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By solving the linearized Vlasov-Boltzmann equation it is shown that zero sound can exist .
in classical liquids. The effective interatomic potential is shown to be expressed in terms of the
direct correlation function. The real and imaginary parts of the frequency are expressed
analytically for both small and large values of wave-vector % but in general are obtained
numerically. In our solution of the dispersion relation, first (ordinary) sound and zero sound
originate from the same pole; the former is the solution for smaller 2 and the latter is that
for larger . We believe that the collective modes observed in classical liquids by neutron
scattering experiments should be interpreted as zero sound. The imaginary part of the diffu-
sion pole which contributes to the line width of the quasi-elastic peak, becomes small for

~ the wave- vector. where the form factor S(k) has peaks. :

§1. Tntroduction

Recently, the new collective modes in classical liquids are observed in the k
slow neutron inelastic scattering experiments.” The well-known collective modes

in liquids are the ordinary (first) sound, which can be described by hydrody-
namical equation. These new modes observed in the neutron scattering experi-

ments belong to the range of so large wave-vector £ and frequency o that the

‘hydrodynamical description cannot be applied and they have an origin different
from first sound. These new collective modes provide an explicit indication of
the “solid-like” phenomena in liquids; one, for example, is that the line-width
of the quasi-elastic peak of the neutron scattering experiments is narrower than

* (D; d1ffu31on constant) and oscillates against wave-vector £ (de Gennes
narrowing?). ~

These modes have the same origin as those for plasma oscﬂlatlon, lattice
vibrations, zero sound in Fermi liquid, elementary excitations in liquid He®, ‘and
sloppy spin waves; these modes are described as.the oscillation in the self-con-
sistent field formed by surrounding particles. Already, Vlasov® suggested that
a new sound different from first sound can exist in the neutral particle system.
Klimontovich and Silin® called the collective modes formed by a self-consistent
field self-consistent sound, or zero sound after Landaw’s Fermi rliqu.idvtheéry.

*) The main result of this investigation has been reported at the conference on the inelastic
scattering of neutrons at Japan Atomic Energy Research Institute, during November 20th—22nd 1967
(Report No. JAERI-1157, in Japanese)
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286 | o J. Chihara

Takimoto and Ninham®” examined zero sound in a gas. They considered
that the condition for the existence of zero sound is as follows:

mean free path / > wave length 1 > mean particle distance d, (1-1)

and concluded that the condition (1-1) is realized by rarefying a gas: Their
results, however, show that .the ratio of the damping factor of zero sound to the
frequency becomes larger as the density of a gas is reduced and zero sound
cannot exist in a rarefied gas. The mean free path was related to the interparticle
collisions through the bare two-body potential, so that the gas must be rarefied
if it is to be in the collisionless regime. Some part of the collision processes,
however, contributes to forming the self-consistent field, and the mean free path
must be related to the reduced collisions through the effective two-body potential.
From this standpoint high density favours the existence of zero sound.

Recently Nelkin and Ranganathan® obtained the line shape of the dynamlcal
" structure factor S(%, w) by solving the lmear17cd Vlasov equation with a special
initial condition. . ‘ ‘

The purpose of the present paper is to examine the behaviors of the poles
" of first sound, zero sound and diffusion by solving the dispersion equation derived
from Vlasov-Krook equation with the aid of the method of fluctuations in distri-
bution function developed by Hashitsume.” - '
k In §2, we investigate the kinetic equation for the one-body distribution
function in liquids. In § 3, the method of fluctuations in the distribution func-
tion is summarized and using this method and the zero-th moment sum rule, we
determine the interatomic effective potential which is contained in the kinetic

equation for the one-body distribution function given in §2. In §4, we solve -

the dispersion equation obtained by the procedure prescribed in §3, and the
_ dispersion curve and damping of zero sound and first sound are obtained. The
last section is devoted to a summary and discussion.

§2. Kinetic equation for the one-body distribution function

Bogoliubov and Kirkwood have shown that in a rarefied gas, the one-body

distribution function obeys the Boltzmann equation. However, it is not certain
what kind of kinetic equation can describe the behavior of the classical liquids
in small scale of time and space as observed by the inelastic neutron scattering
experiments. Assuming that the nz-body distribution functions can be represented
as the time-independent functionals of the one-body distribution function and can
~ be expanded in powers of the density, Bogoliubov and his followers derived
the kinetic equation for a demse gas which contains the three- and four-body
collision terms. This equation is not only too complicated to use for the practical
problems, but also has the difficulty that the four—body collision term diverges.
This is an essential difficulty in extending Bogoliubov’s method so as to meet
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the requirements of the kinetic theory of liquids.

In the present paper we take a different approach such that the multlple
scattering between liquid particles contribute mainly ‘to formmg the effective
two-body potential and that the motion of the particles is essentially governed
by this modified potential via the binary collisions. As a representation of this
picture, we can write the following kinetic equation for the one-body distribution
function:

‘ @Jf 6’f me 0/
0t Or m I[f]

Foui(r, 1) =— g_@&%r;rﬂ) £, o, £ dr A, @-1)
or \

where I[ f7] is the two-body collision term, V,x(r) an effective potential between

two particles, whose functional form should be determmed by the sum rule, and

m is the mass of a particle.

Although Kirkwood’s or Rice-Allnatt’s kinetic equdtlon” for liquids does not
contain the Vlasov term explicitly, there is a term which is essentially transformed
to the Vlasov term with the effective potential Vi (r) = —kzT In-g(r) (9(r); the
radial distribution function).

Landauw’s kinetic equation for a Fermi liquid can also be considered as the -

Vlasov-Boltzmann equation with the momentum-dependent - effective interaction
potential. Vg (rirs; pips) =0 (ri—ry) fp,p,, where fp,p, is the scattering amplitude
function and r;, p; are the position and momentum of the i-th particle.

§ 3. 'I’WO-Body double time correlation function

In order to obtain the two-body double-time correlation function from the
kinetic equation for the one-body distribution function, we use the method of
fluctuations in distribution function; this method, formulated by Hashitsume,”
has frequently been applied to a wide varlety of problems by . the Soviet school.

In his method a random function f is defined by

nt/g

(r—r,(t))@(v v:(2)), ‘(3-1)

where F;(¢), 9;(¢) are the position and velocity of the 7-th particle at time 2.

This random function is assumed to obey, on the average, the kinetic equation
of its average function, f(r, v, £) =< f> i.e. the one-body distribution function
(this implies Onsager’s assumption).

This assumption is expressed as

0F L of | Fur 07
0t or m v

=1 Fl+yt w0, (32
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~ where y(r, v, £) is a random function whose statistical property should be de-
- termined by the fluctuation-dissipation theorem as follows. If the generalized
thermodynamical velocity # and the force X=—0S/0%, where S is the entropy,
are defined by and subject to the relation &= —7X-y, then, according to the

- fluctuation-dissipation theorem,” in general the random quantity y must have the

~ property | yIDe=2ks7. In our case, using the definition of entropy S= — kg 7
xIn fdrdv and putting = I[f] + 1y, the generalized thermodynamical force X is
‘obtained in the form

X=— g—S——CF/fo o P Fm T o)

and the relation between % and X» leads to

$:‘I[f¢].+y g é\I { Ef(r v, ) dv’ +y
o "y
SER*; | FEOXC o, Do 4y,

so that the random function y must have the following property:
Ky@)y* (W) )re= 42/637 (v, v),

N =01, [f]) / . 3.3)
)é‘f(v,)ff() | ©:3)

We adopt here the Kroolk model'” as an approximation for the colhsmn term
to perform the practical calculation, i.e.

T(v, [f])*v{nfb f}, | (3-4)

r(v, v

where

v: collision frequency (parameter).

Carrying out the functional differentiation I(v, [ f]) with respect to f, we obtain

1@ )= { fi@ )~ L1+ 200!

+ 3 —égl’T)( - TO)]fo<v>ﬂ<v’>} (3-5)
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Liﬁearizing Eq. (3-2) and taking the Fourier tra,nSerm of & in space and
time '

,ka(z;):_—g Hr, v D= drdy | - (3-6)

and with the aid of the equation of continuity, we obtaln the followmg simul-
taneous equations® (3-9) and (3-10) for the unknown 07, 07T, defined by

O :S Frudv , | (3-7)
1 (|m? ' - : ‘ '
(?Tkw‘— ~~~~~~~ W—To kadv, ) (38)
no) \3kp
(4411 67’%@/”0 + a1267kw/T0 = *S ykwdv _— ' (3- 9
1O+ 1y — kv :
azlankm/ﬂo‘{ CK?,zakaa,/Y7 = 27771 g - vykw d’l), - (3-10)
. ' no ) .

w+v—kv

where , : - .

au=1~Gy/2) I (p+2izy) (J—1), an= (y/22) [ J—22*(J—1)],
(tn=3— (2iy/2) [2'(J—~1) +J] ~ (p-+ 2izy) [22 (J—1) +2J 3],
Qgg=3— (iv/a)+z’») [(2z“+z2+ 1)‘J—2z4—2z2] ‘

The above equations are solved for ()‘n,w to derive ‘Lhe dynamical form factor
Sk, 0) =<{|0ng,|>>. The functional form of V(%) is then determined so as to

satisfy the zero-th moment sum rule, ‘
noS () =<[0n|n=——{ Sk, w)do (3-11)
7[ . .

Because of the computational difficulty in this procedure, we use an ap-

proximate S(%, w) determined from the collisionless equation in the calculation..

Since the Vlasov term has an important contribution principally in the collisionless

regime, this approximation is to be a sufficiently good one. In this collisionless
approximation Eq. (3-2) is written as ‘ ‘

_@_%zr_+ ag Fself aﬁ

! (3412
ot Or m  Ov vvff"—ly ‘ (‘ >\

* This calculation is essentially similar to that in .the plasma problems studied by Sitenko and
Gurin.1D
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(we take the limit y—0 later)

~and Eq. (3-5) reduces to .
Ly@)y* (') > = 2kpnfo (v) 0 (v —2"). (3-13)

F.rom Eq. (3-12) 0ng, is given by ' -
o= 12T g /{ + [ He @D gy, (3-14)
se(0) sk (v") .

where

2

Hy (v) EY“"’;EI‘:)* kgfo

se(@)=0+iv—Fkv.
- From Eqgs. (3:13) and (3-14) we obtain

_vians, _ 2ksTo 1 1
S ) =ionlhe. = ~Z2200 - I ),

where
Cro=1—— o no{J () —1}. . - (3-15)

These are the same formulae as Mermin’s™ obtained by the Green’s function
method, and also Aronson’s®™ by the diagram method, but their interatomic
" potential is bare one, instead of effective. Recently Nelkin et al.? obtained their
formula for S(k, w) by solving the Vlasov equation with a special initial condi-
tion. Only if the effective potential is proportional to the direct correlation
function, Eq. (3-15) is the same as Nelkin’s as will be shown below. Using

to

1S (k) = Mo
1 + nOBVeﬁ' (k)

=1/ kBTO)
from which we obtain the following effective potential:
| o nVia (k) = — ks ToniC (), (3-16)

WheiﬂelnoC(k)z‘l~1/S(k) is the direct correlation function. ‘This is identical
with the result obtained by Zwanzig'® by the method of the variational principle.

§ 4. The dispersion curve

t . . ) . N ‘ . . .
Proceeding in the manner outlined in the previous section, we may obtain

S(k, ») where collision terms are also taken into account. However, we in-

Eq. (3-15) and with the aid of the Kramers-Kronig relation, Eq. (3-11) reduces
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Kinetic Theory of Collective Modes in Classical Liquids 291

vestigate here only the behaviors of the poles of S(k, w) associated with the
sound and the diffusion. The dispersion equation is obtained from the denominator

of S(k, w), that is,
v C QiQlay — Qe = 0

which is written in the form

<3 2;Y J)[ z~~J (j)-}-szy)(J 1)]

,5',;(1.“) sz)[ZJ(J 1) -J] =0, (4-1)
where

p=—nLC k) and z=x+iy=—1r-—" -

We now solve this dispersion equation in the two limiting cases: (i) in

the collisonless regime (wr>1, r=1/y) and (i) in the hydrodynamical regime

(wr<<1) as follows.
(i) collisionless regime (wr>1)
We find the dispersion curve from Eq. (4-1) as the 1ea1 part -of the root

w,

Rev. y345, | (4-2)

'Z)Tk A ) ’
and the damping,
o Imo. Vw1 {8 Dy (1 +1>}y_v @3

ok 2d(x)  2d(x) 3zop b/l vek wpk’
where
d(x) = (227 —l)F(x) ——x__1__+__.1_~._ . '
‘ 220 22°

F(x) — § e’de ,
6/ .

zo=+Vp/2(1—pa)+3/2,

emafir(/5e3)-(0])

" When p>3, the dlspersmn, curve, Eq. (4-2), is written as

9. ka
(Re w)'= =50, ( la)

which is identical with <a>2>,:°"ES DSk, ) do .
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(i1) hydrodynamical regime (w7r<<1) .
Expanding /v in powers of #=1/y and determining coefficients to satisfy
the dispersion equation, we obtain the dispersion curve for first sound

vq A ‘
and the damping

Tm 0] = _104-4p 1

. (4-5)
(vmk) 10+6p v
The diffusion pole is given by Re w=0 and
| ’ Im o 10(1+p) 1

(vek)  10+6p v (4 6,)

The collective modes observed in the inelastic neutron scattering experiments
should be interpreted as zero sound in the collisionless 1eg1me and its dispersion
~curve is given by Eq. (4-2).

The dispersion curve of first sound, Eq. (4-4), is observed in the light
scattering experiments. The damping of zero sound obtaind as in Eq. (4-3)
~consists of the Landau damping and the collision .damping; the latter is inde-
pendent of wave-vector %k and proportional to the collision‘ frequency v, while
the damping of first sound, Eq. (4-5), is inversely proportional to v.

In order to obtain the dispersion curve for general wave-vector, we solved
the dispersion equation numerically. The dispersion curve and damping are
plotted against the wave-vector % in Fig. 1(a). In the computation we take, y=10"

sec™' which corresponds to argon with density 1.37g/cc at temperature 90°K

and used the Ashcroft model®™ for S(k) (in which parameters are taken as
7=0.45 and 7=3.444A). ~Since this model cannot represent properly the behavior
of S(k) for small %, these results should be interpreted with due reserve.
In Figs. 1(a) and 2(a) the curves ‘denoted by “gas” mean the solution of
the dispersion equation (4-1) without the Vlasov term. As shown in Fig. 1(a),
the damping for a liquid is small for small %, but increases with % and approaches
the damping for a gas. With increasing % the dispersion curve for a liquid also
approaches aSymptotmdlly that for a gas, wz=+/2kzT,/m-k, as it should. k
~ Figure 1(b) shows the behavior of the imaginary part of the diffusion pole
against wave-vector %, which becomes D#k* for small %k This imaginary part for
liquids in Fig. 1(b) has a dip at wave-vector at which S(%) has the peaks.
This phenomena of the diffusion pole for a liquid may be associated with
de Gennes narrowing,”'® that is, the line width of the quasi-elastic peak in the
neutron scattering experiments becomes narrow in the vicinity of £ Where S (k)
has the peaks '
We also investigated the relation between zero sound and first sound. We
solved the dispersion equation of the sound waves, varing the wave-vector % from
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- Fig. 2. The relation between zero sound
" , , and first sound. In Fig. 2(a) the curves
20 05 10 : 15 denoted by “liquid ” represent the dis-
(;)\\ : - —— form factor,S(k) ° persion curve and the damping of first
N - == direct lati ‘ : : 1
N funtion, -no C(k) -sound for small wave-vector £, and those
3 \\‘ of zero sound for large 4. First sound
5 05f \\ and zero sound originate from the same
2 hN pole of the dispersion equation.
N
AN
~ SR . ..
05 o = e the hydrodynamical to the collision-
wove-vector k/ko, where Ko gives S(K) the moxirinum“peck less 1'egime. The results are ShOWl'l

Fig. 1. (a) The dispersion curve and the damping of in Fig. 2. For small 2 (in hydro-
zero sound. Curves 1 and 3 are calculated from  dynamical regime) the dispersion
Eqgs. (4:2) and (4-3). Curve 2: /(T /mS(%) k.
The collective modes observed in the inelastic
neutron scattering experiments should be inter- v
preted as zero sound. (b) The imaginary part of collisionless regime) those of zero
the diffusion pole vs. wave-vector £ (c) The form  sound in liq’ui'ds, “The ratio of the
factor S(%) and the direct correlation function.

~ The dip in the vicinity of k/ky=1 may be associated
Wlth de Gennes narrowing.

curve and damping represent those
~of first sound and for large £ (in

damping to frequency inceases as
% increases and when % further in-

creases into the collisionless re-

gime, the ratio decreases. From this we ﬁnd that first sound and zero sound
originate’ from the same pole of the dispersion equation. The same behavior as

this is observed ew:perlmentally in the sound absorption in llquld He® '™

§ 5. Concludmg remarks

The ‘dispersion curve of zero sound in Fig. 1(a) is quahtatlvely in good
agreement with experiment, except the odd behavior at the peak of the structure
factor. The collective excitation observed in the neutron scattering experiments
should be interpreted as zero sound. From Fig. 2 we conclude that the same pole of
the dispersion equation gives zero sound and first sound; the former corresponds
to the pole for smaller wave-vector &, the latter to the pole for larger k. The
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ratio of the velocity of first sound to that of zero sound, denoted by v, v, re-
spectively, is

Vg V3+p
Since zero sound originates in the Vlasov term, we can coﬁsider that the existence
of zero sound, which belongs to the same pole as first sound, is independent of
statistics (Fermi, Bose or Boltzmann). The formula of the damping factor (4-3)
shows that zero sound can be the more easily observed as S(0) or kzTyr(%r;
isothermal compressibility) is smaller. : : '

As Fig. 1(b) indicates, the diffusion pole shows the phenomena corresponding
to de Gennes' narrowing. However, it is not clear how this pole affects the
behavior of the quasi-elastic peak. :

Addition of the Vlasov term to ‘the kinetic equation in liquids explams the
“solid-like” behaviors of liquids considerably well. In our calculation, the
damping factor of zero sound becomes large near the wave-vectors at which S (k)
has peaks, due to the Landau damping, whereas Egelstaff’® considers that the
damping is small there in analogy to the lattice vibrations. As wave-vector
increases, liquids gradually show gas-like behaviors rather than solid-like ones,
and the Landau damping bridges the gap between them. .

- Although the Krook approximation for the collision term contains only the

hydrodynamic poles, it is sufficient to investigate the behaviors of the hydrody- -

namic poles for lalgc wave-vectors as observed in the neutron scattermg exper-
iments.

We have used Hashitsume’s method in order to relate the one-body distri- -

bution function to the dynamical structure factor S(k, »). This method has the
advantage that it is founded on the principles which have clear meanings in the
statistical mechanics; these are Onsager’s assumption and the fluctuation-dissipa-
tion theorem. The neutron scattering experiments offer important 1nf01mat10n
on the study of the kinetic properties of liquids.
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