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CHAPTER I. INTRODUCTION 

The purpose of this lecture is, firstly, to describe the 

framework of the general-relativistic kinetic theory of gases and, 

secondly, to sketch some of the advances which have been made in this 

field during the last few years. Systematic expositions containing 

details and proofs can be found in references [i]- [6] and [29]. 

Some of the reasons for developing a general-relativistic kinetic 

theory of gases are the following. The traditional fluid description 

for the sources of gravitational fields does not seem to be 

appropriate in some cases of astrophysical interest such as stellar 

systems or the "galaxy-gas" of cosmology, since collisions are rare 

and the mean free paths are long. Also, a fluid description does 

not provide values for transport and reaction coefficients, whereas 

the less phenomenological kinetic theory does. Moreover, radiation 

(i ~otons, neutrinos) can be described as a gas of zero-mass particles 

for some purposes, and only a relativistic version of kinetic theory 

can provide a unified treatment of such gases and ordinary gases. 

Also, relativistic kinetic theory helps clarifying controversial 

questions of relativistic thermodynamics. Finally, the relativistic 

version of kinetic theory is in some respects simpler and more 

transparent than its nonrelativistic predecessor; here as in other 

branches of Physics the unifying and simplifying power of the 

spacetime - geometrical point of view first put forward by H. 

Minkowski is clearly visible. 
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CHAPTER II. REMARKS ABOUT GENERAL RELATIVITY THEORY 

In Einstein's theory~f gravitation spacetime, the arena of all 

physical processes, is assumed to be a four dimensional manifold 

which carries a pseudoriemannian metric. The metric tensor gab can 

locally be transformed to the Minkowski-form gab = diag. (I,I,I,-i). 

It determines the light-cones, the distinction between time-like, 

space-like and null (or light-like) vectors, it defines the causal 

structure of spacetime, and it establishes (part of) the connection 

between the mathematical formalism and Physics by providing 

definitions of (proper) times and distances. At the same time, the 

ten functions gab(X c) which, in the presence of inhomogeneous 

gravitational fields, cannot be transformed into constants by 

coordinate transformations in finite regions, act as potentials of 

the gravitational field. In a weak, quasistationary field, e.g., one 

has approximately 

ds 2 = gabdxadx b z d~ 2 (I + 2~2  )c2dt 2 , (0) 

where U is the Newtonian gravitational potential, and in more general 

situations all ten gab'S contribute to the field. 

Just as in Newtonian theory the potential U is related to the 

mass density p of matter by Poisson's equation vzU = 4~Go, so in 

Einstein's theory of gravitation the metric field gab is coupled to 

matter by the field equation 

G ab = Tab. (i) 

Here, the Einstein tensor G ab is a symmetric second-rank tensor 

constructed from the gab'S and their first and second derivatives, 

and T ab is the stress-energy-momentum tensor of all the matter 

(particles and non-gravitational fields) present. Here and in the 

sequel, the convention G = i , c = i is used; later we shall also 

8~ 
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put k (Boltzman's constant) = i. 

Equation (i) implies the energy-mom@ntum balance equation 

T ab = 0 (2) 
;b 

in which ( ) denotes covariant differentiation with respect to 
;b 

x b. In a gravitational field, eq. (2) is no longer a local 

conservation law, but expresses the response of matter to gravity; 

it restricts (and in simple cases determines) the motion of bodies. 

As will be indicated later, eq. (2) can be derived from simpler 

assumptions in kinetic theory, independently of the field equation 

(i). 

To s o l v e  E i n s t e i n ' s  f i e l d  e q u a t i o n  (1)  m e a n s ,  a p a r t  f r om 

s p e c i f y i n g  a m a n i f o l d  w h i c h  s e r v e s  a s  t h e  doma in  f o r  t h e  t e n s o r s  

Tab g a b '  e t c . ,  t o  c h o o s e  a p h y s i c a l l y  r e a s o n a b l e  m o d e l  o f  m a t t e r  w h i c h  

s p e c i f i e s  t h e  fo rm o f  T ab i n  t e r m s  o f  m a t t e r  o r  f i e l d  v a r i a b l e s  (and  

o f  gab  ) , and  t h e n  t o  f i n d  v a l u e s  f o r  t h e  m e t r i c  f i e l d  and  t h e  m a t t e r  

v a r i a b l e s  w h i c h  s a t i s f y  t h e  t e n  c o u p l e d ,  q u a s i l i n e a r  ( b u t  n o n l i n e a r ~ )  

d i f f e r e n t i a l  e q u a t i o n s  ( 1 ) ,  p o s s i b l y  i n  c o n j u n c t i o n  w i t h  f u r t h e r ,  

n o n - g r a v i t a t i o n a l ,  l a w s  d e s c r i b i n g  t h e  s o u r c e s .  In  g e n e r a l ,  n e i t h e r  

t h e  l e f t - h a n d  s i d e  n o r  t h e  r i g h t - h a n d  s i d e  o f  e q .  (1)  can  b e  

c o n s i d e r e d  a s  g i v e n ;  one  i s  f a c e d  w i t h  t h e  p r o b l e m  o f  f i n d i n g  

T ab  " s i m u l t a n e o u s l y "  a l l  t h e  q u a n t i t i e s  g a b '  e t c .  s u c h  t h a t  t h e y  

satisfy eq. (I) "selfconsistently". 

In macroscopic applications of general relativity theory the 

standard model of matter has been the per fec t fluid , given by its 

a 
energy density ~, its (isotropic) pressure p, and its 4-velocity u 

(a timelike unit vector tangent to the streamlines); for it 

Tab = uuau  b + p ( g a b  + u a u b ) .  (3)  

In  t h i s  c a s e ,  eq .  (2)  i s  e q u i v a l e n t  t o  a con  t i n u i t  [ e q u a t i o n  f o r  v 

and  a g e n e r a l i z e d  E u l e r  e q u a t i o n  f o r  u a .  J u s t  a s  i n  N e w t o n i a n  t h e o r y  

t h e  s y s t e m  o f  e q u a t i o n s  ( 1 ) ,  (3)  i s  u n d e r d e t e r m i n e d ;  t h e  s i m p l e s t  way 
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to obtain a system such that Cauchy initial data uniquely determine 

the future evolution is to add a relation 

p = ~ ( ~ )  ( 4 )  

between pressure and density. 

This model of matter is a very special one. Thermal phenomena 

are neglected in (3) and (4); in particular, no transport phenomena 

are taken into account. Although these drawbacks can be removed 

partly at the phenomenological level, the choice of non-equilibrium 

equations remains a matter of guesswork, and no transport 

coefficients are given. Moreover, if the matter of interest is 

radiation, a description like that in eq. (3), even if more or less 

correct, does not give sufficiently detailed information, since one 

would like to bring into the picture the spectrum of the radiation. 

One simple way to improve the description of matter is to turn 

to kinetic theory, as will be done now. 
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CHAPTER I I I .  BASIC CONCEPTS AND LAWS OF RELATIVISTIC KINETIC THEORY 

The theory to be outlined in this section was developed in small 

pieces over a long period of time. The main steps have been taken by 

Juttner (1911, 1928), Synge (1954), Walker (1936), Lichnerowicz and 

Marrot (1940), Chernikov (1960 - 1963), Tauber and Weinberg (1961), 

and Ehlers (1961).* Papers concerned with applications, approximation 

methods, special solutions etc. will be mentioned in section IV; no 

attempt is made, however, to give a complete list of references. 

The assumptions on which the kinetic theory of gases is based 

are the following: 

(a) The interact.ions between the particles constituting the gas can 

be divided into long range forces and weak, short range forces such 

that 

(a) the long range forces can be accounted for in terms of a mean 
1 

field generated collectively by the particles of the gas through 

macroscopic field equations, and 

(a) the short range forces can be taken into account in terms of 
2 

(elastic or inelastic) point-collisions whose probability of occurence 

is governed by cross-sections taken from a special-relativistic 

scattering theory. 

In accordance with this, it is assumed that 

(b) between collisions, particles move like test particles in the 

mean field. 

Finally, the usual assumption is made that 

(c) the pattern of world-lines and collision events may be treated as 

a random structure whose (physically relevant) properties can be 

described by smooth expectation values. 

See references [7], [8], [9], [i0], [I], [ii], [12], respectively. 
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These assumptions are physically plausible for dilute gases. 

Their justification from first principles of many-particle dynamics 

is a formidable problem which is not attempted here; rather, we 

follow Boltzmann in formulating directly laws in a suitably defined 

one-particle phase space which seem reasonable under the above 

assumptions. 

As the only long range interaction we shall here take 

gravitation; electromagnetic fields can easily be included in an 

analogous way. As short range interactions we have in mind non- 

gravitational interactions such as electromagnetic multipole forces 

or nuclear forces. 

Let the gas consist of particles of proper mass m (~ 0). 

Between collisions, we have according to (b) geodesic motion , i.e. 

dx a = pa D a d a b c (5) 

The parameter v is chosen such that pa is the 4-momentum, thus 

a .m2. pa p = (6) 

D 

dv indicates the absolute derivative; the quantities 

~-a I gad 

bc = ~ (gdb,c + gdc,b gbc,d ) (7) 

form the components of the Riemannian connection associated with gab" 

Physically, these quantities are the relativistic analogues of the 

components of the gravitational field strength. Their non-tensorial 

+ 

character is (physically) due to the principle of equivalence. The 

~b a the field according to assumption gab and c represent mean 
( a )  1 • 

+ The ,~-a's form a good example of an object which is neither a 
bc 

tensor nor a spinor, but nevertheless of fundamental geometrical and 
physical importance. 
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In nonrelativistic kinetic theory it is customary to represent 

+ + 

the states of particles as points in a six-dimensional (q, p) phase 

s a~; these points move in the course of time. Such a description 

refers to a particular inertial frame of reference. If one passes 

from one inertial frame to another one, the phase-space description 

(of a particular gas state) changes in a simple and obvious manner. 

A similar description is still possible in special relativity, and 

has in fact been employed (e.g., by Juttner). Here, the change 

connected with a change of the inertial frame is already more 

complicated due to the relativit Z of s imultan£it Z. In general 

relativity, inertial frames (in finite domains) do not exist due to 

the very nature of gravitational fields*. Hence, the above 

description cannot be taken over without essential changes. 

The best plan to overcome this difficulty is, not to use 

arbitrary, non-inertial frames of reference with a necessarily highly 

arbitrary splitting of spacetime into "space" and "time", but rather 

to look for the frame-independent meaning of the ordinary phase-space 

description, which can then be carried over to general relativity 

almost without change. 

In geometric language the phase space description amounts to the 

following: In spacetime X = {x,t}, the motion of a particle is 

+ 

represented as a worldline (x [t], t). The instantaneous state of a 

particle with mass m can be specified by an event (x [to], to) and a 

world-momentum (m ~ [to] , m) at that event. The collection of all 

possible instantaneous states (for fixed m) is a seven-dimensional 

manifold M, the augmented phase space. A mean (or external) field 

defines in M a family of curves, the phase flow; it represents all 

* If inertial frames are to be identifiable ~ by means of 
mechanical experiments or if unbounded matter-distributions are 
considered (as in cosmology), this statement holds already in 

Newtonian theory. 
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possible test particle orbits, "lifted" from X to M. The six- 

dimensional manifold M of phase orbits (obtained from M by identifying 

points contained in the same orbit) is the intrinsic object 

corresponding to the many (q, P) phase spaces associated with the 

various inertial frames. 

One can assign a size to a tube T of phase orbits by intersecting 

T with a hypersurface t = const, and forming the Lebesgue-measure 

Id 3 x d3p of that intersection, using inertial coordinates. According 

to Liouville's theorem, this size is independent both of the inertial 

frame used to compute it and of the instant t defining the cross 

section. Thus, the Lebesgue measure defines a measure ~ on M. 

The description just given applies to (special and) general 

relativity immediately. The augmented phase space is here given by 

M = u Px' (8) 
xeX 

a -m 2} belonging to the union of all the mass-shells Px = {pa: pa p = 

the events* x of X. (Coordinates in M are x a, pV, where a = i,...., 

4 and ~ = i, 2, 3. p~ is fixed by the mass shell condition (6).) 

The phase flow in M is determined by equation (5). A measure on 

is obtained as follows. First, form the product ~ = ~A~ of the 

Riemannian measure ~ = £Udet(gab ) d%x of X with the measure ~ = 

~i 3P, (in orthonormal coordinates at x) of P , obtaining a measure on 
p4 x 

M which can be shown to be invariant under the phase flow (5). Then, 

t 
contract ~ with the vector field + 

* Px cannot be identified with Py for x # y since parallel transport 
in k is not integrable. M is a fibre bundle over X, but not a 

cartesian product. 

* By definition (L. .b , ' aa ..a 
components of L and ~tiv bl'" 6 i' 7 

+ We follow the usage of modern differential geometry of identifying 
a vector with its directional derivative operator, 
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L = pa -. F ~ b c ,,~,,, (9) 
~xa - bc P p ~P 

(on M) t o  o b t a i n  a s i x - f o r m  ~ = L .n  w h i c h ,  a g a i n ,  c a n  be shown to  be 

i n v a r i a n t  u n d e r  t h e  p h a s e  f l o w  g e n e r a t e d  by t h e  v e c t o r  f i e l d  ( 9 ) .  The 

m e a s u r e  o f  a n y  r e g i o n  i n  M, i . e . ,  any  t u b e  T o f  p h a s e  o r b i t s  i n  M, i s  

t h e n  d e f i n e d  ( i n  s t r i c t  a n a l o g y  to  t h e  N e w t o n i a n  c a s e  d i s c u s s e d  a b o v e )  

as  / ~ ,  t a k e n  o v e r  any  c r o s s  s e c t i o n  o f  T. 

The s t a t e  o r ,  r a t h e r ,  t h e  h i s t o r  Z o f  an  i n d i v i d u a l  gas  c a n  be 

d e s c r i b e d  by s p e c i f y i n g  t h o s e  s e g m e n t s  o f  p h a s e  o r b i t s  w h i c h  a r e  

occupied by particles. It follows* from assumption (c) that the 

(average) number of occupied states (~ phase orbit segments) 

intersecting a hypersurface H of M can be expressed as an integral 

N[H] = If~, (i0) 
H 

where f = f (x,p) is a non-negative, smooth, scalar function on M, 

called the (one particle) distribution function. Since ~ coincides for 

a local observer with the ordinary phase-element d 3 x d3p, f has, for 

each such observer, the same meaning as the distribution function in 

nonrelativistic kinetic theory. 

A collision (x; p,p + p', p') at x gives rise, in M, to two 

endpoints (x,p), (x,p) of occupied phase orbit segments to be called 

annihilations, and two initial points, (x,p'), (x,~'), called 

creations. Counting the latter ones positively, the former ones 

negatively, one can easily deduce from (1O) that the density of 

collisions in M with respect to the measure 2 is given by 

~f 

L(f) pa ~f ~b~ b c 611) 
= ~ - c P P ~pV 

Hence ,  t h e  s p a c e t i m e  d e n s i t y  o f  c o l l i s i o n s  a t  x i n  wh ich  p a r t i c l e s  

w i t h  4 -momenta  i n  ~ a r e  c r e a t e d ,  i s  g i v e n  by LCf)~ ;  t h i s  i s  t h e  

* For  a r i g o r o u s  f o r m u l a t i o n  and  a p r o o f ,  s e e  [ S a ] ,  [ S b ] .  
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ordinary collision rate.* 

The preceding remark implies: Absence of collisions or, more 

generally, detailed balance between creations and annihilations (direct 

and inverse collisions) is expressed by 

L ( f )  = O, ( 1 2 )  

the "collisionless" Boltzmann equation. (In the case of weak, 

quasistationary gravitational fields and slowly moving particles eqs. 

(0), (7), (ii), and (12) reduce to the well known gravitational 

Vlasov equation 

~t~A + m ~ " ~"~f " ~ x  mVU • ~ : 0,) 

It is apparent from the meaning of f that the moments 

N a ( x )  = i p a f n ,  ( 1 3 )  
Px 

Tab(x) = I papbf~, (14) 

Px 

represent currents in spacetime. N a is the p ar.ticle 4-current density 

(also called numerical flux), and T ab is the k inet.ic stress energy 

momentum tensor of the gas described by f. In a similar way higher 

o r d e r  m o m e n t s  c a n  b e  d e f i n e d .  

S i n c e  N a i s  t i m e l i k e ,  o n e  c a n  f a c t o r  i t  i n t o  a n o n - n e g a t i v e  s c a l a r  

a 

n a n d  a t i m e l i k e  u n i t  v e c t o r  u ; 

N a ua. = n (Ua ua  = - 1 )  ( 1 5 )  

An observer travelling with 4-velocity u a will observe no particle 

flux and will measure the particle density n. Hence, in accordance 

with nonrelativistic terminology one might call u a the mean 4-velocity 

of the gas, and n, the proper particle density. 

* S e e ,  e . g . , r e f e r e n c e s  [ 2 ] ,  [ 4 ] ,  [ 5 ] .  
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T ab Any t e n s o r  c o n s t r u c t e d  v i a  eq.  (14) can be decomposed 

u n i q u e l y  as* 

- a b  Tab = ~ ~a 5b + P (16) 

wi th 

- - a  abSb ~ o ,  UaU = - 1 ,  ~ = o ( 1 7 )  

- - a  

An observer travelling with 4-velocity u would, consequently, find 

the gas to have a vanishing momentum density. Thus, ~a could also be 

considered to be "the" mean 4-velocity of the gas. In general, 

however, 5 a ~ u a. The physical reason for this is, of course, the 

velocity-dependence of the (relative) inertial mass of a particle. 

For clarity, u a is called the kinematical mean 4-velocity, and ~a 

is called the dynamical mean 4-velocity of the gas (Synge 1956, [13]). 

(For a multicomponent gas the ambiguity in the choice of a mean 

4-velocity is even greater; to avoid confusion, it is necessary to 

define precisely which mean velocity is used in a particular context.) 

With respect to any mean 4-velocity u a, T ab can be uniquely 

decomposed according to % 

Tab = auau b + p(gab  + uau b) + 2u(aqb)  + nab (18) 

with 

~ O, Ua ua = -I, Uaq a = O, ~ab ub = O, ~a a = O. (19) 

The quantities v, p, qa, nab represent the energy density, mean 

kinetic pressure, .energy current density, and shear viscosity with 

respect to u a, respectively. We shall henceforth choose the u a in 

618) to be the kinematical mean 4-velocity; then qa is also called 

* Synge, [13], see also [Sa], [5b]. 

% By definition, u<aq b) = 1 (uaq b + ubqa). 
2 
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the heat flux. qa = 0 if and only if ~a = ua; this property serves 

to define adiabatic processes. 

Consider a spatially bounded gas, such as a gas enclosed in a 

container or (in good approximation) a star. An "instant of time" 

is represented in relativity as a spacelike hypersurface G in X. G 

defines a hypersurface G = {(x,p): xsG, psP x} in the augmented phase 

space M. The entropy of the gas_at the instant G is defined to be 

S[G,f] = -I f log f ~. 
% (2o) 

This expression is the straightforward generalisation of the 

corresponding one in the nonrelativistic theory. It can be motivated 

either by adapting Boltzmann's counting procedure to the relativistic 

setting*; or by using a quantum model of a gas, starting from the 

definition S = - trace (W log W) of its entropy in terms of its 

statistical operator W, and re-expressing that by means of 

correspondence arguments in terms of classical quantities %. (The 

second procedure gives, of course, also the expressions appropriate 

to Bose or Fermi gases, both of which reduce essentially to (20) in 

the nondegenerate limit.) 

If the form of the measure m (which has been described above) is 

taken into account, it follows that (20) can be rewritten in the form 

S[G,f] = Isaaa, (21) 
G 

where 

sa(x) = -I paf log f~ (22) 
P 
X 

is a vector field in X and ~a is the standard hypersurface element of 

G. S a is called the entropy flux of the gas. 

See, e . g . ,  r e f e r e n c e s  [7a] ,  [14] .  
t See r e f e r e n c e  [5a] .  
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In order to obtain a time evolution equation for f one can carry 

over .to relativity Boltzmann's collision hypothesis. Considering 

again a simple gas with elastic binary collisions only - other cases 

may be treated similarly - and remembering assumption (a) and the 
2 

meaning of L(f), one gets the Boltzmann equation ([I], [I0], [Ii], 

[12]) 

L(f )  : S( f  f '  f £ ' )  w6(~p)~,~T^T,, (z3) 

where the usual abbreviations f '  = f ( x , p ' )  etc. have been employed 

and the nonnegative Lorentz invariant function W(p,p',p,p') is 

related to the differential scattering cross section a(E,@) by 

(see refs. [3],[5],[321V]) 

1 

W~(Ap)~^~ ' = E((£) 2 - m2)~ o(E,8) d~. (24) 
2 

1 
(E = [ _ (p + p,)2]~ is the total CM-energy, B the CM scattering 

angle, and d~ is a solid angle which refers to the direction of 

in the CM frame of collision [p,p' + p,p'].) The factor ~(ap) = 

6(~ + p' -p -p') accounts for conservation of 4-momentum during 

collisions. 

Whereas the left-hand side of eq. (23) is essentially general- 

relativistic (see eq. (ii)), the right-hand side is essentially 

special-relativistic; this conforms to the assumptions (a) and (a) 
1 2 

stated above. 

The Boltzmann equation implies the particle conservation law 

a 

N = o (25)  
;a 

and the 4-momentum balance equation (2), as is seen by 

d i f f e ren t i a t i ng  covar iant ly eqs. (13) and (14) and using eq. (23). 

S imi la r ly ,  d i f f e ren t i a t i on  of the entropy f l ux  (eq. (22)) and use of 

eq,  (23) l e a d s  to 
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S a > O, ( 2 6 )  
; a  

the relativistic version of Clausius's inequality (H-theorem) [ii], 

[12]. The quantity on the left-hand side of (26) is the (invariant) 

entropy production rate. 

The last inequality can be used to motivate the definition of 

local equilibrium distributions as those distributions which, at an 

event x, have a vanishing entropy production rate. Using again the 

Boltzmann equation one can show*, as in nonrelativistic theory, that 

f has the stated property if and only if log f is an additive 

collision invariant. This in turn implies that f must have the form* 

a + uapa 

f = e ~ , ( 2 7 )  

where T > 0, and u a is a timelike unit vector t. Eq. (27) gives the 

relativistic analog of the Maxwell-Boltzmann distribution, first 

derived by probabilistic arguments by Juttner (ref. [7a]). If (27) 

is combined with egs. (13), (14), and (22), then equations (IS), (3) 

and S a = su a follow, with well-determined functions n(~,T), ~(a,T), 

p(~,r), s(~,T), together with standard thermodynamic relations which 

identify T as the (absolute) temperature, and ~ = ~ + const. 

where < is the chemical potential. 

Global equilibrium in a spacetime domain D requires f to have 

the form (27), with functions a(X), T(x), ua(x) such that the 

Boltzmann equation holds. It turns out that this is true precisely if 

= const, and 

* For the most careful treatment of these points, see ref. [2a]. 
% If the right hand side of eq. (23) is modified so as to account for 
the Pauli principle or stimulated scattering, the analogous reasoning 

leads to the relativistic Fermi-Dirac and Bose-Einstein distributions, 
respectively ( [ii]; see also [4],[5]). 
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Ua Ub r 0 if m > 0 

(T-) ;b . (y- ) ;a  = ~ (283 
gab if m = 0 

a 

This means that u__ = ~ a must generate a group of congruent (if m > O) 
T 

or conformal (if m = 03 mappings x a + x a + e~ a of spacetime into 

itself, and that T (and also~ ) must vary in D just like (-~a~a) -I/2. 

That is, for particles with positive rest mass m global equilibrium is 

possible only in a stationary spacetime*, and then in stationary 

coordinates the temperature varies according to Tolman's law 

T / - g 4 ~  = c o n s t .  (29 )  

(x ~ = t i m e  c o o r d i n a t e ,  g a b , 4  = 0 ) .  T h i s  means  t h a t  t h e  t e m p e r a t u r e  

d e p e n d s  on t h e  g r a v i t a t i o n a l  p o t e n t i a l  i n  s u c h  a way t h a t  t h e  

g r a v i t a t i o n a l  r e d s h i f t  o f  p h o t o n s  d o e s  n o t  d i s t u r b  t h e  e q u i l i b r i u m  

s e t  up by e x c h a n g e  o f  r a d i a t i o n .  ( - g ~  : c 2 + 2U, s e e  eq ,  ( 0 ) . )  

I f  m = 0,  e q u i l i b r i u m  i s  c o m p a t i b l e  w i t h  c e r t a i n  n o n s t a t i o n a r y  

s t a t e s  o f  t h e  g r a v i t a t i o n a l  f i e l d .  An i m p o r t a n t  e x a m p l e  i s  p r o v i d e d  

by black body radiation in an isotropically expanding space; this is 

the current model for the well=known 3°K cosmic fireball radiation. 

In this case, eq. (28) says that the radiation temperature drops 

like the inverse of the "world radius". 

The fundamental equations for a gravitating gas (according to 

kinetic theory) are the Einstein field equation (1) with a source 

term as given by eq. (14), coupled with the Boltzmann equation (23). 

(Generalisations to gas mixtures, or to Fermion or Boson gases 

require obvious modifications.) Since both equations seperately 

imply eq. (2), it appears that they are compatible, and that the 

• In nonrelativistic kinetic theory, distributions without entropy 
production are possible even in some non-stationary fields, as shown 
already by Boltzmann (1876). This is related to the question of 
bulk viscosity discussed briefly in section IV. 
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.Cauchy...initial value problem for the system (I), (23) has a unique 

solution for "reasonable" initial data. Corresponding theorems 

(local existence, global uniqueness, and continuous dependence of the 

solutions on the initial data) have, in fact, been established 

recently for the collisionless case (see refs. [15a], [ISb]), and the 

general case has essentially also been solved*. These rather deep 

results show that the kinetic theory model of a gravitating gas is 

mathematically consistent. The (local) stability of the solutions 

under small changes of the initial data, combined with Bichteler's 

result (see [16]) that exponentially bounded initial distributions 
a 

(i.e., ]f(x,p) I ~ b(x)e Sap for some b, 8a) remain exponentially 

bounded for a finite time, lend some credibility to such formal 

approximation methods as those sketched in section IV. 

* Private communication from Professor Y. Choquet-Bruhat. 
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CHAPTER IV. REMARKS ABOUT SPECIAL SOLUTIONS AND 
APPROXIMATION METHODS FOR NON-EQUILIBRIUM SITUATIONS 

a. No exact solutions of the relativistic Boltzmann equation (23), 

apart from the equilibrium solutions described above, are known if 

collisions are included (i.e., W ~ 0). In the collisionless case, 

eq. (23) is equivalent to the statement that the distribution 

function f(x,p) is a first integral of the geodesic equation (S), 

and since many spacetime models have symmetries which give rise to 

such first integrals, several solutions of eq. (12) are known. If, 

e.g., ~x) is a Killing vector (~ generator of a one-parameter group 

of isometries), then the function ~ a(X)p a on M is a first integral of 

eq. (5), whence any positive function of it is a possible 

collisionless distribution function, and a corresponding remark 

applies if one has several Killing vectors. (For massless particles, 

conformal Killing vectors can also be used.) These integrals 

correspond to the energy, momentum and angular momentum integrals in 

fields with corresponding symmetries. 

The preceding remarks apply in particular to static, spherically 

symmetr ic  s p a c e t i m e s ,  and have been used to compute the  g e n e r a l  

solution of eq. (12) in such spacetimes which is invariant under the 

full, four dimensional symmetry group* (SO[3]xR). The result can be 

used to compute T ab - eq. (14) and to set up the Einstein equation 

(i). In this way, several solutions of the equations (I), (12) which 

provide models of relativistic star clusters have been constructed 

and have been used to estimate the quasistatic evolution of such 

objects (see references [17],[18]). Also, the stability of such 

systems against radial perturbations has been studied in a series of 

* The action of any isometry group of a spacetime X can easily be 
extended to the phase space M; thus it is meaningful to speak of the 
invariance of f with respect to such a group. 
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beautiful papers (references [19], [20]), and the results so far 

obtained indicate strongly that such clusters become unstable and 

collapse rapidly as soon as their central redshift exceeds a value 

of about 0.5, a result which is of interest in connection with a 

quasar model proposed by Hoyle and Fowler. 

Nonstationary solutions of eqs. (i), (12) have been found in 

connectibn with cosmological considerations. In particular, it has 

been established that if a solution has a locally rotationally 

symmetric distribution function with respect to some mean four- 

velocity field, then, the mean motion is shear-free and either volume 

preserving or irrotional; and if it is not volume preserving, the 

metric must be of the Robertson-Walker type, i.e., it must correspond 

to a homogeneous and isotropic model universe (refs. [21], [22]). In 

this case, the first integral on which the distribution function 

depends is not a linear one associated with a Killing vector - as in 

the static models - but is quadratic and of the form 

(garb - ~c Ec gab)pap b , where ~a is the conformal Killing vector 

associated with the isotropic expansion of the universe. (Similar 

quadratic integrals occur in the corresponding Newtonian solutions, 

see ref. [23]). 

For further applications of kinetic theory to cosmology see 

references [4], [24], [25], and for some more solutions of eqs. (I), 

(12) see reference [26]. 

b. In order to describe non-equilibrium situations one has to 

resort to approximation methods. Restricting attention to near- 

equilibrium cases, one can write the actual distribution function f 

as a "small" perturbation, 

a 

f = e ~+Bap (I + g) = f(0) (I + g), (30) 

of a local equilibrium distribution with parameters ~(x), ~ (x) 
a 
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whose spacetime variation is to be determined from eq. (23) in 

conjunction with the small perturbation term g(x,p). 

As in nonrelativistic theory one can verify by means of eqs. 

(22), (13), (14), (18) that the equation of state ~ : ~(s,n), which 

relates the equilibrium values of energy density u, entropy density s 

and particle density n, remains valid to first order in g for a 

near-equilibrium distribution (30), if the mean velocity is taken to 

be ua=8 a and ~, s and n are defined, respectively, by eqs. (18), 

a a 
s = -u aS , and n = -uaN . Similarly one obtains that, to first order 

in g, the entropy flux relative to the mean motion, s a = S a - su a, 

is related to the diffusion flux i a = N a - nu a and the heat flux qa 

(defined through eqs. [18], [19]) by s a = 8q a - (i + ~)i a. Hence, if 

one matches the parameters ~, 8 a in (30) to the actual distribution 

function f by requiring i a = 0, one has the standard thermodynamic 

relation s a = 8q a. Combining these thermodynamic relations with the 

conservation laws (2) and (25) and using the Gibbs equation 

d~ = T ds  + ~ + PQ s dn ( 3 1 )  

n 

to define a t e m p e r a t u r e  T and a thermodynamic pressure P0' one 

obtains the expression 

Sa 1 + qa (T~__~a • 
;a = -~ {~0 + ~ab ~ab + Ua)} ~ 0 (32) 

fox the entropy production rate. Here the kinematical quantities 

aab' 0 and Ua are the shear ' velocitz, the expansion rate, and the 

four-acceleration of the mean flow, defined by 

lO(gab  + UaU b ) ,  ] U(a; b)  = gab + 3 

f b a = 0 Ua Ua b tabU = O, a a ' ;b u ' 

( 3 3 )  
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and 

= P " P0 (34) 

is the difference between the total kinetic pressure of eq. (18) and 

the thermodynamic pressure of eq. (31). 

All this follows standard lines of reasoning of nonrelativistic 

kinetic theory, and shows that the passage from kinetic theory to 

phenomenological thermo-hydrodynamics can be performed at the 

relativistic level as easily as in the standard theory, and this also 

holds for gas mixtures with diffusion and reactions (references [Sb] 

and [32I]. 

Equation (32) suggests the transport equations 

Tab = 2n gab, ] 

= -¢e, I (35) 

uaub ) 
qa = - ~ ( ~  + (W'b + T U b )  , 

with non-negative coefficients, ~, ~, ~. Specifically relativistic 

terms appear in the heat conduction law only. The acceleration term 

produces, in an equilibrium state, precisely the temperature variation 

which has been discussed on page 15 and which is, as we now see, 

needed to prevent heat from "falling" in a gravitational field, 

(Equations (35) have been proposed long ago, see ref. [27].) 

Instead of guessing equations (35)  on the basis of (32 )  one 

should, of course, derive them from the Boltzmann equation (23). Two 

classical methods offer themselves, the Chapman-Enskog method and 

Grad's. method of moments. Both these methods have, in fact, been 

adapted to relativity; as will be described briefly now. 

The Chapman-Enskog method has been adapted to relativity by 

Israel (reference [6a]) and, in a mathematically more complete form, 

by Marie [reference [2b]). The method consists of replacing W in 
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g = Z 

n=l 

equation (23) by !W, expanding g in equation (30) in a power series 
E 

ng(n), decomposing the Liouville operator (9) 

b ava a ubua)pbv 
L = pay a = -ubP u + (~b + a 

~ p L ....... j 

= D + V 

(Va ~xa ab ~p¥ 

(36) 

into a "time derivative" D and a "spatial derivative" v (both 

operating in M), and to solve the resulting equation successively for 

• a 

each power of ~ after elimination of n, ~ and Ua (n = n,a u etc.) 

by means of the conservation laws (25), (2). In this procedure the 

variables n, ~, u a have to be defined uniquely in terms of the 

"correct" distribution function f by means of matchin~ conditions , 

e.g., those of Landau-Lifschitz which require 

o 

u b u b .~u a 
Tab = Ta b = , 

= N a ~a Ua u a = -n, 

(37) 

o 

Here, N a N a , are the currents (13) formed with f(0), f, respectively, 

etc. The result of this procedure in first order are the transport 

equations (35). To obtain the coefficients n, g and ~, one has to 

solve inhomogeneous Fredholm integral equations. This has been done 

for "Maxwellian particles", defined (in relativity) by having a cross 

section of the seperable form o(E,@) ~ [~)-2 ([~m]2 _ 1)-i/2 F(@), 
m 

and for moderately relativistic temperatures (say, ~ ~ 10-2), by 
m 

Israel (~ and ~, see [6a]) and by de Greet and van Leeuven (~,~ and n, 

see [32,V,VI]). The last-mentioned authors extended these laborious 

calculations also to non-reacting mixtures of isobaric Maxwellian 

particles and established the validity of Onsager reciprocitz. 

relations for such systems (references [32,11,V]). Relativistic 

the transport coefficients, all of order ~, have been corrections to 
m 
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worked out explicitly. An interesting result of these calculations 

is that ~, the bulk viscosit Z coefficient, is positive, in contrast 

to the corresponding nonrelativistic result ~ = 0 <for a simple gas 

of point particles). <In Israel's example ~ is independent of n and 

decreases for low temperature like T3.) The reason for this 

deviation of the two theories can easily be seen to lie in the fact 

that the energy depends differently on the momentum in the two cases; 

1 
= 0 happens to follow from the particular dependence E = ~m ~2 

of nonrelativistic mechanics. The nonvanishing of ~ "explains" the 

descrepancy between these two theories with respect to the existence 

of expanding local equilibrium flows (p.15): In relativity, even an 

isotropic expansion is connected with the production of entropy. 

(For a critical discussion of this point and its bearing on cosmology, 

s e e  [ 2 8 ] . )  

Whereas the method just sketched gives only normal solutions of 

the Boltzmann equation, the method of moments is also capable of 

describing the "anormal" relaxation towards equilibrium which cannot 

be described in terms of the "equilibrium variables" n, ~, u a alone. 

This method has been modified according to relativistic requirements 

by Marle [2b] and by Anderson and Stewart (see [3] and volume 9 by 

Stewart of these "Lecture Notes", [29].) 

The basic tool of this method is a complete orthogonal set of 

functions on the Hilbert space L2(Px,f(°)~), i.e., the space of real 

functions on the mass shell P which are square integrable with 
x o 

respect to the measure f(o)~. The set is defined as follows. H = i, 

r-i a ..a r ~bl...b s 
and ~ a1''''ar = PaI...P ar s=0Z Cbll" "bs (r = 1,2 .... ), 

with* 
r s 
<H al'''ar, Hbl'''bs> = 0 if r ~ s. (38) 

* The members of the set are the components of the tensors ~. For 

fixed r, these components are, in general, not orthogonal. 
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(The C's are constants, and < , > denotes the inner product on the 

r ar 
Hilbert space.) Such a set exists, is unique, the tensors H al'''" 

are symmetrical and trace free, and the set is complete. These 

functions form a relativistic analogue of the Hermite-Grad polynomials 

of R 3, and reduce to them in a suitable limit*. (In contrast to the 

Hermite-Grad polynomials, the H's cannot be derived from a generating 

function; they do not obey a Rodrigues relation.) 

Assuming that g from eq. (30) is a member of the Hilbert space 

one can expand it, 

n n 
g(x,p) = z (x) Hbl'''bn(x,p). (39) 

n=l abl'' .b n 

n 

The coefficients a... can be shown to be linear combinations of 

moments of f of orders up to n. 

Now, the Boltzmann equation (23) implies that 

(ipa1... p an f ~);a n 

: (7 

a .. pan_ 1 = Ip 1 .  L(f)~ 

f f')aCaP)Wx~x'^x'^T" 

(40) 

* For elegant proofs, see Marle [2b]. 

for n = I, 2, ..., and conversely this infinite system of equations 

implies eqo [25). Inserting the expansion (59), the right hand side 

n 
becomes a quadratic form in the a... or, equivalently, in the moments 

n 

of f, with coefficients expressible as integrals involving the H's. 

Hence, (40) represents a system of differential equations for the 

moments of f which is equivalent to the Boltzmann equation. If one 

now truncates the series (39) after a few terms and linearises the 
n 

truncated equations (40) in the a...'s one can obtain a tractable 
n 

system of partial differential equations for the a...'s (or the 

moments), and these then define a moment-approximation of eq. (23). 

Keeping in (39) only the terms with n = 1 and n = 2, one gets the 

fourteen moment approximation (which corresponds to the 
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nonrelativistic thirteen moment approximation of Grad) which gives just 

sufficient information to derive again eqs. (35) (and, after Stewart 

[29], more general equations for gas mixtures with reactions). In 

addition - and this is one of the principal advantages of this method 

compared with the first one - explicit integral representations are 

obtained for the transport coefficients ([3], [29], [6b]). The results 

concerning ~ given above are confirmed and extended to arbitrary 

temperatures by this method. Moreover, this method permits to treat 

general, not only "normal" perturbations, and Stewart has shown [29] 

that the behaviour of the g-dependent part of T ab , the perturbed part 

of the stress tensor, is governed by a system of hyperbolic 

differential equations whose characteristics lie inside the light cone. 

For a simple Boltzmann gas, the maximal velocity of propagation of 

such disturbances (relative to the fluid) is c(~)~2 " 0.8 c, which 

c 
should be compared with the upper limit z 0.58 c for the sound 

3~- 
velocity of such a gas [14]. Thus, an old paradox connected with eq. 

(35)3 ' the apparently acausal propagation of heat, has been resolved 

and has been shown to be due to an inadequate approximation. 

Extensions of this method to relativistic quantum gases are due to 

Stewart [29] and Israel and Vardalas [30]. 

As a last remark I wish to mention that a method which treats 

photons or neutrinos as a "gas" described by a distribution function, 

and which describes the medium with which this radiation interacts as 

a fluid - an approximation which is useful in astrophysical problems - 

has been worked out in general relativity by Lindquist [31]; several 

applications of this theory of radiative transfer have been made, and 

more work along these lines is being carried out. 

In conclusion it may be said that the basic conceptual and formal 

framework of relativistic kinetic theory is now well established, and 
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that this new branch of statistical physics has proven to be a 

valuable tool of research which offers many possibilities for 

further investigation. 
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