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Table	 1.	 Values	 of	 rate	 constants	 (ko×106)	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+	 in	 the	 absence	 of	 dicarboxylate	 ion‐pairing	 tert‐butanol	 (30%)	 at	 different	temperatures.	
T	(°C)	 30	 35	 40 50 60	
ko×106	(1/sec)	 0.51	 1.80	 3.56 30.40 37.80		
Table	 2.	 Values	 of	 rate	 constants	 (kobs×106	 (1/sec))	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+	 in	 malate	 media	 (m1)	 containing	 tert‐butanol	 (30%)	 at	 different	temperatures.	
m1	(mol/L)	 T	(°C)	

30	 35	 40 50 60	0.008	 0.78	 3.39	 14.47	 39.95	 61.20	0.016	 0.74	 3.43	 13.83 38.32 57.61	0.024	 0.76	 3.71	 11.35	 21.46	 55.97	0.032	 0.78	 3.59	 6.86	 11.38	 54.80	0.040	 0.65	 3.90	 7.31 10.43 32.89	
	
Table	3.	 Values	 of	 rate	 constants	 (kobs×106	 (1/sec))	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+	 in	malonate	media	 (m1)	 containing	 tert‐butanol	 (30%)	 at	 different	temperatures.	
m1	(mol/L)	 T	(°C)	

30	 35	 40	 50	 60	0.008	 2.65	 5.02	 6.82 31.36 50.24	0.016	 2.83	 4.27	 7.51 29.67 55.52	0.024	 1.69	 2.20	 7.24 32.49 53.84	0.032	 0.87	 5.83	 7.42 29.68 51.65	0.040	 1.26	 5.09	 5.26	 40.33	 56.27	
	
Table	 4.	 Values	 of	 rate	 constants	 (kobs×106	 (1/sec))	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+	 in	 tartrate	 media	 (m1)	 containing	 tert‐butanol	 (30%)	 at	 different	temperatures.	
m1	(mol/L)	 T	(°C)	

30	 35	 40 50 60	0.008	 0.57	 4.13	 5.84	 18.60	 47.23	0.016	 2.24	 3.25	 6.52	 17.58	 45.90	0.024	 2.45	 2.95	 4.22	 16.14	 44.42	0.032	 0.74	 2.79	 20.74 35.29 67.13	0.040	 0.83	 3.33	 12.06 26.70 60.80	
	
Table	5.	 Values	 of	 rate	 constants	 (kobs×106	 (1/sec))	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+	 in	 succinate	media	 (m1)	 containing	 tert‐butanol	 (30%)	 at	 different	temperatures.	
m1	(mol/L)	 T	(°C)	

30	 35	 40	0.008	 1.51	 2.01 5.34	0.016	 1.05	 1.51 2.31	0.024	 0.85	 2.20 3.20	0.032	 1.27	 3.09 3.02	0.040	 1.35	 2.31 3.93		 	Cobalt(II)	carbonate,	ammonia,	malonic	acid,	succinic	acid,	tartaric	 acid,	 malic	 acid,	 sodium	 carbonate	 and	 tert‐butanol	were	purchased	from	Fluka	Chemika.	Hydrogen	peroxide	was	purchased	 from	 Riedel‐de	 Haën.	 Hydrochloric	 acid	 was	purchased	 from	Chemical	Management	Consulting.	Perchloric	acid	 was	 purchased	 from	 Merck.	 The	 chloropentaammine	cobalt(III)	 perchlorate	 complex	 was	 prepared	 by	 using	 the	method	of	Hynes	[14].		
	
2.2.	Procedure		 The	 rate	 of	 aquation	 of	 [Co(NH3)5Cl](ClO4)2	 complex	was	followed	 spectrophotometrically	 by	 using	 Unicam	 Helios	Alpha	and	Beta	spectrophotometer	at	λ	=	240	nm,	in	30%	(v:v)	
tert‐butanol	 in	 different	 dicarboxylate	 media	 (Malonate,	succinate,	malate	and	 tartarate)	 (0.008‐0.040	mol/L	at	30‐60	°C).	Knowing	that,	the	buffer	solution	was	prepared	from	0.1	M	of	 the	dicarboxylic	acid	and	0.08	M	of	sodium	carbonate.	The	spectrophotometer	was	fitted	with	thermostated	cell	holders,	heated	by	water	circulating	from	a	Heto	HMT	200	thermostat.	
	
3.	Results	and	discussion		 The	observed	 first	 order	 rate	 constant	 in	 the	presence	of	dicarboxylate	 buffers	 for	different	 temperatures	 in	30%	 (v:v)	
tert‐butanol	were	computed	from	the	slopes	of	the	good	linear	least	 squared	 first	 order	 plots	 of	 log	 (At‐A∞)	 against	 time	depending	on	the	first	order	Equation	(1)	[15].	Where	At	is	the	

absorbance	 at	 different	 time	 and	A∞	 is	 the	 absorbance	 at	 the	infinite	time.			Ln	(a0/a0‐x)	=	k×t		 	 	 	 	 (1)			 The	observed	rate	 constants	 (kobs)	are	collected	 in	Tables	1‐5.	The	ion‐pair	rate	coefficient	(kip)	was	calculated	according	to	the	following	Wyatt	and	Davis	equation	[16].		kobs.m3	=	k0	×[CpX2+]	+	kip	×	[CpXL]	 	 	 (2)		where	 k0,	 the	 observed	 rate	 constant	 in	 the	 absence	 of	dicarboxylate	 ion;	 kobs,	 the	 observed	 rate	 constant	 in	 the	presence	 of	 dicarboxylate	 ion;	 m3,	 the	 stoichiometric	concentration	 of	 the	 complex	 salt;	 [CpX2+],	 the	 free	 complex	ion	concentration	and	[CpXL],	the	ion‐pair	concentration.		[CpXL]	 was	 calculated	 with	 the	 aid	 of	 the	 following	Equations:		CpXL	⇌	CpX2+	+	L2‐KD	 	 	 	 	 (3)		NaL‐	⇌	Na+	+	L2‐KNaL‐	 	 	 	 	 (4)		H2L	⇌	HL‐	+	H+K1	 	 	 	 	 	 (5)		HL‐	⇌	L2‐	+	H+K2	 	 	 	 	 	 (6)				
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Table	 6.	 Calculated	 values	 of	 rate	 constants	 (kip×105,	 1/sec)	 for	 the	 aquation	 of	 [Co(NH3)5Cl]2+in	 dicarboxylate	 buffer	 containing	 30%	 of	 tert‐butanol	 at	different	temperatures.	
T	(°C)	 Malate	 Malonate Tartrate Succinate	30	 0.38	 0.835 0.30 0.21	35	 1.95	 1.23 0.42 0.22	40	 6.02	 1.32 0.925 0.33	50	 8.49	 3.14	 2.30	 	60	 21.10	 7.68	 4.95	 	
	
Table	7.	Values	of	the	thermodynamic	parameters:	Enthalpy	of	activation	Δ ∗ , entropy	of	activation	Δ ∗ 	and	Gibbs	of	free	energy	of	activation	Δ ∗ of	the	ion‐pairing	aquation	of	[Co(NH3)5Cl]2+in	different	buffers	containing	30%	of	tert‐butanol	at40	°C.	
T	(°C)	 Buffer	 ∗ 	(kJ/mole) ∗ (J/K.mole) ∗ (kJ/mole)	40	 malate	 98.25	 ‐18.74 104.11	40	 malonate	 52.49	 ‐168.50	 105.22	40	 tartrate	 72.48	 ‐112.11 107.57	40	 succinate	 22.18	 ‐280.11	 109.86			Where;		KD	=	[CpX2+][L2‐] /[CpXL]	 	 	 	 	 		(7)	(L2‐	represents	the	dicarboxylate	anion)		K1	=	[H+][HL‐]	 	/[H2L]	 	 	 	 	 		(8)		K2	=	[H+]	[L2‐]	γ2	/	[HL‐]	 	 	 	 	 		(9)		KNaL‐=	[Na+]	[L2‐]	γ2	/	[NaL‐]		 	 	 																		(10)		Log	γi	=	‐A×(I1/2	/	(1+1.3×I1/2)‐0.3×I)	 	 																		(11)		(Debye‐Hückel	equation)	(Log	γ2	=	4	Log	γ1)		 I	is	the	ionic	strength	γ1	and	γ2	are	the	activity	coefficients	of	the	univalent	and	divalent	ions,	respectively.			I	=	0.5×([H+]	+	[HL‐]	+	4×[L2‐]	+	4×[CpX2+]	+												2×m3	+	[Na+]	+	[NaL2‐])	 	 	 																		(12)		m1	=	[H2L]	+	[HL‐]	+	[CpXL]	+	[NaL‐]	 	 																		(13)		m3	=	[CpX2+]	+	[CpXL]	 	 	 	 																		(14)		 The	 principle	 of	 calculations	 performed	 by	 computer	programs	 can	 be	 summarized	 as:	 for	 the	 first	 cycle	 [H+]	 =	 0,	[CpXL]	=	0,	 [NaL‐]	=	0,	 [CpX2+]	=	m3	 –	 [CpXL],	 [HL‐]	=	0.5×m2,	[H2L]	=	0.3×m1,	[L2‐]	=	m1	–	[HL‐]	–	[CpXL]	–	[NaL‐]	–	[H2L]	and	[Na+]	 =	 2×m2	 –	 [	 NaL‐].	 Where,	 m2	 is	 the	 concentration	 of	sodium	carbonate.	Then	the	 ionic	strength	takes	 its	first	approximated	value	and	 then	γ1	and	γ2	 after	which	 the	 following	 terms	 take	 their	new	value			[H+]	=	K2	[HL‐]	/	[L2‐]	γ2	 	 	 	 																		(15)		[H2L]	=	[HL‐][H+]	 	/	K1	 	 	 	 																													(16)		[HL‐]	=	2×m1	‐2×m2	–	2×[H2L]	–	[H+]	 	 																		(17)		[L2‐]	=	m1	–	[HL‐]	–	[H2L]	–	[CpXL]	–	[NaL‐]	 																		(18)		[NaL‐]	=	[Na+]	[L2‐]	γ2	/	KNaL‐	 	 	 																		(19)		[CpXL]	=	m3/[(KD/ [L2‐])	+1]	 	 																		(20)		[CpX2+]	=	m3	–	[CpXL]	 	 	 	 																		(21)		then	I,	γ1	and	γ2	recalculated	again.	These	steps	of	calculations	were	 repeated	many	 times	 until	 the	 difference	 between	 two	successive	 values	 of	 [CpXL]	 becomes	 equal	 to	 or	 less	 than	1×10‐7.	

The	calculated	average	values	of	kip	in	dicarboxylate	buffer	containing	 30%	of	 tert‐butanol	 at	 different	 temperatures	 are	collected	in	Table	6.		
3.1.	Variation	of	ion‐pair	coefficients	(kip)	with	different	
buffers		 Various	 studies	 [17]	 found	 that	 the	 rate	 of	 aquation	 of	chloropentaammine	 chromium(III)	 ion	 is	 accelerated	 by	nitrate,	sulphate,	malonate,	tartrate	and	phthalate	ions.	These	effects	were	 attributed	 to	 the	more	 reactive	 ion‐pairs.	 These	studies	 clearly	 show	 the	 ion‐pairs	 formed	 between	 some	bivalent	 anions	 and	 halopentaammine	 cobalt(III)	 or	chromium(III)	 cations	 undergo	 aquation	 at	 a	 faster	 rate	 as	compared	 to	 the	 free	 cations.	 Thus,	 by	 comparing	 kobs	 of	 all	buffers	with	respect	to	ko	(in	the	absence	of	buffer)	at	30%	of	
tert‐butanol	 (see	Tables	1‐5),	 it	was	 seen	 that	kobs	 values	 are	greater	 than	 the	 ko	 values.	 The	 rate	 of	 the	 acid	hydrolysis	 of	chloropentaammine	 cobalt(III)	 ion	 had	 been	 shown	 to	 be	independent	of	hydrogen	ion	concentration	below	pH	=	7	[18].	For	 that	 reason,	 the	 values	 of	 ion‐pair	 rate	 constant	 kip	 are	approximately	 the	 same	at	different	 concentration	of	buffers.	Table	6	shows	the	average	values	of	kip	for	the	different	buffers	at	 different	 temperatures	 containing	 30%	of	 tert‐butanol.	 By	comparing	 the	 kip	 values	 with	 respect	 to	 different	 buffers,	 it	was	 seen	 that	 the	 values	 of	 kip	 are	 of	 decreasing	 order:	 kip	malonate	>	kip	malate	>	kip	tartrate	>	kip	succinate	at	different	temperature.	Knowing	that	pK1	succinate	>	pK1	 tartrate	>	pK1	malate	>	pK1	malonate.	 This	means	 that	malonate	will	 disso‐ciate	 more	 than	 the	 other	 buffers	 causing	 more	 anions	 of	malonate	in	solution,	thus	helping	in	the	formation	of	ion‐pair.	Furthermore,	 the	 solute‐solvent	 and	 the	 solvent‐solvent	interactions	must	be	considered	resulting	from	the	presence	of	hydroxyl	groups	in	both	solvent	components	(water	and	tert‐butanol)	 and	 the	 carbonyl	 oxygens	 group	 in	 the	 malate,	malonate,	 tartrate	and	succinate	buffers	besides	 the	hydroxyl	groups	in	tartrate	and	malate	in	the	formed	ion‐pairs.	So,	tert‐butanol	 has	 special	 effect	 on	 the	 formation	 of	 ion‐pair.	 This	fact	was	also	proven	in	previous	studies	[19‐21].	
	
3.2.	Thermodynamic	parameters	of	the	ion‐pair	aquation	
reaction		 The	 thermodynamic	parameters	of	 the	 activated	 complex	at	40	°C	were	collected	in	Table	7.	A	useful	comparison	can	be	made	with	Δ ∗ 	values	among	the	studied	dicarboxylates.	The	most	positive	values	of	Δ ∗ 	were	found	for	succinic	buffer	as	shown	in	Table	7.	The	trend	of	stability	of	ion‐pairs	is	based	on	the	 ring	 size	 formed	 between	 the	 complex	 cation	 and	dicarboxylate	 anion	 in	 which	 the	 stability	 increases	 with	decreasing	 ring	 size	 [22].	 Accordingly,	 malonate	 is	 the	 most	stable	 one.	 The	 stability	 of	 tartrate	 and	 malate	 ion‐pairs	 is	higher	than	succinate	(same	chain	length)	due	to	the	presence	
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re	3. Δ ∗ versus	∆nol	for	[Co(NH3)5CSimilar	to	(LFEowing	Equation	=	c	 Δ 	+	dOther	 correlatere	they	are	founAlso,	 the	 plot	nd	series	 is	 foum	of	Equation	(2	=	e	 Δ 	+	fThe	 obtained	vation	Δ ∗ 	 anded.	 Moreover,	 tdifferent	 dicaation,	 where	 thhydration	shelltion	 taken	 by	ar	 correlations,formation	 wther	 primarily	rboxylate	grouhydroxyl	group
Isokinetic	relaPlots	 of	 enthavation	often	fors	 [25,26]	 treat	on	of	an	extrathes	 called	 the	 ison	 effect.	 The	m	 the	 slope	 ×1halpy‐entropy	rpreted	by	assuminant	 importate	 and	 one	 ofanol,	 is	 particuropy	 will	 both	nges	in	Δ ∗ 	be			 versus	Δ 	∗ fot	dicarboxylate	Thus	the	compK.	This	means	mind.	 The	 true	ms	 of	 solvent‐ss	 to	 stronger	bent	 molecules	ricting	 the	 freent	molecules,	
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∆ for	 the	differel]2+ at	40	°	C.R)	, Δ ∗ 	is	corr	(23):	d	ions	 are	 donend	to	obey	Equof	 Δ ∗ 	 versusund	to	be	 linear24):		 link	 suggestd	 association	Δthe	 parallelismarboxylates	 ishe	 controlled	 fl	 for	the	free	coevery	 dicarbo,	 depends	 on	 itwhich	 differs	 fbecause	 of	 theups	transmittedps	[24].	
ationship	alpies	 of	 activrm	straight	linethese	 linear	 phermodynamic	sokinetic	 effectisokinetic	 temp000	 of	 the	 linediagrams	 for	uming	that	solvance	 where	 thf	 the	 solvent	ularly	 strong.	 Ttend	 to	 Δ ∗linear	functionor	 the	 ion‐pair	media	at	fixed	cputed	value	of	 tthat	the	compexplanation	 ofolute	 interactiobinding	betweewill	 lower	 thedom	 of	 vibralower	the	entro
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ent	buffers	 contain
related	with	Δ

																			e	 to	 Δ ∗ 	with	ation	(23).	s	 Δ 	 of	 the	r.	This	relation
	ts	 that	 both		 are	 largelym	 between	 Δ ∗s	 probably	 refactor	 is	 the	 reomplex	 ion	andoxylate	 buffer	ts	 reactivity	 tofrom	 one	 dicae	 electrostatic	d	 through	(‐CH2

vation	 versus	e.	Several	standplots	 as	 authenrelationship,	wt,	 enthalpy‐entrperature	 can	 bear	 plots	 of	Δmixed	 solvenvent‐solute	interhe	 interaction	components,	 wThen,	 the	 enth	and	Δ ∗ 	 led	 tns.	Figure	4	shoaquation	 reactcomposition.	the	 isokinetic	 tensation	effect	f	 compensationons.	 Any	 effecten	 a	 solute	molhe	 enthalpy;	 it	ation	 and	 of	 roopy.		

ning	30%	of	 tert‐
	to	give	the	

																		(23)Δ and	Δ ,	dicarboxylate	ship	takes	the	
																		(24)entropies	 of	y	 charge‐cont‐	and	 Δ 	 for	elated	 to	 ion	eorientation	 of	d	ion‐pair.	The	in	 the	 above	oward	 the	 ion‐arboxylate	 to	action	 on	 the	2‐)	groups	and	
entropies	 of	dard	chemistry	ntic	 represent‐which	is	some‐ropy	 compen‐be	 determined		∗ versus	Δ ∗ .	nts	 are	 often	ractions	are	of	between	 the	which	 is	 tert‐halpy	 and	 the	to	 only	 small	ows	the	plot	of	tions	 in	differ‐temperature	 is	must	be	born	n	 effect	 lies	 in	t	 for	 example,	lecule	 and	 the	will	 also,	 by	otation	 of	 the	
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rboxylate	 solurick	[27]	expres=	k0	+	kc×CLere	kobs	is	the	obs	value	is	the	abs	 the	 stoichiomlected	 in	 Tablethe	plots	of	kobextrapolated	tonds	the	plots	arropriate	rate	lawe	=	C1	(k0+kc	KA

re	 6.	 Log	 kip	 versnol	for	[Co(NH3)5C

re	 7.	 Log	 kip versnol	buffer	for	[Co(NIn	the	present	ipossible	 emptions	 containinrelations	 rathedium	where	 thestant	 and	 henures	8	and	9	shoNow,	 it	 is	 nestant	(kobs)	withmpts	were	testplots	of	1/(kobstive	 slope	 andwn	on	Figures	1s	leads	to	the	fo
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trations	m1	of	dica
5762	90	97	15
utions	 and	 thssed	his	results	
	bserved	pseudobsence	of	L,	kc	imetric	 concentrae	 8).	 Jones,	 Harbs	against	CL	of	o	a	common	k0re	nonlinear.	Thw	is:	CL)/	(1+KACL)

us	 log	 K1	 of	 tartral]2+	at	different	tem
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rboxylate	buffer	c
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hat	 containing	in	terms	of	Equ
	o‐unimolecular	s	the	catalytic	cation	of	 the	unrris	 and	Wallaf univalent	ligan0	at	CL	=	0	whilhus,	it	was	conc
	

ate	 buffer	 containmperatures.	
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rt‐butanol	 whicure	 aqueous	 dutanol	 loweredhe	 ion‐associawhich	appear	smorrelate	 the	 ond	concentratiothem	was	only	CL	give	a	straigercept.	 Some	linearity	obtainical	correlation
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tert‐butanol.	uation	(25):	
																			(25)rate	constant,	coefficient	and	nivalent	 ligand	ace	 [28]	 found	nd	were	linear	le	 for	divalent	cluded	that	the	
																		(26)

	ning	 30%	 of	 tert‐

	ning	 30%	 of	 tert‐	ary	to	examine	dicarboxylate	ch	 assist	 such	dicarboxylates		 the	 dielectric	ation	 process.	mooth.	observed	 rate	n	CL.	Different	valid	in	which	ght	 line	with	a	examples	 are	ned	from	these	:		
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