
Journal of  Statistical Physics, VoL 18, No. 3, 1978 

Kinetic Theory of Nonlinear Viscous Flow 

in Two and Three Dimensions 

M. H. Ernst, 1 B. Cichocki, t'2 J. R. Dorfman, 3 J. Sharma, 3 

and H. van Beijeren 4 

Received August 2, 1977 

On the basis of a nonlinear kinetic equation for a moderately dense system 
of hard spheres and disks it is shown that shear and normal stresses in a 
steady-state, uniform shear flow contain singular contributions of the form 
t XI 3j2 for hard spheres, or IX I log[ XI for hard disks. Here Xis proportional 
to the velocity gradient in the shear flow. The origin of these terms is closely 
related to the hydrodynamic tails t -a~2 in the current-current correlation 
functions. These results also imply that a nonlinear shear viscosity exists in 
two-dimensional systems. An extensive discussion is given on the range of 
X values where the present theory can be applied, and numerical estimates 
of the effects are given for typical circumstances in laboratory and computer 
experiments. 
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1. INTRODUCTION 

Dur ing  the past several years, evidence has been accumulat ing that  funda-  

mental  difficulties are encountered  in the derivat ion of  hydrodynamic  

equat ions for two-dimensional  gases whose particles interact  with short- 

ranged repulsive forces/1-5~ This evidence comes from both computer  and 

theoretical studies of  t ime correlat ion funct ions  for two-dimensional  systems 
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composed of hard-disk molecules. The motivation for these studies is based on 

the fact that if linearized hydrodynamic equations apply to two-dimensional 

(or higher) systems that are sufficiently close to equilibrium, then the 

transport coefficients associated with these hydrodynamic equations can be 

expressed as time integrals of time correlation functions, C6~ through relations 

of  the form 

f; L,  = dt (Ju(t)J.(O)>ea (1) 

where L u is a transport coefficient, such as the coefficient of self-diffusion D, 

shear viscosity r/, or thermal conductivity A. The microscopic current J .  can 

be expressed in terms of the positions and momenta of the particles of  the 

system and the potential energy between the particles. J.(0) is the value of J .  

at some initial time and J,( t )  is that at a time t later. The angular brackets 

denote an average over an equilibrium ensemble. It was discovered, first by 

computer studies on the velocity autocorrelation function, which is related to 

the coefficient of  self-diffusion, and later by theoretical studies on this and 

the correlation functions related to -q and A, that for moderately dense gases 

there is a range of times t over which the current correlation functions behave 

like 

( Ju(O)Ju(t)~eq = a,(to/t) a/2 (2) 

Here, a, is a constant, depending on/z, and to is the mean free time between 

collisions for a particle in a gas. For the presently available computer studies 

on the velocity autocorrelation function the t-a/2 behavior persists over the 

time range 10to ~< t ~< 200to, the upper limit being determined by the size of 

the system studied. Although the other time correlation functions have not 

been studied as extensively, both the computer work that has been done and 

theoretical studies suggest that similar results also hold for the correlation 

functions related to ~7 and A. 
If the t -1 decay of the time correlation functions for two-dimensional 

systems would persist for arbitrarily long times, then Eq. (1) would have as a 

consequence that the associated transport coefficients are infinite. For three- 

dimensional systems, the t-3/2 decay is sufficiently fast that the transport 

coefficients associated with the linear hydrodynamic equations are all finite, 

but divergence difficulties occur when one considers the transport coefficients 

associated with both the linear and nonlinear Burnett and higher order 

hydrodynamic equations. (7-14~ 
In spite of the fact that neither computer nor theoretical studies have shown 

that the transport coefficients do in fact diverge, the fact that the current 
correlation functions decay so slowly for long times provides a sufficiently 
strong motivation for a reexamination of  the derivation of the linearized 
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hydrodynamic equations from first principles. This should reveal whether the 

apparent  divergence of the associated transport  coefficient implies that non- 

linear and nonlocal effects neglected in their derivation should be taken into 

account. 

In this paper we use the kinetic theory of gases to derive the hydrodynamic 

equations that describe steady-state shear flow and we consider both two- 

and three-dimensional systems. By generalizing a method originally used by 

Ernst and Dorfman ~v~ for the derivation of linear hydrodynamic equations, 

we have been able to show that for two-dimensional systems the appropriate 

hydrodynamic equations are necessarily nonlinear. We have derived the 

nonlinear hydrodynamic equations that describe shear flow and we show 

that the associated transport  coefficients are all finite. The three-dimensional 

version of  the theory provides a more fundamental derivation of the results 

of  Kawasaki and Gunton (1~ and Yamada  and Kawasaki, ~i5~ who obtained 

nonlinear effects in shear flow from a generalization of the mode coupling 

theory. In the paper  we do not consider more general time-dependent 

problems involving heat flow, since the derivation of the general hydrodynamic 

equations seems to be considerably more complex than that for steady shear 

flow and work on the general case is still in progress. 

Here we will consider a steady shear flow when the local velocity u(r) is 

in the ~ direction and its value depends on the x coordinate, i.e., u(r) = ~f(x), 
where ~ is a unit vector in the ~ direction and f(x) is a function of x alone. 

We consider the simplest case, where f (x )  is linear in x, so that 

u~(r) = G~(Uo + xX) (3) 

The quantity X characterizes the size of  the velocity gradient, and a,/3, y 

denote Cartesian components x, y, z. We will compute elements of  the 

pressure tensor, such as Px~, and the ratio Pxy/X. I f  the linear hydrodynamic 

equations are valid, then 

lim Pxy/X = - • (4) 
X ~ 0  

where ~ is the coefficient of  shear viscosity. In the time correlation function 

method it is assumed that the limit (4) exists. 

In order to provide a motivation for the work carried out in this paper, 

we mention that the t -  ai2 behavior of  the time correlation function is asso- 

ciated with certain dynamical processes taking place in the gas, the so-called 

ring events. (a,7~ These events consist of  a sequence of l binary collisions taking 

place among l particles in the gas, for i /> 3. It  has been shown that these 

events collectively lead to contributions to the time correlation functions that 

contain integrals over wave numbers k of  the form 

f~ o dk k d-z exp(--ak2t) 
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where d is the number of dimensions, ko ~ na a- 1 is a cutoff wave number, 

which for dilute and moderately dense gases is of the order of the inverse 

mean free path, and a is a quantity of the order of vo/na a- 1, where v0 is the 

thermal velocity of  a particle in the gas. By carrying out the k integral we 

obtain the t -  a/2 behavior for long time t >> to. In this paper we include 

effects that are neglected in the derivation of the linearized hydrodynamic 

equations and are due to the presence of  velocity gradients in the shear flow. 

We show that the ratio P x ~ / X  has contributions of the form 

foJ? P x y / X  ~- dt dk  k a-1 e x p ( - a k 2 t  - b l X [ t )  (5) 

For two-dimensional systems this gives 

Pxy ~- XloglXl  (6) 

Thus the ring events lead to a finite value of the pressure tensor if nonlinear 

effects are taken into account. For three-dimensional systems, similar non- 

linear effects lead to 

Px~ ~- x ( - ~  + clXl~t2), (7) 

as predicted earlier by Kawasaki, Gunton, and YamadaP 

The plan of the paper is as follows. In Section 2 we start from the BBGKY 

hierarchy equations and derive equations for the single and pair distribution 

functions that take into account the ring events and nonlinear effects of the 

velocity field on the contribution to the pressure tensor. In Section 3 we 

compute the contribution of the ring events to the pressure tensor and show 

that the effects described in Eq. (5) come from the so-called hydrodynamic 

mode contributions. We then verify Eqs. (6) and (7), and give in Section 4 the 

precise numerical factors that are of interest for all elements of P ~ .  We 

conclude in Section 5 with a discussion of our results and a comparison of 

our results with those of other authors. 

2. N O N L I N E A R  T R A N S P O R T  E Q U A T I O N S  

We consider a classical d-dimensional system consisting of N particles 

contained in a volume V. We take the particles to be d-dimensional hard 

spheres, each of mass rn and diameter a. We will discuss the nonequilibrium 

one-particle, pair ..... distribution functions f(1, t),f(12, t) ..... respectively, 

5 While this work was in progress, we received the PhD dissertation of Onuki, (16~ which 
contains results similar, and in some cases identical, to those presented here. Unfor- 
tunately, Onuki does not indicate how he arrives at his results, so that we cannot com- 
pare our method with his, other than the fact that we both start from the BBGKY 
hierarchy. 
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where x~ dengtes the phase x~ = (r~, v~) of particle i, and r~ and v~ are the 
position and velocity of the ith particle. 

First, we derive a nonlinear kinetic equation from the BBGKY hierarchy, 
and we apply the Chapman-Enskog method (17~ to obtain transport equations 
and expressions for the fluxes. For hard-sphere systems the distribution 
functions satisfy the following BBGKY hierarchy(18~: 

(~, + v~.a'---~r~)f(1)=f dx2T(12)f(12) (8a) 

~t + v l " ~ r  ~ + v2"~-~2 - T(12) f(12) = dxa (1 + P~2)r(13)fd23) 

(Sb) 

The operator P~j interchanges the particle labels (ij), and the binary collision 
operators (1~ used here are point T-operators, which neglect the difference in 
position of colliding particles (a low-density approximation) 

T(12) = 3(r~2)T0(12) = 3(r12)~a-~( d~ lv12"~l[bo(12)- 1] (9) 
Jv 12.~>0 

The unit vector r denotes the direction of the line of centers of the colliding 

pair. Here, bo(12) changes v~ and v2 into restituting velocities v~' and v2'. 

We further use the notation v12--v~ -v2 and r~2 = r~- r2. Next, we 

introducc the cluster functions g defined by 

f(12) = f(1)f(2)[1 + g(12)] (10a) 

f(123) = f(1)f(2)f(3)[1 + g(12) + g(13) + g(23) + g(123)] (10b) 

By neglecting g(12) in Eq. (10a), we find that Eq. (8a) reduces to the ordinary 
nonlinear Boltzmann equation. Here, however, we retain g(12) in the first 
equation, but we truncate the hierarchy equations at a later stage by neglecting 
g(123) in (10b). 

Our intention is to take into account only the contributions of  uncorre- 
lated binary collision events and of ring collision events. The contributions 
from the uncorrelated binary collision events are contained in the nonlinear 
Boltzmann equation, which provides a foundation for the theory of transport 
processes in a dilute gas. The ring events are responsible for the leading 
divergencies that appear in the expansion of the corrections to the Boltzmann 
equation in powers of  the density n. In order to obtain a meaningful kinetic 
theory for gases at moderate densities, where corrections to the Boltzmann 
equation need to be taken into account, one collects and sums together all 
contributions from ring events to obtain a new resummed collision operator. 
In the theory based on the BBGKY equations, this resummed operator can 
be easily obtained by neglecting g(123) in Eq. (10b) and then solving Eq. (Sb) 
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for g(12). In so doing, we ignore the contributions from other dynamical 

events, which in each order in the density are less divergent than the ring 

events. Thus, the approximation of neglecting g(123), as well as the use of 

point T-operators, has as a consequence the fact that any corrections to the 

Boltzmann equation obtained here should be determined only to lowest 

order in the density. A similar situation is also encountered in the linear 

theory discussed by Ernst and Dorfman, which is generalized here straight- 

forwardly to include nonlinear effects. 

If  we then neglect g(123) in Eq. (10b), we obtain the following closed set 
of equations C2~ 

( 0 t +  v l . ~ ) ) ( 1 ) =  f dx2 T(12)f(1)f(2)[l +g(12)] (11a) 

~ 
+ vl.  + - r(12) 

- (1 + P12)f dx3 T(13)(1 + Pla)f(3)]f(1)f(2)g(12) 

= T(12)f(1)f(2) (1 lb) 

We are interested in the behavior of the distribution functions f and g for 

small gradients in the local variables, such as density n and temperature 

T = (kBfl) -1, where kB is Boltzmann's constant. In this paper we want to 

restrict ourselves to one type of gradient only, namely off-diagonal elements, 

X = Vxuy, of the rate of strain tensor, and we will evaluate the elements of 

the pressure tensor P ~  (~,/~ = x, y, z). All remaining gradients vanish, so 

that n and T are uniform, and V.u = 0. Hence, we are dealing with uniform 

shear flow. In this approximation all local variables are stationary, as follows 

from Euler's equations, and 0tf  = Otg = 0. By imposing this steady state we 

are ignoring the viscous heating of  the fluid, i.e., OtT oc ~X 2. In the discussion 

we will briefly return to this point. 

In lowest approximation the distribution functions are denoted by f0(1) 

and go(12), and have the local equilibrium form 

f0(1) = n(flm/2~r) a/2 exp{-�89 - u(r0]2}, go(12) = 0 (12) 

One might expect that the local equilibrium pair correlation function g0(12) 

would be nonvanishing (and equal to -1 )  inside a sphere r12 < ~. Consistency 

with the use of point T-operators requires that this sphere shrinks to zero. 

We now consider the next dominant terms in f(1) -- fo(1)[1 + h(1)] and 
g(12) for small X. For  that purpose we separate the unknown functions h and 
g into regular parts h~ and gR (i.e., expandable in powers of Xaround X = 0), 
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which start off proportional to X, and singular parts 3h and 8g, which have 

no power series expansion in X around X = O, i.e., 

f(1) = f0(1)[1 + XhR(1) + ah(1)] 
(13) 

g(12) = Xgn(12) + 3g(12) 

For the following arguments it is immaterial whether the singular terms are 
more (as for d = 2) or less (as for d = 3) dominant than O(X). The ordering 
procedure for solving Eqs. (1 la) and (1 lb) is as follows. Since we are interested 
in the leading singularities in 3h and 3g, we keep in (1 la) and (1 lb) only the 
most dominant regular [of O(XS~ and singular terms [of O(X%)]. However, 
since the "coefficient" of ~g(12) in Eq. ( l lb)  can be vanishingly small to 
O(X~ (as will be shown explicitly later), we will also keep the O(X) terms in 
this coefficient. This vanishing coefficient for small X is precisely the source 
of the singular X dependence of 3g and 3h. The above ordering procedure 
ensures that our equations describe the leading singularities in 8h and ~g 

correctly. 
Consider now Eq. (I la). Due to the presence of ~(r12) in T(12), all local 

variables (i.e., here local velocities only) refer to the spatial position rl ,  
and we will write henceforward u(rI) = u. Carrying out the above program 
yields 

~dx~(Vl)X = A(Vl)[hR(Vl)X + 3h(V0] 

+ nf dv~ c}(V2)To(lZ)[gn(V~V2r~2)X + 3g(V~V2r~2)] (14) 

The functions gR and 3g depend also on the absolute position in space. How- 
ever, it will be seen that this dependence is only parametric. We further 
introduced V, = v~ - u [recall that u(r0 = u], and 

6, (V) = (flm/Zrr) a/2 exp( - {tim V 2) 

J~e(V) = rn[V, Ve - (I/d) 8~eV 2] (15) 

Acv ) = .f ~(V2)T0(12)(1 + P,2) 

where A(v) is the linearized Boltzmann collision operator. We have treated h 
and g as functions that depend on the local velocity only in the combination 
V~ = v~ - u. This is a consequence of the fact that the terms present in Eq. 
(14), and also in the equation for g(12) to be derived below, depend only on 
this combination. Therefore, h and g depend on the absolute position in 
space only through u, which enters only in the velocity variables V~. 

The regular and singular parts satisfy Eq. (14) separately. The regular 
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part is equal to the sum of two terms hz + hR,, where hB(V) is the Chapman- 
Enskog solution of the Boltzmann equation, i.e., 

A(v)hs(v) = fiJ, v(v) (16) 

and A(v)hx,(v) equals an integral involving gR. The functions hR, and g~ 
represent higher density corrections, which from now on will be neglected 
in Eq. (14) with respect to hB(v) for consistency; that is, we replace h~ by hB 
everywhere. 

The equation for the singular part becomes, after introducing a Fourier 
representation for the variable r~2, 

A ( v 0  ~h(v~)  = - n ( 
dk f t dr2 ~b(v2)To(12) 3G(v~v2k) (17) 

J J 

where 
F 

~G(vlv2k) = ) dr12 [exp(- ik.rz2)] @(vlv2rz2) (18) 

An equation for ~G can be derived from (1 lb) in essentially the same manner. 
Since the calculations are somewhat more involved, they are carried out in 
Appendix A. The result is 

[ i k . v ~ 2  - A ( v l )  - A(v2)  + XR(v~v2k)] ~G(v~v2k) 

= XTo(12)(1 + P12)hB(v~) (19) 

The explicit form of the operator R(vzv2k) can be found in Eq. (A14) of 

Appendix A. It is even in the variables vl, v~, and k. 
It is then implied by Eq. (19) that 

G(vl, v2, k) = G(v2, v~, - k )  = G(-v2,  -v~,  k) (20) 

From the solutions of Eqs. (16)-(19) we can calculate the dissipative part P~a 
of the pressure tensor, 

P ~  = n(J~B(h~3 + 3h)> (21) 

The angular brackets denote an average over one velocity variable, defined 
as <f(v)> = f dv ff(v)f(v). The singular part of  the pressure tensor 6P~e is 
found from Eqs. (17) and (21) 

dk  
((J,~(vl)A- ~(v0T0(12) aG(vlv=k)>> (22) 

The double brackets denote an average over two velocity variables. Only in 
two-dimensional systems is the leading contribution to Eqs. (19) and (22) for 
small X actually a singular term in the pressure tensor. In three-dimensional 
systems the leading contributions are proportional to X, and should be 



Kinetic Theory of Nonlinear Viscous Flow in Two and Three Dimensions 245 

subtracted out before the singular term is obtained. We will return to this 

point in Section 4 and Appendix B. 

3. REDUCTION TO SETS OF LINEAR DIFFERENTIAL 

EQUATIONS 

Let us expand 8G(vlv2k) in eigenfunctions 6 ~bkx(V) of the linear Boltzmann 

operator {ik.v - A(V)} with eigenvalue - zk a, satisfying (~bka~bk ~) = ~a~. Then 

3G(vlv2k) = - 1 X ~ ~bkX(Vl)~bU--k(V2)BaV(k) (23) 
n Au 

The factor - X / n  is taken out for later convenience. The first terms in Eq. 

(19) are then 

[ik.vl~ - A ( v l ) -  A(v2)]~bk~(Vl)~bU-k(V2) = --(z~ A + zk")~bka(Vl)~U_k(V2) (24) 

The sum of  eigenvalues may be of O(k 2) for small k and for certain combina- 

tions of hydrodynamic modes. We choose a sufficiently small cutoff wave 

number ko oc n~ a-1 (on the order of the inverse mean free path), such that 

the k expansion of eigenvalues and eigenfunctions holds for all k < k0. An 

inspection of  Eq. (19) then suggests that for small k and X the resulting 

expression ~G(vlv2k) would contain terms of the form 3G ~ (k 2 + X)-1,  and 
�9 . k 0 

3P in Eq. (22) would then contain k integrals of the form J0 dk k s- ~(k 2 + X)-1. 

It is clear that this expression does not exist in two dimensions at X = 0, and 

that its derivative at X = 0 does not exist for three-dimensional systems. On 

the other hand, the presence of  O(X) terms may protect the dangerous de- 

nominators at the lower limit of  the k integration, so that 3P~B/X does exist, 

but is a singular function of  X at X = 0. 

The contributions from nonhydrodynamic modes, as well as from large k 

values, and those from hydrodynamic modes with zk a + zk" = O(k) do exist 

in two and three dimensions at X = 0, and their first derivatives exist also in 

three dimensions at X = 0 (or are at least less singular). Such contributions 

should be lumped together in GR, which should be neglected for consistency, 

since it is a higher density correction with respect to the right-hand side of 

(19). 

After having explained the general procedure, we list the explicit expres- 

sions for the hydrodynamic modes, i.e., sound modes (a = _+), heat mode 

6 The opera to r  ik .v  - A(v) is non -Hermi t i an  (but it is symmetric) .  One should therefore  
consider  b ior thogona l  sets o f  r ight e igenfunct ions  4q~" and left e igenfunct ions ~k a. 

However ,  since q~k a is the complex conjugate  o f  ~bk a, one  can write inner products  as 

(~k a, ~kU) = (l~k*@kU) = (~bkhl~kt~). As we will restrict  our  a t tent ion  only to hydrodynamic  

modes ,  it wilI no t  be impor tan t  if i k .v  -- A(v) does no t  have a comple te  (bior thogonal)  

set o f  e igenfunct ions.  



246 M . H .  Ernst, B, Cichocki, J. R. Dorfman, J. Sharma, and H. van Beijeren 

(T), and (d - 1) shear modes 07~; i = 1, 2 ..... d - 1), which are only needed 
to O ( k  ~ : 

f lmv 2 / t i m \ i t 2  ^ 
~k"(V) = ~':[(V) = [2d(d + 2)] 1`2 + cr[-~-) v-k 

1 
4~k~(v)  = ~-k(v) = [2(d + 2)V ~ ( S m v ~  - d - 2) (25) 

~b~,'(v) = sg(i) ~b~k(V) = ( f lm)l /2k~).v  

We choose k~ in such a way that ( - ~ ) ~  .- r = sg(t)~a,  where sg(i) is + 1 or 
-1,  and will be chosen later on. The hydrodynamic frequencies are 

zk ~ = - icrcok - D~k 2; z~ r = - D r k  2 ; z~' = - Dnk 2 (26) 

Here, (f~,f,m__L, A• c2~,.,.j~ is a set of mutually orthogonal unit vectors; 
Co = [(d + 2)/dflm] ~lz is the adiabatic sound velocity; D~ = ( 1 / d ) D r  + 

[(d - 1)/d]Dn is the sound damping constant, where the thermal diffusivity 
D r  = h/nCp contains the heat conductivity h and the specific heat per particle 

at constant pressure Cv = �89 + 2)kn; and D n = ~7/nm is the kinematic 
viscosity. The pairs of dangerous hydrodynamic modes are indicated by 
(A/z) = (~, -or), ( T T ) ,  07~T), (T~O, (~7,~h. We now insert Eq. (23) into Eq. (19) 
and calculate the projection (@ka(Vl)~b~k(v2)[Eq. (19)])), with the result 

<~> [3~ 8.a(D ~ + Du)k  2 + XR~(k ) ]BVa(k )  = nA~a(k'~ (27) 
I "  X y \  . '  

The right-hand side of Eq. (19) has been calculated to O(k~ using the relation 

((r162 + &~)h~(v0>> = - ( 1 / n ) ( ~ r  (28) 

together with Eq. (16) and the definition 

A~(k) = @ka~b~tJ~e) (29) 

We further introduced the matrix elements of R(v,v=k), defined in (A14), 

R~(k) = <<~k;~(Vl)~U-k(V2)R(u (30) 

One should notice that R~(k) is a differential operator with d /dk~  acting on 
all k-dependent functions to its right. In this manner we have reduced the 
determination of 8G to the solution of a coupled set of linear first-order 
differential equations. 

The singular part of the pressure tensor (22) can now be expressed as 

a p ~  = _ l  x ( '  d k  
2 J ~ Z A~(k)BaU(k) (31) 

<;ut) 

where we have used Eqs. (28)-(29) and the symmetry relations, implied by 
Eq. (20), 

Ba,(k) = B , a ( -k )  (32) 
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and for future reference we also list the symmetry properties, implied by 

Eqs. (25), (27), and (20), i.e., 

B + -(k) = B- +(k), Bn,r(k) = -sg( i )  BTn~(k) 
(33) 

Bn,n,(k) = sg(i) sg(j) Bn/'~(k) 

Before solving Eq. (27) we have to calculate the amplitudes A~(k) and 
the matrix elements m RvD(k). They are only needed to O(k~ since O(Xk  ~ 

terms provide the main protection mechanism against the divergences caused 
by the O(k2X ~ terms. For the amplitudes we find from Eqs. (25) and (29) 

(34) 
fl~n~nj = cf~(i) s " " " 

The matrix elements of (30) to O(k ~ are given in Eqs. (A14) of Appendix A 

and read 

x , ( d d d 
= - - d v 2 ;  

+ flmvlxvly + flmV2xV2y)@kV(Vx)~b~ (35) 

Lengthy but straightforward calculations yield explicit expressions for the 
matrix elements in d-dimensional systems to zeroth order in k, 

Rg,-_%,(k) = 3~o,[- (d/dk~)ky + [city] 

n~T Tn~ k R,,r(k)  = sg(i) sg(j) Rr,,(  ) 

~(i) ~(J) ~(r f/J) - k .~(d/dkx)kykl~ 

"'"" (36) Rn~nr(k) = sg(i') sg(j') r~ &*)f~o') ~ t;,')f~(J') 

~(i) ~(i') ~(J) ~(1') - k L~k• B (d/dkx)kyk• ] 

RrT(k) = - (d/dk~)ky 

R~ = 0 (in all other cases of interest) 

Summation convention is used for repeated indices. 
It is obvious from Eqs. (36) and (26) that the differential equation for 

B + -(k) in d dimensions does not couple to any other B~(k), and we have for 
the sound mode contributions 

[2D~k 2 - Xku(d/dk,: ) + Xfc,fcv]B + -(k) = /~,~/~u (37) 

Equations (34) and (31) require further that Bnr be determined. In two 
dimensions, where [~ = (f:~,/cu) and ~j_ = ( - /~ , / c~)  [hence sg(1) = -1  in 
two dimensions], the equation for the shear mode contributions becomes 

[2Dnk 2 - Xk~(d/dkx) - 2Xfcffq,]B'~'~(k) = 2/~.s (38) 
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upon using Eqs. (27), (34), (36), and (31) and the relation #•177 = O. 

In three dimensions the equation for the shear mode contributions can be 

simplified enormously by choosing a special coordinate system (2~) such that 

d#(~22/dkx = 0, which implies 

~(1) ~(2> = - k •  = 0 (39) k•177 ~(2) ~1) 

This leads to the following set of unit vectors: 

= 

~(t) = (_f:y2 _ /~2, fz~/~u,/~xk,)/(ky 2 +/~  2)1,2 (40) 

= (0 ,  - L ,  + 

with sg(1) = 1 and sg(2) = -1 .  

The choice (40) enables us to write down expressions for R;~"~; in terms 

of/c~, Icy, and k~, and we find the following set of differential equations for 

the shear mode contributions: 

[2Dnk 2 - Xku (d /dk~)  - 2X/~j~y]B~'~(k) = -2/~jc~ 

[2Dnk ~ - X k u ( d / d k ~  ) - Xk~[%]Bn~'~(k) =/~{1 - XB'~'~(k)}  (41) 

(2Dnk 2 - Xk~(d/dkx))Bn~%(k)  = 2Xfc~B%n~(k) 

where the relation B'~'~(k) -- -Bhang(k) has been used. 

In order to construct a unique solution of Eqs. (37), (38), or (41) we 

must impose a boundary condition on BZU(k, X). We note that it is possible 

to obtain a solution to each of these equations as an expansion in powers of  X, 

by iterating about the X = 0 solution. For example, Eq. (37) has the iterated 

solution 

B + -(k) = Bo(k) + XB~(k) + X2B2(k) + ... (42a) 

with 

Bo(k) = (2Dsk2)-lfcx~y (42b) 

and B~(k) determined by the relation 

B~(k) = (2nsk 2)- l[k~(d/dk,:)  - kx/~v]B~_l(k) (42c) 

The expansion o f B  + -(k) in powers of Xleads to an expansion of the pressure 

tensors in powers of X, and we see by considering Eqs. (31) and (42) that the 

coefficient of  each power of X in this expression of ~P~ is divergent, with the 

degree of divergence increasing with each power of X. It is this divergent 

expansion that we want to resum. To carry out the resummation we must 
resum Eq. (42a) for B + -(k) and the corresponding equation for B' , ' s (k)  

before carrying out the final k integration. The differential equations (37), 
(38), and (41) provide a means by which this summation may be readily 
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carried out. We merely need to construct solutions to these differential equa- 

tions that, upon expansion in powers of X, agree with the expansion (42a) 

or the corresponding ones for B"~J(k). We also note that, since we are 

interested here only in the most singular part of SP~B(X) for small X, we can 

add to the singular part of B~"(k) any terms that are well behaved for small k 

and Xwithout  disturbing the singular part of 3P~e(X). Since the X-dependent 

terms are only important to modify the behavior of BX"(k) at small k, we can 

impose the boundary condition that B(k, X) coincides with B(k, X = 0) at 

some point on the outer boundary of the k integration. Combining these 

observations, we now choose the boundary conditions for B~"(k) such that 

BZ"(k ~ X)  B ~ ( k  ~ X 0) A. o = = = Axy(k )[(D~ + D.)(k~ -~ (43a) 

where the point k ~ is chosen so that the singular parts of the X-expanded 

solutions of the differential equations agree with the iterated solutions. These 

requirements are met at the boundary point 

k ~ = (Oko, ky,  k~) (43b) 

where 0 = sg(Xku) is the sign of Xk~. 

4. S I N G U L A R  PARTS OF THE P R E S S U R E  T E N S O R  

In this section we will solve the differential equations (37), (38), and (41), 

and then complete the calculation of the singular part of the pressure tensor 

given in (31). We consider the two-dimensional case first. Inspection of 

Eqs. (37) and (38) shows that for two dimensions both relevant differential 

equations can be put in the general form 

( d kx g(n)k~\ 1 
- 0 ~ B ( k ) =  I(")(k) (44) 

with 0 = sg(Xky). By setting 

n = - 1 ;  g(-1) = 2Ds/[XI; I (-1~ = - k x / k 2 ;  B (-1~ = B +- (45) 

we recover Eq. (37), and by setting 

n = 2; g(2) = 2D, / IXI ;  I ~2~ = - 2 k x / k 2 ;  B ~2~ = B ~ (46) 

we recover Eq. (38). The corresponding boundary conditions, as discussed in 

Eqs. (43a) and (43b), are 

B (- 1)(k ~ X) = B (- ~)(k ~ 0) = Okoky/2DJk~ ~ 
(47) 

B(2)(k ~ X) = B(2)(k ~ 0) = 20kok~,/2Dn(k~ ~ 
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Equation (44) can be easily solved using an integrating factor, and the general 
solution is 

B(n)(k) = (k~ 0k~ ~ 0) 

f 
O k o  

- ( l /X) dkx' (k'/k)'~K('~)(Ok, 0k')I(~)(k ') (48) 
, d k  x 

where k' = (kx', kv) and 

K(~)(k, k') = exp{g('~)/Ik~l [k~(k 2 - -}k,fl) - k,:'(k '2 - {k j2)]} (49) 

The singular part, Eq. (31), of  the pressure tensor is now given by 

f '  dk 3 P ~ B = - X  ~ (-~)2 A~'~(k)B~176 (50) 
r~ , 

with 

A% 1) = A +- = fi-lfc k A (2' = • = fl-lfc fc X y  X y ~ X y  2 X X X y  X y 

A~I)  = A+ -  " fl-x(kx2 _ �89 = _#-1)._~ , (51) 

A(2) = I A , ,   -1( x2 �89 _A(2) X X  2 x x X X  ~ - -  ~ " ~ y y  

We have also used the symmetry relation B + - ( k ) =  B-+(k)  from Eqs. 
(32)-(33). The first term on the right-hand side of Eq. (48) gives a contribution 
3P~ a which remains finite as IX[-+  0, or equivalently, as g(n)_+ oo. This 
contribution is a higher order density correction to the regular part of the 
viscous stresses, and is therefore neglected here. 

The singular contribution to 3P~a comes from the second term on the 
right-hand side of  Eq. (48), and insertion in Eq. (50) yields 

n =  - 1 , 2  

= ~ ~_~ 22 f "  dk  (ko dkx' (~)nK(n)(k, k')/(n)(k')A(~(k) (52) 
- .  

where the double prime on the k integration means that Ik] < k0 and Xky > O. 
We have further used the property 

( -  )A(d~(-k) I ( '~  ') = A(~)(k)I~ (53) 

Consider first the off-diagonal element. From Eqs. (51), (49), and (45) we 
obtain the sound mode contribution (n = -1 )  

2 sg(X)(2~r) 2 Jo (~~ ~ f , "  rk-z~~ 

(fc,, + s)fcxk. 
x (1 + 2kxS + s2) 1/2 exp[-g(-~)[c~lsk2E(fcx' s)] (54) 
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To obtain the form given in Eq. (53) we have relabeled the variables kx ~-~ - kx' 

and introduced a new variable s by kx' = k~ + sk. In addition, we set 

/cx = cos ~ and/cu = sin 4, and E([c~s) is given by 

E(k~,  s) = 1 + [cxs + ks ~ (55) 

The divergent integral, which occurs in the linear kinetic theory for 

8~ 7 = -SPry~X,  can be obtained from Eq. (54) by making the substitution 

s = [ X l y  and taking the limit IX[ -+  0 inside the integrals. To evaluate the 

integral for X :~ 0, we interchange the k and s integrations and note that, 

since k- lko  - kx >/1 - / c ~ ,  we can write 

. . . .  dk . . .  (56) 
~o ~o ds o dk + f l - ~  ~o 

It can be easily seen that the region of integration {1 - / ~ x  <~ s ~< ~ ;  

0 < k < ko(s + [c~) -1} leads to a contribution to 8P~  1) that is of order Xas  

X--+ 0, and can be ignored here. 

In the remaining region of integration {0 ~< s ~< 1 - / ~  ;0  ~ k ~< ko} we 

split up the s integration into region A = {0 ~< s ~< So} and region B = 

{so ~< s ~< 1 - /~x}, where So is chosen such that g(-I)soko2 = no << t. It is 

easy to verify that the contribution to 8P -~1~ from region A is well behaved in 

Xfo r  small X, and that the contribution from region B is singular for small X, 

and is given by 

8p~1) ~ 2D~-2~r) 2 dr ds sE([cx, s)(1 + 2/r + s2)lt2 

1 1 ko2D~ 
- 327r/3 2D~ Xlog  IX [ (57) 

where we have changed s into g~-1)y and taken the dominant term as X - +  0 

or .g(-1) _+ or. 

An almost identical calculation yields for the shear mode contribution 

D~ko 2 ~pcz) 1 1 X l o g -  (58) 
~ - ~  - 32~fi D. IX I 

Since the arguments of the logarithms in Eqs. (57) and (58) differ only a 

factor of  O(1), we may combine both terms into 

For  two-dimensional systems at low density this is the leading singularity as 

X--> 0 of  the nonlinear shear viscosity. 
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Tablel ,  Numerical Values of the Coefficient M in Units 10 -2 

M.B M + - M (2> M (~> M (~ M ~ 

xy  - 0.406 - 0.766 + 0.507 0 -- 0.259 
x x  - 0.329 - 1.79 0 + 9.38 + 7.59 
yy  -t-0.287 +0.759 +0.693 -14.73 --13.28 
zz + 0.042 + 1.03 - 0.693 + 5.36 + 5.70 

Next  we consider the contributions 8P(~A and 3 P ~  ) in Eq. (50), which are 

all vanishing, as direct computa t ion  shows, i.e., 

3 P ~  = 3Pyv = 0 (60) 

In  three-dimensional systems we have obtained the following results for the 

singular parts o f  the pressure tensor in the case o f  uniform shear flow, i.e., 

u,(r) = 8,~(Uo + x X ) ;  for the shear stresses 

~P,:~ =- - - X 3 ~ ? ( X )  - X I X [  ~`2 [ M ~  Mx+y - ] 

bPx.  = 3Py~ = 0 

and for  the normal  stresses (a = x, y, z) 

3 P ~  - [Xl3/2 r M ~  

where ~ ~Pa~ = 0. The coefficients 

Mnn = M ( m  + M (1) + M(~ 

(61a) 

(61b) 

M:o- .] 
+ (2D~)a/2 ] (62) 

M +-  = M (-1) (63) 

are pure numbers,  and represent respectively the contributions f rom the 

shear modes and opposite sound modes. The detailed calculations are given 

in Appendix  B, and the numerical  values o f  M are given in Table I. In  the next 

section these results will be discussed and compared  with those o f  other 

investigators. 

5. C O N C L U S I O N  

We conclude with a number  o f  remarks :  

1. In  the case o f  a steady-state shear flow with a local velocity field 

u=(r) = b=~(Uo + x X ) ,  one would traditionally expand the pressure tensor, 

e.g., its x y  element Pxy ,  in a power  series in the velocity gradient X, 

Px~ = - ~ T X -  ~7'X 3 + - "  (64) 

As is well known,  certain expansion coefficients do not  seem to exist: In  two- 

dimensional  systems the Navier-Stokes  t ranspor t  coefficient ~ appears to be 
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infinite; in three-dimensional systems the super-Burnett coefficient ~' appears 

to be infinite58-~2> Here we presented a method that leads to a set of well- 

behaved nonlinear equations for a simple steady-state shear flow with parallel 

plate geometry. Thus we have succeeded in renormalizing the divergence 

difficulties that occur in Eq. (64), and we have shown that when nonlinear 

effects of the velocity field are taken into account in computing the contribu- 

tion of the ring events to the xy element of the pressure tensor, one obtains in 

two-dimensional systems an expansion of P,:~(X) of the form 

P , ~ . ( x )  = - x , 7 ( x )  (65) 

with 

kBT ( 1  1 ) ,  D~ko 2 
~ ( X ) = ~ / o + ~  ~ + ~  t o g - y ~  + . . .  (66) 

Here 70 is the low-density value of the viscosity of hard disks, as predicted by 

the linear Boltzmann equation. 

The result (66) agrees with the result quoted by Onuki. The normal 

stresses Pxx and Py~ are vanishing to the corresponding order in X. 

For three-dimensional systems of hard spheres the shear stress is given by 

P ~  = - ~ ( X ) X  = - % X -  X[X[~'2k~T 2 + (2D,)3,2] + "'" (67) 

and can be interpreted as a nonlinear viscosity ~(X), whereas Px~ and P ~  are 

vanishing to the corresponding order ]X ta/2. For  the normal stresses we have 

obtained the result (62), similar to Eq. (67). The numerical values of the 

coefficients M are listed in Table I. Here, M + - represents the contributions 

for two opposite sound modes and M n€ those of two shear modes. It should 

be stressed that the existence of normal stresses in steady shear flow in a 

dilute three-dimensional hard-sphere system shows that simple gases have 

already some very peculiar non-Newtonian fluid propertiesJ 22~ It should 

perhaps also be mentioned that only differences of normal stresses, e.g., 

8Px,~ - 8Pry, have direct physical significance. 

2. Theoretical results for three-dimensional systems that are qualitatively 

the same as ours do exist already in the literature. Kawasaki and Gunton 

(KG) <1~) and Yamada and Kawasaki (YK) (15> have evaluated the shear mode 

contributions to the shear and normal stresses in a fluid, using an extended 
mode coupling theory. Their results, expressed in coefficients C~, are compared 

in Table II with our shear mode contributions M %  using the relations 

M ~  = 2~r Co, M ~  = - 2~/-2 CI, M ~  = - 2~/-2 C2, and M ~  = - 2~/2 Ca. 

Since the numerical values differ from ours, we have repeated the derivation 

of the singular part of the stress tensor for a general fluid using the extended 
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Table II. Comparison w i th  M Values f rom the Litera- 

ture in Units 10 -2  

Mg~ Mg~ Mgg M~g 

KG -1.4 +0.48 -1.4 +1.3 
YK +0.86 -3.0 -12.0 -1.6 
Thiswork -0.26 +7.6 -13.3 +5.7 

mode coupling theory, and we obtained again Eq. (27), where A~(k) are the 

amplitudes for general densities, defined in Ref. 8 as 

7tu 1 7t~ u~ Axu(k) = ( /V)(ak a-kJxy)~q (68) 

and the matrix elements are given as 

1 / . ~ , ~ , ,  ~ ( 0 O_O_]ak~ap k R~(k) 
v \  - ! / 

1 / z. ,* /  d ~O~akvaLk"~ (69) ~-- "P('x, ak a -k[k~ '~  ,=l~ V'X oVi~] /eq  

Here ak a are the zeroth-order hydrodynamic modes, explicitly given in Ref. 8, 

and ( -" )ea  is an average over an equilibrium ensemble. From this theory we 

recover again Eqs. (61) and (62) with exactly the same coefficients M nn for the 

shear mode contributions as given in Table I for the dilute gas of hard spheres. 

The contributions from the sound modes M + - have never been considered 

in the literature. They will in general depend explicitly on the density, and 

we have only given their low-density values in Table II. 

3. We now remark on extension to higher densities and more complicated 

dynamical events. The theory developed here only takes into account the 

contributions from the Bottzmann equation and from the low-density ring 

events. We have incorporated neither excluded volume corrections to the 

Boltzmann equation and to the ring events, nor more complicated correlated 

collision sequences, such as rings within rings, etc. An extension to higher 
densities can be made along the lines followed by Dorfman and Cohen (~a~ in 

describing the long-time tail of  the velocity correlation function for fairly 

dense hard-sphere and hard-disk systems, since the long-time tails and the 

nonanalytic X dependence of nonlinear transport coefficients are caused by 

the same mechanism. Another possibility is to extend the mode coupling 

theories, (14,15~ whose validity is independent of the density range considered. 

More complicated dynamic events, especially ring-within-ring 

events, (1~ may be included into the kinetic theory. The analogy between 
the nonlinear transport coefficients obtained here and the wavenumber- 
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dependent linear transport coefficients obtained by Pomeau (9~ and Ernst and 

Dorfman ~7,8~ suggests that in three dimensions these terms will give rise to a 

series of contributions proportional to XP- with Pn = 1 - 2 -" and n = 

1, 2,.... Including the ring within ring events is especially important in two 

dimensions, where their contributions for very small X will be as impor- 

tant as those of the ring events themselves. A very similar situation occurs 

when discussing the time dependence of the generalized diffusion coefficient 

for hard disks. (24'25~ The analogy with this case suggests that a self-consistent 

formulation of the nonlinear kinetic theory, which is equivalent to a resum- 

mation of the terms ~ (log X) n, would lead to a nonlinear viscosity for hard 

disks proportional to (log X) 112. All these problems are still under investiga- 

tion. 

4. The region of validity of  the present theory is restricted by a number 

of requirements on the allowed values of X: 

(i) We first observe that the singular contributions to the stress tensor in 

Eq. (31) originate from k values with k~ < k < ko. The upper cutoff k0 is 

determined by the relation D~ko 2 ~_ voko, where Vo - (kBT/rn) ~I2 is on the 

order of the thermal or sound velocity. In a fluid ko ~- e -1, i.e., on the order 

of  the inverse range of  the forces or the inverse hard-sphere (d = 3) or hard- 

disk (d = 2) diameter; in gases ko - ne a-1 = n*e -1, i.e., on the order of the 

inverse mean free path. The lower cutoff is determined by the relation 

Dkm 2 ~ X, as can be seen from Eqs. (27) and (31); hence X < D~ko 2 ~_ voko. 

(ii) One finds a lower bound on X by observing that our theory is only 

meaningful if the system is sufficiently large, i.e., if the lower cutoff km> L-1, 

where L is the linear dimension of the system. The condition is equivalent to 

XL2D~ "1 ~_ u L D ;  1 = Re > 1, where Re is the Reynolds number. This 

condition is relevant to computer experiments (finite-size effects). 

(iii) A reasonable theoretical criterion for X is also that the change in 

flow velocity Au over the experimental region of  size L is small compared to 

the thermal velocity, i.e., X = (Au)L  -1 < voL -~ 

An alternative for an upper bound, which is, however, only available for 

three-dimensional systems, is obtained by requiring that the Reynolds 

number be smaller than the critical number, i.e., XL2D~ "1 < Re ~ ~ 5000. (26~ 

(iv) The present theory is an asymptotic theory for small values of X, 

and hence the contributions to the nonlinear stress tensor should be ordered 

as O ( X )  > O(X aj2) > O ( X  2) in three-dimensional systems, and O ( X )  > 

O ( n X l n  X) > O ( X  2) in two-dimensional systems, where also restrictions on 
the density are implied. 

5. What are the orders of magnitude for the effects to be expected in 

typical experimental circumstances? The strongest condition (iii) yields 
X < 104 sec -1, using L = 1 cm, rn = 10 -22 g, and T = 300 K. For  air at 

STP (~ = 2 x 1 0 - ~ g c m - l s e c  -1, D r = ~ (nm) -1 = 0.15cm2sec -~, e _~ 
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10 -8 cm, n~ 3 _~ 10 -5, and M ~ 10 -2 from Table I) a rough estimate gives, 

dropping numerical factors, 

-__ IXII' MkBT/( D  '2) - [X11'210 .< 10 -8  (70) 

and for water at STP (7 = 10-2 g cm-~ sec-1, Dn = 10 -2 cm 2 sec -~, and 

M ~_ 10 -2) this rough estimate gives 

3~/~ z 1XI1'210 -~1 ~< 10 -9 (71) 

The alternative condition (iii) involving Re ~r yields for air X ___ 10 ~ sec- ~ and 

for water X -  500 sec-1, and we find essentially the same estimates. The 

effects in the normal stresses are one order of magnitude larger. In a typical 

rotating cylinder experiment X_~ 100sec- l J  2v~ Hence, the effects are 

extremely small in experimental circumstances. 

Our theory, although restricted to low densities, gives a meaningful 

estimate for the magnitude of 3~/~7 in dense systems, since the coefficients 

M '~ for the contributions of  the shear modes are independent of  the density, 

as can be seen from mode coupling theories (see remark 2). 

What  can and has been done in computer experiments? Recently a 

number of  molecular dynamics experiments have been carried out by Naitoh 

and Ono r and Ashurst and Hoover  r176 to determine the shear rate 

dependence of the shear viscosity. For these computer experiments on steady- 

state uniform shear flow in three-dimensional hard-sphere systems we read 

off the following data from graph I in Ref. 30: X = 2-7 • 10-%o~ -~, 

~ 7mvo~ -2, and n* = 0.9, so that D~ ~ 9v0~, and if our theory were 

applicable here, we would find for the shear mode contributions 

Vo2  8 Ix l  
-~- = 2~/~ n* D~/2 ~ 10-6 (72) 

For densities around n* = 0.3 we obtain D~ from the Enskog theory ~7~ for a 

dense gas of hard spheres, using Ree and Hoover 's  <8~ values for Enskog's 

X factor. The result is D~ ~_ voa, and the predicted effect is about a factor 700 

larger. This is still too small to be seen, given the uncertainty in the present 

computer experiments. The effects in the normal stresses are still a factor 

30-50 larger than those in the shear stresses, as can be seen from Table II. 

However, our theory cannot be applied to the present computer experiments, 

since conditions (ii) and (iv) are violated. Condition (ii) is not fulfilled since 

the systems considered are too small. The linear dimension L ~- a(N/n*) 118 

of these systems with N hard spheres (N = 108 or 256) at reduced densities 

n* =- Ncr3/Varound n* = 0.9 corresponds to L _~ 7~, so that Re = XL2D -~ 

_~ 0.1-0.4, and finite-size effects dominate. At densities n* = 0.3 one has 

L _~ 10a and Re _~ 2-7, which are borderline cases where strong interference 

of finite-size effects and the effects of  the hydrodynamic cutoff on the k 

integral are to be expected. 
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Next, the X values considered by Naitoh and Ono are too large for our 

theory, although they satisfy the weaker bounds imposed by (i), i.e., 

X ~< 0.1D~k02 _~ 0.1v0e -1 (k0 ~ e - l ,  Dn ~ v0e for n* -~ 0.3) and by (iii), 
i.e., X <~ voL -~ ~_ 0.1roe -~. The reason is that condition (iv) is violated, 
since the O ( X  2) terms in the pressure tensor are clearly dominating the terms 

of O(X~J2). This is so, since these investigators obtain consistent values for the 
nonlinear shear viscosity directly from momentum transport, as well as 

indirectly from the viscous heating of the fluid. The latter effect, which is of 
O(X2),  should be negligibly small in our theory, as discussed in remark 8. 
Considering the above restrictions in connection with the current computer 
experiments, one cannot expect to be able to verify the predictions of the 

present theory on hard-sphere systems. 
In two-dimensional systems of hard disks we take the optimal density 

n* = 0.3, where ko ~ ~-~ and D~ ~ 1.3Voa (from Enskog's theory~7'~'~2~), 
and find from Eq. (66) 

a,,//,~ ~ 0.02 log(D,ko2/IXI)  (73) 

with 

La -1 < Dnko2[X[ -1 < L2,r -2 (74) 

The inequalities (74) can be deduced from conditions (ii) and (iii) in remark 4. 

In typical computer experimentr 1'~ with a few thousand particles L 
a(N/n*)  ~/2 ~_ 100~, so that the logarithm in Eq. (73) is between 5 and 10, and 
ar//~ can be on the order of 10~o, which should be clearly visible. However, 
it remains to be checked whether X can be made small enough (i.e., L large 
enough) so that the viscous heating of the fluid can be neglected. 

It would be extremely useful if computer experiments could give a check 
on the theory as developed so far for uniform shear flow, which seems feasible 
for systems of a few thousand hard disks. 

6. The divergence of the viscosity for two-dimensional systems is 
connected to the contributions from small-k or long-wavelength hydrodynamic 
modes of the ring collision operator. It is, of course, clear on physical grounds 
that the long-wavelength hydrodynamic modes should be affected by changes 
in the hydrodynamic fields on a scale of the wavelength of the modes. Here 
we have taken into account the effects of the slow, systematic change in the 
velocity fields on the long-wavelength hydrodynamic modes, and a convergent 
nonlinear expression for the pressure tensor results. The situation is not 
unlike that encountered in the continuum hydrodynamic theory of the flow 
of a fluid around a cylinder whose long axis is perpendicular to the direction 
of flow. There, the linear hydrodynamic equations must be modified by 
including the nonlinear Oseen terms (3a~ before a well-behaved expression for 
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the force exerted by the fluid on a cylinder can be obtained. In a kinetic 

description o f  this phenomenon the Oseen terms can be considered again as 

resulting from a delocalization of  the Boltzmann operator. (a~ The relation 

between the force F exerted on the cylinder and the velocity V of the cylinder 

with respect to the fluid is similar to (59) and satisfies V _ F log[F] for small 

F. Also here the difficulty with the linear theory is that it ignores the variations 

of the velocity field over large distances. 

7. In this paper we have been using hydrodynamic modes for the 

unbounded system and neglected any hydrodynamic boundary conditions. 

If  walls are present, interactions between walls and hydrodynamic modes give 

rise to interesting effects, which, although weak, are very long-ranged, due to 

the large extension in space of the hydrodynamic modes. (aS~ 

8. We have neglected here the viscous heating of the fluid, which raises 

the temperature of the fluid during the time that the shear flow is taking place. 

However, as the rate of heating is proportional to X 2 for small X, it can be 

argued that we can consistently neglect the effects of the heating of the fluid. 

To see this one notes that, from the rough argument presented in Eq. (5), the 

time interval over which the pressure tensor develops to its asymptotic form 

is on the order of IX]-1. Since the rate of heating is uniform, i.e., ~tT -= 

~?X2/Cv, the temperature change of the system over this time interval is 

proportional to X2[X]-I  ,~ IX[. For  small X this produces corrections to 

the pressure tensor that are of the order of X 2, and hence small compared to 

terms of  order IX] logtX ] or IX[ 312. The same arguments apply to the 

differences of the,normal stresses, 8Pxx - SPry, etc. 

9. A complete theory of hydrodynamic processes that takes into account 

gradients in density, temperature, and velocity, as well as time-dependent and 

nonlocal effects, has not yet been completed. Even for the case of steady-state 

heat conduction the theory is not yet understood. 

10. Finally, we mention the special case of self-diffusion. It seems clear 

that the diffusion of a tagged particle in a fluid of mechanically identical 

particles maintained in equilibrium is an intrinsically linear process. Therefore, 

the equations describing self-diffusion under these circumstances are almost 

certainly linear, but nonlocal. However, it is interesting to consider the case 

of  diffusion in a fluid in which there is also a shear flow. Here a phenomenon 

called Taylor diffusion will take place(a6~'7; the density profile is modified by 

the shear flow and the variation of the velocity field over large distances must 

be taken into account. The structure of the diffusion equation becomes similar 

to Eqs. (37)-(38), and when the ring contribution to the diffusion coefficient 

is calculated this modified form of the diffusion equation must be used for the 

propagation of the diffusion mode. 

Dr. J. C. Lewis brought the similarity to Taylor diffusion to our attention and provided 
the references. 
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A P P E N D I X  A 

We apply the procedure discussed in Section 2 to Eq. (11b), set 0tg = 0, 
replace hR in Eq. (13) by hB, and neglect gR, so that g(12) ~ 3g(12). We can 
consider 3g(12) or f(1)f(2) 3g(12) - F(12) as a function which depends on 
vl, v2, r12, and on R = �89 + r2), or actually only on the x component, Rx, 
in the case of uniform, steady shear flow with u~(r) = 8~(u0 + xX) .  On the 
left-hand side of Eq. (1 lb) we are only interested in terms of 0(8) and O(3X), 

and therefore, we expand (" delocalize ") the function f(3) in Eq. (1 lb) around 
the point R. We further write uy(R) = Uo + R x X  =- u~, and introduce uv as a 
new variable instead of  Rx, so that 

( 0 1 X(v~x + V2x) (A1) v~ "0-)-~1 + v2" F(12) = v12.0--~12 F + ~. ~u~ 

Now F(vlv2r~2u~) must be invariant under the combined translation and 
Galilei transformation {r~ --+ r~ - Xo:~ - Xxot~; v~ --> vt - XXo~}, and hence, 
it can depend on u~ only through the differences v~ - u(R) = V~. Equation 
(A1) can now be put into the form 

( v l " ~ r  + v2"~r2)F(12) 

= vl~'ar~ 2 ~ + aV2u]J 

Next, we delocalizef(3) in Eq. (1 lb), recalling that ra = rl due to the presence 
of 3(r~a) in T(13), and we retain all terms up to O(X), i.e., 

f (3)  = nr + �89 + XhB(Va)] (a3)  

Inserting (A2) and (A3) into Eq. (1 lb) yields 

V~2.0_~ 2a A(Vz) - A(V2) - T(12) - ~. S(V~x + V 2 x ) \ ~ ,  ~ + 

1 P~)X~(V~lflmV~) X(1 + P~2)XR(V~IhB)]F(VxV2rI2) x ~ 2 X ( 1  - 

= nZr + P~z)[Xhs(V~) + ~h(Va)] (A4) 

and we have defined 

S_(V~) = n f  dVe To(12)(1 + P~)4(Va) 
. )  

(AS) 
t ~  

X~(Vdh) = n [ dV~ 7'o(12)(1 + Pzz) q~( V~)h(Vz) 
J 
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Taking the Fourier transform of this equation and writing v~ instead of Y~ 

gives us 

[ik.v~z - A(va) - X(v~) + XR(vlvzk)]F(v~v~k) 

= n~(~(v~)d~(v~)To(12)(l + P~)h~(v~) (A6) 

with 

R(vlv2k)~(vl)~(v2) = ~(vl)~(v2)R(vlv2k) 

1 d (1 - P12)XR(vll/ mv.) 

- (1 + P12)XR(v~]hB) (A7) 

The first observation is that we have omitted two terms. This is allowed since 
we are only interested in the components .~ dr1 dr2 ~b~'(vl)~bu(v2) [Eq. (A6)], 
where ~ and ~b ~ are summational invariants, and we have to show that the 
above components of the omitted terms cancel each other: 

ff dv~ dv2 4?(vl)~b"(v2)T0(12)(2~r)-a f dq r(vlv2q) 

? ff = - n  2 dvl dv2 ~ba(v~)~U(v~)q~(v~)~(v2)To(12)(1 + P~2) ~h(v~) (A8) 

On both sides of (A8) we may replace ~ba(vl)~b~(v2) by -4?(vl)~b"(vz), since the 
remaining part of the integral is symmetric under interchange of particles 1 and 
2, and since [~b~(v~) + ~b~(v2)] [~bffvx) + 4~"(v2)] is a left eigenfunction of To(12) 
with zero eigenvalue. By writing 

F(v~v2k) = n2~(Vl)q~(u ~G(v~v2k) (A9) 

one sees that Eq. (A8) represents now the component of Eq. (17) along the 
products of hydrodynamic modes, and the above cancellation is justified. 

In Section 3 we are especially interested in the following matrix elements 
of R(vlv2k) to O(k~ 

ff R~(k)  = dv~ dv~ Xk~(VOX%(v2)/~(v~v~k) 

x Xk~(Vl)xSk(V2)~(Vl)~(V2) (A10) 

where Xka(V) are the hydrodynamic modes of the linearized Boltzmann 
equation, i.e., 

[ik.v - ~ k ( V ) ] X k ? ~ ( V ) ( / ~ ( U )  = (j~(v)[ik.v -- A(V)]xkZ(V) = -- Z~aXkx(V)O(V) (A11) 
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The modes are to O(k ~ equal to the summational invariants ~bk~(v) given in 
Eq. (25). The frequencies are given in Eq. (26) for small k, and the relevant 
mode pairs are such that 

zk ~ + z~ ~' = O(k 2) (A12) 

We will show below that for matrix elements between the relevant mode pairs 
the following relation holds, to O(k ~ : 

1 d - l v  x{ 0 9 )  d 
2 dikx [XKv~l/3mv~) - A~(v2lBmv~)] = - ~  12 ~e~y ~ - G dk-----~ 

(A13) 

As one can verify that the matrix elements of X~(vJh) in (A7) are O(k), one 
can bring the operator R in the following form, to O(k~ 

d 3 0 
R(ylv2k) = -k~ ~ x -  vlx  Ovl---~y - v2x "~v2y (A14a) 

R(v~v2k) = /2(vlv2k) + fimvlxvlv + firnv2,:v2~ (A14b) 

ProofofEq. (A13): We first introduce the operator S~(i)f(v~) =- f(v~ - a~v), 
where Cy is a unit vector along the vy axis, and we notice that 

] - XR(v~lfimv~) -- lim[-r- Sa(i), X(v~) = [A(i), A(v0] (A15) 
a-~oLaa 

where [ , ] is the commutator. Introducing a short-hand notation for matrix 
elements of operators, defined in (A10) with the functions r to the right 
of the operator, i.e., 

R~y,(k) = (AlzlR(vlv~k)lvp) (A16) 

then we can write for the left-hand side (lhs) of (A 13), using (A 15) and (A 11), 

(A/z]lhs(A 13)lvp) 

l 
= ~  (A/~ td-~k ~ {[A(1), X ( v l ) ] -  [A(2), X(v2)]} lvp) 

=( ) l h/z {A(1)(ik.vz + z~ ~) + A(2)(ik.v2 - zkP)} up 
2 

1 
h/z {(ik,vz + zk~)A(1) + (ik.v2 - z~QA(2)} dt---~ vp (A17) 

2 

Since we are interested in matrix elements of (A17) only to O(k ~ and 
O(k d/dk~), and only between the mode pairs (A/z) and (up) satisfying Eq. 
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(A12), we make everywhere the replacements zk ~ ~- - z k  p and z~ A .~ -z~",  

and next we eliminate the frequencies, again using (A11). This yields 

(At~[lhs(A13)[~p) 

1 A/x {A(1)(ik.v~2 - 3-(v2)) - A(2)(ik-v~2 - X(vl))} up 

12 ()t/~ { ( i k ' v -  X(v2 ) )A(1 ) - ( i k ' v l~ -X(v l ) )A (2 ) }dyVP ) 

= (/~tzjrhs (hl3)lvp) (A18) 

In obtaining the last equation we omitted the _X terms, which are of 
O(k 2 d/clk,~), and we have used Eq. (A15). 

In fact, there are many equivalent forms for R(vzv2k), which can be 

derived from (AI0) in a less tricky way, e.g., one obtains in a relatively simple 

way 

R(v lv2k ) -  1 d 1 v c2 ~ ) 2 dk~ k'v12v12~flm - ~ (vl~ + 2~)(0--~1y + 

+ fimvl~vly + fimv2~v2y (A19) 

We prefer, however, the simple form (A11), which, in addition, shows the 

connection with the extended mode coupling theories. 

APPENDIX B 

In the three-dimensional case the solutions B~(k,  X) of the differential 

equations (37) and (41) contain still constant terms, Bau(k, 0) = 

fiAX,(k)(k2Dx + k2Du)- 1. For the singular part of the stress tensor one only 

needs 

BX"(k, X) - Ba"(k, 0) - (1/IxI) 3B a" (B1) 

It is convenient to transform Eqs. (37) and (41) into differential equations for 
SB(k*, X), and we introduce a dimensionless variable k* by the relation 

2n~176 2 = I X l (k*)  ~ (B2) 

Its definition depends on the pair of modes involved, where n = -1  refers to 

( + - ) ;  n = 2 to (vlvl); n = 1 to (VzW); and n = 0 to (V2V2); and D (~) = Ds 

for n = -1  and D (~) = D, for n = 2, 1, 0. This yields the following set of 
equations, where 0 = sg(Xky) and the asterisk is dropped again: 

d ~B(~)(k, X) = I(~)(k) (B3a) 
i l k  x 
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with bounda ry  condit ions 

~B(n)(k~ X) = 0 (B3b) 

as follows f rom (43) and (B1). The functions I (n) are found to be 

I ( -  l ~ ( k )  = - k ~ ( k  ~ - 5 k x g / k  6 

l(2)(k) = 2ky(k 2 - 2kx2) /k  6 (B4) 

l(1)(k) = k~ aB(2)(k, X ) / k v k  

I(~ = - 2 k z [ k - 3 k ~  + 3B(1)(k, X ) ] / k y k  

The solution of  (B3a) that  satisfies the boundary  condit ion (B3b) is 

fl  0~cO 
aB(~)(k, X) = - dkx' (k ' / k )~K(Ok ,  0k')I(~)(k ') (B5) 

kx 

with Ko = ko(2D(~)/[XI)  1/2 and 

K(k,  k ' )  = exp{ lk~]-X[k~(k  2 - ~k~ 2) - k~ ' ( k  '2 - Zk3 ~'2~]t/J~ (B6) 

F r o m  Eqs. (31)-(34) and  (B1) we find the singular par t  o f  the pressure 

tensor  as 

~P~B = - X lXl~ /2 f i  - x ~ M~})(2D(~)) -a/:  (B7) 
n= -1,0 ,1 ,2  

where M~} ) is the limiting behavior  for  X - +  0 or K0 -+  oo of  the fo rm 

t~0) = (2~) dk A(~(k) SB(~)(k) (BSa) 

= - 2(2~r) - 3 dk dkx (k ' /k ) '~K(k ,  k')A~)(k)I(~)(k') (BSb) 
h: x 

The pr ime on the integral sign in (B8a) indicates that  k < Ko; the double 

pr ime on the integral sign in (B8b) indicates that  k < ~o and that  we have 

restricted k~ to the interval X k v  > 0 by means of  Eq. (53), which can be 

deduced in the three-dimensional  case f rom (B4), (B5), (34), and 

(B9) 

The next observat ion is that  the integrand in (B8) is an odd function of  

k~ for  (aft) = ( y z )  or (zx) ,  as can be verified f rom (34), (40), and (B4)-(B6). 

Hence  we find 

~P~ = ~P~  = 0 (B10) 

,Consider first the contr ibut ions in (BS) f rom the sound modes (n = -1 ) .  
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We insert (B4) into (B8), restrict k~ to be > 0, which yields a factor 2, and 

introduce new variables 

ky = q c o s r  k ~ = q s i n r  or q =  (ky, k~) (Bl la)  

with 

r189 if sg(X) = 1 
(Bllb)  

Ce[ �89  if sg(X) = -1  

The integration region over (kx, k~') is divided into regions I and II, defined as 

{ I}=  (0 < k . '  < Ko; - k x '  < k~ < k j )  
(B12) 

{II} = { - K o  < kx < 0 ;k~  < k~' < -k~} 

In region I we introduce 

kx' = qx; k~ = k j y  = qxy (B13a) 

and in region II 

with 

kx = - q x ;  kx' = k x y  = - q x y  (B13b) 

x ~ [0, ~o/q]; y ~ [ -1 ,  1] (B13c) 

Since we are only interested in the dominant small-X behavior, we take the 

limit X - +  0 or Ko --+ ~ everywhere. This yields for the contribution to M(~ 1) 

from region I 

M(~S z)(I) = 4(27r) -3 dx dq 
1 

• x cos r e x p ( - q 2 x E / ] c o s  r 

• [A(~-~)(qxy, q)(1 - 4x2)(1 + x2y2)l12(1 + x2) -v2] (B14) 

The triple prime refers to the restrictions in (B1 lb). The contribution from 

region II follows similarly, and its explicit form can be obtained from (B14) 

by replacing inside the square brackets xy  by - x ,  and x by - x y .  We have 

further written 

K(k, k') = e x p ( - q 2 x E / [ c o s  r (B15a) 

with 

E = 1 - y + �89 - ya) (B15b) 
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and observe that the exponential function in (B14) is the only q-dependent 
factor, as can be seen from (B4), (B9), and (51). Hence 

fo dq exp(-q2xE/Icos ~[) = l(~r[cos q~l/xE) ~/2 (B16) 

Now we use the explicit expressions (34) for the amplitudes and integrate 
over the angle 4, using 

f] 
]2 1 ( r +  1 ) ( s +  1 ) /  ( r + s + 2 )  (B17) dqg(sin ~y(cos ~)~ = ~ P ~ P ~ P 

The result is 

M~7 ~'= (7/10~9N(1) (B18) 

sg(X) M~;~'[ = (8~r) -* 5/7 N(2) + (8~r) -~ - 1 / 3 | N ( 3 )  (B19) 

M~2~'J k2/7J -1/3_1 

with the following abbreviations: 

Y = P(7/4)/F(5/4) = 1.0140 (B20) 

and 

fo o~ (~ [x'~:/2I xy( l -4x2)  x(l-4x2ym) 1 
N(1) = dx -: dy \+] [(1 +x~y=):]+(1 +x+) vim - (1 +x+):]+(1 +x2y+)V]ZJ 

f +  fa (x~l:/2 [ l _4x  z_ 
N(2) = dx dy \E l  [(l+x2y2)Z/2(l+x2) v/2 + 

0 - 1  

(B21a) 

1 - 4x2y 2 1 
( t + x~):~(17-~y2y r~ j 

(B21b) 

+ (_F I N(3) = dx dy (1 + x2y2)*/2(1 - 4x 2) (1 + x2)~/2(1 - 4x2y2)] 
- _: (1 +x~)  ~,2 + ( 1 ~ 5  ~ j 

(B21c) 

Next, we turn to the shear mode contributions. The calculation of the 
(~Tp?:)-mode contribution is completely analogous. The result is 

M~>= (y/5~r2)N(4) (B22) 

sg(X) /M~>/  = (4~2r) -:  5/7 N(5) + (6~2r) -:  -8/7 N(6) (B23) 

L aJ,. #~> J k 2/7 1/7 
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with 

f) x.y., N(4) = dx -~ dy ~- ~" " ~ 2  O- 7+" x2--jg (B24a) 

fo ~176 f~  (E)  ~`z 2 - x = - x Z Y  = N(5) = dx dy (1 + x2yZ)2(1 + xa) z (B24b) 
- 1  

fo ~ f~ l  dY ( E )  lt2 1 - x~Y2 N(6) = dx (1 + x2y2)2(1 + x2) 2 (B24c) 

where E is given in (B15b). To obtain the contribution ~(1),~ ~ from the (~2~1) 
modes we start again from (B8), use (B4), and insert (B5) for 8B (2), using 
again (B4). Since K(k, k')K(k', k") = K(k, k"), we write 

f r of , (1) dk dk~ dkx' (k')-2K(k, k") M~B (Ko) = 4(2rr) - a 
kx /Cx 

,,2 (I) x (kJk)(k")- 4(q2 _ k .  )a~e(k ) (B25) 

and carry out the kx' integration 

s k~ - 1 " dkx' (k')-2 = q A(kx, kx) (B26) 
k x  

with 

A(k'~, k.) = tan-  l(k'~/q) - tan-  l(k~/q) (B27) 

From here on everything proceeds as before, and we arrive at 

M(x~ = ( 4y/ l Srr2)N (7) (B28) 

sg(X) [ M..~*y ) = (7~r2y) -1 - N(8) (B29) 

[M~p 
In the case of the (~2~2) modes (n = 0), we see from (B10), (34), and (40) that 
A ~  = 0, so that 

M(O) = 0 (B30) 
x y  

In the coefficients M(~ ~ for the normal stresses we can perform two inter- 
mediate k~ integrations, with the final result 

sg(X) M~~ [ = (6,,2y)-~ - 11/7 N(9) (B31) 

M~ (~ J 4/7 J 
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The symbols N(i) with i = 7, 8, 9 stand for 

f/ f' (_;),,.. N(7) = dx dy (1 + x2)2(1 + x2y2) 2 
- 1  

(B32a) 

N(8) = j dx 
0 - i  

[ x \ ~  2 f x y ( l  - x 2) x2) ~ x ( 1  - x2y 2) 1 

d Y t E  } A[(1 + x2y2)(l + --(1 +x2)~l + x~y2) ~] 

N(9) = dx dy (1 + x2) 2 
- 1  

with 

1 + A (1 - 

+ T-/9  j 

(B32b) 

(B32c) 

A = tan -z x - tan -1 xy (B33) 

The above integrals can be evaluated numerically directly, except N(3) 
in the representation (B21c). The reason is that the contributions from each 
term in binomial 1 - 4x2y 2 separately diverge for large x and small y. The 
x integration converges only after the y integral is performed, which makes 
the representation (B21c) not suitable for numerical integration. Therefore, 
we derive a different expression for N(3), i.e., the sound mode contribution to 

the normal stresses ~P(+ -) v ~ a a  . 

We start from Eq. (37) and write B+-(k,  X ) -  B(-Z>(k *, X) with 
2Dfl  2 = [Xl(k*)2; then Eq. (37) takes the form (B3a) with the replacements 

(dropping the asterisk in k*): 

1 kx 
~B(-1)(k, X) -+ B(-~)(k, X), I(-~)(k)-+ X k  2 (B34) 

The boundary condition is the same as in Eq. (47a). The solution is similar to 
Eq. (48), and the term depending on the boundary value gives a vanishing 
contribution to the normal stresses 8P~ +->. Following the steps leading to 

(B8b), we obtain the alternative expression 

f f/ sg(X) M(~2 ~) = (24~ " d k  dkx' k' , k~ 2 x \k  - ~- K(k, k ) - ~  (B35) 

The double prime on the k integral indicates that k~ > 0 and k~ > 0. In order 
to obtain (B35) we have interchanged the order of integrations over kx and 
k,/, and relabeled kx ~ - k , / ,  using K ( k , k ' ) =  K ( - k ' , - k ) .  We now 
change to new variables k = k~, with ]~x = cos 0,/~u = sin 0 cos r and ,f~ = 
sin 0 sin 4, where 0 < ~ < �89 and 0 < 0 < ~r. We then set kx' = k([~ + s), 
so that k'k -1=- L( /c~ , s )=  (1 + 2sfcx + s2) 1/2 and we carry out the k 

integration, yielding 

fo dk k2K(k, k') = �88 F(kx, s)([%/s) 3/2 (B36) 
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Table I I I  

i N(i)  i N(i)  i N(i)  

1 -0.395 4 -0.373 7 +0.185 
2 +0.458 5 + 1.201 8 -0.486 
3 -t-0.292 6 +0.727 9 +5.63 

with 

F(/)x, s) = (1 + ffc x + �89 -312 (B37) 

Finally we perform the ~ integration using (B17), and we deduce from 
definition (BI9), 

N(3) -- - �89  ds dO (sin 0)512(cos 0)F(cos 0, s)L(cos 0, s ) s  -al2 (B38a) 

= dy dx (1 - x 2 ) a t 4 x y - 2 { F _ L _  - F+L+} (B38b) 

Here F~ = F(+_ x, y2) and L~ = L(+ x, y2). The difference inside braces 
contains y2 as a factor, so that the integrand of (B38b) is free from singulari- 
ties, and lends itself to direct numerical integration. Of course, we could write 
an analogous expression for N(2), but we refrain from doing so since (B21b) 
is already in a suitable form. 

The above method, with substitutions analogous either to (B34) or to 
(B1) and (B4), with or without relabelings kx ~ -kx ' ,  generates different 
representations for the integrals N ( i ) ,  several of which have been used here as 
checks on the numerical results. However, the convergence of the representa- 
tions for N(3) is always rather subtle, and only expression (B38b) seemed 
suitable for numerical integration. The numerical values of N ( i )  are given in 
Table III. In the body of the paper the factors sg(X) on the right-hand side of 
(B19), (B23), (B29), (B31), and (B35) are absorbed in the symbols M~'~ ~. 
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