 3.9118 ± 0.0374 20.04 3.759 ± 0.032 4.5532 4.6453 19.1
40.3653 ± 0.0440 4.2902 ± 0.0286 20.06 4.762 ± 0.048 5.5904 5.6985 16.4
46.0374 ± 0.0501 4.6987 ± 0.0596 20.31 5.832 ± 0.043 6.7281 6.8533 14.9
57.1578 ± 0.0368 5.4656 ± 0.0331 20.33 8.245 ± 0.045 9.2108 9.3707 12.0
68.6183 ± 0.0449 6.2951 ± 0.0431 20.33 11.092 ± 0.056 12.096 12.2903 9.8
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Figure 6.3: Experimental data in comparison to the proposed analytical approach and data
obtained numerically using method of Ref. [68]: (a) carbon dioxide; (b) nitrogen;
(c) argon. The curves for the analytical solutions in nozzle direction (solid line)
and diffusor direction (dashed line) are obtained using expressions (6.18 - 6.22).
Measurements were performed in triplicate under isothermal conditions at 20◦C.
Error bars are throughout smaller than symbols. Data are additionally provided in
Tables 6.2 - 6.7

6.4.2 Gas flow diodicity

As shown by means of Fig. 6.3 the measured flow in nozzle direction is throughout higher

compared to the flow in diffusor direction. To quantify the disparity of the permeability in

both directions, we use the diodicity D given by Eq. (6.23). For the calculation of the exper-

imental diodicity the mean values of three identical measurement series were used. Since Eq.

(6.23) contains six measured values, the standard deviation of D is calculated according to the

Gaussian error propagation:

ξ(D) =

√

√

√

√

6
∑

i=1

(

∂D

∂zi

ξ(zi)

)2

; z = pnoz
1 , pnoz

2 , pdif
1 , pdif

2 , Ṁnoz, Ṁdif . (6.30)

We want to show and discuss the diode effect as a function of the gaseous rarefaction. Therefore

we use the Knudsen number according to Eq. (6.11) as abscissa value. To allow for comparison

of nozzle and diffusor direction, we define Kn by means of the average pressure values of nozzle

and diffusor directions p̄ = 0.25(pnoz
1 +pnoz

2 +pdif
1 +pdif

2 ). Thus, K̄n is a function of five measured
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values having errors and its uncertainty is obtained as

ξ(K̄n) =

√

√

√

√

5
∑

i=1

(

∂K̄n

∂zi

ξ(zi)

)2

; z = pnoz
1 , pnoz

2 , pdif
1 , pdif

2 , h1. (6.31)

All values obtained for D (as a function of K̄n) by means of the numerical approach and

experiments are provided in Tables 6.8 - 6.10.
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Figure 6.4: Diodicity versus mean Knudsen number. Analytical data (interconnected with
lines), numerical data (filled symbols) and experimental data (open symbols) are
prepared according to Eqs. (6.11) and (6.23) with values stated in Tables 6.2-6.7.
The experimental uncertainty of D is expressed by vertical errorbars that are cal-
culated according to Eqs. (6.30). The horizontal errorbars are not shown but the
experimental uncertainty of K̄n according to Eqs. (6.31) is tabulated. All depicted
values are provided in Tables 6.8-6.10.

In Fig. 6.4 the diodicity D is plotted versus the average Knudsen number K̄n for all

three working gases. The analytical solutions obtained by means of Eq. (6.24) are given by

solid lines and the numerical results obtained applying model of Ref. [68] are indicated by filled

symbols. The experimental results indicated by open symbols and error bars are calculated

using Eqs. (6.11) and (6.23). For the three considered gases the analytical and the numerical

approach are in qualitative agreement to the experiment since both theoretical approaches show

that the diode effect increases with gaseous rarefaction in slip regime.

When comparing first the numerical approach with the experiments we can see that D

approaches a constant level at approx. K̄n = 0.15. It is to note that the numerical approach

reproduces the experimental behavior very well: the numerical results exhibit an offset of

approx. 8, (see Tables 6.8 - 6.10) that is quite constant. The offset is explained by the larger
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Table 6.8: Mean Knudsen number and experimental and numerically calculated diodicity of
carbon dioxide (CO2) at 20.07◦C. K̄n and D are calculated according to Eqs. (6.11),
(6.23), (6.30) and (6.31) using values stated in Tables 6.1, 6.2 and 6.3. The deviation
α of the numerical solution to the experimental results is: |(Dexp/Dnum) − 1| · 100%.

K̄n
D α(%)

exp. num. num.

0.2382 ± 0.0447 1.0755 ± 0.0284 1.1598 7.27
0.1955 ± 0.0367 1.0742 ± 0.0218 1.1584 7.27
0.1657 ± 0.0311 1.0737 ± 0.0157 1.1548 7.02
0.1437 ± 0.0270 1.0696 ± 0.0148 1.1506 7.04
0.1268 ± 0.0238 1.0657 ± 0.0123 1.1455 6.96
0.1028 ± 0.0193 1.0588 ± 0.0105 1.1350 6.71
0.0860 ± 0.0161 1.0500 ± 0.0098 1.1246 6.63

Table 6.9: Mean Knudsen number and experimental and numerically calculated diodicity of
nitrogen (N2) at 20.07◦C. K̄n and D are calculated according to Eqs. (6.11), (6.23),
(6.30) and (6.31) using values stated in Tables 6.1, 6.4 and 6.5. The deviation α of
the numerical solution to the experimental results is: |(Dexp/Dnum) − 1| · 100%.

K̄n
D α(%)

exp. num. num.

0.3849 ± 0.0722 1.0745 ± 0.0319 1.1646 7.74
0.3157 ± 0.0592 1.0743 ± 0.0194 1.1669 7.93
0.2688 ± 0.0504 1.0920 ± 0.0073 1.1723 6.85
0.2332 ± 0.0437 1.0880 ± 0.0094 1.1694 6.96
0.2059 ± 0.0386 1.0838 ± 0.0078 1.1654 7.00
0.1668 ± 0.0313 1.0732 ± 0.0072 1.1562 7.18
0.1394 ± 0.0261 1.0646 ± 0.0034 1.1480 7.27

Table 6.10: Mean Knudsen number and experimental and numerically calculated diodicity of
Argon (Ar) at 20.07◦C. K̄n and D are calculated according to Eqs. (6.11), (6.23),
(6.30) and (6.31) using values stated in Tables 6.1, 6.6 and 6.7. The deviation α of
the numerical solution to the experimental results is: |(Dexp/Dnum) − 1| · 100%.

K̄n
D α(%)

exp. num. num.

0.4097 ± 0.0768 1.0993 ± 0.0241 1.1716 6.17
0.3362 ± 0.0630 1.1053 ± 0.0241 1.1782 6.19
0.2871 ± 0.0538 1.0921 ± 0.0181 1.1759 7.13
0.2498 ± 0.0468 1.0755 ± 0.0145 1.1706 8.12
0.2200 ± 0.0413 1.0697 ± 0.0140 1.1671 8.34
0.1783 ± 0.0334 1.0630 ± 0.0115 1.1607 8.42
0.1491 ± 0.0280 1.0538 ± 0.0091 1.1540 8.68
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systematic overestimation of the nozzle experimental data discussed in the context of Fig. 6.3.

In contrast, the analytical approach can not describe the attenuation of D. In the full

slip regime the analytical solution is in reasonable agreement to the experimental results that

are slightly overestimated. Although, with increasing K̄n the overestimation would become

very large. This might be due to the limited validity of the analytical approach. As already

mentioned in Section 6.4.1, the applicability of the approach concerning rarefaction is at its

very limit.

Nevertheless, the theoretical and experimental finding perfectly confirms our hypothesis

and verifies the reliability of both approaches for the considered Knudsen number range. From

the analysis presented here we are sure that the gas flow diode effect is not an artifact because it

is found analytically, numerically, and experimentally. Furthermore, the finding is in agreement

with results obtained on tapered silicon-etched microchannels [65, 58].

A complete physic explanation of the diode effect is probably complex. But some

comments may be proposed. The diode feature does not exist in the hydrodynamic regime and

vanish in the free molecular regime. Thus, this effect appears when a gas slip velocity and a

sufficient gas density allow a transfer, more or less important, of macroscopic momentum from

the wall to the gas flow. However, it would be more difficult to explain clearly why the nozzle

configuration promotes larger mass flow rate than the diffusor one.

6.5 Conclusions

In this work we apply three approaches, an experimental, an analytical and a numerical one, that

allow us to confirm, describe and understand the phenomenon of gas flow diodicity. By means

of the two theoretical approaches we could predict the mass flow rate through a long channel

with variable rectangular cross section for arbitrary pressure gradients. Solutions obtained by

means of both models are compared with one another and with experimental data for validation

purpose.

The analytical approach based on the solution of the Stokes equation subjected to the

velocity slip boundary condition is developed for the slip flow regime. The numerical approach is

based on the implementation of the solution of the linearized S-model kinetic equation obtained

previously in [106, 68]. For the experiments we used single-gas measurements obtained on a

rectangular channel with slightly varying cross section. The test channel was manufactured by

micro-milling (raster fly-cutting). It is noteworthy that this is a novel method for production

of test channels for research on gaseous microflows.
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All the numerical and analytical results are in good agreement to the experimental

ones although experimental data are systematically overestimated in the nozzle case.

Moreover, we can show that the mass flow rate is significantly higher when the tapered

channel is perfused like a nozzle. It can therefore be stated that under moderately rarefied con-

ditions micro-sized ducts with alongside varying cross section act as a gas flow diode. The the-

oretically and experimentally analyzed diode effect increases with gaseous rarefaction whereby

both presented models can predict that effect qualitatively.

The analyzed diode effect is primarily a physical phenomenon and hence an academic

issue. However, it might be applicable in future MEMS if the diodicity can be pushed to

pronounced values. Probable applications are devices for dosing and pumping gas streams or

actual diodes that only allows the flow in one direction.



Chapter 7

Couette and Fourier flows of binary gaseous mixture

In many practical applications like the vacuum technology, porous media, and chemical indus-

try, the information about the heat/mass transfer of rarefied gas mixtures is indispensable.

Benchmark test cases are of great importance since they can help to validate new numerical

models developed for the description of gas flows or test the validity of existing approaches

under various physical conditions. Here, Couette and Fourier flows between two parallel plates

are chosen as benchmark test cases as they are the classical problems of fluid mechanics. Al-

though solutions for the single-species gas can be found in books [69] and [70], only few papers

are dedicated to gas mixtures.

The plane Couette flow of binary gas mixture is firstly studied [71, 72, 73, 74, 75] based

on the kinetic models of the Boltzmann equation, such as the Hamel model [13] for Maxwellian

molecules and the McCormack model for general intermolecular potentials [14]. Notably, based

on the McCormack model, the influence of intermolecular interactions on the velocity and

shear stress for three mixtures (Ne-Ar, He-Ar, and He-Xe) [74] and the influence of gas-surface

interaction on the flow properties of the He-Ar mixture between Molybdenum and Tantalum

plates are investigated [75]. Later, the linearized Boltzmann equation (LBE) for hard-sphere

(HS) molecules is solved by an analytical version of the discrete-ordinates (ADO) method [76],

and the accuracy of the McCormack is assessed for He-Ar mixture: the McCormack model

produces accurate (1 ∼ 3 figures of accuracy) shear stress of each component and velocity of

the heavier species [75, 76], however, the velocity of the lighter species and especially the heat

flux significantly deviate from the LBE results (well above 100% for some entries).

Very few papers are devoted to the heat transfer through a gas mixture. The plane

Fourier flow is firstly simulated by solving the nonlinear Boltzmann equation using an iterative

finite-difference technique [77]. Later, the heat transfer between two plane plates with small

temperature difference is studied using the McCormack model [78] and LBE [79]. Surprisingly,

the normalized heat flux for Ne-Ar and He-Xe mixtures obtained from the linearized equations

106
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are found to agree with results from the full Boltzmann equation, with the maximum relative

deviation being about 4%. However, between the McCormack model and LBE, there are large

differences in the density and temperature profiles: for density, up to 15% for Ne-Ar mixture

and 51% for He-Xe mixture are observed, while for temperature, the maximum differences are

12% and 20% for Ne-Ar and He-Xe mixtures, respectively. The influence of intermolecular

potentials on the heat flux between two parallel plates for three binary mixtures of nobles gases

(Ne-Ar, He-Ar, He-Xe) is studied based on the McCormack model [80]: the heat flux is sensitive

to the intermolecular potential, and the difference between the HS and realistic potentials [81]

can reach 15% near the hydrodynamic regime.

To summarize, it is only two papers devoted to the comparison between the McCormack

model and the LBE for the mixtures of Ne-Ar and He-Xe [79] and He-Ar [76]. Therefore, new

systematic comparisons between the McCormack model and LBE will be useful for the further

development of the numerical tools for the simulation of gas mixture flows. In the present

study, the Couette and Fourier flows are considered for two types of the binary gas mixture

composition.

7.1 Problem statement

(a) Couette flow
(b) Fourier flow

Figure 7.1: Two parallel plate configuration

Consider a binary mixture of monatomic gases, where the mass of a molecule of the

first (second) component is m1 (m2), and the corresponding number density is n1 (n2). Without

loss of generality, we assume m1 < m2. The gas mixture is confined between two parallel plates

situated at y′ = ±H/2, see Fig. 7.1. In Couette flow, the two plates with temperature T0

move in opposite directions with the speed U/2. In Fourier flow, both plates are stationary,

but the plate at y′ = −H/2 has a temperature of T0 − ∆T/2, while the other one has a

temperature T0 + ∆T/2. The temperature difference ∆T is much smaller than the equilibrium

gas temperature T0, and the relative speed U is much smaller than the most probable molecular

velocity υ0 of the mixture, so the gas mixture deviates only slightly from equilibrium. The most

probable molecular velocity of the mixture is defined as:
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υ0 =

√

2kT0

m
, (7.1)

where k is the Boltzmann constant, m = C0m1 + (1 − C0) m2 is the mean molecular mass of

the mixture, with C0 being the equilibrium mole fraction (molar concentration):

C0 =
n01

n01
+ n02

. (7.2)

In Couette flow, we are interested in the profiles of the shear stress P
′

xy and flow velocity

u′
x, which are defined as

P
′

xy = C0P
′

xy1
+ (1 − C0) P

′

xy2
, u′

x =
m1n01

u′
x1

+ m2n02
u′

x2

m1n01
+ m2n02

, 7.3 (7.3)

For further derivation it is convenient to introduce the following dimensionless quantities

y =
y′

H
, cα =

√

mα

2kT0

vα, uα =
u′

αx

U
, u =

u′
x

U
, P = − v0

2Up0

P
′

xy, (7.4)

vα is molecular velocity of the species α, p0 is the equilibrium pressure.

In Fourier flow, we are interested in the dimensionless heat flux

qy =
q′

y

p0υ0

T0

∆T
, (7.5)

as well as the profiles of the deviated temperature, density, and concentration

T (y) =
T ′ (y) − T0

∆T
, n (y) =

n′ (y) − n0

n0

T0

∆T
, C (y) =

C ′ (y) − C0

C0

T0

∆T
, (7.6)

where the molar concentration of the mixture

C ′ =
n′

1

n′
1 + n′

2

. (7.7)

and n′
α (α = 1, 2) is the number density of species α.
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7.2 Kinetic equation

The Boltzmann kinetic equation is used in the simulation of both problems at arbitrary rarefac-

tion parameter. Since the plate’s velocities are small compared to the most probable velocity of

the mixture (Couette flow) and only small temperature difference between the plate’s surfaces

is considered (Fourier flow), the Boltzmann equation can be linearized by classical manner as

fα = fM
α (cα) [1 + hα(y, cα)ε] , α = 1, 2, ε ≪ 1, (7.8)

where ε = U/v0 for the Couette flow and ε = ∆T/T0 for the Fourier flow, fM
α is the equilibrium

Maxwellian distribution function:

fM
α (cα) = n0α

(

mα

2πkT0

)3/2

exp
(

−c2
α

)

, (7.9)

and hα(y, cα) is the perturbation function, which obeys the following two coupled linearized

Boltzmann equations [70]

cαy
∂hα

∂y
= H

√

mα

2kT0

2
∑

β=1

L̂αβh, (7.10)

where L̂αβh is the linearized collision term. Two models are used here for the linearized collision

term: the classical expression of the linearized collision term of the Boltzmann equation [70]

and its approximation in form of the McCormack model [14].

7.2.1 McCormack model for the collisional term

The McCormack model collisional term Lαβ was obtained by requiring that the first three

moments of the model collision operator be the same as the corresponding moment of the full

collision operator calculated with the third order approximation to the distribution function.

The third-order collision term of the McCormack model has the following form
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Lαβ = − γαβhα+γαβnα

+ 2

√

mα

m



γαβuαi − υ
(1)
αβ (uαi − uβi) − υ

(2)
αβ

2

(

qαi − mα

mβ

qβi

)



 cαi

+

[

γαβTα − 2
mαβ

mβ

(Tα − Tβ) υ
(1)
αβ

]

(

c2
α − 3

2

)

+4
[(

γαβ − υ
(3)
αβ

)

Pαxy + υ
(4)
αβ Pβxy

]

cαxcαy

+2
[(

γαβ − υ
(3)
αβ

)

Pαyy + υ
(4)
αβ Pβyy

]

(

c2
αy − 1

2
c2

αx − 1

2
c2

αz

)

+
4

5

√

mα

m

[

(

γαβ − υ
(5)
αβ

)

qαi + υ
(6)
αβ

√

mβ

mα

qβi−
5

4
υ

(2)
αβ (uαi − uβi)

]

cαi

(

c2
α − 5

2

)

,

(7.11)

where α, β = 1, 2 and i = x, y for Couette and Fourier flows, respectively; the quantities υ
(n)
αβ

are given by Eqs. (A.1).

The parameters γαβ are proportional to the collision frequency between the species α

and β and appear in the collision term (7.11) only in the combinations as γ1 = γ11 + γ12 and

γ2 = γ21 + γ22, so it is sufficient to define γ1 and γ2. The collision frequencies and the viscosity

coefficients can be related in the same form as for the S-model kinetic equation [11, 184, 74]:

γα =
p0α

µα

, α = 1, 2, (7.12)

where p0α
= n0α

kT0 is the equilibrium partial pressure and µα is the partial viscosity given as

µα = p0α

Sβ + υ
(4)
αβ

SαSβ − υ
(4)
αβ υ

(4)
βα

, Sα = υ(3)
αα − υ(4)

αα + υ
(3)
αβ , α = 1, 2 and β 6= α. (7.13)

The viscosity of the mixture can be found as the sum of the partial viscosities of the species:

µ = µ1 + µ2.

When the perturbation functions hα are known, the macroscopic flow characteristics

are calculated as follows
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nα =
1

π3/2

√

m

mα

ˆ

hα exp
(

−c2
α

)

dcα,

uαi =
1

π3/2

√

m

mα

ˆ

hαcαi exp
(

−c2
α

)

dcα,

Pαxy =
1

π3/2

ˆ

hαcαxcαy exp
(

−c2
α

)

dcα,

Pαyy =
1

π3/2

ˆ

hα

(

c2
yα − 1

3
c2

α

)

exp
(

−c2
α

)

dcα,

Tα =
1

π3/2

ˆ

hα

(

2

3
c2

α − 1
)

exp
(

−c2
α

)

dcα,

qαi =
1

π3/2

√

m

mα

ˆ

hαcαi

(

c2
α − 5

2

)

exp
(

−c2
α

)

dcα.

(7.14)

In addition to the shear stress and the velocity of the mixture, Eq. (7.3), the other mixture’s

quantities are defines as follows

u(y) =
C0m1u1(y) + (1 − C0)m2u2(y)

m
,

T (y) =C0T1(y) + (1 − C0)T2(y),

q(y) =C0q1(y) + (1 − C0)q2(y),

n(y) =C0n1(y) + (1 − C0)n2(y),

C(y) =(1 − C0)(n1(y) − n2(y)).

(7.15)

7.2.2 Boundary conditions

The Maxwell diffuse-specular boundary condition is used to describe the gas-wall interaction.

For Couette flow the boundary conditions have the following forms

h+
α(y=1/2) =

(

1 − ay=1/2
α

)

h−
α(y=1/2) + ay=1/2

α

√

mα

m
cαx,

h+
α(y=−1/2) =

(

1 − ay=−1/2
α

)

h−
α(y=−1/2) − ay=−1/2

α

√

mα

m
cαx,

(7.16)

where α = 1, 2, ay=±1/2
α are the accommodation coefficients of species α on the up and down

plate, respectively, the superscripts + and − of the perturbation function hα in (7.16) refer to

the outgoing and incoming molecules with respect to the surfaces, respectively.

In the case of Fourier flow the boundary conditions read
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h+
α(y=1/2) =

(

1 − ay=1/2
α

)

√

mα

m
h−

α(y=1/2) + ay=1/2
α

(

ny=1/2
α − 3

4
+
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2
c2

α

)

,

h+
α(y=−1/2) =

(

1 − ay=−1/2
α

)

√

mα

m
h−

α(y=−1/2) + ay=−1/2
α

(

ny=−1/2
α +

3

4
− 1

2
c2

α

)

,
(7.17)

where α = 1, 2, ny=±1/2
α the number density on the surfaces, which is calculated from non-

penetration conditions.

7.2.3 Numerical techniques

The kinetic equations (7.9) are solved for two expressions of the linearized collision term:

the McCormack model collision term, equation (7.11), [14] and classical linearized Boltzmann

collision term [70].

The solve the kinetic equations (7.9) with the the linearized collision term: the McCor-

mack model [14] collision term, equation (7.11), the discrete velocity method (DVM) is used

[74]. To reduce the computational efforts the projection procedure was implemented for the

molecular velocity in z direction. The first order of accuracy numerical scheme is used in the

physical space and the equations are solved by the fixed point method. The number of points

(uniform grid) in the full physical space (Ny) and in the molecular velocity space (Ncx
, Ncy

)

are Ny × Ncx
× Ncy

= 400 × 50 × 50. The convergence criterion for Couette flow in the form

ˆ 1/2

−1/2

ul+1
x /ul

xdy < ε (7.18)

is used, with ε = 10−10, where l is the iteration index. For Fourier flow, the quantity qy is used

instead of ux for the same convergence criterion (7.18).

7.3 Results and discussion

Both Couette and Fourier flows are determined by the following rarefaction parameter:

δ0 =
Hp0

µυ0

, (7.19)

where µ, p0, and υ0 are the viscosity of the mixture, equilibrium gas pressure, and the most

probable molecular velocity (7.1). For comparison purpose we introduce here the Knudsen
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number Kn defined as following

Kn =
1

Hnavd2
1

√
2π

, (7.20)

where d1 is the molecular diameter of the lighter specie, nav is the averaged over the distance

between plates the number density of the mixture.

Two kinds of gas mixture, i.e. Ne-Ar and He-Xe, are chosen in this comparative

study to see the influence of the molecular mass ratio. Three values of the mole fraction

C0 = 0.1, 0.5, 0.9 are considered for three values of rarefaction parameter δ0 = 0.1, 1, 10. The

HS model was chosen for comparison as the most simple model of the intermolecular interaction.

The equilibrium temperature is taken equal to T0 = 300K.

When use the HS model we need to define the ratio of the molecular diameters and

also the molecular masses. For Ne-Ar mixture and He-Xe mixture the ratios d2/d1 = 1.406 and

2.226 are used, respectively. For Ne-Ar mixture the molecular masses are m1 = 20.183 and

m2 = 39.948; for He-Xe mixture m1 = 4.0026 and m2 = 131.30.

7.3.1 Couette flow

We reported the detailed numerical results obtained by the McCormack model. Two mixtures,

Ne-Ar and He-Xe, are considered for three values of the molar concentration C0 = 0.1, 0.5 and

0.9 and three values of the rarefaction parameter.

The values of the dimensionless values of the mixture shear stress Pxy, eqs.(7.3), (7.4)

are summarized in Table 7.1. The shear stress has to be constant between two plates due to

the momentum conservation. However the numerical results vary slightly because of numerical

error. Therefore, the average value over the distance between the plates is calculated and

provided in Table 7.1 together with the maximum variation of the shear stress, presented in

the brackets, which is calculated as following

∆Pxy = max

∥

∥

∥

∥

∥

Pxy(i) − P av
xy

P av
xy

∥

∥

∥

∥

∥

, (7.21)

where P av
xy is average value of shear stress over the physical space. This maximum variation

of the shear stress is provided in percentage in Table 7.1 and it shows a good measure of

accuracy.

For the previous study the complete accommodation between gas species and the plate’s
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Table 7.1: Shear stress of the mixture Pxy and their the relative error ∆Pxy (given in parenthe-
ses) obtain by McCormack model.

δ0 C0 = 0.1 0.5 0.9
Ne-Ar

0.1 0.2601 (0.00%) 0.2576 (0.00%) 0.2594 (0.00%)
1. 0.1689 (0.02%) 0.1675 (0.02%) 0.1685 (0.02%)
10. 0.0415 (0.31%) 0.0414 (0.31%) 0.0415 (0.31%)

He-Xe
0.1 0.2163 (0.00%)
1. 0.1482 (0.01%)
10. 0.0400 (0.25%)

Table 7.2: Shear stress Pxy of the mixture for mixture He-Ar with C0 = 0.3.

δ0
a

y=±1/2
He = 0.4, a

y=±1/2
Ar = 0.7 a

y=±1/2
He = 1., a

y=±1/2
Ar = 1.

present McCormack [75] LBE [76] present McCormack [75] LBE [76]

0.2 −0.1226035 −0.1226026 −0.1220812 −0.2294735 −0.2294745 −0.2285585
1 −0.0986182 −0.0986073 −0.0987467 −0.1615599 −0.1615592 −0.1626466
10 −0.0350417 −0.0350071 −0.0355460 −0.0410181 −0.0410056 −0.0417171

surfaces was assumed. However in practice the non-complete accommodation is often observed.

The authors of Ref. [75] underlined their results on the shear stress are greatly affected by

the accommodation coefficients used to define combinations of specular and diffuse reflection

boundary conditions. Therefore we compare are the results, obtained here by the McCormack

model, with those obtained in Refs. [75] and [76] using also McCormack model and linearized

Boltzmann equation, respectively. The authors of [75] provided the results for the shear stress

of the mixture for the case of the complete accommodation of the gas species on the surfaces

and for three sets of the accommodation coefficients different from 1. We taken the two values

of the accommodation coefficients: a
y=±1/2
He = 0.4 and a

y=±1/2
Ar = 0.7 for comparison. In order

to compare the both results we found that our rarefaction parameter δ0 is twice of a parameter

in Ref. [75] and we need to divide the shear stress given in Ref. [75] by 2.

Several value of the shear stress reported in Table 3 from Refs. [75, 76] are compared

in Table 7.2 with obtained here results. Analyzing the presented in Table 7.2 results we would

like first to underline that the obtained here results and the results from Ref. [75], where the

McCormack model was also used but with different method of solution (ADO method) , are very

close one to the other, which is the good confirmation of the validity of our McCormack results.

Then, the results obtained by the linearized Boltzmann equation are also close to the results of

McCormack model. For the complete accommodation the difference between the McCormack

model results and the results of the linearized BE is less than 0.7% and less than 1.4% for the

non-complete accommodation case. The macroscopic profiles of the shear stress are shown in

Fig. 7.2. This comparison of shear stress of Couette flow shown the excellent agreement between
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Figure 7.2: Comparison of shear stress profiles obtained by McCormack in the present study
and in Ref. [75]. The He-Ar mixture C0 = 0.3 with δ0 = 3. and a

y=−1/2
He = 0.2,

a
y=1/2
He = 0.46, a

y=−1/2
Ar = 0.67, a

y=1/2
Ar = 0.78.

Table 7.3: Heat flux of the mixture qy and their the relative error ∆qy (given in parentheses)
obtain by McCormack model.

δ C0 = 0.1 0.5 0.9
Ne-Ar

0.1 0.5430 (0.00%) 0.5589 (0.00%) 0.5446 (0.00%)
1. 0.4058 (0.02%) 0.4172 (0.02%) 0.4070 (0.02%)
10. 0.1364 (0.34%) 0.1397 (0.33%) 0.1368 (0.34%)

He-Xe
0.1 1.3012 (0.00%)
1. 0.9839 (0.01%)
10. 0.3304 (0.33%)

the McCormack model and linearized Boltzmann equation technique developed in [76].

7.3.2 Fourier flow

Similarly to Couette flow, the same mixtures and its parameters are considered.

The values of the dimensionless heat flux qy, eq. (7.5), are summarized in Table 7.3. It

is to note that for the Fourier problem the heat flux of the mixture is independent of y because

of the conservation of mass and that of energy. The numerical results of the heat flux varies

slightly with y, as it was observed for the shear stress, because of numerical error. Its averaged

values together with its maximum variation, calculated in the similar way as that of the shear

stress, eq. (7.21), are provided in Table 7.3.
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Table 7.4: Comparison of dimensionless heat flux qKosuge
y obtained by different methods for

mixture of mB/mA = 0.5 and dB/dA = 1. The relation between qKosuge
y and qy is

expressed in eq. (7.22) with T0/∆T = 3/2 corresponding to TH/TC = 2.

nB/nA C0 Kn δ0 present McCormack [78] LBE [79] BE [77]

0.1 0.91
0.1 9.027 0.181 0.181 0.187 0.184
1 0.903 0.519 0.519 0.529 0.509
10 0.090 0.683 0.683 0.684 0.656

1 0.50
0.1 9.037 0.205 0.205 0.212 0.209
1 0.904 0.599 0.599 0.610 0.589
10 0.090 0.794 0.794 0.795 0.763

10 0.09
0.1 9.038 0.241 0.241 0.249 0.245
1 0.904 0.689 0.689 0.702 0.677
10 0.090 0.906 0.906 0.908 0.871

Table 7.5: Comparison of dimensionless heat flux qKosuge
y obtained by different methods for

mixture of mB/mA = 0.25 and dB/dA = 0.5. The relation between qKosuge
y and qy is

expressed in eq. (7.22) with T0/∆T = 3/2 corresponding to TH/TC = 2.

nB/nA C0 Kn δ0 present McCormack [78] LBE [79] BE [77]

0.1 0.91
0.1 8.442 0.202 0.202 0.210 0.207
1 0.844 0.557 0.557 0.568 0.547
10 0.084 0.721 0.721 0.723 0.693

1 0.50
0.1 5.708 0.358 0.358 0.376 0.370
1 0.571 0.830 0.830 0.846 0.814
10 0.057 1.006 1.006 1.008 0.966

10 0.09
0.1 2.875 0.653 0.653 0.677 0.659
1 0.288 1.159 1.159 1.170 1.124
10 0.029 1.298 1.298 1.299 1.244
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Similarly to Couette flow, the heat fluxes, in the dimensionless quantities qKosuge
y defined

in Ref. [77], obtained here are compared with data in the literature (see Tables 7.4, 7.5) . The

relation between dimensionless heat flux qKosuge
y and the present dimensionless heat flux qy is

as follows

qy = qKosuge
y

√

m/mA (T0 − ∆T/2)3/2 /
(

∆T
√

T0

)

. (7.22)

The McCormack solutions obtained by this study and by ADO method [78] are perfectly

machted. In Table 7.4, calculated for the mixture of mB/mA = 0.5 and dB/dA = 1, the max-

imum deviation between McCormack solutions and (linearized) BE solution is (3.4%) 4.0%.

This maximum deviation increases to (5.0%) 4.2% when the differences between two species

rise, i. e., the mixture of mB/mA = 0.25 and dB/dA = 0.5 in Table 7.5.

7.4 Conclusions

Couette and Fourier flows between parallel plates are simulated using the McCormack kinetic

model of the linearized Boltzmann equation and the linearized Boltzmann equation itself. Two

types of gas mixture are considered: one with similar molecular masses (Ne-Ar) and one with

very different molecular masses (He-Xe). Three values of concentrations are considered and the

simulations are carried out in the near free molecular, transitional and slip flow regimes. For

plane Couette and Fourier flows of gaseous mixture, McCormack model gives reliable solutions,

which are in good agreement with solutions of linearized Boltzmann equation.



Chapter 8

Oscillatory Couette flow of binary rarefied gas mixture

The stationary Couette flow problem has been studied extensively for the large range of the gas

rarefaction by solving the time-independent Boltzmann kinetic equation or the model kinetic

equations [82, 83, 84, 85, 86]. More complex, oscillatory Couette flow behaviors have been also

simulated by using the Monte Carlo method [87, 88], by solving the kinetic model equations

[89, 90, 91, 92] or by applying the Lattice Boltzmann method [93]. In the hydrodynamic flow

regime the problem can be easily solved on the basis of the Navier-Stokes equation[94]. Several

solutions are proposed for the slip flow regime, using the first [87, 90, 92] and second order

[88] slip boundary conditions. In some papers, Refs. [95, 96], the transverse oscillations of one

of two parallel infinite plates are considered. However all these simulations have been carried

out for a single gas. Only one paper can be found in the open literature, Ref. [97], where

the transverse oscillatory flow of the gas mixture was simulated using the linearized BGK type

model for the gas mixture. To the best of the author’s knowledge, the McCormack model

has not been applied to oscillatory flow of a gas mixture. It can capture the time evolution

naturally without any additional assumption for the form of the distribution function.

Despite of the lack of the simulations of the oscillating gas mixture flows, the spectrum

of their practical applications is broad, including various MEMS devices, like microaccelerom-

eters, and also the inertial sensing, acoustic transduction, optical signal manipulation, reso-

nant filters and the radio frequency components. Devices ranging from nanoscale resonators,

switches, and valves have applications in tasks as diverse as information processing, molecular

manipulation, and sensing [98, 99, 100, 101].

The aim of this work is to extent the approach, developed in [102, 103] for the transient

gas flow simulation, to the case of the oscillatory flow of a gas mixture. The structure of this

article is the following. First, the brief description of the McCormack model for the gas mixture

is given with the comments on the implemented time-dependent numerical approach. After that

the developed approach is tested for two problems: the steady state Couette flow of the gas

118
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mixture and the oscillatory Couette flow of the single gas. The results for these test cases are

compared with the results obtained previously by the other authors. Then, the two mixtures,

Ne-Ar and He-Xe, are simulated using proposed numerical approach and the dynamic behavior

of oscillation Couette flow for the mixtures are studied.

8.1 Statement of the problem

Consider a binary gaseous mixture confined between two infinite parallel plates positioned at

y′ = ±H0/2, where H0 is the distance between the plates. The upper plate (y′ = H0/2) is

fixed whilst the lower one (y′ = −H0/2) starts to oscillate harmonically in the x′-direction with

frequency ω0. Variation of the oscillating plate’s velocity in time can be expressed as

u′
w (t′) = U0 sin (ω0t

′) , (8.1)

where t′ is the time. The amplitude U0 of the oscillated plate velocity is assumed to be very

small compared to the most probable molecular velocity of the mixture υ0 (U0 ≪ υ0), defined

as

υ0 =

√

2
k

m
T0. (8.2)

Here k is the Boltzmann constant, T0 is the equilibrium temperature, m is the mean molecular

mass of the mixture defined as

m =
∑

α C0αmα, C0α = n0α/ (n01 + n02) , α = 1, 2, (8.3)

where mα is the molecular mass of specie α, C0α is the mole fraction in equilibrium, C01 +C02 =

1, and n0α is the equilibrium number density of the gas specie α. In the following the subscript

1 will be used for the lighter specie while the heavier component will be denoted with 2, so

α = 1, 2.

The macroscopic quantities of the gas, i.e. the mixture velocity u′ and the heat flux

q′ have only the x′ direction component different from zero; for the shear stress the only p′
xy

component is nonzero. The other macroscopic quantities, i.e. the density, temperature, and

pressure are constant. It is to note that the heat flux can be present in a flow even if the

temperature of the gas is assumed to be uniform [185]. The shear stress p′
xy, the hydrodynamic

velocity of the mixture u′
x and the x′ component of the heat flux vector of the mixture q′

x are

defined as
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p′
xy =

2
∑

α=1

C0αp′
xyα

, u′
x =

2
∑

α=1

mαn0α
u′

αx
/

2
∑

α=1

mαn0α
, q′

x =
2
∑

α=1

C0α
q′

xα
. (8.4)

The oscillatory Couette flow is governed by two dimensionless parameters. The first

one is the ratio between two characteristic length scales: the distance between two plates H0

and the equivalent molecular mean free path ℓ:

δ =
H0

ℓ
=

H0p0

µ0υ0

, (8.5)

here µ0 is the viscosity of the mixture at equilibrium temperature T0 and p0 is an equilibrium

pressure of the mixture. It is to note that the gas rarefaction parameter δ is inversely propor-

tional to the Knudsen number. The second parameter, which was firstly introduced in [186],

characterizes the oscillation speed and is defined as the ratio between the mean intermolecular

collision frequency γ′ (proportional to p0/µ0) and the oscillation frequency of the down plate

ω0 as

θ =
p0/µ0

ω0

. (8.6)

In some previous works, Refs. [87, 88], the Stokes number was used, which represents

the balance between unsteady and viscous effects. However, we prefer to use here the θ pa-

rameter which can relate two frequencies of the microscopic and macroscopic scales. The two

independent parameters δ and θ fully describe the relation between macroscopic scale, charac-

terized by the distance between the plates and the oscillation frequency of the down plate, and

microscopic scale, characterized by the mean free path and the molecular collision frequency.

It is useful to define the dimensionless quantities as follows

t =
t′

H0/υ0

,y =
y′

H0

, cα =
υα

υ0α

,

uα =
u′

αx

U0

,pxyα
= −p′

xyα

2p0

υ0

U0

, qα =
q′

xα

2mυ2
0U0

,

(8.7)

where υα = (υxα, υyα, υzα) is the molecular velocity, υ0α =
√

2kT0/mα is the most probable

molecular speed of specie α. It is to note that t0 = H0/υ0 is the acoustic time scale: the ratio

of the gap between the plates to the most probable molecular velocity of the gas molecules.
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Under the harmonic excitation of the down plate, given by eq. (8.1), a gas response of

the following form is expected

uα (t, y) = Uα(t, y) sin (δ/θt + ϕuα
(y)) ,

pxyα
(t, y) = Pα(t, y) sin (δ/θt + ϕpα

(y)) ,
(8.8)

where Uα, ϕuα
, Pα, ϕpα

are the amplitude and the phase of specie velocity and shear stress,

respectively. The shear stress and the velocity of the mixture depend on time through the

relations

pxy = P (t, y) sin (δ/θt + ϕP (y)) , u = U(t, y) sin (δ/θt + ϕU (y)) , (8.9)

where P , ϕP , U , ϕU are the amplitude and phase of the shear stress and of the hydrodynamic

velocity of the mixture, respectively. The dimensionless period of oscillation can be calculated

as

T = 2πθ/δ. (8.10)

Different flow regimes can be observed for the oscillating Couette flow of a single gas, see

Table 8.1 and Refs. [90, 92]. When the rarefaction parameter is small (δ → 0), so the distance

H0 between two plates is so small (or the mean free path is so large) that the molecules move

in the gap without intermolecular collisions (free molecular regime). It was found that in this

case the oscillation speed parameter θ does not have any influence on the flow behaviors. In

the case of the large values of the rarefaction parameter δ → ∞ the distance between the plate

is large enough that the influence of the fixed (upper) plate can be neglected. Two limit cases

may also be recognized for the oscillation speed parameter θ, which represents the ratio of the

frequencies, molecular collision frequency of the mixture and the excitation frequency of the

plate’s motion, see eq. (8.6). If θ → ∞, then the excitation frequency ω0 is much larger than

intermolecular collision frequency, so many intermolecular collisions occur during one cycle of

oscillations; this is the low oscillation frequency regime, see Table 8.1. When θ is large and for

the large value of the rarefaction parameter δ, the Navier-Stokes equation is applicable and the

corresponding regime can be identified as the hydrodynamic regime. In the other limit, when

the oscillation speed parameter tends to zero (θ → 0), very few intermolecular collisions occur

during one oscillation cycle. This regime can be called the high oscillation speed regime. In this

regime the intermolecular collisions can be neglected and the problem was solved analytically

on the level of the velocity distribution function in the case of the single gas flow [90]. In

the limit regimes the Navier-Stokes or free molecular approaches can be used to obtain the

solutions, but in the intermediate range of the parameters δ and θ the kinetic equation must
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Table 8.1: Different regimes of oscillations. The numbers from 1 to 9 represents a number of
each simulated case: number 7, for example, corresponds to the pair δ = 0.1 and
θ = 10.

δ θ → 0 θ = 0.1 θ = 1 θ = 10 θ → ∞

δ → 0
distance H0 is so small that
the molecules move between
the plates without collisions

δ = 0.1 high 1 4 7 low oscillation
δ = 1 oscillation 2 5 8 frequency
δ = 10 frequency 3 6 9 quasi stationary flow

δ → ∞ distance H0 is so large that
it can be considered as infinite

be solved to obtain the solution.

8.2 Kinetic equation

8.2.1 McCormack model

As has been assumed above U0 ≪ υ0, the distribution function of specie α can be linearized

according to

f ′
α (t′, y′, υα) = fM ′

α (υα)
[

1 + hα (t′, y′, υα)
U0

υ0

]

, (8.11)

where fM ′

α is the Maxwellian equilibrium distribution function which corresponds to an equi-

librium state

fM ′

α (υα) = n0α

(

mα

2πkT0

)3/2

exp

(

−mαυ2
α

2kT0

)

, (8.12)

hα are the perturbation functions that satisfy the McCormack kinetic model [14]

∂hα (t′, y′, υα)

∂t′ + υyα
∂hα (t′, y′, υα)

∂y′ =
2
∑

β=1

Lαβ(hα), α = 1, 2, (8.13)

where Lαβ(hα) is the model collision term, which is obtained by correlating their expansion

coefficients to have the same moments as full collision operator of the linearized Boltzmann

equation. Incorporating dimensionless quantities, eq. (8.7), into McCormack kinetic equation,

eq. (8.13), the dimensionless form of governing equation is obtained
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∂hα (t, y, cα)

∂t
+ cyα

∂hα (t, y, cα)

∂y

√

m

mα

= K
2
∑

β=1

Lαβ(hα), α = 1, 2, (8.14)

where the collision term reads

Lαβ(hα) = − γαβhα + 2

√

mα

m



γαβuα − υ
(1)
αβ (uα − uβ) − υ

(2)
αβ

2

(

qα − mα

mβ

qβ

)



 cxα

+ 4
[(

γαβ − υ
(3)
αβ

)

pxyα + υ
(4)
αβ pxyβ

]

cxαcyα

+
4

5

√

mα

m

[

(

γαβ − υ
(5)
αβ

)

qα + υ
(6)
αβ

√

mβ

mα

qβ − 5

4
υ

(2)
αβ (uα − uβ)

]

cxα

(

c2
α − 5

2

)

,

α, β = 1, 2.

(8.15)

The υ
(i)
αβ functions and the self and cross-collision frequencies γαβ in the collision term, eq.

(8.15), are provided in A.1. The viscosity of the mixture µ is calculated as

µ =
2
∑

α=1

µα =
2
∑

α=1

p0α/γα, (8.16)

where p0α = n0αkT0 is the equilibrium partial pressure, µα is the partial viscosity. Coefficient

K in eq. (8.14) is given by

K = δ
2
∑

α=1

C0α

γα

. (8.17)

The macroscopic flow parameters are calculated in terms of perturbation function as

follows

uα =
1

π3/2

√

m

mα

ˆ

hαcxα exp
(

−c2
α

)

dcα,

pxyα =
1

π3/2

ˆ

hαcxαcyα exp
(

−c2
α

)

dcα,

qα =
1

π3/2

√

m

mα

ˆ

hαcxα

(

c2
α − 5

2

)

exp
(

−c2
α

)

dcα.

(8.18)

The shear stress and macroscopic velocity of the mixture can be expressed via the

concentration and the specie shear stress and velocity, respectively



124

pxy = −
2
∑

α=1

C0αpxyα
, u =

2
∑

α=1

C0αuxα
. (8.19)

The Maxwell-type diffuse-specular conditions are applied as boundary condition on the

plate’s surfaces as follows

h+
α(y=1/2) =

(

1 − ay=1/2
)

√

mα

m
h−

α(y=1/2),

h+
α(y=−1/2) =

(

1 − ay=−1/2
)

√

mα

m
h−

α(y=−1/2) + 2ay=−1/2cxα sin (δt/θ) ,
(8.20)

where ay=±1/2 are the accommodation coefficients of the upper and bottom plates, the su-

perscripts + and − refer to the outgoing and incoming molecules with respect to the walls,

respectively.

8.2.2 Projection procedure

Equations (8.14) are one-dimensional in the physical space and three-dimensional in the molec-

ular velocity space. For our one dimensional in physical space case the dependence of distri-

bution function on czα can be eliminated by means of projection procedure. For this purpose,

two reduced distribution functions are introduced

Φα (t, y, cxα, cyα) =
1√
π

√

m

mα

ˆ

hα (t, y, cxα, cyα, czα) exp
(

−c2
zα

)

dczα,

Ψα (t, y, cxα, cyα) =
1√
π

√

m

mα

ˆ

hα (t, y, cxα, cyα, czα) c2
zα exp

(

−c2
zα

)

dczα.

(8.21)

Multiplying eqs. (8.14) by 1√
π

√

m
mα

exp (−c2
zα) and then integrating over czα, after that

multiplying eqs. (8.14) by 1√
π

√

m
mα

c2
zα exp (−c2

zα) and then integrating over czα, the system of

two kinetic equations for each specie is obtained

∂Φα

∂t
+ cyα

∂Φα

∂y

√

m

mα

= KLαβ(Φα), α, β = 1, 2, (8.22)

∂Ψα

∂t
+ cyα

∂Ψα

∂y

√

m

mα

= KLαβ(Ψα), α, β = 1, 2. (8.23)
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The expressions of the collision terms in eqs. (8.22) and (8.23) are given in eqs. (A.8) and

(A.9). The macroscopic flow parameters, given by eqs.(8.18), are calculated in terms of reduced

distribution functions as follows

uα =
1

π

ˆ

Φαcxα exp
(

−c2
xα − c2

yα

)

dcxαdcyα,

pxyα
=

1

π

ˆ

Φαcxαcyα exp
(

−c2
xα − c2

yα

)

dcxαdcyα,

qα =
1

π

ˆ

[

Φα

(

c2
xα + c2

yα − 5

2

)

+ Ψ
]

cxα exp
(

−c2
xα − c2

yα

)

dcxαdcyα.

(8.24)

Boundary conditions on the two plates read

Φ+
α(y=1/2) =

(

1 − ay=1/2
)

Φ−
α(y=1/2), Φ+

α(y=−1/2) =
(

1 − ay=−1/2
)

Φ−
α(y=1/2) + 2ay=−1/2cxα sin (δt/θ) ,

Ψ+
α(y=1/2) =

(

1 − ay=1/2
)

Ψ−
α(y=1/2), Ψ+

α(y=−1/2) =
(

1 − ay=−1/2
)

Ψ−
α(y=1/2) + ay=−1/2cxα sin (δt/θ) .

(8.25)

In the following only diffuse boundary conditions will be implemented, so ay=±1/2 = 1.

8.3 Method of solution

8.3.1 Numerical scheme

In several previous studies the oscillatory Couette flow is simulated on the basis of the non-

stationary kinetic equation [90, 92], where it was assumed that the oscillation is to be fully

established through the gas flow and, consequently, the solution is harmonic with respect to

the time. In this case the perturbation function has an oscillatory behavior with respect to

the molecular velocity and, as consequence, a great number of nodes in the velocity space is

necessary leading to a consequent computational efforts. Contrary to these previous works we

do not assume a prior that the oscillations are fully established and that the dependence of the

solution on the time is harmonic, the time-dependent kinetic equation is solved here directly.

Firstly, the discrete velocity method (DVM) is used to separate the continuum molec-

ular velocity spaces cx = (−∞, ∞), cy = (−∞, ∞) in the kinetic equations (8.22), (8.23) into

discrete velocity sets cxm
(m = 1, 2, .., Ncx

), cyn
(n = 1, 2, .., Ncy

), the same for each specie,

which are taken to be the roots of Hermite polynomial of the order Ncx
and Ncy

, respectively.

Next, the set of independent kinetic equations, corresponding to discrete velocity sets cxm
, cyn

,
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is discretized in time and space by Finite difference method (FDM).

In the physical space, the uniform grid with Ny points is constructed. The spacial

derivatives are approximated by the second-order accurate TVD upwind scheme. The time

derivative is approximated by the time-explicit Euler method. Various tests are carried out

to determine the optimal number of the grid points. It was found that Ncx
= Ncy

= 50 and

Ny = 100 provide the results with 1% of accuracy.

The simulation time step is chosen according to satisfy three conditions. First, the

time step has to be smaller than the time to cross a grid cell, this is the classical numerical

stability condition for the transport part of kinetic equations. Second, the time step has to be

smaller than the mean collision time of each species so that the intermolecular collisions can

be captured properly. Third, the time step has to be significantly smaller than the oscillation

period in order to trace correctly the down plate oscillation via gas-wall collisions.

8.3.2 Numerical tests

In order to examine the developed numerical technique two tests are carried out. The first one

aims to test the correctness of the numerical scheme for the gas mixture model and the second

one explores the capacity of the proposed approach to capture the oscillation phenomena.

8.3.2.1 Steady state Couette flow for the gas mixture

This study aims to compare the results, obtained by the developed numerical approach, with

the results of Ref. [74], where the same McCormack model was used to simulate the steady state

Couette flow of various mixtures. The authors of Ref. [74] adopted the fixed point technique

to obtain the steady solution. The results, obtained by both techniques, are compared below

for the steady state Couette flow of the gas mixture.

The system of equations (8.22), (8.23) subjected to the diffuse boundary conditions

(8.25) is solved here by the time-explicit Euler method. The collisional terms, the right-hand

sides of eqs. (8.22), (8.23) , contain the omega integrals [70], so the intermolecular interaction

potential is to be defined. Two intermolecular interaction laws are tested: the Hard Sphere

(HS) model [70, 107] and the Realistic Potential (RP) [81, 74]. The results, obtained with these

two potentials, are compared with those of Ref. [74]. For the Realistic Potential the omega

integrals are calculated from the analytical expressions provided in Ref. [81]. The proposed

here approach is tested for the He-Xe and Ne-Ar mixtures with various concentrations and

different values of the rarefaction parameter.
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Table 8.2: The mixture shear stress pxy, velocity of each specie uHe, uXe and hydrodynamic
velocity of the mixture u, near the upper plate y = 0.5. The solution, obtained here
with the time dependent technique, is compared with the steady solution of Ref. [74]
for the He-Xe mixture with C0 = 0.1.

δ
pxy uHe uXe u

present [74] present [74] present [74] present
HS HS RP HS RP HS

0a 0.2722
0.01 0.2700 0.2701 0.0096 0.0088 0.0161 0.0132 0.0161
0.1 0.2527 0.2527 0.0558 0.0510 0.0716 0.0719 0.0715
1 0.1655 0.1655 0.2171 0.2049 0.2495 0.2499 0.2494
40 0.01181 0.01187 0.4796 0.4793 0.4829 0.4828 0.4829
40b 0.01187 0.4749

aeq. (8.27)
beq. (8.26)

The results for the dimensionless shear stress pxy of the He-Xe mixture, see eqs. (8.4),

(8.7), (8.19), are compared to the results of Ref. [74], see Tables 8.2, 8.3, for the concentration

of the lighter specie (Ne), equal to 0.1 and 0.5, respectively, and near to the upper (fixed)

plate. Very good agreement is found for HS potential while the slight difference (less than 2%)

appears in the case, when the Realistic Potential is used.

The specie velocities, obtained also for both potentials, are shown in Tables 8.2, 8.3 for

the concentration 0.1 and 0.5, respectively and at the upper plate (y = 0.5). Only the results,

obtained by the realistic potential, are available in Ref. [74]. It is clear that the results for the

small values of the rarefaction parameter and for the lighter specie are different from the results

of [74] for the RP. This difference reduces for the heavier specie. The specie velocities, obtained

here with the HS potential, are very close to the results of Ref. [74] for the RP potential in all

considered range of the rarefaction parameter.

Analytical expressions for the shear stress and velocity profile were obtained in Ref.

[74] for the steady state gas mixture flow in the hydrodynamic (δ → ∞) and slip flow regimes:

u(y) = y
(

1 +
2σp

δ

)−1

, pxy =
1

2δ + 4σp

. (8.26)

Here σp is the velocity slip coefficient. The corresponding values of the mixture velocity and

shear stress in the hydrodynamic flow regime can by obtained by setting σp = 0 in the previous

expressions. For the gas mixture flows the values of this coefficient for several gas mixture

compositions can be found in [187, 188, 189, 143].

The values of the mixture shear stress and velocity in the slip regime (δ = 40) for
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Table 8.3: The mixture shear stress pxy, velocity of each specie uHe, uXe and hydrodynamic
velocity of the mixture u near the upper plate y = 0.5. The solution, obtained here
with the time dependent technique, is compared with the steady solution of Ref. [74]
for the He-Xe mixture with C0 = 0.5.

δ
pxy uHe uXe

HS RP HS RP HS RP
present [74] present [74] present present [74] present present [74]

0a 0.2308
0.01 0.2292 0.2292 0.2290 0.2291 0.0091 0.0064 0.0089 0.0118 0.0131 0.0121
0.1 0.2163 0.2163 0.2154 0.2162 0.0537 0.0408 0.0517 0.0660 0.0715 0.0667
1 0.1482 0.1482 0.1455 0.1480 0.2104 0.1759 0.2050 0.2368 0.2486 0.2382
10 0.03995 0.03999 0.03937 0.03937 0.4227 0.4034 0.4204 0.4326 0.4374 0.4331

aeq. (8.27)

He-Xe mixture, calculated using eq. (8.26), are shown in Table 8.2. The velocity slip coefficient

for the He-Xe mixtures with Helium concentration CHe = 0.1 is taken to be equal to 1.057

[143]. Good agreement is found between the values of the mixture shear stress and mixture

velocity calculated, from the analytical expressions (8.26), and the numerical results, see Table

8.2.

In the free molecular regime the explicit analytical expression for the stress tensor reads

[74]:

pF M
xy =

1

2
√

π





C0
√

C0 + (1 − C0)m2/m1

+
1 − C0

√

C0m1/m2 + (1 − C0)



 . (8.27)

The values of the shear stress for the He-Xe mixture with C0 = 0.1 and 0.5 in the

free molecular regime (δ = 0) are given in Tables 8.2, 8.3, respectively. The good agreement is

found with the present numerical results for δ = 0.01.

From the present comparison we can conclude that the developed here numerical tech-

nique for the simulation of the transient gas mixture behavior gives the results, which are very

close to the results from Ref. [74] for the steady state Couette flow for the binary gas mixture.

8.3.2.2 Oscillatory Couette flow for the single gas

To test the efficiency of the proposed approach to capture the unsteady flow properties the

oscillatory Couette flow of a single gas is simulated using the McCormack model for the same

gas species. The obtained results are compared with those of Ref. [90], where the single gas
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oscillatory flow is simulated using the linearized BGK kinetic equation. The authors of Ref.

[90] assume the oscillation to be fully established so as the dependence of the solution on the

time is harmonic. In this case, introducing the complex distribution function of a special form,

the time dependence of the linearized BGK equation was eliminated and the amplitude and

phase were calculated directly from the solution of the linearized steady state BGK equation.

In the present work the time-dependent McCormack kinetic model equations (for the

same specie) are solved directly and the time dependent data for each macroscopic quantity

are obtained. The amplitude can be extracted from these data by two ways: either numerically

as a half space between a nearest maximum and minimum appearing in the time evolution of

the macroscopic quantity; or by using the fast Fourier transformation [190]. In the present

study the both approaches are used. The following numerical procedure is adopted for the

numerical extraction of the phase and amplitude of a macroscopic quantity. Firstly the last

oscillatory period of a macroscopic quantity is analyzed and the maximum of the recorded

values is associated to the amplitude of oscillation. The corresponding time, ta, is used then

to determine a phase of oscillation. The down plate is assumed to oscillate harmonically with

the initial phase equal to zero, see eq. (8.1). Using eq. (8.1) we can calculate easily the

time moment tp, when the oscillated plate has a maximum velocity during the last period of

oscillations. Then the phase of a macroscopic quantity can be calculated by 2π (tp − ta) /T .

With this definition a phase is found in 2π range.

The numerical solution of the time dependent kinetic equation allows the simulation of

the fully established oscillating flow and also of the "starting time" (delay), i.e. a time needed

to the full establishment of the harmonic oscillatory flow. For several sets of considered δ and

θ parameters it is found that the "starting time" is need and the harmonic oscillations establish

only after some delay. In this case the phase of oscillations increases essentially and it can be

much larger than 2π. This "starting time" is directly related to the penetration depth of the

flow. The both properties for the gas mixture flows will be discussed in Section 8.4.

The numerical results on the amplitude and phase of the shear stress at the down

(oscillating) plate and upper (fixed) plate obtained by the proposed approach are compared in

Table 8.4 with the results of Ref. [90], where the linearized BGK kinetic equation is solved for

a single gas oscillating Couette problem. As it is clear from Table 8.4, the difference between

two results does not exceed 1% for the shear stress and 2% for its phase.

It is to note that very large numerical grids in physical (Ny = 10000) and molecular

velocity (Nc = 400) spaces were needed in Ref. [90] while in the present work the number of

points is essentially reduced and it is equal to Ny = 100 and Ncx
= Ncy

= 50, in the physical

and molecular velocity spaces, respectively.
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In the hydrodynamic and slip flow regimes the analytical expressions for the velocity

and shear stress for a single gas were obtained in Ref. [87, 90] and then in Ref. [90]:

u(y) =
sin

(

(1 + i)
(

δ√
θ

− (y + 0.5)
√

θ
))

sin
(

(1 + i) δ√
θ

) ×
1 + (1 + i) σp√

θ
cot

(

(1 + i)
(

δ√
θ

− (y + 0.5)
√

θ
))

1 − 2i
σ2

p

θ
+ 2(1 + i) σp√

θ
cot

(

(1 + i) δ√
θ

) ,

(8.28)

pxy(y) =
1 + i

2
√

θ
×

cos
(

(1 + i)
(

δ√
θ

− (y + 0.5)
√

θ
))

sin
(

(1 + i) δ√
θ

) ×
1 − (1 + i) σp√

θ
tan

(

(1 + i)
(

δ√
θ

− (y + 0.5)
√

θ
))

1 − 2i
σ2

p

θ
+ 2(1 + i) σp√

θ
cot

(

(1 + i) δ√
θ

) .

(8.29)

The both previous expressions depend besides on the two rarefaction δ and oscillation

speed θ parameters also on the velocity slip coefficient σp. This coefficient was calculated for

several gas mixtures in Refs. [187, 188, 189, 143]. In Section 8.4 we will compare the values of

the mixture velocity and shear stress, obtained numerically by the proposed approach, with the

analytical expressions (8.28), (8.29) from Ref. [90], calculated with the velocity slip coefficient

for the corresponding mixture.

It was also found in Refs. [87, 90] that in the free molecular flow regime (δ = 0) the

stationary solution

u =
1

2
, pxy =

1

2
√

π
(8.30)

can be used for any value of the oscillation speed parameter θ. In the high oscillation speed

limit (θ → 0) and for arbitrary rarefaction parameter δ the analytical solution for the case of

the single gas was also obtained in [90]. For the bottom oscillating plate this analytical solution

reduces to the same expression, eq. (8.30).

8.4 Results: Oscillatory Couette flow for the gas mixture

After the series of tests the McCormack model with the Hard Sphere intermolecular potential

is applied for simulation of the oscillatory Couette flow. Two mixtures are considered: Ne-Ar

mixture for three values of the concentration C0 = 0.1, 0.5, 0.9 and He-Xe mixture for only one

value of concentration C0 = 0.5. The numerical simulations are conducted for three values of

rarefaction parameter δ = 0.1, 1, 10 and three values of the frequency scale θ = 0.1, 1, 10. The
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Table 8.4: The amplitude P and phase ϕP of shear stress near the two plates y = ±0.5 for
oscillatory Couette flow for the oscillatory speed parameter θ = 1. The present
solution is compared with the solution obtained in Ref. [90] for a single gas. The
results for δ = 10 do not provided in Ref. [90] due too that fact that for this case the
penetration depth, see Section 8.4.1 for details, is smaller than the distance between
the plates.

δ
P ϕP

present BGK [90] present BGK [90]
y = −0.5 y = 0.5 y = −0.5 y = 0.5 y = −0.5 y = 0.5 y = −0.5 y = 0.5

0.1 0.2634 0.2579 0.2634 0.2580 −0.0221 0.1605 −0.0222 0.1608
1 0.2647 0.1114 0.2665 0.1114 −0.1871 1.2839 −0.1868 1.3051

molecular masses for Ne-Ar and He-Xe mixtures are equal to 20.183 and 39.948; and 4.0026

and 131.3 atomic units, respectively. The molecular diameter ratio is equal to 1.406 and 2.226,

respectively, see Refs. [81, 74]. The numbers are associated for each pair of the governed

parameters (θ and δ) and they are listed in Table 8.1. All cases are calculated on the same

numerical grid provided in the beginning of Section 8.3.

8.4.1 Penetration depth

To analyze the oscillating flow behavior, namely to estimate the intensity of the perturbation’s

propagation from the down oscillating plate, the penetration depth [87, 90] can be very helpful.

The penetration depth, dp, is a measure of how deep the initial perturbation can penetrate into

a media. It is defined as the distance from moving wall at which the velocity amplitude decays

to 1% of its excitation value (U(y = dp)/U0 = 0.01). It will be interesting to calculate the

penetration depth for various mixture, but it needs the simulation of the gas behavior near a

single oscillating plate (Stokes’ second problem) and therefore to change the problem statement

considered here. The second possibility to calculate the penetration depth, by using the two

parallel plates configuration, is to simulate the case, when the rarefaction parameter tends to

infinity.

The penetration depth was calculated in Ref. [89] for the case of the longitudinally

oscillated plate in a single gas. The penetration depth is found decreasing with increasing

of the oscillation speed parameter θ. We use here the results obtained in [89] to estimate

the penetration depth in the oscillatory Couette flow of the gas mixture. Three values of

the penetration depth, 7.5355, 3.6010 and 1.3080 are provided by the authors of Ref. [89],

which correspond to three values of the oscillation speed θ, 0.1, 1 and 10. Using adopted here

dimensionless parameters the dimensionless penetration depth is recalculated from the results

of Ref. [89] and it is provided in Table 8.5.
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Table 8.5: Some data on the penetration depth dp for Ne-Ar and He-Xe mixtures with C0 = 0.5.
The penetration depth, obtained in Ref. [89] for the case of a oscillating plate in
a single gas, is given in the last column. The initial values from Ref. [89] are
recalculated by using adopted here dimensionless parameters.

θ δ
Ne-Ar He-Xe

Single gas [89]
Ne Ar He Xe

0.1
0.1 > 1 > 1 > 1 > 1 7.5355
1 0.60 0.43 > 1 > 1 0.7536
10 0.09 0.07 0.25 0.16 0.0754

1
0.1 > 1 > 1 > 1 > 1 36.010
1 > 1 > 1 > 1 > 1 3.601
10 0.37 0.36 0.49 0.33 0.3601

10
0.1 > 1 > 1 > 1 > 1 130.8
1 > 1 > 1 > 1 > 1 13.08
10 > 1 > 1 > 1 > 1 1.308

In the case when the penetration depth for a single gas is estimated smaller than the

dimensionless distance between the plates, equal to 1, the values of the penetration depth for

each specie are provided in Table 8.5. The symbol ” > 1” in Table 8.5 means that the amplitude

of the specie velocity at the upper plate is larger than 1% of its initial value. It is clear that

the estimated here penetration depth of each specie is different from the penetration depth

of a single gas, especially for the He-Xe mixture. However, we consider these results for the

specie penetration depth with precaution, because we calculated these values in the two plate

configuration statement and for moderate value of the rarefaction parameter δ = 10, so in

this case the second upper plate can impact slightly the results. We would like to underling

anew that an additional study to determine the penetration depth for the gas mixture will be

interesting.

If we refers on the single gas results for the penetration depth, so for three pairs of δ and

θ parameters, (1, 0.1), (10, 0.1), (10, 1), which correspond to the cases 2, 3 and 6, see Table 8.1,

the penetration depth (established for a single gas) is smaller than the dimensionless distance

between the plates. Therefore, we expect that the amplitude of the macroscopic velocity at the

upper plate will be smaller than 1% of that at the oscillated plate.

8.4.2 Transient behaviors

The mixture shear stress time evolution on the down and upper plates (y = ±0.5) are shown

in Figure 8.1a) for δ = 1 and θ = 1 in the He-Xe mixture with C0 = 0.5. The differences

in the mixture shear stress amplitude and phase between two plates are clearly seen, Figure

8.1a). The specie velocities at the moving plate follow the plate’s displacement, with the smaller
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amplitude as the amplitude of the plate’s oscillation, see Fig. 8.1b), where the velocities for

each specie are shown. Near the moving plate the amplitudes of both species are very close one

to the other, the amplitude of the lighter gas is slightly higher, and the both velocities have the

same phase. However, the oscillations of the gas at the upper (fixed) plate become different,

see Fig. 8.1b): the specie amplitudes decrease and the phases shift compared to the phase of

the moving plate. The amplitudes of each specie and their phases become different. Therefore

the gas mixture oscillations at the upper plate can be considered as a response of the media

on the perturbation cased by the moving bottom plate, so in the following we will analyze the

behavior of the gas mixture at the upper (fixed) plate.

Two types of the transient behavior is be observed for the upper (fixed) plate. The first

type, see 8.2, is the most common type. The cases 1, 4, 5, 7, 8, 9, see Table 8.1 for the numbers

associated to each set of δ and θ parameters, belong to this first type. Figure 8.2 represents

the time evolution of the specie velocities and the specie shear stress and that of the mixture

at the upper plate for the case 1 (δ = 0.1 and θ = 0.1) of Ne-Ar mixture with C0 = 0.5. As it

is clear from Fig. 8.2, for this type of the transient behavior the gas mixture oscillations on the

upper plate start quasi immediately. However, the amplitude of each macroscopic parameter

during the first period is slightly higher than its the steady state value. The amplitude of Neon

velocity is larger than that of Argon, withal the shear stress amplitude of Argon is higher than

that of Neon.

It is also to note that for all simulated cases of this first type, the penetration depth,

calculated for a single gas, is larger than the distance between the plates, see Table 8.5. Con-

sequently the starting time is near to zero because the oscillations starts quasi immediately at

the upper plate.

In the case of the transient behavior of the second type, cases 2, 3 and 6, several non-

harmonic motions are needed to establish the steady state oscillating flow behaviors. The time

evolution of the species velocities, of the species shear stress and that of the mixture for the

case 6 (δ = 10 and θ = 1) of Ne-Ar mixture with C0 = 0.5 are shown on Fig.8.3a) and b),

respectively. As it is clear from this Figure a relatively long time ("starting time" delay time)

is needed to establish the oscillations of the gas mixture at the upper plate. It is also to note,

that the amplitudes of the all oscillating parameters are very small, they are smaller than

1% of the excitation amplitude. For all the cases of this second type the penetration depth

(estimated with a single gas) is smaller than the distance between the plates, see Table 8.5.

We can conclude that this transient behavior appears only for the cases, where the penetration

length is smaller compared to the dimensionless distance between the plates. Contrary to the

previous case 1, δ = 0.1 and θ = 0.1, see Fig. 8.2, the shear stress amplitude of Neon is larger

than that of Argon, see Fig.8.3d) and 8.2b).
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Table 8.6: Amplitudes of specie shear stress PNe, PAr and velocity UNe, UAr versus θ and δ at
y = ±0.5, the concentration is equal to 0.5.

θ δ
PNe PAr UNe UAr

y = −0.5 y = +0.5 y = −0.5 y = +0.5 y = −0.5 y = +0.5 y = −0.5 y = +0.5

0.1
0.1 0.2300 0.1676 0.3247 0.2045 0.5017 0.2445 0.5000 0.2000
1 0.2310 0.0019 0.3250 0.0119 0.5008 0.0165 0.5007 0.0167
10 0.2278 − 0.3204 − 0.5074 − 0.5069 −

1
0.1 0.2177 0.2141 0.3020 0.2945 0.5533 0.4154 0.5593 0.3976
1 0.2172 0.0990 0.3079 0.1198 0.5575 0.1465 0.5548 0.1253
10 0.2188 − 0.3075 − 0.5563 − 0.5563 −

10
0.1 0.2162 0.2162 0.2990 0.2989 0.5661 0.4335 0.5770 0.4224
1 0.1491 0.1444 0.1953 0.1872 0.7335 0.2569 0.7523 0.2369
10 0.1377 0.0077 0.1840 0.0097 0.7895 0.0132 0.8027 0.0120

Here, we do not present any detailed discussion on the dynamic system responses for

the individual cases, since the behaviors are qualitatively similar to that of the described cases

1 and 6 and they are similar for each gas mixture.

8.4.3 Amplitude and phase

The amplitudes of the specie shear stress and specie velocity for the Ne-Ar mixture with C0 =

0.5 at the down and upper plates are shown in Table 8.6. For several pairs of θ, δ the amplitude

of the macroscopic quantities near the fixed plate does not appear in this Table. It is related to

the fact that the corresponding penetration depth is small compared to the distance between

the plates and so the amplitude of any macroscopic parameter is smaller than 0.1% of the initial

amplitude, and thus it is too small to be interesting to be provided.

The data, given in Table 8.6 on the amplitudes of the specie shear stress, are plotted in

Fig. 8.4a) and b) at the bottom and upper plates, respectively. These amplitudes have different

behaviors. At the bottom plate the amplitudes of the specie shear stress are quasi constant for

the oscillation speed parameter θ equal to 0.1 and 1 and for various values of the rarefaction

parameter, while for θ = 10 they decrease with δ increasing. In the same time, the upper

plate’s amplitudes decrease with δ decreasing for all considered values of the oscillation speed

parameter. The difference between the amplitudes of the species shear stress is still reduced

near the upper plate, see Fig. 8.4b), but the amplitude of heavier specie (Ar) remains larger

than that of the lighter one.

The amplitudes of the specie velocities, provided in Table 8.6, are shown in Fig. 8.4c)

and d). At the oscillating plate the amplitudes of each specie velocity are very similar, the

maximal difference between two amplitudes is found for θ = 10 and it does not exceed 3%,
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the heavy specie (Ar) has slightly larger velocity. The amplitudes of specie velocities on the

bottom plate depend strongly on the oscillation speed parameter θ: they remain constant for

θ = 0.1 and 1, with δ increases, as the amplitude of the shear stress, while for θ = 10 the specie

velocity amplitudes increase considerably.

Completely different behavior is observed for the amplitude of the specie velocities on

the upper plate. For all considered values of the oscillation speed parameter θ the amplitudes

of the specie velocity decrease with δ increasing and the specie velocity vanishes for δ = 10.

Conversely to the bottom plate, the lighter specie (Ne) has the slightly larger velocity.

The phases of the species shear stress and that of the specie velocity are shown in

Table 8.7 on the bottom and upper plates. Near the oscillating plate the phases of the shear

stress for each specie are close one to the other. For each fixed oscillation speed, the phase

behaviors non-monotonically with increasing of the rarefaction parameter, see Table 8.7, except

for θ = 10, where the phase increases with the rarefaction parameter increases. On the upper

fixed plate the phases of the specie shear stress are always negative and increase in absolute

value with δ increases. The phases of the specie velocity, see 8.7, are always negative for both

plates and they are similar for both species at the bottom plate. For the upper plate the

difference between the phase of each specie increases as for the shear stress; the phases increase

in absolute value with δ increases.

The amplitudes of the mixture shear stress for the Ne-Ar mixture with C0 = 0.5 via

distance between the plates are shown on Fig. 8.5a) for θ = 1 and for three values of the

rarefaction parameter. The qualitative behavior of the mixture amplitude is similar to that

of the single gas, see Ref. [90]. It can be seen, Fig. 8.5a), that the variation of P is small

for δ = 0.1, while for δ = 10 it sharply decays near the moved plate. Figure 8.5b) shows

the dependence of the amplitude of the specie velocities on dimensionless distance between the

plates. The specie velocity amplitude profiles decay faster with higher δ. This decay behavior is

similar to, but steeper than that of shear stress amplitude profiles. Neon velocity amplitude is

almost slightly higher than that of Argon at the same position. However, the two specie velocity

amplitude profiles cross each other at around y = −0.25 only for the case with δ = 0.1.

8.4.4 Influence of the concentration

The influence of the specie concentration is studied for three values of the concentration C0 =

0.1, 0.5 and 0.9. The amplitude of the mixture shear stress P and its phase for all three values of

concentration are shown in Tables 8.8 and 8.9, respectively. For the amplitude of the shear stress

at the bottom and upper plates the similar trend is observed: the minimal value is obtained

for the concentration equal to 0.5. It is to note that the minimum of the concentration was
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Table 8.7: Phase of specie shear stress ϕPNe
, ϕPAr

and specie velocity ϕUNe
, ϕUAr

versus θ and
δ at y = ±0.5.

θ δ
ϕPNe

ϕPAr
ϕUNe

ϕUAr

y = −0.5 y = +0.5 y = −0.5 y = +0.5 y = −0.5 y = +0.5 y = −0.5 y = +0.5

0.1
0.1 0.02338 −1.069 0.02474 −1.418 −0.02900 −1.386 −0.02818 −1.846
1 0.01822 −11.94 0.01890 −8.952 −0.02433 −15.25 −0.02433 −15.39
10 0.03256 − 0.03256 − −0.02180 − −0.02180 −

1
0.1 0.01825 −0.1350 0.02559 −0.1825 −0.04512 −0.2462 −0.05618 −0.3155
1 0.1730 −1.135 0.1893 −1.421 −0.1825 −1.470 −0.1920 −1.762
10 0.1522 − 0.1658 − −0.1659 − −0.1740 −

10
0.1 0.0022 −0.0138 0.0031 −0.0188 −0.00593 −0.02653 −0.00767 −0.03452
1 0.1013 −0.1543 0.1292 −0.1881 −0.05871 −0.2023 −0.06518 −0.2368
10 0.4796 −2.695 0.5147 −2.802 −0.1700 −2.830 −0.1687 −2.894

Table 8.8: Influence of concentration on amplitude of mixture shear stress P at y = ±0.5 for
Ne-Ar mixture. The results for the single gas oscillating Couette flow from Ref. [90]
are provided in the last two columns.

θ δ
P

C0 = 0.1 C0 = 0.5 C0 = 0.9 single gas [90]
y = −0.5 y = +0.5 y = −0.5 y = +0.5 y = −0.5 y = +0.5 y = −0.5 y = +0.5

0.1
0.1 0.2801 0.1887 0.2773 0.1832 0.2793 0.1870 0.2813 0.2813
1 0.2806 0.0147 0.2780 0.0051 0.2798 0.0137 0.2819 0.0073
10 0.2769 − 0.2742 − 0.2762 − − −

1
0.1 0.2624 0.2569 0.2598 0.2542 0.2617 0.2561 0.2634 0.2580
1 0.2648 0.1105 0.2625 0.1083 0.2641 0.1099 0.2665 0.1114
10 0.2188 − 0.3075 − 0.5563 − − −

10
0.1 0.2602 0.2601 0.2576 0.2575 0.2594 0.2594 0.2612 0.2611
1 0.1735 0.1672 0.1722 0.1679 0.1732 0.1668 0.1741 0.1679
10 0.1615 0.0089 0.1609 0.0087 0.1613 0.0088 0.1627 0.0091

found for C0 = 0.85 in Ref. [74] in the case of the steady-state Couette flow of the gas mixture.

The maximal difference in the shear stress amplitude, with the concentration changing, is of

the order of 1% for the bottom plate and 2% for the upper plate. The results, obtained in Ref.

[90] for the single gas oscillation Couette flow are given in the last two column of Tables 8.8

and 8.9. It is clearly seen that the shear stress amplitude of a single gas is slightly larger than

that of the mixture. The impact of the molar concentration on the phase of the shear stress is

very small, see Table 8.9.
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Table 8.9: Influence of concentration on phase of mixture shear stress ϕP at y = ±0.5 for Ne-Ar
mixture. The results for the single gas oscillating Couette flow from Ref. [90] are
provided in the last two columns.

θ δ
ϕP

C0 = 0.1 C0 = 0.5 C0 = 0.9 single gas [90]
y = −0.5 y = +0.5 y = −0.5 y = +0.5 y = −0.5 y = +0.5 y = −0.5 y = +0.5

0.1
0.1 −0.0249 1.2555 −0.0241 1.2585 −0.0246 1.2566 −0.0248 1.2514
1 −0.0181 13.220 −0.0189 21.530 −0.0181 12.453 −0.0188 6.9678
10 −0.0210 − −0.0210 − −0.0210 − − −

1
0.1 −0.0223 0.1613 −0.0225 0.1625 −0.0224 0.1616 −0.0222 0.1608
1 −0.1855 1.2958 −0.1826 1.2912 −0.1845 1.2916 −0.1868 1.3051
10 −0.1623 − −0.1609 − −0.1623 − − −

10
0.1 −0.0027 0.0166 −0.0027 0.0167 −0.0027 0.0166 −0.0026 0.0165
1 −0.1161 0.1723 −0.1172 0.1734 −0.1164 0.1725 −0.1158 0.1719
10 −0.5023 2.7606 −0.4997 2.7547 −0.5015 2.7576 −0.5053 2.7873

8.4.5 Comparison between two mixtures (Ne-Ar and He-Xe) and with the single gas

case

The shear stress amplitude P and phase ϕP of the Ne-Ar and He-Xe mixtures with concentration

C = 0.5 on both plates are shown in Tables 8.10 and 8.11, respectively, for various values of the

rarefaction δ and oscillation speed θ parameters. In the same Tables the shear stress and phase,

obtained in Ref. [90] for the single gas are provided. The values of the shear stress amplitude

for δ = 0 and ∞ was obtained analytically in Ref. [90] and are also given in Table 8.10. In

the case of the free molecular flow regime (δ = 0) the amplitude of the shear stress of the

single gas is found to be independent on the oscillation speed, see eq. (8.30). In the case of the

hydrodynamic flow regime (δ → ∞) the analytical expression, found in Refs. [87], [90], can be

used with σp = 0, see eq. (8.29) and Refs. [87, 90]. When θ → ∞ the results obtained in Ref.

[74] for the steady state Couette flow for the Ne-Ar and He-Xe mixtures are provided in the

last rows of Table 8.10. The mixture shear stress is constant for the steady state Couette flow,

therefore the shear stress results are placed only at the column corresponding to y = −0.5.

The results obtained in the present paper for the shear stress amplitude of Ne-Ar

mixture differ in the order of 2% from the single gas results, except the case θ = 0.1 and δ = 1

and at the upper plate, where this difference is of the order of 30% for the case δ = 1 and

θ = 0.1. This difference can be explained by the low level of the shear stress value in this case

and therefore more difficult to capture. The same behavior is observed for the phase of the

shear stress, see Table 8.11. Therefore, the characteristics of the oscillated mixture flows can

be estimated with good accuracy by the results obtained for a single gas case, when the mass

ratio of the mixture species is close to one it is equal to 1.979 for the Ne-Ar mixture case).
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When comparing the results for the He-Xe mixture, the significant difference, up to

30%, between the single gas results is obtained. This difference reduces when rarefaction

parameter increases. Therefore, the single gas results cannot be used for the estimation of the

oscillatory gas mixture flow with the disparate molecular masses, (it is equal to 1.979 for the

He-Xe mixture case).

When comparing the results for oscillation speed parameter θ = 10 with those obtained

for the steady state flow (θ → ∞) one can observes that these results are very different,

especially for δ = 10, with ∼ 74% of difference for both mixtures. Therefore the steady state

results cannot be used for the estimation of the oscillatory characteristics, even if the oscillation

speed parameter is relatively high and so the oscillations are slow.

8.4.6 Slip regime

The amplitude and phase profiles of mixture shear stress between the plates are compared

with the analytical solutions, eqs. (8.28) and (8.29) obtained in Refs. [87, 90] in the case of

hydrodynamic and slip flow regime and for the oscillations of a single gas, see Figs. 8.6. It is

clear that very good agreement is found for the case of θ = 10 and δ = 10. However for the

smaller value of the oscillation speed θ = 1, also in slip regime (δ = 10) the single gas analytical

solution cannot predict the results of the gas mixture.

8.5 Conclusions

The simple approach is implemented for the simulation of the oscillatory Couette flow of the gas

mixtures. The proposed approach was firstly tested by comparing with the results, previously

obtained by the other authors in the case of the steady-state flow of the gas mixtures and

also in the case of oscillatory flow of a single gas. Very good agreement with these previously

obtained results was found. Then, the simulation of the Ne-Ar and He-Xe mixtures are carried

out for large range of the rarefaction parameter, oscillation speed parameter and for three

values of the concentration, only for Ne-Ar mixture. It is found that the characteristics of the

mixture, like the amplitudes of the mixture shear stress and mixture velocities, are very close

to those found for the oscillatory flow of a single gas and the single gas results can be used

for the estimations of the mixture parameters in the case, when the molecular masses of the

components are relatively close one to the other. However, in the case of the He-Xe mixture the

results are very different (up to 30%) from the single gas results. It was found that similarly to

the steady state flows the amplitude of the mixture shear stress is lower than that of the single

gas. It was also found that even for the relatively large oscillation speed parameter θ = 10,
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Table 8.10: Amplitude of the mixture (Ne-Ar and He-Xe with C0 = 0.5) shear stress P versus
θ and δ at y = ±0.5 compared with single gas results, obtained using the linearized
BGK kinetic model in Ref. [90]. For θ → ∞ the steady-state solution from Ref.
[74] is provided. The steady-state solution of the Couette flow for the single gas
from Ref. [83] is used.

θ δ
P

y = −0.5 y = +0.5
Ne-Ar He-Xe single [90] Ne-Ar He-Xe single [90]

0 all − − 0.2821 − − −

0.1

0 0.2821 0.2821
0.1 0.2773 0.2303 0.2813 0.1832 0.1249 0.1819
1 0.2780 0.2307 0.2819 0.0051 0.0157 0.0073
10 0.2742 0.2282 − − − −
∞ 0.4137 0.3521 0.4220

1

0 0.2821 0.2821
0.1 0.2598 0.2187 0.2634 0.2542 0.2119 0.2580
1 0.2625 0.2229 0.2665 0.1083 0.0826 0.1114
10 0.2631 0.2219 − − − −
∞ 0.3088 0.2743 0.3132

10

0 0.2821 0.2821
0.1 0.2576 0.2614 0.2612 0.2575 0.2163 0.2611
1 0.1722 0.1536 0.1741 0.1679 0.1458 0.1658
10 0.1609 0.1504 0.1627 0.0087 0.0071 0.0091
∞ 0.1633 0.1541 0.1644

∞

0 0.2781a 0.2308a 0.2821b

0.1 0.2576a 0.2162a 0.2612b

1 0.1675a 0.1480a 0.1695b

10 0.04139a 0.03994a 0.0416b

∞ 0a 0a −
aResults from Ref. [74] for the steady-state gas mixture
bResults from Ref. [83] for the steady-state gas mixture



140

Table 8.11: Phase of the mixture (Ne-Ar and He-Xe with C0 = 0.5) shear stress ϕP versus θ
and δ at y = ±0.5 compared with single gas results, obtained from the linearized
BGK kinetic equation in Ref. [90].

θ δ
ϕP

y = −0.5 y = +0.5
Ne-Ar He-Xe single [90] Ne-Ar He-Xe single [90]

0.1

0
0.1 −0.0241 −0.0159 −0.0248 1.2585 −4.8972 1.2514
1 −0.0189 −0.0140 −0.0188 21.530 −4.7309 6.9678
10 −0.0210 −0.0210 − − − −
∞ −0.1312 −0.1116 −0.1339

1

0
0.1 −0.0225 −0.0215 −0.0222 0.1625 −6.0899 0.1608
1 −0.1826 −0.1313 −0.1868 1.2912 −4.8629 1.3051
10 −0.1609 −0.1174 − − − −
∞ −0.3139 −0.2778 −0.3186

10

0
0.1 −0.0027 −0.0029 −0.0026 0.0167 −6.2630 0.0165
1 −0.1172 −0.1220 −0.1158 0.1734 −6.0810 0.1719
10 −0.4997 −0.4498 −0.5053 2.7547 −3.5240 2.7873
∞ −0.5428 −0.5089 −0.5469

slow oscillations, the steady-state results are very different from that obtained here for the

oscillatory gas mixture flows.
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Figure 8.1: The evolution in time of the mixture shear stress (a) and of the specie velocity (b)
on the down and upper plates for He-Xe mixture C0 = 0.5, the case of δ = 1, θ = 1.
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Figure 8.2: Time evolution of the macroscopic parameters at the upper plate for the case 1, see
Table 8.1, θ = 0.1 and δ = 0.1, the Ne-Ar mixture with C0 = 0.5; (a) specie velocity
time evolution, (b) specie shear stress and mixture shear stress time evolution.
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mixture shear stresses; (c) specie velocity time evolution, several last periods; (d)
specie and mixture shear stress evolution, several last periods.
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Figure 8.4: Amplitude of macroscopic parameters (specie shear stress and velocity) via δ and θ
for Ne-Ar mixture with C0 = 0.5.
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tude, (b) the species velocity amplitude, Ne (dashed line), Ar (dotted line).
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analytical solution proposed in Ref. [90] for the cases 8, 9 and for Ne-Ar mixture
with C0 = 0.5.



Chapter 9

Conclusions and Outlook

9.1 Conclusions

This thesis is devoted to the development of various numerical tools for simulation of rarefied gas

flows based on kinetic models of the Boltzmann equation. Several iso/non-isothermal internal

flow problems of single/binary gas mixture are simulated with steady/unsteady formulations.

The obtained numerical results are compared with the open literature and with the available

analytical solutions. It is shown that discrete velocity method of kinetic equations is a reliable

and efficient compared to numerical methods for full Boltzmann equation (DSMC method and

FSM). The main results of this work are summarised as follows:

• Heat transfer between two concentric spheres is simulated using the nonlinear form of

the S-model kinetic equation for the large range of the rarefaction parameter. Small,

moderate and large temperature and radius ratios are considered. The classical Maxwell

diffuse-specular boundary conditions are used at the internal sphere surface and the com-

plete accommodation is assumed on the external sphere. The time-dependent governing

equations are discretized based on the discrete velocity method. The upwind approxi-

mation is used for the spatial derivatives. The implicit algorithm allows us to reduce

considerably the computational time when only steady state solution is needed. Non

monotonic behavior of the heat flux as a function of the rarefaction parameter δ0 is found

in the case of the strong temperature ratio between the spheres’ surfaces. The essential

pressure variation in the radial direction is found for the small and moderate values of the

rarefaction parameter. The analytical relations for the temperature and the heat flux in

the slip flow regime is obtained for the arbitrary temperature and radius ratio and very

good agreement has been found between these analytical expressions and the numerical

solution of the S-model equation. The analytical expressions for the number density, tem-

perature and heat flux have been derived for the free molecular regime under assumption
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of the complete accommodation for the external sphere and the diffuse-specular reflection

on the internal sphere surface. The approximate expression for the heat flux valid for

all flow regimes and arbitrary temperature and radius ratio and under an assumption of

the diffuse-specular reflection on the internal sphere and diffuse reflection on the external

sphere is proposed.

• Unsteady heat transfer between two coaxial cylinders due to the sudden change of the

internal cylinder temperature is studied on the basis of the S-model kinetic equation. The

simulations have been carried out from the near free molecular to the hydrodynamic flow

regimes for one cylinders radius ratio and two cylinders’ walls temperature ratios. It is

found that for the smallest temperature ratio T = 1.3 the time to reach the steady state

value for the averaged heat flux varies approximately from 2.5 to 44 of the characteristic

times between the near free molecular and the hydrodynamic flow regimes and it has a

minimum in the beginning of the transitional flow regime. Comparing the monoatomic

gases behavior in a real geometry it is obtained that at the same working pressure the time

needed for Xenon to reach its steady state is 6 times longer than that for Helium. When

the temperature ratio increases up to T = 2 the steady state time decreases approximately

by 5%. In the slip flow regime the time ts can also be found from the solution of the

energy equation subjected to the temperature jump boundary conditions.

• Transient flow of rarefied gas through an orifice is studied on the basis of nonlinear S-model

kinetic equation. The simulations are conducted from the free molecular to hydrodynamic

regimes for four values of pressure ratio between reservoirs. The mass flow rate evolution

in time is analyzed and it is found that the time to reach the steady state mass flow

rate depends essentially on the pressure ratio between the reservoirs and on the gas flow

regime in the left reservoir. It needs from 2.35 to 30.37 characteristic times to obtain

the steady state mass flow rate, the maximal time to reach the steady state is found

in the slip regime for the largest pressure ratio 0.9. The simple fitting formula for the

time dependence of the mass flow rate is proposed. It is shown numerically that the flow

through the thin orifice never becomes really choked.

• The simple method, proposed previously by other authors, is applied to calculate the

gas mass flow rate through the channel of the variable rectangular cross section. The

calculations are based on the results of the numerical solution of the linearized S-model

kinetic equation obtained by other authors and completed using the same approach in

the present paper. The explicit analytical expressions are proposed in the case of the hy-

drodynamic and free molecular flow regimes. The simple interpolation method is realized

to calculate the mass flow rate in the transitional flow regime. The numerical results are

compared with analytical solutions and measurements to investigate the phenomenon of



147

gas flow diodicity. It is shown that the mass flow rate is significantly higher when the

tapered channel is perfused like a nozzle (compared to diffusor). It can therefore be stated

that under moderately rarefied conditions micro-sized ducts with alongside varying cross

section act as a gas flow diode. The theoretically and experimentally analyzed diode effect

increases with gaseous rarefaction whereby both presented models can predict that effect

qualitatively.

• Couette and Fourier flows between parallel plates are simulated using the McCormack

kinetic model of the linearized Boltzmann equation and the linearized Boltzmann equation

itself. Two types of gas mixture are considered: one with similar molecular masses (Ne-Ar)

and one with very different molecular masses (He-Xe). Three values of concentrations are

considered and the simulations are carried out in the near free molecular, transitional and

slip flow regimes. For plane Couette and Fourier flows of gaseous mixture, McCormack

model gives reliable solutions, which are in good agreement with solutions of linearized

Boltzmann equation.

• The simple approach is implemented for the simulation of the oscillatory Couette flow

of the gas mixtures. The proposed approach was firstly tested by comparing with the

results, previously obtained by the other authors in the case of the steady-state flow of the

gas mixtures and also in the case of oscillatory flow of a single gas. Very good agreement

with these previously obtained results was found. Then, the simulation of the Ne-Ar and

He-Xe mixtures are carried out for large range of the rarefaction parameter, oscillation

speed parameter and for three values of the concentration, only for Ne-Ar mixture. It is

found that the characteristics of the mixture, like the amplitudes of the mixture shear

stress and mixture velocities, are very close to those found for the oscillatory flow of

a single gas and the single gas results can be used for the estimations of the mixture

parameters in the case, when the molecular masses of the components are relatively close

one to the other. However, in the case of the He-Xe mixture the results are very different

(up to 30%) from the single gas results. It was found that similarly to the steady state

flows the amplitude of the mixture shear stress is lower than that of the single gas. It

was also found that even for the relatively large oscillation speed parameter θ = 10, slow

oscillations, the steady-state results are very different from that obtained here for the

oscillatory gas mixture flows.

9.2 Outlook

Potential developments of this work are given as follows
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• Development a hybrid scheme that couple kinetic equation with Navier-Stokes solver to

simulate two-phase gas-liquid flow.

• Development of kinetic equation solver in an open source software such as OpenFOAM

allows users freedom to customize.

• Development a numerical tool on the basis of kinetic equation to simulate rarefied gas flow

through porous media offers many application in petroleum engineering and membrane

engineering.
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Appendix A

Details on McCormack model

The υ
(i)
αβ functions in the collision term of McCormack model (7.11) are defined as following
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(A.1)

where

mαβ =
mαmβ

mα + mβ

(A.2)

is the reduced mass of the mixture. In expressions (A.1) the Ω
(ij)
αβ functions represent the omega

integral [70], which for the case of the HS model are defined as [70]

Ω
(ij)
αβ =

(j + 1)!

8

[

1 − 1 + (−1)i

2(i + 1)

](

πkT
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(dα + dβ)2 , (A.3)

where dα is the molecular diameter of species α. The numerical simulations are carried out

using dimensionless quantities. The dimensionless omega integrals are defined as follows
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As an example, the dimensional and dimensionless form of Ω
(1,1)
αβ are given below
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The dimensionless υ
(n)
αβ functions (A.1) are defined as follows

υ
∗(i)
αβ = υ

(i)
αβ





1

4

√

πkT

2m12

d2
1n1





−1

. (A.6)

As an example, the dimensional and dimensionless form of υ
(1)
αβ function are
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(A.7)

It is noted that γα, Sα have the same dimension as υ
(i)
αβ so we use the same reference quantity

to obtain the dimensionless expressions for these functions.

The expressions for the reduced collision terms in eqs. (8.22) and (8.23)
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