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We present an approach for the description of fluctuations that are due to finite system size induced
correlations in the Kuramoto model of coupled oscillators. We construct a hierarchy for the moments of
the density of oscillators that is analogous to the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in
the kinetic theory of plasmas and gases. To calculate the lowest order system size effect, we truncate this
hierarchy at second order and solve the resulting closed equations for the two-oscillator correlation func-
tion around the incoherent state. We use this correlation function to compute the fluctuations of the order
parameter, including the effect of transients, and compare this computation with numerical simulations.
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Systems of coupled oscillators appear as models for the
dynamics of a wide range of phenomena [1–8]. The
Kuramoto model is a simple and oft-studied description
of coupled oscillators which, in the limit of an infinite
number of oscillators, exhibits a phase transition from an
incoherent state to phase locked dynamics [9–12].
However, numerical simulations show the appearance of
fluctuations that are due to finite system size effects even in
the absence of any external noise. Because the system is
deterministic, these fluctuations are a manifestation of
multioscillator correlations and are expected to vanish in
the infinite oscillator limit, with potentially divergent be-
havior near the transition [13]. While there has been some
effort towards an analytic treatment of the fluctuations in
the Kuramoto model [14,15], there is at present no system-
atic approach. Here, we present a statistical formalism
which draws upon the kinetic theory of plasmas [16,17].
Our methods are generalizable to any oscillator model.

The Kuramoto model describes the phase evolution ofN
oscillators and is given by

 

_� i � !i �
K
N

XN
j�1

f��j � �i�; i � 1; . . . ; N; (1)

where K is the coupling strength; the !i are drawn from a
distribution g�!�, assumed to be symmetric and of zero
mean. The coupling function f��� can be any function. In
the original Kuramoto model f��� � sin�, which we use
for our simulations.

In the N ! 1 limit, Kuramoto showed [9] that as the
coupling K is increased from 0, this model exhibits a phase
transition described by the order parameter Z � 1

N �PN
j�1 e

i�j � rei , which is a measure of the level of syn-
chrony in the population. Kuramoto found a continuous
transition from a phase of complete incoherence (r � 0) in
the population to a relative degree of coherence (r > 0) for
K greater than Kc � 2=�g�0�. However, for a finite num-
ber of oscillators, r will fluctuate. One of our goals is to

calculate hr2i, where h�i represents an ensemble average
over initial angles and frequencies. At low K, hr2i 	 1=N,
consistent with the finite size effects for the free (K � 0)
model. As we will show, typical of phase transitions, the
correlations become enhanced near the onset of the tran-
sition (critical point).

Strogatz and Mirollo [18] analyzed the stability of the
incoherent state using a Fokker-Planck formalism. In the
absence of external additive noise, their Fokker-Planck
equation has the form of a continuity equation. They found
that the incoherent state has a continuum of marginally
stable modes, which are made stable by additive noise. In
the ensuing, we will generate a series of equations analo-
gous to the Bogoliubov-Born-Green-Kirkwood-Yvon hier-
archy (BBGKY) for which the Strogatz-Mirollo continuity
equation is the truncation at first order. Our strategy is to
consider an expansion using 1=N as a small parameter.

The complete oscillator probability density

 n��;!; t� �
1

N

XN
i�1

���� �i�t����!�!i� (2)

satisfies the continuity equation
 

@n
@t
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@n
@�
��K

@
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Z 1
�1

Z 2�

0
f��0 ���n��0;!0;t�

�n��;!;t�d�0d!0: (3)

Equation (3) is analogous to the Klimontovich equation in
the plasma context and is still an exact description of the
microscopic dynamics. Solving the Klimontovich equation
for the complete distribution is equivalent to solving the
original system and is equally difficult. The strategy of
kinetic theory is to consider the smoothed probability
density functions of the oscillators by taking ensemble
averages.

The one-particle probability density function (PDF) is
given by �1��;!; t� � hn��;!; t�i, where brackets denote
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the ensemble average over initial conditions and frequencies. The density �1d�d! represents the mean fraction of
oscillators within frequency range (!, !� d!) and angle range (�, �� d�). We note that

R
2�
0 �1��;!; t�d� � g�!�.

Henceforth, we will use the compact notation x � ��;!�. Taking the expectation value of Eq. (3) gives
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f��0 � ��C�x; x0; t�d�0d!0; (4)

where
 

C�x; x0; t� � hn�x; t�n�x0; t�i � �1�x; t��1�x0; t�

�
1

N
��x� x0��1�x; t� (5)

is the ‘‘connected’’ two-oscillator correlation or moment
function. The self-fluctuation term drops out in Eq. (4)
because we consider f�0� � 0.

The right-hand side of (4) describes two-oscillator in-
teractions and is comparable to the collision integral from
the kinetic theory of gases and plasmas. Neglecting the
collision integral leads to the Vlasov equation, which
amounts to a mean field approximation. The Vlasov equa-
tion and corresponding Fokker-Planck equation, which in-
cludes a diffusive term when external noise is included, has
been studied for coupled oscillators previously in many

contexts [3,18–24]. Although the Vlasov equation has the
same form as Eq. (3), the two should not be confused.
�1�x; t� is a smooth function representing the expectation
value of the number density over initial conditions and
frequencies, whereas n�x; t� is an operator-valued distribu-
tion and contains all statistical information about the
system.

We obtain an equation for C�x; x0; t� by multiplying
Eq. (3) by n�x0; t� and taking the expectation value. This
will result in an equation that depends on the three oscil-
lator moment function. Continuing this process for higher
moments results in the BBGKY hierarchy [16,17]. We
truncate the hierarchy at second order, expecting the cor-
relation C�x; x0; t� to be O�1=N� and a general connected
n-point function to be O�1=Nn�1� as is consistent with
previous simulations [13,15].

Using Eq. (4) and removing terms expected to be
O�1=N2� yields
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Equations (4) and (6) form a Gaussian closure of a kinetic theory describing the Kuramoto model. We use this to calculate
the fluctuations about the incoherent state. We start with the ansatz [16]:
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where the initial conditions are imposed at t0 and t0 < t0 <
t. Using Eq. (7) in Eq. (6), we obtain the dynamics for the
propagator P,
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where the initial condition is P�x; x0; 0� � ��x� x0�.

The fluctuations in the order parameter are given
by hr2i � hZZ�i �

R
d!d!0d�d�0hn�!; �; t�n�!0; �0; t�i�

ei����
0�. We consider fluctuations in the incoherent state

and thus seek solutions to (4) and (6) such that �1�x; t� �
1

2� g�!�. From Eqs. (5) and (6), we see that a computation
of the fluctuations amounts to a calculation of the con-
nected correlation function, which is phase invariant (be-
cause �1 is independent of �), so that C��1;�2;
!1;!2;t��C��1��2;!1;!2;t�. Hence, the collision inte-
gral in Eq. (4) is zero, making �1��;!� � g�!�=2� an
exact solution of the equations. Taking the Fourier and
Laplace transforms in � and time of Eq. (7) gives

 Cn�!1; !2; s� �
nKIm
fn�

2�2N
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ds1
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s
e�s1�s2�s��; (9)
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where n is the Fourier mode index, s1;2 is a Laplace trans-
form variable and � � t� t0. Using Eq. (5), in the defini-
tion of hr2i gives

 hr2���i � 4�2
Z 1
�1

d!d!0C�1�!;!
0; �� �

1

N
(10)

because hZi � 0.
We can obtain a general expression for hr2i without

explicitly solving for the correlation function. From the
Laplace transform of Eq. (8), we can derive the relation

 

Z 1
�1

P̂n�!;!
0; s�d! �

1

�s� in!0��n�s�
; (11)

where

 �n�s� � 1� inKf�n
Z 1
�1

g�!�d!
s� in!

(12)

is the analog of the dielectric response function. Using
Eqs. (9) and (11) in Eq. (10) yields
 

hr2���i �
2

iKN�

Z
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ds

�1�s� s0� � 1
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� Res
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1

N
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where s0 is the zero of �n�s�. The strategy of the calcu-
lation leading to Eq. (13) is similar to the calculation of the
Lenard-Balescu collision integral [16,17].

For the specific frequency distribution g�!� � ��=���

1=�!2 � �2�� (i.e., a Lorentz distribution), Eq. (13) eval-
uates to

 hr2���i �
1

N
Kc

Kc � K
�

1

N
K

Kc � K
e��Kc�K��; (14)

where Kc � 2� for the Lorentz frequency distribution.
hr2�0�i � 1=N because the initial conditions for Eqs. (4)
and (6) are such that �1�x; 0� is the equilibrium incoherent
state and C�x1; x2; 0� � 0. For the uncoupled system K �
0, so hr2i � 1=N as expected. We also see that the ampli-
tude of the fluctuations and the transient decay time be-
come singular at the critical point K � Kc. At criticality,
we obtain the expression hr2���i � �1=N��1� Kc��. The
closer K is to criticality, the less this calculation should be
valid. Near critical behavior requires an analysis of all
orders in the 1=N expansion. Dynamically, the implication
is that as the coupling strength nears criticality, oscillators
will interact more strongly and higher order correlations
will become more important. The result hr2�1�i �
Kc=
N�Kc � K�� was first derived by Daido [15] with a
completely different approach. Our method facilitates a
systematic expansion in 1=N, in addition to providing an
examination of the transient behavior of hr2���i.

We can examine the transient behavior of the correla-
tions by solving Eq. (9) for the Lorentz distribution. We
first solve for the propagator in Eq. (8) by taking a Fourier
series expansion in � and Laplace transform in time, to

obtain

 P̂ n�!1;!01;s��
1

s� in!1

��!1�!
0
1�

2�

�
inKf�ng�!1�

2��s� in!1��s� in!01��n�s�
; (15)

where s is the Laplace transform variable and �n�s� �
1� �K=2�jnj=�s� jnj��. The propagator (15) has poles
along the imaginary axis corresponding to the continuous
spectrum of marginally stable modes as well as those given
by the discrete zeros of �n�s�, which for K <Kc � 2� are
real and negative [18].

An expression of the correlation function in Eq. (9) can
be obtained by inserting Eq. (15) and performing the
integrals. The only surviving modes are C1 and C�1 �
C�1 since f��� � sin�. The correlation function will thus
have the form

 C�!;!0; �� �0; �� � C1ei����
0� � C�1e�i����

0�: (16)

The correlation function contains modes which consist of
all possible pairings of marginal oscillating modes with
decaying modes. Although the correlation function has
marginal modes that do not decay, hZ���i does not because
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FIG. 1 (color online). (a) Simulated and predicted Nhr2i vs
K=Kc evaluated at � � 6=�Kc � K� for various values of N and
averaged over 1000 different initial conditions and frequencies.
The frequency distribution is Lorentz with � � 0:05. The simu-
lation was performed with a time step of 0.05. The initial
distribution of angles was uniform. (b) Time evolution of
hr2���i vs � for various values of K and for N � 100. At each
time point the values are averaged over 10 000 different initial
conditions and frequencies. All other parameters as above.
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of a Landau dampinglike dephasing effect as described in
Ref. [25]. Likewise hr2���i does not have marginal modes.
We should expect a similar result for higher moments. At
this order, the marginal modes are not rendered stable by
finite size effects as they are with the addition of external
additive noise [18]. Should stabilization occur due to the
intrinsic fluctuations, it will necessarily be a consequence
of higher order effects.

We compare our analytical results to numerical simula-
tions of the Kuramoto system. Figure 1(a) shows the
asymptotic value of hr2i for various values of K and N.
The analytical prediction matches extremely well for N �
500 and reasonably well for N � 50 and N � 100. Only at
N � 10 are there significant deviations from the predic-
tion. Figure 1(b) shows the transient behavior of hr2i. The
results match quite well below K=Kc � 0:8. Numerical re-
sults for the correlation function integrated over !, !0 are
shown in Fig. 2. The simulation agrees well with the pre-
diction Eq. (16) except near the critical point as expected.

Our calculation is the first presentation of a systematic
approach to understanding the fluctuations due to finite
size effects to an arbitrary order in 1=N. Although we
truncate at lowest order, our approach allows a truncation
at any level of the moment hierarchy to produce an expan-
sion in 1=N. We note that Ref. [26] found that when the
oscillators are driven with Gaussian noise, 1=N depen-
dence is still seen in the fluctuations of the order parameter.

Some previous work [3,20–22,26,27] for both phase and
pulse coupled oscillators also start with a continuity equa-
tion similar to Eq. (3) but either go directly to mean field
theory, with and without an external noise source to ap-
proximate fluctuations, or assume the fluctuations are
Gaussian. References [23,24] derive a kinetic theory for
a network of integrate-and-fire neurons by constructing a
moment hierarchy similar to ours that is closed using the
maximum entropy principle. However, this work differs
from ours in that the hierarchy is built from a Boltzmann-

like equation for a one-particle distribution function with
stochastic inputs and hence does not capture the same
correlation effects that we find by starting from a continu-
ity equation that contains the full statistics of the system.

We feel it is important to stress that the Klimontovich
continuity equation [Eq. (3)] is not an approximation. The
approximation appears in the method of finding solutions.
The mean field limit is equivalent to setting correlations to
zero. Computing the moment hierarchy allows for an ex-
pansion which accounts for the effects of correlations. We
produce a systematic method for deriving such an expan-
sion and show explicitly in what regime higher order
correlations can be ignored.
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FIG. 2 (color online). C�!;!0; �� �0� integrated over ! and
!0 versus �� �0 for N � 100 and various values of K.
Frequency distribution is Lorentz with � � 0:05 and the initial
angle distribution is uniform. Results are averaged over 100 000
samples in a 2D histogram with 100� 100 bins. The data are
then averaged over angle differences and then put into a one-
dimensional histogram with bins of width 10. The time step for
the evolution is 0.05.
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