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Abstract. We present and discuss a completely self-consistent kinetic simulation of a steady state transonic solar type wind.
The equations of motion of an equal number of protons and electrons plunged in a central gravitational field and a self-
consistent electric field are integrated numerically. Particles are allowed to make binary collisions with a Coulombian scattering
cross-section. The velocity distributions of the particles injected at the boundaries of the simulation domain are taken to be
Maxwellian. As anticipated by previous authors we find that the transonic solution implies the existence of a peak in the proton
equivalent potential at some distance above the sonic critical point. Collisions appear to be the fundamental ingredient in the
process of accelerating the wind to supersonic velocities. For a given temperature at the base of the simulation domain
the acceleration efficiency decreases with decreasing density. The reason is that the plasma has to be sufficiently collisional
for the heat flux to be converted efficiently into plasma bulk velocity. Concerning the heat flux we find that even when in the
vicinity of the sonic point the collisional mean free path of a thermal particle is significantly smaller than the typical scales
of variation of the density or the temperature, the electron heat flux cannot be described conveniently by the classical Spitzer-
Härm conduction law; not even in most of the subsonic region. Indeed, in the simulations where a transonic wind forms the heat
flux has been found to strongly exceed the Spitzer-Härm flux, in opposition to recently published results from multi-moment
models. We emphasize that given the high coronal temperatures we use in our simulations (3 times the typical solar values) we
do not expect the results presented in this report to be uncritically transposable to the case of the “real” solar wind. In particular,
the quantitative aspects of our results must be handled with some care.
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1. Introduction

At all heights, from the bottom of the corona up into the in-
terplanetary space, the solar atmosphere is a permanently ex-
panding, out of thermodynamic equilibrium and fully ionized
plasma. During the 1950’s the recognition of the weak colli-
sionality of the solar wind conveyed some doubts concerning
the ability of fluid models to describe the solar atmosphere
conveniently. As a consequence Chamberlain (1960), largely
influenced by the theories on gas evaporation from planetary at-
mospheres, published the first kinetic model of the solar wind.
In Chamberlain’s evaporation model the wind is subsonic at
the Earth’s orbit in clear opposition with the supersonic so-
lution of the fluid equations proposed a few years earlier by
Parker (1958). During the early 1960’s in situ measurements
confirmed the supersonic nature of the solar wind and kinetic
models just fell in disuse for some time. In the early 1970’s it
became clear that Chamberlain’s erroneous prediction of a sub-
sonic wind was the consequence of having mistakenly assumed
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that the charge neutralizing electric field was the Pannekoek-
Rosseland field (e.g., Rosseland 1924). The latter is based on
the assumption of a static solar atmosphere which has been a
privileged working hypothesis since Laplace’s Traité de mé-
canique céleste, published in the early years of the nineteenth
century, but has been shown to be completely at odds with ob-
servations. After the definitive relaxation of the static approx-
imation for the electric field, kinetic models of the solar wind
were back on stage again (Jockers 1970).

The simplest, and most widely used kinetic models are the
so called exospheric models (e.g., Lemaire & Sherer 1971). In
these models the solar atmosphere is assumed to change from
fully collisional to collisionless at a sharply defined level called
the exobase. Above the exobase, conventional exospheric mod-
els assume a monotonically decreasing equivalent proton po-
tential Ψp (cf. Eq. (4)) and no protons coming into the sys-
tem from infinity, so that, by construction, all protons have
anti sunward directed velocities. For non pathological distri-
bution functions this means that the plasma bulk velocity at
the exobase is of the order of the proton thermal velocity, i.e.
of the order of the sound velocity. For example, 〈v〉 = vp/

√
π
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is the mean velocity of a proton population with Maxwellian
velocity distribution fM = n0(πv2

p)−3/2 exp[(v2
‖ + v

2⊥)/v2
p] trun-

cated for v‖ < 0 (subscripts ‖ and ⊥ refer to the radial direction
with respect to the center of the Sun). Since the typical veloc-
ity of a proton at the exobase is by construction of the order of
the radial bulk velocity, it follows that the exobase is located
at a heliocentric distance comparable to the distance r∗ where
the subsonic-supersonic transition is located (the sonic criti-
cal point). However, as demonstrated graphically by Jockers
(1970), the proton potential cannot be monotonic from deep
inside the corona, where the bulk velocity is supposed to be
small compared to sound speed and where static approxima-
tion may apply, out to infinity, where the wind is supersonic.
Jockers anticipated that on its way from the corona to infin-
ity a transonic wind must overcome a maximum in the proton
potential Ψp such that Ψp(rψ) > Ψp(∞), where rψ is the loca-
tion of the maximum. In two recent papers Scudder (Scudder
1996a,b) pushes a step farther by identifying the critical point
of Parker’s fluid model with the location of the maximum of
the proton potential energy Ψp. Based on that assumption he
derives a number of constraints on the possible radial varia-
tions of both the proton and the electron temperatures near the
sonic point. However, even though the existence of a transonic
wind seems to be intimately related to the existence of a peak
of the potentialΨp, there is no reason for rψ to coincide with the
sonic point of fluid theories unless very special, and therefore
unlikely, conditions are met there. For example, in the simula-
tions presented in this paper we do always find rψ > r∗. It can
be shown analytically that this is indeed the normal case for
radially decreasing temperature profiles provided T decreases
more slowly than r−1 (Meyer-Vernet et al. 2002).

In this paper we present self-consistent kinetic simulations
of a stationary solar type wind, where we concentrate on those
aspects which cannot be addressed by fluid theories such as
the electric field, the heat flux and the collisionality of the
plasma. We deliberately treat only the most simple case of
Maxwellian boundary conditions for the particles’ velocity dis-
tribution function. The effects of plasma instabilities and waves
are also not included in the model. Such additional “complica-
tions” may hide part of the fundamental physics of the accel-
eration process and shall be discussed elsewhere. In this re-
spect we do merely mention that the effect of resonant waves
on a hybrid (fluid + kinetic) solar wind model has been dis-
cussed by Tam & Chang (1999) who conclude that ions may
well be accelerated more efficiently by resonant waves rather
than by the radial electric field. A similar model has been
used by Lie-Svendsen & Leer (2000) to show that the two
temperature electron velocity distribution functions often ob-
served in the solar wind can be generated by Coulomb col-
lisions without the need of assuming the presence of non-
Maxwellain distribution in the corona. Olsen & Leer (1999)
and Li (1999) use a closed system of transport equations based
on an anisotropic bi-Maxwellian approximation for the velocity
distribution functions to simulate the solar wind from the lower
corona outward. Lie-Svendsen et al. (2001) extend the model
down to the chromosphere based on the argument that chro-
mosphere, transition region, corona and solar wind constitute
a coupled system. The system of equations used by these

authors is known as the 16-moment approximation (e.g.,
Demars & Schunk 1979) is a fluid-type model including trans-
port effects such as heat flow and viscosity and even Coulomb
collisions between interacting species. The main purpose of the
above authors was to reproduce as good as possible the char-
acteristics of the coronal plasma by including ad-hoc heating
functions supposed to mimic the local deposit of energy due
to plasma waves. If suitably chosen the heating functions can
reproduce the temperature profile and temperature anisotropies
which observations suggest to prevail in the solar corona (e.g.,
Esser et al. 1999). In many respects, our model is much more
limited than the above multi-moment models which include
most of the ingredients (e.g. radiation, plasma heating through
waves, collisions, etc.). However, these models are fundamen-
tally fluid models and many ingredients are not self-consistent.
Our model is kinetic and fully self-consistent, but neither waves
nor radiation and not even the lower layers of the corona are
taken into account. In addition, because of computational limi-
tations, we use an artificially low proton to electron mass ratio,
and an exceedingly high coronal temperature, so that transpo-
sition of our results to the case of the real Sun must be done
critically. One substantial difference between our results and
the results from the mentioned multi-moment models is that
we find that the electron heat flux in the corona is one or-
der of magnitude larger than the classical value predicted by
the Spitzer-Härm formula (Spitzer & Härm 1953), whereas the
multi-moment models find it to be of the same order. Of course,
both models are subject to their own limitations so that the
question of whether the heat flux in the solar wind is classical
or not appears to remain an open question.

Even though the physical parameters characterizing the
wind simulated in the following section do not correspond ex-
actly to those observed for the Sun, we shall refer to the simu-
lated wind as the solar wind and to the central star as the Sun.

2. The model

Details of the simulation model have been given in two previ-
ous papers (Pantellini 2000; Landi & Pantellini 2001) and shall
not be repeated here to full extent. The model is spatially one
dimensional, i.e. all fields depend on the heliocentric distance r
only. An equal number of protons and electrons are allowed to
move freely in the domain r0 < r < rmax, where r0 is the solar
radius and rmax is the outer boundary of the system located sev-
eral solar radii beyond the sonic point. The equations of motion
are those of a particle of mass m and charge q in a central grav-
itational field produced by a star of mass M and a radial, charge
neutralizing electric field, E(r), i.e.

d2r
dt2
= −GM

r2
+

L2

m2r3
+

q
m
E(r). (1)

L ≡ mr × u⊥ = constant (2)

where G is gravitational constant, L the angular momentum of
the particle and u⊥ its velocity component perpendicular to the
radial direction. Two particles finding themselves simultane-
ously at the same radial distance r do either make an isotropic
elastic collision with a probability ∝ u−4r−2 or just go through
each other as if they were transparent. The u−4 dependence
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of the collision probability mimics velocity dependence of the
scattering cross section for Coulomb collisions whereas the r−2

dependence accounts for the spherical geometry of the prob-
lem. The transport properties of such a plasma have been shown
to be very much the same as those of a Fokker-Planck plasma
(Pantellini & Landi 2001; Landi & Pantellini 2001).

3. Defining the simulation

The physical state of the solar corona at heliocentric distance
r0 (the lower boundary of our simulation domain) is charac-
terized by the dimensionless parameter γ defined as (kB is the
Boltzmann constant)

γ ≡ GM
r0

mp + me

2kBT0
≈ GM

r0

mp

2kBT0
≡ γp. (3)

The parameter γ is half the ratio of the escape velocity squared
to the protons thermal velocity squared v2

p0 ≡ 2kBT0/mp. For

a typical solar coronal temperature T0 = 106 K one has γ =
11.6. The fact that γ is larger than unity means that a typical
coronal proton is too slow to escape to infinity. On the other
hand, for coronal electrons at the same temperature one has
γe = 6.3 × 10−3 � 1, meaning that the vast majority of the
electrons would easily escape to infinity if gravity was the only
force field. The solar corona is thus characterized by γ & 1
and γe � 1. In order to reduce the required computational time
to an acceptable level we choose γp = 4 and γe = 10−2, instead
of the above values of the real Sun. This, means that we adopt a
rather high coronal temperature of 2.9×106 K and an artificially
low proton to electron mass ratio mp/me = 400. However, since
the two important constraints for a solar type atmosphere γp &
1, γe � 1 are satisfied we expect the simulations to provide a
fair approximation of the solar case.

The equations of motion Eqs. (1) and (2) are integrated for
N protons, and an N electrons in the radial distance range be-
tween r = r0 and r = rtop ≡ 51r0. The number N is determined
by the requirement of the collision frequency of an electron in
the system (near r = r0) being roughly equal to the Fokker-
Planck collision frequency of a plasma with an electron num-
ber density ne ≈ 108 cm−3, which is a typical figure in the solar
corona. The so calculated number N turns out to be of the or-
der 103 (Landi & Pantellini 2001). Each time a proton or an
electron hits the boundary at r = r0 it is injected back into the
system according to a non drifting isotropic Maxwellian veloc-
ity distributions with a temperature T0. Given that the protons
reaching the top boundary at r = rtop are generally either su-
personic or nearly supersonic most of it must be re-injected
into the system at r = r0. On the other hand, electrons reaching
the r = rtop boundary are injected back into the system either
at r = r0 or at r = rtop depending on what is needed to make the
electron flux to be equal to the proton flux (zero charge current
condition). The injection method ensures that there are always
N protons and N electrons in the system. The velocity distri-
bution of the electrons injected at the top boundary is chosen
to be a drifting bi-Maxwellian with radial and perpendicular
temperatures equal to the radial and perpendicular temperature
of the outgoing electrons. Finally, the drift velocity of the elec-
trons at r = rtop is taken to be equal to the drift velocity of the

protons measured at r = rtop. In case of a supersonic wind this
is just the average velocity of the protons escaping from the top
of the system. In a subsonic wind some protons have to be re-
injected into the system from the top. The temperature and the
number of the re-injected protons is then adjusted iteratively
until a coherent solution is obtained, in a manner similar to the
one used by Landi & Pantellini (2001) to simulate the static
corona. The electric field profile is adjusted iteratively, during
an initialization phase, until zero charge flux and local charge
neutrality is achieved in all points of the system.

4. Results

4.1. Effect of varying the coronal density

The number density n and the collisionality of the simulated
plasma is dependent on the number of particles N used in
the model. Figure 1 shows the results of 4 simulations which
only differ in the number N of simulated particles, i.e. N =
400, 784, 1600, 6400, the N = 400 run being the one with
the most tenuous (i.e. less collisional) atmosphere. The cor-
responding number densities at the base of the system are
n0[108 cm−3] = 0.8, 1.5, 3.6 and 13.4, respectively. The dif-
ferences between the 4 simulations are substantial in many
respects. The most evident difference is that the wind accel-
eration is much more efficient in the high density case, even
though the thermal Knudsen number KT ≡ λep|∂ ln Te‖(r)/∂r|
(where λep ≡ ve‖/νep is the electron-proton collisional mean
free path based on the electron-proton rate of momentum ex-
change νep (Landi & Pantellini 2001, Appendix B), and where
ve‖ ≡ (2kBTe‖/me)1/2 is the radial thermal electron velocity) is
much smaller than unity for all runs, ranging from 10−3, for the
densest case, to 10−2 for the most tenuous case. From the fig-
ure it appears that the two more tenuous cases do not even be-
come supersonic with respect to radial proton thermal velocity
vp‖ ≡ (2kBTp‖/mp)1/2 (which coincides with the fluid isother-
mal sound speed when Tp‖ = Te‖). The curves on the bottom
panel of Fig. 1 illustrate the effect of collisions on the proton
potential energyΨp. The latter results from the sum of the grav-
itational potential and a charge neutralizing electrostatic poten-
tial φ:

Ψp = −GMmp

r0

( r0

r
− 1

)
+ eφ(r) (4)

where e is the absolute value of the electron charge and where,
because of the finite extent of the simulation domain we choose
the level r = r0 to be the reference level for both the grav-
itational potential and the electrostatic potential, rather than
r = ∞. Thus Ψ j(r0) = 0 by construction. The decreasing
height of the potential barrier the protons have to overcome
as the plasma collisionality increases is evident. In the least
collisional case (dash-dot profiles in Fig. 1) the potential Ψp

is a monotonically growing function of r. However, increasing
the system’s collisionality beyond a given threshold makes the
potential Ψp become non monotonic, with the peculiar forma-
tion of a maximum a few solar radii above the bottom bound-
ary at r = rψ. As already stated in the introduction the exis-
tence of a maximum in the proton potential has been suggested
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Fig. 1. Flow velocity, Mach number and proton potential energy pro-
files for four different values of the number of particles N in the
system. From bottom to top the velocity profiles correspond to N =
400, 784, 1600, 6400, respectively. In all runs γ = 4 and mp/me = 400.
The normalizing velocity v0 is the proton thermal velocity vp(r0). The
Mach number is defined as the ratio of the radial bulk velocity of
the plasma divided by the proton thermal speed vp‖ ≡ (2kBTp‖/mp)1/2.
The normalizing energy Ψ0 is given by Ψ0 = GMmp/r0. Thus, as a
reference, if the charge and current neutralizing electric field was the
Pannekoek-Rosseland potential Ψp/Ψ0 ≈ 0.5 for r � r0.

some time ago by Jockers (1970). Scudder (1996a) pushed a
step farther by postulating rψ to coincide with the position of
the isothermal sonic point of Parker’s fluid theory. Figure 1
shows that when a maximum of Ψp exists, it is located above
the sonic point, in agreement with the theoretical predictions
(Meyer-Vernet et al. 2002). Figure 1 also shows that the low
density cases do neither produce a maximum in the proton po-
tential nor a supersonic wind, at least if terms of the parallel
temperature based Mach number. One may suspect that if the
Mach number was defined with respect to the mean temper-
ature T ≡ (T‖ + 2T⊥)/3 the flow would more easily become
supersonic at large distances because of the T⊥ ∝ r−2 depen-
dence implied by the conservation of angular momentum in a
collisionless plasma with negligible heat flux. In the end, how-
ever, given that in the collisionless limit and for r → ∞, one
has T‖ → const. (e.g., Meyer-Vernet & Issautier 1998), so that
T → T‖, asymptotically. As a consequence, the distant Mach

number does not depend on which of the two above definitions
has been used.

In summary, the main consequence of increasing the
plasma density beyond some threshold appears to be a reduc-
tion of the potential barrier the protons have to overcome in
order to escape to infinity, accompanied by the formation of
a local maximum in the Ψp(r) profile. As we shall see below
the formation of the maximum in the proton potential energy is
intimately related to the existence of both an outward directed,
and radially decreasing heat flux, and a radially decreasing tem-
perature profile. Both contribute in strengthening the outward
directed electric field E = −∂φ/∂r, thus facilitating the extrac-
tion of the protons. In this context we shall remember that if the
plasma was static (impermeable boundaries) with equal elec-
tron and proton temperatures, the charge neutralizing potential
φwould be the celebrated Pannekoek-Rosseland potential (e.g.,
Rosseland 1924)

φ(r) = φPR(r) ≡ GM
r0

mp

2e

(
1 − me

mp

) (r0

r
− 1

)
(5)

and the total potential energy of a proton would be a monoton-
ically increasing function of r

Ψp = −GM
r0

mp

2

(
1 +

me

mp

) (r0

r
− 1

)
(static limit)

asymptotically reaching the value GMmp/(2r0) which is much
higher than the values observed in the simulations (cf. bottom
panel of Fig. 1).

4.2. Wind acceleration

Let us now address the question of the wind acceleration mech-
anism. In order to do so we write the energy equation for
the species j for the case of a steady state and purely radial
wind. Indeed, the second moment of Boltzmann’s equation
(e.g., Endeve & Leer 2001) leads to the following expression

E j =
1
2

m jv
2
j + h j(r) + Ψ j +

q j

n jv j
(6)

where q j, n j, v j are the heat flux, density and bulk velocity of
the corresponding species and where we have defined the en-
thalpy per particle of the species j

h j(r) ≡ 3
2

kBT j‖ + kBT j⊥. (7)

We note in passing that the first moment of Boltzmann’s equa-
tion leads to Jockers’s Eq. (1.1) (Jockers 1970)

m jv j
∂v j

∂r
= −1

n

∂
(
nkBT j‖

)
∂r

− 2kB

r

(
T j‖ − T j⊥

)
− ∂Ψ j

∂r
· (8)

When applied to the electrons one may neglect the small terms
proportional to the electron mass me in Eq. (8) which then re-
duces to the usual expression for the electric field E

eE = − 1
ne

∂

∂r
(
nekBTe‖

) − 2
r

kB
(
Te‖ − Te⊥

)
. (9)
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Fig. 2. Proton and electron energy profiles obtained by evaluating
Eq. (6) for the N = 6400 simulation. Note how both, Ee and Ep are
separately constant over most of the simulation domain. The electro-
static profile −eφ is plotted as a reference.

But let us come back to Eq. (6). In all simulations Ee and Ep

are separately approximately constant over the whole simula-
tion domain (excepted for a small region near the r = r0 bound-
ary). This is shown in Fig. 2 for the N = 6400 case. At first,
this seems to indicate that the net energy exchanges between
protons and electrons are quantitatively small. This is not nec-
essarily correct. Indeed, it appears that the system does merely
organize itself in order to ensure a spatially constant proton to
electron energy density ratio throughout the system. The ratio
can be constant even if interspecies energy exchanges via colli-
sions are strong. A simple example of such a system consists of
a collisional proton-electron plasma under the effect a constant
gravitational acceleration field g. In this case the temperatures
of both, electrons and protons, must be equal, isotropic and spa-
tially constant. Further, the heat flux must vanish and the charge
neutralizing electric field is just the Pannekoek-Rosseland field
g(mp − me)/(2e) so that Ep = Ee = (5/2)kBT + g(mp + me)z/2,
i.e. Ep/Ee = 1, independently of the height z. On the other
hand, as we shall see below, in the spherically symmetric case
the heat flux (mainly conveyed by the electrons) is the domi-
nant source of energy for the acceleration of the wind. In order
to proof this affirmation it is useful to evaluate the mean energy
per particle 〈E〉 as a function of r. Averaging the contribution
of electrons and protons according to Eq. (6) leads to

〈E〉 ≈ 1
2

[
1
2

mpv
2 + h(r) +

GMmp

r0

(
1 − r0

r

)
+

q
nv

]
(10)

where the enthalpy term h(r) includes the temperature terms
from all species (electrons and protons). In order to obtain
Eq. (10) we made use of the fact that mp � me and that the pro-
ton and electron number fluxes are equal, i.e. npvp = neve ≡ nv.
As a reference, the number flux nv has been found to be of the
order 10−2ve0n0 in all runs. In particular for the N = 6400 case
we find nv = 1.2 × 10−2 n0ve0. The energy flux FE conveyed by
the wind through the spherical shell located at a distance r is
the product of the particles mean energy at that distance (after

Fig. 3. Relative importance of each term in Eq. (10) for the most dense
case N = 6400 (top panel) and the most tenuous case N = 400 (lower
panel). The dense case supports a transonic wind (the vertical line in
the top panel gives the position of the sonic point r∗) while the tenuous
case does not. From the comparison of the two figures it appears that
the wind acceleration is primarily driven by the heat flux term q/(nv).

deduction of their gravitational energy) times the number of
particles crossing the shell per time unit. Since the total number
density is equal to twice the number density of either species
the particle flux is a constant given by 8πr2nv and the energy
flux becomes

FE(r) = 8πr2nv

[
〈E〉 − GMmp

2r0

(
1 − r0

r

)]
· (11)

Figure 3 illustrates the relative importance of each of
the 4 terms in Eq. (10) as a function of the radial distance r
for the N = 6400 (top) and the N = 400 (bottom) run. Since
the gravity term vanishes at r = r0 and the bulk velocity v
is much smaller than the sound speed, only the enthalpy and
the heat flux term contribute to the total energy there. The rea-
son for the total energy being slightly larger in the low den-
sity case arises from the heat flux term q/(nv) being stronger
in that case. This is because at r = r0 we do not have control
over this term as we do for the enthalpy, which only depends
on the temperature imposed at the boundary. Interestingly the
run characterized by the largest heat flux term q/(nv) (which
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Fig. 4. Radial and perpendicular temperature profiles for 4 different
values of the N. Note the log-log axis of the top two panels.

does not necessarily mean that the heat flux q, or the specific
heat flux q/n are largest) is precisely the one where the wind
remains subsonic. This is particularly surprising in the light of
the fact that the velocity of the wind is clearly boosted by the
heat flux term given that the enthalpy profile is seemingly iden-
tical for the two cases. However, a strong heat flux term near
the bottom does not guarantee that the wind will be accelerated
to supersonic velocities. A sufficient amount of collisions is
needed to efficiently transform the energy transported outward
by the electron heat flux into bulk plasma kinetic energy.

Figure 4 shows that the radial electron temperature pro-
file Te‖ is essentially insensitive to the density while Te⊥ is not.
Indeed, in the collisionless limit the parallel and perpendicu-
lar temperatures are independent of each other and one should
observe Te⊥ ∝ r−2 in order to satisfy to the angular momen-
tum conservation law of individual particles (cf. Eq. (2)). As a
consequence, in the rigorously collisionless case, Te⊥ should
decrease by a factor 502 from bottom to top of the simula-
tion domain. Collisions do significantly contribute in limiting
this bottom to top perpendicular electron temperature gradient
which ranges from 10 to 30 depending on the value of N. On
the other hand, for all four cases the parallel temperature only
drops by a factor 3 from bottom to top, leading to strong tem-
perature anisotropies Te‖/Te⊥ (bottom panel in Fig. 4). This is
not particularly surprising as in the collisionless limit the par-
allel temperature of a plasma plunged in a potential field is
constant as long as the velocity distribution function is close
to Maxwellian.

We can now summarize the wind acceleration scenario
from a kinetic point of view. The natural decrease of the

temperature with distance (essentially due to the fact that in
the collisionless limit T⊥ ∝ r−2) implies the existence of a ra-
dial heat flux predominantly conveyed by the electrons. The
heat flux is transfered from the electrons to the protons which
become accelerated in the outward direction. Since the momen-
tum of the wind is mainly carried by the heavy protons (rather
than by the light electrons) the plasma as a whole becomes ac-
celerated in this way. This mechanism must be particularly ef-
ficient in the region located inside the spherical shell r = rΨ
(location of the maximum of Ψp) where the protons have to
climb uphill in order to escape from the potential energy well
(cf. Fig. 1). As already stated above, collisions contribute in
increasing the electric field strength. Since the electric field is
directed outward, increasing the electric field favors the extrac-
tion of the protons from the gravitational well by reducing the
height of the maximum in the proton potentialΨp. The fluid es-
timate of the macroscopic electric field E for a spherically sym-
metric electro-proton plasma can be obtained by differentiating
Eq. (6) for the electrons. Neglecting the small terms propor-
tional to me and taking advantage of the fact that Ee is approx-
imately constant (in particular if one compares it to the φ(r)
profile shown in Fig. 2) we then obtain

eE ≈ −kB
∂

∂r

(
3
2

Te‖ + Te⊥
)
− ∂

∂r

( q
nv

)
· (12)

This estimate is not as rigorous as the standard estimate based
on Eq. (8) since it is based on the assumption of a con-
stant Ee(r) profile. The equation has the advantage of high-
lighting the role of the heat flux in the shaping of the elec-
tric field profile. For radially decreasing temperature profiles
the first two terms on the right hand side of Eq. (12) are pos-
itive and favor the outward acceleration of the protons. They
are reminiscent of the thermoelectric effect (e.g., Pantellini &
Landi 2001). Given that q/nv has been seen to decrease with
distance for the two extreme cases shown in Fig. 3 it follows
that the third term on the right hand side of Eq. (12) is also
positive for all simulation. However, the contribution of the lat-
ter to the acceleration is significantly stronger in the N = 6400
case than in the N = 400 case, where the radial dependence
of q/nv is seemingly weak.

It is instructive to apply Eq. (12) to a a weakly collisional
system. In such a case the parallel temperature Te‖ is roughly
constant and the perpendicular temperature Te⊥ ∝ r−2. This
leads to the collisionless approximation

eE ∝ constant
r3

− ∂

∂r

( q
nv

)
(13)

where the constant is positive. From Eq. (13) it appears that
when the heat flux term is constant, or only weakly spatially
dependent, such that the first term on the right hand side of the
equation dominates over the second term, the electric field de-
creases faster than the gravitational field (i.e. E ∝ r−3). This is
the reason for the proton potential energyΨp to be a monotoni-
cally growing function of distance r in the N = 400 case shown
in Fig. 1. Increasing the number of particles in the system
makes the plasma more collisional and forces the perpendicu-
lar temperature Te⊥ to fall offmore slowly than r−2 (see Fig. 4)
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r = r0 r = 45 r0

Electrons

vk=ve0 vk=ve0

Fig. 5. Parallel electron velocity distribution functions (solid lines) in
arbitrary units at two different positions in the system, near the base
and in the supersonic region. Shown are results of the N = 6400 simu-
lation. The dashed lines represent Maxwellian distributions for which
the first three moments (density, mean velocity and temperature) are
those of the measured distributions. Velocities are normalized to the
electron thermal velocity ve0 = ve(r0).

making it harder for the gravitational force acting on a pro-
ton to overcome the electric force. Eventually, if Te⊥ decreases
more slowly than r−1, there must be a minimum distance be-
yond which the electric force on a proton overcomes the grav-
itational force and Ψp has a maximum. This is clearly the case
for the N = 6400 case shown in Fig. 4 where Te⊥ ∝ r−0.6. For
the N = 400 case the temperature profile is steeper, with an
average radial dependence given by Te⊥ ∝ r−0.9. Thus, even
though all profiles can be described by a power law which de-
creases more slowly than r−1 (on average over the simulation
domain) all profiles tend to steepen at large distances because
of the plasma tendency to become less collisional. Eventually
beyond some N-dependent threshold distance the Te⊥ profiles
becomes steeper than r−1 so that the formation of a maximum
of Ψp becomes impossible beyond this point. This is the case
for the N = 400 run. In the other three runs a maximum forms
below the point where the Te⊥ profile becomes steeper than r−1.
We can now reexamine Fig. 3 in the light of Eq. (12). Figure 3
already told us that the enthalpy profile is not very sensitive
on the plasma collisionality even though it contributes signifi-
cantly in strengthening the electric field according to Eq. (12).
The determinant contribution in accelerating the wind to super-
sonic velocities comes from the heat flux term q/(nv) which has
been seen to be much more sensitive on the plasma collisional-
ity. As demonstrated by Eq. (12), the heat flux term contributes
to the strengthening of the outward directed electric field, pro-
vided it decrease with distance. Figure 3 shows that the heat
flux term decreases for both simulations represented on the fig-
ure with the steepest profile being associated with the high den-
sity case which therefore produces the strongest electric field,
according to the last term on the right-hand side of Eq. (12).

For the N = 6400 simulation the parallel electron veloc-
ity distribution functions at the base of the system at r = r0,

qr
2
=(
q 0
r2 0
)

Fig. 6. Electron heat flux profile (solid line) and thermal Knudsen
number KT ≡ λep|∂ ln Te‖(r)/∂r| (dashed line) for the most strongly
collisional case N = 6400 normalized to q0 ≡ n0mev

3
e0, where ve0 is

the electron thermal velocity at the base of the system at r = r0. The
triangle on the heat flux axis indicates the heat flux expected near the
base of the system using the Spitzer-Härm formula (Spitzer & Härm
1953). The dot-dash line shows the −T 5/2

e‖ ∂Te‖/∂r law normalized to
the measured flux at r = r0.

and in the supersonic region at r = 45 r0 are shown in Fig. 5.
Since the collisional mean free path λ is proportional to v4 high
energy electrons are nearly unaffected by collisions on their
journey through the system. Thus, the velocity distribution of
the high energy electrons flowing downward is the imprint of
the upper boundary condition whereas the velocity distribution
of the high energy electrons flowing upward is the imprint of
the lower boundary at r = r0. On the other hand, the low en-
ergy electrons, which populate the core of the velocity distri-
bution function, are strongly affected by collisions. As a conse-
quence, at low velocities, the electron velocity distributions are
approximately isotropic Maxwellians which do not carry any
heat flux. Instead, the heat flux is carried by the high energy
electrons which are responsible for the asymmetry of the distri-
bution function. As illustrated by the profiles in Fig. 5 the heat
flux is due to a deficiency of downward flowing high energy
electrons near the lower boundary and to an excess of upward
flowing particles in the supersonic region.

4.3. Comments on the electron heat flux

Figure 6 shows the heat flux and the thermal Knudsen num-
ber KT measured in the N = 6400 run. One observes that
while it remains approximately constant in the supersonic re-
gion above the r ≈ 10r0 level, KT grows steeply in the sub-
sonic region, where it increases from 10−3 to 10−2. Since
KT . 2 × 10−2 in whole simulation domain, it is not particu-
larly surprising that the heat flux closely follows a T 5/2

e‖ ∂Te‖/∂r
dependence (dot-dash curve) as in the case of the classical
Spitzer-Härm heat conduction formula (Spitzer & Härm 1953).
This conclusion is misleading, since, despite the smallness of
the Knudsen number, the heat flux is strongly non classical. As
already pointed out by several authors in the past the classi-
cal heat conduction formulation breaks down either because
the heat flux intensity exceeds a value of the order 10−2q0
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(Gray & Kilkenny 1980), or because the Knudsen number is
larger than 10−3 (Shoub 1983), or because the flow velocity
is a significant fraction of the sound speed (Hollweg 1974;
Alexander 1993), or even because the electric field in the sys-
tem is of the order of the Dreicer field ED ≡ kTe/(eλep)
(Scudder 1996b). Indeed, in the N = 6400 simulation the elec-
tric field at the sonic point is E ≈ ED, reaching an intensity
E ≈ 8ED in the N = 1600 case. Concerning the heat flux in-
tensity, Fig. 6 shows that it is small enough for the the low heat
flux intensity condition established by Gray & Kilkenny (1980)
to be satisfied. One can therefore conclude that the heat flux in-
tensity is low enough for the plasma to be capable to support a
Spitzer-Härm flux. Let us now address the problem of the heat
flux in a flowing, and weakly collisional plasma. As discussed
by Hollweg (1974) and Alexander (1993) a non negligible frac-
tion of the of the energy is carried by a collisionless term of the
form qNC = (3/2)αnvkBTe where α is a positive numerical fac-
tor of order unity (note that the electron temperature has been
supposed to be isotropic by these authors). Given that colli-
sions are still relatively important in our simulations we make
the ansatz that the observed electron heat flux is made of the
sum of a classical (collisional) term (e.g., Braginskii 1965) qSH

and a collisionless term qNC

qe = qSH + qNC

= −3.16
nk2

BTe

meνep

∂Te

∂r
+

3
2
α nvkBTe (14)

where α is a positive constant of order unity whose numeri-
cal value depends on the assumptions of the specific heat flux
model (Hollweg 1974; Alexander 1993). As a guide, Hollweg’s
estimate of α for the solar wind are in the range 2.0 to 7.0
(Hollweg 1974). Equation (14) shows that the two heat con-
duction terms have an extremely different dependence on the
macroscopic moments of the plasma. The Spitzer-Härm heat
conduction does only depend on the temperature, and its radial
variation, while the collisionless term qNC depends on both the
electron number flux and the temperature (but not on the tem-
perature gradient). This situation is reminiscent of the heat con-
duction in a plasma confined to the space between two parallel
plates separated by a distance L at temperatures T0 and TL,
respectively (Landi & Pantellini 2001). If the plasma is domi-
nated by collisions the heat conduction between the two plates
just equal to qSH. However, if the plasma is sufficiently diluted
for a non negligible number of electrons to be able to pro-
ceed from one plate to the other without colliding with other
particles in the system, the heat flux is best described by the
collisionless approximation qNC ∝ n(T0T 1/2

L − TLT 1/2
0 ) which

(unlike qSH) is a function of the number density n. Figure 7
compares the Spitzer-Härm estimate and the collisionless esti-
mates of the electron heat flux with the observed heat flux for
the four simulations. All profiles in the figure have been ob-
tained using Te‖ in place of the temperature Te which appears
in Eq. (14). Even though Hollweg’s collisionless approxima-
tion is not expected to provide an accurate approximation of the
heat flux in the simulated systems, it appears that the measured
heat flux varies significantly from one simulation to the other,
in good qualitative agreement with the non collisional flux qNC

Fig. 7. Electron heat flux calculated using the collisionless approx-
imation qNC = (3/2)αnvTe‖ (top panel), the classical Spitzer-Härm
approximation qSH = −constant × T 5/2

e‖ ∂Te‖/∂r (middle panel). The
lower panel shows the heat flux profiles effectively measured in the
simulations. Fluxes are in arbitrary units, but the same normalization
has been used for all simulations.

obtained using Alexander’s model (Alexander 1993) to com-
pute α in Eq. (14) after replacing Te by Te‖. The Spitzer-Härm
prediction of an equal heat flux intensity for all four simulations
(based on the fact that the radial profiles of Te‖ are very similar
cf. Fig. 4) is completely at odds with the measured intensities.
But why is this so, despite the smallness of the Knudsen num-
ber? The answer is hidden in Eq. (14). Indeed, from Eq. (14),
after replacing Te by Te‖, it follows that the ratio of the two
contributions to the total heat flux is given by

qNC

qSH
=

3α
3.16

v

ve‖
1

KT
· (15)

From Eq. (15) it follows that the condition for the heat flux in
the system to be dominated by the classical term qSH one must
have KT � αv/ve‖. For example, at the sonic point one has
v/ve‖ = (me/mp)1/2 = 1/20 and KT ≈ 10−2 from where one can
estimate qNC/qSH ≈ 5α, which is substantially larger that unity
for any reasonable value of α. Thus, for the heat flux to be of
the Spitzer-Härm type in the vicinity the sonic point requires
the thermal Knudsen number to be larger than (me/mp)1/2. The
simulations suggest that this is not easily achievable because
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the driving of the wind to supersonic velocities does precisely
requires the plasma to be sufficiently collisional at the sonic
point. As already stated, the way around this restriction may be
the presence of an additional scattering mechanism (e.g. waves)
in the plasma. However, in that case the Spitzer-Härm formula-
tion of the heat transport would not be the relevant one anyway.
As already pointed out in the introduction recent multi-moment
simulations of the solar wind yield a close to classical elec-
tron heat flux (e.g. Olsen & Leer 1999; Li 1999; Lie-Svendsen
et al. 2001). The discrepancy may be due to the fact that physi-
cal conditions of the wind we simulate are quite different from
those used in these multi-moment simulations or, eventually, to
the fact that the heat flow equations in the multi-moment mod-
els are affected by the closure scheme. The simplified version
of the Coulomb collision operator used in our model or even the
one-dimensionality of the model may also contribute to the ob-
served discrepancy. The reason for the radial dependence of the
heat flux measured in the simulation (cf. Fig. 6) to be roughly
of the Spitzer-Härm type stems from the fact that the radial de-
pendences of both terms in Eq. (14) are quite similar for the
given temperature profiles. Indeed, if we replace Te by Te‖ in
Eq. (14) and use the fair approximation Te ∝ r−0.4 (from Fig. 4)
it follows that both qSH and qNC vary approximately as r−2.4.

4.4. Effects of varying the proton to electron mass ratio

Given the artificially low mass ratio in our simulations there
is a concern about the sensitivity of the results on the value
of mp/me. In order to address this question we show the same
simulation for two different values of mp/me in Fig. 8. The
other parameters are identical for both simulations , i.e. γp = 4
and N = 6400. In both cases the formation of a transonic wind
occurs, in association with the formation of a maximum in the
proton potential. However, the maximum’s amplitude is sub-
stantially higher, and less peaked, in the low mass ratio simu-
lation. The discrepancy is likely due to the fact that in the high
mass ratio case the scattering of the electrons in velocity space
by the protons is more efficient than in the low mass ratio case.
Indeed, the temperature ratio Te‖/Te⊥ reaches a value of 3 at
the upper boundary in the mp/me = 400 case (cf. Fig. 4) and
a value of 4 in the mp/me = 100 case. As a result the absolute
value of second term on the right hand side of Eq. (9) is signif-
icantly smaller in the high mass ratio case than in the low mass
ratio case. Since the sign of this term is negative it contributes
in reducing the the strength of the overall positive electric field.
From Fig. 4 one may argue that a similar argument applies to
the observation that the electric field strength increases with in-
creasing plasma density (i.e. with increasing collisionality) as
does effectively show Fig. 1.

Extrapolating these observations to mp/me = 1836 and N =
6400 one therefore expects the maximum of the proton poten-
tial to drop to an even lower level. The peak is expected to be
at least as marked as for the mp/me = 400 case.

5. Conclusion

From self-consistent kinetic simulation of a solar type wind we
find that, unless an efficient isotropization mechanism for the

Fig. 8. Dependence of the Mach number and the proton potential en-
ergy on the proton to electron mass ratio for the simulation with N =
6400. Even though the qualitative behavior is similar it appears that a
high mass ratio is in favor of a stronger acceleration of the wind. The
definitions for the Mach number and the normalizing energy Ψ0 are
the same as in Fig. 1.

electron velocity distribution (e.g. wave-particle interaction), or
some source of suprathermal electron distributions are invoked
(e.g. shock produced), the formation of a transonic wind is only
compatible with a sufficiently high collisionality in the vicinity
of the sonic point r = r∗. In oder words, the coronal density
must exceed a threshold density for the wind acceleration to be
sufficiently strong to become supersonic. Given the admittedly
oversimplifications in our model, combined with the fact that
the parameters we use are rather unrealistic (excessively high
coronal temperature and low mp/me ratio) makes it impossible
for us to specify an upper limit for the thermal Knudsen num-
ber at the sonic point r∗. We do merely show that the number
cannot be arbitrarily large, the limiting value most likely being
of the order unity, or less. As already stated, non Maxwellian
boundary conditions, feeding an excess of suprathermal par-
ticles into the system (e.g. kappa distributions) may help over-
coming the low Knudsen number condition. However, the exis-
tence of non thermal particle distributions rises the question of
their origin. We chose not to address this question and assume
Maxwellian boundary conditions which have the advantage of
not requiring the introduction of additional ad hoc parameters
into the model. Thus, in the absence of any electron scattering
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mechanism (apart from collisions), and unless special bound-
ary conditions are imposed at the base of the simulation do-
main, collisions appear to be the essential ingredient for the
wind to become accelerated to supersonic velocities, mainly
because collisions are necessary to convert the electron heat
flux into bulk energy of the plasma. The enthalpy gradient does
also contribute to the acceleration of the wind. However, the
acceleration associated with the radially decreasing enthalpy is
found to be weakly dependent on the plasma collisionality and
doesn’t seem to be the discriminating factor in the acceleration
of the wind to supersonic velocities.

In simulations where a transonic wind forms we find that
the proton potential has a maximum near (but above) the
sonic point. Typical values of the electric field near the sonic
point r∗ are found to be of the order of Dreicer’s field, or
larger. The presence of such strong electric field intensities
may contribute in making the electron heat flux depart from
the classical Spitzer-Härm formula (which requires the electric
field being much weaker than Dreicer) but the main reason
for the observed heat flux to depart from the Spitzer-Härm
prediction is due to the presence of a strong “non collisional”
heat flux qNC ∝ nvTe. The latter appears to contribute sig-
nificantly to the total electron heat flux, even in the region
where the wind velocity is much smaller than the sound speed.
We are aware of the fact that extrapolating the above results
to the “real” Sun is a perilous exercise. However, we do not
expect the qualitative behavior of a system with real coronal
temperature and real proton to electron mass-ratio to behave
in a substantially different way from the high density case
discussed in this paper. In particular, increasing the proton
to electron mass ratio from 400 to 1836 implies a factor two
increase in the electron thermal velocity, only. Given that
the electron thermal velocity at the base of the system is
already one order of magnitude larger than the escape velocity
for the mp/me = 400 case, not much difference is expected
in a system with twice this thermal velocity. The skeptical
reader may also argue that using a realistic mass ratio would
substantially modify the transport properties of the plasma.
This is certainly true, but we expect the modifications to be
small, essentially because neither the classical electron heat
flux qSH nor the collisionless heat flux qNC depend on the
mass ratio, at least as long as mp/me � 1. We expect the
excessively high coronal temperature used in our simulations
to be a more crucial limitation in the process of transposing
the above results to the solar case just because the pro-
ton thermal velocity and the escape velocity are of the same

order, i.e.
√
γp = O(1). Indeed, the coronal temperature of the

real Sun is roughly 3 times smaller that the value we use here.
This implies a factor

√
3 difference for the order unity quan-

tity γp. The impact is certainly non negligible from a quantita-
tive point of view but there aren’t any reasons for us to believe
that the qualitative aspects of our results do not apply to the
solar case. For instance, whether or not the collisionless heat
flux near the solar sonic point is really one order of magnitude
stronger that the classical Spitzer-Härm flux remains an open
question since this finding discords with recent results from
multi-moment models.
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