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Over the past few decades, significant medical
advances have been made in the area of drug deliv-
ery with the development of controlled release
dosage forms. There are large variety of formula-
tions devoted to oral controlled drug release, and
also the varied physical properties that influence
drug release from these formulations. The release
patterns can be divided into those that release drug
at a slow zero or first order rate and those that pro-
vide an initial rapid dose, followed by slow zero or
first order release of sustained component (1). The
purpose of the controlled release systems is to main-
tain drug concentration in the blood or in target tis-
sues at a desired value as long as possible (2). In
other words, they are able to exert a control on the
drug release rate and duration (3). For this purpose,
generally, controlled release system initially release
part of the dose contained in order to attain rapidly
the effective therapeutic concentration of the drug.
Then, drug release kinetics follows a well defined
behavior in order to supply the maintenance dose
enabling the attainment of the desired drug concen-
tration. 

In the light of wide versatility of application of
controlled release formulations, in the field of med-
ical sciences, they are unavoidable tools for the
exploitation of the modern concept of therapeutic

treatment whose aim is to increase drug effective-
ness and patient compliance, to reduce the adminis-
tration frequency and side effects connected to dos-
ing. As a matter of fact, controlled release formula-
tions bring engineers and pharmacists to work
together with the common aim of realizing more and
more effective products. For this purpose, the use of
mathematical modeling turns out to be very useful
as this approach enables, in the best case, the pre-
diction of release kinetics before the release systems
are realized. More often, it allows the measurement
of some important physical parameters, such as the
drug diffusion coefficient and resorting to model fit-
ting on experimental release data. Thus, mathemati-
cal modeling, whose development requires the com-
prehension of all the phenomena affecting drug
release kinetics (4), has a very important value in the
process optimization of such formulation. The
model can be simply thought as a ìmathematical
metaphor of some aspects of realityî that, in this
case, identifies with the ensemble of phenomena rul-
ing release kinetics (5-9). For this generality, math-
ematical modeling is widely employed in different
disciplines such as genetics, medicine, psychology,
biology, economy and obviously engineering and
technology.
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Fundamentals of kinetics of drug release

Noyes-Whitney Rule

The fundamental principle for evaluation of the
kinetics of drug release was offered by Noyes and
Whitney in 1897 as the equation (10):

dM/dt = KS (Cs ñ Ct) (1)
where M, is the mass transferred with respect to time,
t, by dissolution from the solid particle of instanta-
neous surface, S, under the effect of the prevailing
concentration driving force (Cs ñ Ct), where Ct is the
concentration at time t and Cs is the equilibrium sol-
ubility of the solute at the experimental temperature.
The rate of dissolution dM/dt is the amount dissolved
per unit area per unit time and for most solids can be
expressed in units of g ◊ cm-2 ◊ s-1.

When Ct is less than 15% of the saturated sol-
ubility Cs, Ct has a negligible influence on the disso-
lution rate of the solid. Under such circumstances,
the dissolution of the solid is said to be occurring
under ësinkí conditions. In general, the surface area,
S is not constant except when the quantity of mate-
rial present exceeds the saturation solubility, or ini-
tially, when only small quantities of drug have dis-
solved.

Nernst and Brunner Film Theory 

Brunner and Nernst (11, 12) used Fickís law of
diffusion to establish a relationship between the con-
stant in the equation (1) and the diffusion coefficient
of the solute, as the equation:

K = DS/ hγ (2)
where D is the diffusion coefficient, S is the area of
dissolving surface or area of the diffusion layer, γ is
the solution volume and h is the diffusion layer
thickness. In formulating their theories, Nernst and
Brunner assumed that the process at the surface pro-
ceeds much faster than the transport process and that
a linear concentration gradient is confined to the
layer of solution adhering to solid surface.

The ideal condition can never be achieved as
the actual surface is changed permanently with the
progress of dissolution processes during the usual
determination of drug release. In the Noyes-
Whitney equation, the dissolution process corre-
sponds to a first order reaction. 

Release kinetic modeling

There are number of kinetic models, which
described the overall release of drug from the dosage
forms. Because qualitative and quantitative changes
in a formulation may alter drug release and in vivo
performance, developing tools that facilitate product
development by reducing the necessity of bio-studies
is always desirable. In this regard, the use of in vitro

drug dissolution data to predict in vivo bio-perform-
ance can be considered as the rational development
of controlled release formulations (7-9).

The methods of approach to investigate the
kinetics of drug release from controlled release for-
mulation can be classified into three categories:

● Statistical methods (exploratory data analy-
sis method, repeated measures design, multivariate
approach [MANOVA: multivariate analysis of vari-
ance] (13, 14).

● Model dependent methods (zero order, first
order, Higuchi, Korsmeyer-Peppas model, Hixson
Crowell, Baker-Lonsdale model, Weibull model,
etc.) (15, 16).

● Model independent methods [difference fac-
tor (f1), similarity factor (f2) (17-19)]. 

Statistical methods

Exploratory Data Analysis methods

Although exploratory data analysis methods
are not currently endorsed by the FDA, the method
is useful in obtaining an improved understanding of
the dissolution data of controlled release formula-
tion and therefore, its use is recommended. This
method can be used in the first step to compare dis-
solution profile data in both graphical and numerical
manner. The dissolution profile data are illustrated
graphically by plotting the mean dissolution profile
data for each formulation with error bars extending
to two standard errors at each dissolution time point.
Then, the data of the dissolution profiles are sum-
marized numerically and 95% confidence intervals
for the differences in the mean dissolution profiles at
each dissolution time point are evaluated (20).

Multivariate approach (MANOVA)

These methods were based upon repeated
measures designs where time is the repeated factor
and percent dissolved is the dependent variable. For
statistical methods, SPSS 10.0 for Windows was
employed. The calculated statistics of this method
were, Pillaiís Trace, Wilksí Lambda, Hotellingís
Trace, Royís Largest Root. Since the data were col-
lected as repeated measurements over time on the
same experimental unit, a repeated measures design
was applied. When compared to Studentís ìt-î and
paired ìt-î tests, the major advantage of this design
is increased precision (21). 

In repeated measures, ANOVA containing
repeated measures factors with more than two lev-
els, additional special assumptions enter the picture:
These are compound symmetry assumption and the
assumption of spherocity. Because these assump-
tions rarely hold, the MANOVA approach to repeat-
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ed measures ANOVA has gained popularity in
recent years. The compound symmetry assumption
requires that the variances and covariances of the
different repeated measures are homogeneous. This
is a sufficient condition for the univariate ìFî test
for repeated measures to be valid. The spherocity
assumption is a necessary and sufficient condition
for the F test to be valid. When the compound sym-
metry or spherocity assumptions have been violated,
the univariate ANOVA table will give erroneous
results. Mauchlyís test of spherocity results are used
for the assumption of spherocity.

Model dependent methods

Model dependent methods are based on differ-
ent mathematical functions, which describe the dis-
solution profile. Once a suitable function has been
selected, the dissolution profiles are evaluated
depending on the derived model parameters. In
order to determine the suitable drug release kinetic
model describing the dissolution profile, the non-
linear regression module of Statistica 5.0 was used.
In non-linear regression analysis the Quasi-Newton
and Simplex methods minimized the least squares
(15, 16). The model dependent approaches included
zero order, first order, Higuchi, Hixson-Crowell,
Korsmeyer-Peppas, Baker-Lonsdale, Weibull, Hop-
fenberg, Gompertz and regression models (22, 23).

Zero-order model

Drug dissolution from dosage forms that do not
disaggregate and release the drug slowly can be rep-
resented by the equation:

Q0 ñ Qt = K0t (3)
Rearrangement of equation (3) yields:

Qt = Q0 + K0t (4)
where Qt is the amount of drug dissolved in time t,
Q0 is the initial amount of drug in the solution (most
times, Q0 = 0) and K0 is the zero order release con-
stant expressed in units of concentration/time. 

To study the release kinetics, data obtained
from in vitro drug release studies were plotted as
cumulative amount of drug released versus time (24,
25). 

Application: This relationship can be used to
describe the drug dissolution of several types of
modified release pharmaceutical dosage forms, as in
the case of some transdermal systems, as well as
matrix tablets with low soluble drugs in coated
forms, osmotic systems, etc. (26, 27). 

First order model

This model has also been used to describe
absorption and/or elimination of some drugs,

although it is difficult to conceptualize this mecha-
nism on a theoretical basis. The release of the drug
which followed first order kinetics can be expressed
by the equation:

dCñññññ = ñ Kc (5)
dt

where K is first order rate constant expressed in
units of time-1.

Equation (5) can be expressed as:
log C = log C0 ñ Kt / 2.303 (6)

where C0 is the initial concentration of drug, k is the
first order rate constant, and t is the time (28). The
data obtained are plotted as log cumulative percent-
age of drug remaining vs. time which would yield a
straight line with a slope of ñK/2.303. 

Application: This relationship can be used to
describe the drug dissolution in pharmaceutical
dosage forms such as those containing water-soluble
drugs in porous matrices (29, 30). 

Higuchi model

The first example of a mathematical model
aimed to describe drug release from a matrix system
was proposed by Huguchi in 1961 (31). Initially
conceived for planar systems, it was then extended
to different geometrics and porous systems (32).
This model is based on the hypotheses that (i) initial
drug concentration in the matrix is much higher than
drug solubility; (ii) drug diffusion takes place only
in one dimension (edge effect must be negligible);
(iii) drug particles are much smaller than system
thickness; (iv) matrix swelling and dissolution are
negligible; (v) drug diffusivity is constant; and (vi)
perfect sink conditions are always attained in the
release environment. Accordingly, model expres-
sion is given by the equation:

ft = Q = A √D(2C ñ Cs) Cs t (7)
where Q is the amount of drug released in time t per
unit area A, C is the drug initial concentration, Cs is
the drug solubility in the matrix media and D is the
diffusivity of the drug molecules (diffusion coeffi-
cient) in the matrix substance.

This relation is valid during all the time, except
when the total depletion of the drug in the therapeu-
tic system is achieved. To study the dissolution from
a planar heterogeneous matrix system, where the
drug concentration in the matrix is lower than its
solubility and the release occurs through pores in the
matrix, the expression is given by equation (8):

Dδ
ft = Q =   ññññ (2C ñ δCs) Cs t (8)√ τ

where D is the diffusion coefficient of the drug mol-
ecule in the solvent, δ is the porosity of the matrix,
τ is the tortuisity of the matrix and Q, A, Cs and t
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have the meaning assigned above. Tortuisity is
defined as the dimensions of radius and branching of
the pores and canals in the matrix. In a general way
it is possible to simplify the Higuchi model (31) as
(generally known as the simplified Higuchi model):

f t = Q = KH ◊ t1/2 ÖÖÖ.. (9)
where, KH is the Higuchi dissolution constant (23). 

The data obtained were plotted as cumulative per-
centage drug release versus square root of time (30). 

Application: This relationship can be used to
describe the drug dissolution from several types of
modified release pharmaceutical dosage forms, as in
the case of some transdermal systems and matrix
tablets with water soluble drugs (31-33). 

HixsonñCrowell model

Hixson and Crowell (1931) recognized that the
particlesí regular area is proportional to the cube
root of its volume. They derived the equation:

W0
1/3 ñWt

1/3 = κ t ÖÖÖÖ (10)
where W0 is the initial amount of drug in the phar-
maceutical dosage form, Wt is the remaining amount
of drug in the pharmaceutical dosage form at time t
and κ (kappa) is a constant incorporating the sur-
faceñvolume relation. The equation describes the
release from systems where there is a change in sur-
face area and diameter of particles or tablets (34). To
study the release kinetics, data obtained from in vitro
drug release studies were plotted as cube root of
drug percentage remaining in matrix versus time.

Application: This expression applies to phar-
maceutical dosage form such as tablets, where the
dissolution occurs in planes that are parallel to the
drug surface if the tablet dimensions diminish pro-
portionally, in such a manner that the initial geo-
metrical form keeps constant all the time (35).

Korsmeyer-Peppas model

Korsmeyer et al. (1983) derived a simple rela-
tionship which described drug release from a poly-
meric system equation (12). 

To find out the mechanism of drug release, first
60% drug release data were fitted in
KorsmeyerñPeppas model (36).

Mt / M∞ = Ktn ÖÖÖÖÖ. (12)
where Mt / M∞ is a fraction of drug released at time
t, k is the release rate constant and n is the release
exponent. The n value is used to characterize differ-
ent release for cylindrical shaped matrices.

In this model, the value of n characterizes the
release mechanism of drug as described in Table 1.
For the case of cylindrical tablets, 0.45 ≤ n corre-
sponds to a Fickian diffusion mechanism, 0.45 < n <
0.89 to non-Fickian transport, n = 0.89 to Case II
(relaxational) transport, and n > 0.89 to super case II
transport (37, 38). To find out the exponent of n the
portion of the release curve, where Mt / M∞ < 0.6
should only be used. To study the release kinetics,
data obtained from in vitro drug release studies were
plotted as log cumulative percentage drug release
versus log time.

Baker-Lonsdale model

This model was developed by Baker and
Lonsdale (1974) from the Higuchi model and
described the drug release from spherical matrices
according to the equation:

3                 Mt             Mt f1= ñññ  1 ñ (1 ñ ñññ)2/3 ñññ = kt (13)
2  [ M∞      

] M∞

where the release rate constant, k, corresponds to the
slope (39).

To study the release kinetics, data obtained
from in vitro drug release studies were plotted as 
[d (Mt / M∞)] / dt with respect to the root of time
inverse. 

Application: This equation has been used to the
linearization of release data from several formula-
tions of microcapsules or microspheres (40, 41).

Weibull model

This model has been described for different
dissolution processes as the equation (42, 43):

(t ñ T)b

ñ  ññññññaM = M0 [1 ñ e           ] (14)

In this equation, M is the amount of drug dis-
solved as a function of time t. M0 is total amount of
drug being released. T accounts for the lag time meas-

Table 1. Interpretation of diffusional release mechanisms from polymeric films.

Release exponent (n) Drug transport mechanism Rate as a function of time  

0.5 Fickian diffusion t ñ 0.5 

0.45 < n = 0.89 Non -Fickian transport t n ñ 1 

0.89 Case II transport Zero order release  

Higher than 0.89 Super case II transport t n ñ 1
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ured as a result of the dissolution process. Parameter
a denotes a scale parameter that describes the time
dependence, while b describes the shape of the disso-
lution curve progression. For b = 1, the shape of the
curve corresponds exactly to the shape of an expo-
nential profile with the constant k = 1/a (equation 15).

M = M0 (1 ñ eñk(t ñ T)) (15)
If b has a higher value than 1, the shape of the

curve gets sigmoidal with a turning point, whereas
the shape of the curve with b lower than 1 would
show a steeper increase than the one with b = 1

The time, when 50% (w/w) and 90% (w/w) of
drug being in each formulation was released, was
calculated using the inverse function of the Weibull
equation:

M0 ñ Mt(50% resp. 90% dissolved) = (ñ a ln ñññññññ)1/b + T (16)
M0

Application: The Weibull model is more use-
ful for comparing the release profiles of matrix
type drug delivery (44, 45). 

Hopfenberg model

Hopfenberg developed a mathematical model
to correlate the drug release from surface eroding
polymers so long as the surface area remains con-
stant during the degradation process (46, 47). The
cumulative fraction of drug released at time t was
described as:

Mt / M∞ = 1- [1- k0t / CL a] n (17)
where k0 is the zero order rate constant describing
the polymer degradation (surface erosion) process,
CL is the initial drug loading through out the system,
a is the systemís half thickness (i.e. the radius for a
sphere or cylinder), and n is an exponent that varies
with geometry n = 1, 2 and 3 for slab (flat), cylin-
drical and spherical geometry, respectively. 

Application: This model is used to identify the
mechanism of release from the optimized oili-
spheres using data derived from the composite pro-
file, which essentially displayed site-specific bipha-
sic release kinetics (48).

Gompertz model

The in-vitro dissolution profile is often
described by a simpler exponential model known as
Gompertz model, expressed by the equation:

X(t) = Xmax exp [-α eβ log t] (18)
where X(t) = percent dissolved at time t divided by
100; Xmax = maximum dissolution; α determines the
undissolved proportion at time t = 1 and described as
location or scale parameter; β = dissolution rate per
unit of time described as shape parameter. This

model has a steep increase in the beginning and
converges slowly to the asymptotic maximal disso-
lution (38, 49).

Application: The Gompertz model is more use-
ful for comparing the release profiles of drugs hav-
ing good solubility and intermediate release rate
(49).

Regression model

Statistical optimization designs have been pre-
viously documented for the formulation of many
pharmaceutical dosage forms (39). Several types of
regression analysis are used to optimize the formu-
lation from in vitro release study (40). 

Linear or first order regression model (50-52).
Linear regression is a method for determining

the parameters of a linear system. The empirical
model relating the response variable to the inde-
pendent variables are described by the following
equation: 

Y = β0 +β1X1 + β2 X2 (19)
where Y represents the response, X1 and X2 repre-
sent the two independent variables. The parameter
β0 signifies the intercept of the plane. β1 and β2,

called partial regression coefficients, where β1

measures the expected change in ëYí, the response,
per unit change in X1 when X2 kept constant and vice
versa for β2. The equation (19) can be rewritten in a
general form as:

Y = β0 + β1 X1 + β2 X2 + ÖÖÖ..βk Xk (20)
The model is a multiple linear regression

model with ëkí regression variables. The model
describes a hyperplane in the k-dimensional space.
Further complex model (equation. 21) are often ana-
lyzed by multiple linear regression technique by
adding interaction terms to the first order linear
model: 

Y = β0 + β1 X1 + β2 X2 + β12 X1 (21)
where X1 and X2 are the interaction effects of two
variables acting simultaneously.

Quadratic model or second order regression

model (53-55)
Y = β0 + β1 X1 + β2 X2 +β11 X2

1 + β22 X2
2 +β12 X1X2 (22)

If we put, X21 = X3, X22 = X4, X1 X2= X5 and β11= β3,

β22= β4, β12 = β5, then the above equation is reduced
to a linear model. Any model is linear if the (β) coef-
ficients are linear, regardless of the shape of the
response surface that it generates. 
Y = β0 +β1 X1 + β2 X2 + β3 X3 +β4 X4 + β5 X5       (23)

The explanatory and response variables may be
scalars of vectors. In the case, where both the
explanatory and response variables are scalars, then
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the resulting regression is called simple linear
regression. When there are more than one explana-
tory variable, then the resulting regression is called
multiple linear regression. It should be noted that the
general formulae are the same for both cases. The
least squares and robust regression analysis are
mostly used to solve linear regression models. 

Non linear regression models (56, 57) 
A number of nonlinear regression techniques

may be used to obtain a more accurate regression.
Due to the large number of dissolution media avail-
able for solid dosage forms, a statistical method to
choose the appropriate medium is critical for testing
solid dosage forms. It should be noted that an often
used alternative is a transformation of the variables
such that the relationship of the transformed vari-
ables is again linear. The method was designed
using software to detect factors contributing to dif-
ferences in the dissolution process of the drug deliv-
ered in dosage form.

Model Independent Approach Using a Similarity

Factor (17-19, 58)
A simple model independent approach uses a

difference factor (f1) and a similarity factor (f2) to
compare dissolution profiles. The difference factor
calculates the percent difference between the two
curves at each time point and is a measurement of
the relative error between the two curves. It is
expressed as:

f1 = {[Σ
t=1

n

(Rt ñ Tt)]/[Σt=1

n

Rt]} ◊ 100 (24)
where n is the number of time points, R is the disso-
lution value of the reference (prechange) batch at
time t, and Tt is the dissolution value of the test
(postchange) batch t at time t.

The similarity factor is a logarithmic reciprocal
square root transformation of the sum of squared
error and is a measurement of the similarity in the
percent dissolution between the two curves. This
model independent method is most suitable for dis-
solution profile comparison when three to four or
more dissolution time points are available. 

CONCLUSIONS

Reviews of the kinetic modeling on drug
release show that these models have been estab-
lished to describe the relationship between drug dis-
solution and geometry on drug release patterns
mathematically. It is evident from the pharmaceuti-
cal literature that no single approach is widely
accepted to determine if dissolution profiles are sim-
ilar. The application and evaluation of model

dependent methods and statistical methods are more
complicated, whereas the model dependent methods
present an acceptable model approach to the true
relationship between the dependent and independent
variables of the dissolution data. The disadvantages
of the model independent methods are the values of
f1 and f2 which are sensitive to the number of disso-
lution time points and the basis of the criteria for
deciding the difference or similarity between disso-
lution profiles is unclear. The limitation is that only
when the within-batch variation is less than 15%, f2

equation should be used.
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