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Abstract

Network conditions are dynamic; unfortunately, current

approaches to configuring networks are not. Network op-

erators need tools to express how a network’s data-plane

behavior should respond to a wide range of events and

changing conditions, ranging from unexpected failures to

shifting traffic patterns to planned maintenance. Yet, to

update the network configuration today, operators typi-

cally rely on a combination of manual intervention and ad

hoc scripts. In this paper, we present Kinetic, a domain

specific language and network control system that enables

operators to control their networks dynamically in a con-

cise, intuitive way. Kinetic also automatically verifies the

correctness of these control programs with respect to user-

specified temporal properties. Our user study of Kinetic

with several hundred network operators demonstrates that

Kinetic is intuitive and usable, and our performance evalu-

ation shows that realistic Kinetic programs scale well with

the number of policies and the size of the network.

1 Introduction

Network conditions are always changing. Traffic patterns

change, hosts arrive and depart, topologies change, in-

trusions occur, and so forth. Despite the fact that many

of these changes are predictable—and, in some cases,

even planned—an operator’s control over the network re-

mains relatively static. In response to changing conditions,

network operators typically manually change low-level

network configurations. Our previous study of network

configuration changes found that a campus network may

experience anywhere from 1,000 to 18,000 changes per

month [20]. Although tools like Puppet [27] and Chef [3]

can automate some network device configuration tasks,

this level of automation is still relatively hands-on and

error-prone.

To underscore the importance of this problem, we ana-

lyzed acceptable use policies from more than 20 campus

networks (many of which are publicly available [22]) and

also surveyed network operators about their experience

with existing tools for implementing these kinds of poli-

cies. These policies are written in English and typically

express how the network’s forwarding behavior should

change in response to changing network conditions. For

example, the University of Illinois’s network use policy

has an unrestricted class, and four restricted classes of

traffic shaping; a user’s traffic is downgraded into dif-

ferent classes based on their past usage over a 24-hour

sliding window. Such policies sound simple enough when

expressed in prose, but in fact they require complex in-

strumentation and “wrappers” that dynamically change

low-level network configuration. Network operators cur-

rently have no concise way to express these functions, nor

do they have any way of checking whether their changes

will result in the intended behavior. In a recent survey

we conducted that included several hundred network op-

erators, 89% of respondents said that they could not be

certain that the changes they made to network configura-

tion would not introduce new bugs.

Software-defined networking (SDN) is a powerful ap-

proach to managing computer networks [11] because it

provides network-wide visibility of and control over a net-

work’s behavior; the Frenetic [13] family of languages pro-

vides higher-level abstractions for expressing network con-

trol. These languages are embedded in general-purpose

programming languages (specifically, OCaml and Python),

which makes it possible to write control programs that

can respond to arbitrary events. Yet these languages do

not provide intuitive abstractions for automating changes

to network policy in response to dynamic conditions, nor

do they make it possible to verify that these changes will

match the operator’s requirements for how network behav-

ior should react to changing network conditions.

To address these problems, we present Kinetic, a do-

main specific language (DSL) and SDN controller that

enables writing network control programs that capture

responses to changing network conditions in a concise,

intuitive, and verifiable language. Kinetic provides a struc-

tured language for expressing a network policy in terms of

finite state machines (FSMs), which both concisely cap-

ture dynamics and are amenable to verification. States

correspond to distinct forwarding behavior, and events

trigger transitions between states. Kinetic’s event handler

listens to events and triggers transitions in policy, which

in turn update the data plane.
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Kinetic makes it possible to verify that changes to net-

work behavior conform to a higher-level specification of

correctness. For example, a network operator might want

to prove that a control program would never allow a host

access to certain parts of the network once an intrusion has

been detected. Ongoing work has devoted much attention

to verification of the network’s data plane; tools such as

VeriFlow [19] and HSA [18] can determine, for exam-

ple, whether the forwarding table entries in a network’s

switches and routers would result in persistent loops or

reachability problems. However, these tools only oper-

ate on a snapshot of the data plane; they do not allow

operators to reason about network control programs, or

how network control would change in response to various

events or changes in network conditions. They do not pro-

vide any way for a network operator to find errors in the

control programs that install erroneous data-plane state in

the first place. Kinetic’s focus on automating and verifying

the control plane is complementary to this previous work.

Kinetic’s use of computation tree logic (CTL) [6]—and its

ability to automatically verify policies with the NuSMV

model checker [4]— can allow network operators to verify

the dynamic behavior of the controller before the control

programs are ever run.

One significant challenge we faced when designing

Kinetic is the potential for state explosion in Kinetic pro-

grams, due to the large number of hosts, flows, network

events, and policies. A naı̈ve encoding of dynamic poli-

cies in an FSM would result in an exponential number of

states, even for simple programs because every flow, with

all possible combination of fields (e.g., src/dst IP, src/dst

MAC, etc), can have its own state. To control this state

explosion, Kinetic introduces an abstraction called a Lo-

cated Packet Equivalence Class (LPEC), through which a

programmer can specify a division of the flow space and

map an independent copy of an FSM (FSM instance) to

each class of flow space. Using LPECs, a programmer can

define groups of flows that should always map to same

FSM instances (e.g., all flows from the same source MAC

address). Thus, each defined group of flows will be in the

same state. Additionally, because Kinetic is itself based

on Pyretic (a Python-based SDN control language in the

Frenetic family) [25], Kinetic inherits Pyretic’s language

and runtime features. Specifically, Kinetic uses Pyretic’s

composition operators to express larger FSMs as multiple

smaller ones that correspond to distinct network tasks (e.g.,

authentication, intrusion detection, rate-limiting). Apply-

ing Pyretic’s composition operators to independent Kinetic

FSMs and classic product construction of automata [10]

(combining multiple FSMs with union or product) greatly

simplifies the construction of Kinetic’s FSM expressions

and allows the FSM-based policies to scale.

We evaluated two aspects of Kinetic: (1) its usability,

in terms of both conciseness and operators’ facility with

Profession Experience (years) # Users in Network

Operator 216 1 32 1–10 156

Developer 251 1–5 310 10–100 137

Student 123 5–10 187 100–1,000 136

Vendor 80 10–15 150 1,000–10,000 118

Manager 69 15–20 122 > 10,000 322

Other 138 > 20 73

Total 877 874 869

Table 1: Demographics of participants in the Kinetic user study.

We asked these participants about their experiences configuring

existing networks, as well as their experiences using Kinetic.

Section 5 discusses the participants’ experience with Kinetic.

Not all participants answered every question.

expressing realistic network policies; and (2) its perfor-

mance, in terms of its ability to efficiently compile network

policies into flow-table entries, particularly as the number

of policies, the size of the network, and the rate of events

grow. We conducted a user study with Kinetic of more

than 650 participants, many of whom were network opera-

tors with no prior programming experience; most found

Kinetic quite accessible: 79% thought that configuring the

network with Kinetic was easier than current approaches,

and 84% thought that Kinetic makes it easier to verify

network configuration than existing alternatives.

Kinetic is open-source and publicly available; the

project webpage provides access to the source code, a

tutorial on Kinetic, and all of the code for the experimen-

tal evaluation [21]. The system has been used by SDN

practitioners [14] and has served as the basis for projects

and assignments in several university courses, as well as in

a Coursera [8] course, where it has been used by thousands

of students over the past two years.

2 Motivation and Background

To motivate the need for Kinetic, we present the results of

a survey of network operators about problems automating

and verifying network configuration. We then present

background on Pyretic, the language on which Kinetic is

based; and on model checking and computation tree logic,

which we use to design Kinetic’s verification engine.

2.1 Motivation: Network Operator Survey

To gain a better understanding of the extent to which

network operators have to change their network config-

urations, as well as their level of confidence in their

changes, we conducted an institutional review board

(IRB)-approved survey of more than 800 participants, con-

cerning their experience with configuring existing net-

works, as part of a Coursera course on software-defined

networking that we offer [8]. Table 1 summarizes the

demographics of the participants: about 870 students com-

pleted the survey, 216 of whom were full-time network
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operators. The majority of the students who completed

the assignment and survey had more than 5 years of expe-

rience in networking, and many had more than 15 years of

experience. More than 200 of the students had experience

with networks of more than 1,000 devices, and more than

300 of the students had experience with networks with

more than 10,000 users. Most of the participants had the

most experience with campus or enterprise networks.

The responses we received demonstrate a clear need for

better tools for automating and verifying network control.

Nearly 20% of participants said that they must change their

network configurations more than once a day. The most

common causes of changes were provisioning, planned

maintenance, and updates to security policies—exactly

the types of configuration changes that we aim to auto-

mate with Kinetic. More strikingly, 89% of respondents

indicated that they were never completely certain that

their changes to the configuration would not introduce a

new problem or bug, and 82% were concerned that the

changes would introduce problems with existing function-

ality that was unrelated to the change. The two most

common aspects of configuration that operators wanted to

see automated were correctness testing (37%) and quality

of service and performance assurances (24%). The two

most common aspects of configuration that participants

wanted to see verified were general correctness problems

(37%) and security properties (26%). We asked these same

participants to write programs in Kinetic and other SDN

controllers; we discuss the results of that part of our user

study in Section 5.1.

2.2 Background: Pyretic and CTL

Pyretic. To develop a language for expressing control

dynamics that is both concise and easy to use, we based

the Kinetic language on Pyretic [25], a Python-embedded

domain-specific programming language for writing SDN

control programs. It encodes network data-plane behavior

in terms of policy functions that map an incoming “located

packet” (i.e., a packet and its location) to an outgoing set

of located packets. Pyretic has a policy variable that de-

termines the actions that the control program applies to in-

coming packets (e.g., filtering, modification, forwarding).

Pyretic ultimately compiles policies to OpenFlow-based

switches. Pyretic’s composition operators provide straight-

forward mechanisms for composing multiple distinct poli-

cies into a single coherent control program. Pyretic’s

parallel composition operator (+) makes a copy of the

original packet and applies the corresponding policies to

each copy in parallel. Sequential composition (>>) ap-

plies policies to a packet in sequence, so that the second

policy is applied to the packet that is the output of the first

policy. Pyretic is extensible, and its support for composing

distinct policies and dynamically recompiling flow-table

Operator Meaning

(Quantifiers over Groups of Paths)

A φ φ holds for all possible paths from the current state.

E φ There exists a paths from the current state where φ holds.

(Quantifiers over a Specific Path)

X φ φ holds for neXt state.

F φ φ eventually holds sometime in the Future.

G φ φ holds for all current and following states, Globally.

φ U ψ φ holds at least Until ψ .

Table 2: Computation tree logic (CTL) operators.

entries whenever the policy variable is updated are use-

ful features for Kinetic. Still, the language itself does not

provide a framework for writing concise, intuitive policies

that respond to changing conditions, which is Kinetic’s

goal.

Model checking. We wanted to design Kinetic so that

policies were not only easy to automate, but also easy to

verify. To do so, we applied a model checking framework

developed by Clarke and Emerson [5, 6] and subsequently

refined by McMillan [24]. Model checking can guarantee

that a finite state machine (FSM) satisfies certain prop-

erties that are expressed in different types of logics; this

feature makes FSMs a logical choice for expressing Ki-

netic policies. One such logic is computation tree logic

(CTL), a branching-time logic that represents time as a tree

structure. The initial state of an FSM is the root, and each

node represents a different future state. A path through

the tree represents an execution path of the FSM. CTL

allows the expression of various types of temporal logic

statements, such as those expressed in Table 2. NuSMV

is a widely used symbolic model checker for FSMs [4].

The Kinetic compiler automatically translates Kinetic pro-

grams into an SMV model, which can be tested against

various CTL-based assertions.

3 Kinetic by Example

We illustrate various features of Kinetic by way of exam-

ple programs. All of the examples that we present in this

section are verifiable; we defer a discussion of verifica-

tion, as well as the details of the Kinetic language and

runtime, to Section 4. We have selected examples that

demonstrate the design features of Kinetic; the Kinetic

Github repository has more examples [21].

Kinetic programs capture control dynamics with a finite

state machine (FSM) abstraction. To illustrate this abstrac-

tion, we start with a simple example involving intrusion

detection. Although FSMs are intuitive, representing all

possible network states in a monolithic FSM would result

in state explosion; the second and third examples illus-

trate two abstractions that address this challenge: Located

Packet Equivalence Classes (LPECs) and FSM composi-
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Figure 1: Intrusion detection FSM.

Figure 2: Stateful firewall FSM.

tion. Finally, to show Kinetic’s generality, we present a

MAC learning switch implementation.

3.1 Capturing Dynamics

We begin with a simple dynamic policy involving intru-

sion detection. Suppose that a network operator wants

the network to drop all packets to and from a host once

it receives an event indicating that the host is infected

(e.g., from an intrusion detection system). Kinetic allows

operators to concisely express these dynamics with finite

state machines that determine how a policy should evolve

in response to events such as intrusions. We chose FSMs

as the basic abstraction for expressing Kinetic programs

because (1) they intuitively and concisely capture control

dynamics in response to network events; and (2) their

structure makes them amenable to verification.

In this example, each host would have a single state

variable, infected. When infected is false, the

controller applies Pyretic’s identity (allow) policy for

traffic from that host; when it is true, the controller ap-

plies Pyretic’s drop policy for the host’s traffic. Figure 1

shows this logical FSM. To support verification, the actual

specification of the FSM for this policy is slightly more

complicated; we expand on this example in Section 4.2.

3.2 Capturing State for Groups of Packets

Defining FSMs in Kinetic has the potential to create state

explosion, since dynamic policies must be defined over

a state space that is exponential in the number of hosts

and flows (and possibly other aspects of the network). For

example, consider the previous example, a two-state FSM

indicating whether a host is infected. If the network has N

hosts, then representing the state of the network requires

an FSM with 2N states, which is intractable, particularly

as the size of the network and the complexity of policies

grow. Instead of directly encoding an FSM that explic-

itly encodes all variable values, Kinetic encodes a single

generic FSM that can be applied to any given group of

Figure 3: Data usage-based rate limiter FSM.

packets (e.g., all packets from the same host, in the case of

the previous example). Each group of packets has a sepa-

rate FSM instance; packets in the same group will always

be in the same state. We call such a group of packets a

located packet equivalence class (LPEC).

To illustrate the use of LPECs, we describe the imple-

mentation of a stateful firewall that implements a common

security policy. Figure 2 shows the Kinetic representa-

tion of the policy. This program always allows outbound

traffic, but blocks inbound traffic unless the traffic flow

is in response to corresponding outbound traffic for that

flow. For example, if internal host ih1 pings external host

eh2 then packets sent from eh2 should be allowed back

through the firewall until a certain timeout occurs, but only

if ih1 is the destination.

The firewall’s initial state, in the left of the figure, shows

the policy, ihs, which is a filter policy matching all traffic

whose source address in the set of internal hosts. A Pyretic-

encoded query collects outbound packets from hosts in

ihs and produces (outgoing,True) event. This trig-

gers the update of the policy variable to identity

(indicating that traffic is now allowed), and outgoing is

reset. The timeout event is provided by Kinetic event

driver. After certain amount of time (e.g., five seconds), a

(timeout,True) event is invoked unless another outgo-

ing packet is seen within the timeout. The program should

regard inbound and outbound flows between the same

pairs of endpoints with the same state, and the program-

mer should not have to explicitly encode state for every

pair of endpoints. To implement such a policy, the pro-

grammer can define an LPEC to correspond to a distinct

source-destination IP address pair:

def l p e c ( p k t ) :

h1 = p k t [’srcip’ ]

h2 = p k t [’dstip’ ]

r e t u r n ( match ( s r c i p =h1 , d s t i p =h2 ) |
match ( s r c i p =h2 , d s t i p =h1 ) )

3.3 Composing Independent Policies

Many aspects of network state are logically independent.

For example, whether a host has authenticated is indepen-

dent of whether it is infected or whether it has exceeded
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Figure 4: MAC learner FSM.

a usage cap. This independence allows a programmer to

represent the overall network state as a product automaton

that can be decomposed in terms of simpler tasks, where

each task has simpler (and smaller) FSMs. This example

shows the composition of four independent network tasks.

In our survey of campus network policies, we found

nearly 20 university campuses [22] that implemented some

form of usage-based rate-limiting (e.g., [7]). Network op-

erators currently implement these policies using low-level

scripts that interact with monitoring devices. Kinetic pro-

vides intuitive mechanisms for implementing such a policy.

Figure 3 illustrates the FSM for a usage-based rate limiter,

which forward traffic with different delays depending on

the user’s historical data usage patterns. By default, traffic

is forwarded with no delay; depending on the events that

the controller receives concerning usage, the controller

may institute a policy that introduces additional delay on

user traffic. (OpenFlow 1.0 does not support traffic shap-

ing, so we use variable delay as an illustrative example;

Kinetic could be coupled with controllers that support later

versions of OpenFlow that can do traffic shaping.)

Naturally, a real network would not only have policies

involving quality-of-service, but also other policies, such

as those relating to authentication and security. For exam-

ple, a control program might first check whether a host is

authenticated, either through a Web login or via 802.1X

mechanism. Subsequently, the host’s traffic might be sub-

ject to an intrusion detection policy that allows traffic by

default but blocks the traffic if an infection event occurs.

Finally, it might be sequentially composed with the rate-

limiting policy above, yielding the resulting policy:

( web au th + 802 .1 X auth ) >> i d s >>

r a t e l i m i t e r

To verify this program, Kinetic generates a single FSM

model for input to a model checker. Thus, programmers

can write CTL specifications for the resulting composed

policy, not only for individual policies. For example, a

logic statement involving the combination of policies such

as “If a host is authenticated either by the web authen-

tication system or with 802.1X and is not infected, the

resulting policy should never drop packets” can be ver-

ified with a single CTL assertion, as shown in Table 3.

(Section 4.4 discusses verification in more detail.)

Pyretic Runtime 

Event Handler External Event Drivers 

Kinetic 
Runtime 

Kinetic 
Program 

FSM 
Event Hookup 

port_events 
switch_events 

packet_outs 
stat_requests flow_mods 

external 
events 

packet_ins 
stat_replies 

Pyretic Runtime 

Event Handler External Event Drivers

FSM S
Event Hookup 

Eers Et D i

LPEC projection map 

Figure 5: Kinetic architecture.

3.4 Handling General Event Types

Figure 4 shows a Kinetic FSM for a MAC learner that

responds to both packets from hosts and topology changes.

Although the implementation of a MAC learning switch is

just as simple in other languages (indeed, it is the “canoni-

cal” reference program for SDN controllers), we present

this example to illustrate that Kinetic programs can handle

a variety of event types, including packet arrivals.

This program responds to two different types of events:

TC (topo change) and port events. The TC event is a

built-in event that is invoked automatically whenever a

topology change occurs. In Kinetic, programs can register

and react to this built-in event. The port events are

generated by a Pyretic query that collects the first packet

for each (switch,srcmac) pair. The values of policy

are defined by that of port: the value is flood when

port is 0, and fwd(n) when port=n. Initially port

is 0 (indicating the port has not yet been learned), and TC

is False. When a (port,n) event arrives, which is

invoked by the Pyretic runtime when it sees a packet from

an unseen host, a transition occurs, setting the port to the

value learned and the policy to unicast out that port. The

MAC learner then unicasts packets to the appropriate hosts

until a topology change occurs, triggering the transition

to the right-most state in which TC is True, resulting

in flooding for packets corresponding to that LPEC (i.e.,

switch-source MAC address pair).

4 Kinetic Design & Implementation

We describe the details of Kinetic’s architecture, language,

runtime, and verification engine.

4.1 Architecture

We now describe the Kinetic system architecture, includ-

ing the design of the Kinetic programming language. Fig-

ure 5 shows the Kinetic architecture, which is built on the

Pyretic runtime. At the highest level, a Kinetic program
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Figure 6: The Kinetic language grammar.

has three parts: (1) a finite state machine (FSM) specifi-

cation; (2) a specification of portions of flow space that

are always in the same state in any given FSM (an LPEC);

and (3) mechanisms for incorporating external events that

could change the state of any given LPEC’s FSM.

Kinetic instantiates copies of programmer-specified

FSMs (one per LPEC); the Kinetic event handler sends

incoming events, which can arrive either from external

event hookups or from the Pyretic runtime (e.g., in the

case of certain types of events such as incoming packets),

to the appropriate FSMs. Kinetic FSMs register with one

or more event drivers and update their states when new

events arrive, responding to incoming events that may be

processed by those drivers. Kinetic supports both native

events and generic JSON events. Because Kinetic is em-

bedded in Pyretic, these functions can be executed using

Pyretic’s runtime. We use the Pyretic runtime to exchange

OpenFlow messages with the network switches; we also

use the Pyretic runtime to handle certain types of events,

such as those related to either network topology or traffic.

4.2 Language and Abstractions

We offer a complete description of the language and then

discuss LPECs and FSM composition in more detail.

4.2.1 Language Overview

Figure 6 defines the Kinetic language, which extends

Pyretic (P). Pyretic has bucket policies (notated by B)

which collect packets and count packet statistics, respec-

tively; primitive filters (A) and derived filters (F) that

allow only matching packets through; and static policies

(N). Static policies include buckets, filters, the modify

policy, and the combination of these via parallel and se-

quential composition. Dynamic generates a stream of

static policies and can be combined with other policies in

parallel or sequence.

Total # of states: 2N Total # of transitions: 22N 

  (omitted for cleaner look) 
# of hosts: N 

(a) Explicit encoding is exponential in N.

H_1 FSM H_2 FSM H_3 FSM 

allow 

drop 

allow 

drop 

allow 

drop 

  + + 

H_N FSM 

allow 

drop 

+ 

Total # of states: 2N Total # of transitions: 2N # of hosts: N 

Default state 

(b) Decomposing to N LPEC FSMs.

Figure 7: Reducing state explosion using an LPEC FSM.

Kinetic extends the Pyretic DSL with a subclass of

Dynamic—FSMPolicy—which takes two arguments:

an LPEC projection map (L) and an FSM description (M).

The LPEC projection map takes a packet and returns a

filter policy. The FSM description is set of assignments

from a variable name to a variable definition (W). Each

variable is defined by its type, initial value, and associated

transition function (T). Each transition function is a list of

cases, each of which contains a test (S) and an associated

basic value (D) to which this corresponding state variable

will be set, should this case be the first one in which the

test is true. Tests are the logical combination of other tests

(using and, or, not) or equality comparison between basic

values. Finally, basic values are constants (C(value)),

state variables (V(variable name)), and events (event).

4.2.2 Located Packet Equivalence Classes

Recall from Section 3 that an LPEC allows an operator

to encode a generic FSM for groups of packets (e.g., all

packets with the same source MAC address). Each distinct

LPEC will have its own FSM instance, and the group of

packets in each LPEC will be in the same state. Because

each LPEC refers disjoint sets of packets, their FSMs (and

corresponding policies) can be maintained independently,

thus allowing their policies to be encoded in parallel. This

mechanism allows the programmer to avoid explicit en-

coding of all combinations of network states (as shown

in Figure 7a) and instead express each LPEC’s FSM in-
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(a) Actual implementation of the Kinetic FSM.

1 @ t r a n s i t i o n

2 def i n f e c t e d ( s e l f ) :

3 s e l f . c a s e ( o c c u r r e d ( s e l f . e v e n t ) , s e l f . e v e n t )

4

5 @ t r a n s i t i o n

6 def p o l i c y ( s e l f ) :

7 s e l f . c a s e ( i s t r u e (V(’infected’ ) ) ,C( drop ) )

8 s e l f . d e f a u l t (C( i d e n t i t y ) )

9

10 s e l f . f s m d e f = FSMDef (

11 i n f e c t e d =FSMVar ( t y p e =BoolType ( ) ,

12 i n i t = F a l s e ,

13 t r a n s = i n f e c t e d ) ,

14 p o l i c y =FSMVar ( t y p e =Type ( P o l i c y ,{ drop , i d e n t i t y }) ,

15 i n i t = i d e n t i t y ,

16 t r a n s = p o l i c y ) )

17

18 def l p e c ( p k t ) :

19 r e t u r n match ( s r c i p = p k t [’srcip’ ] )

20

21 f s m p o l = FSMPolicy ( lpec , s e l f . f s m d e f )

(b) Kinetic code that implements the Kinetic FSM.

Figure 8: Logical FSM for an IDS in Kinetic, and the Kinetic

code that implements the policy.

dependently and compose them in parallel, as shown in

Figure 7b.

Each LPEC has an FSM, which has a set of states,

where each state has a Pyretic policy; and a set of tran-

sitions between those states, where transitions occur in

response to events that the operators defines. When

events arrive, the respective LPEC FSMs may transi-

tion between states, ultimately inducing the Pyretic run-

time to recompile the policy and push updated rules to

the switches. In Kinetic, a programmer can specify an

LPEC in terms of a Pyretic filter policy. For example,

match(srcip=pkt[’srcip’]) defines an LPEC

FSM for each unique source IP address.

Returning to our IDS example from Section 3 (Figure 1),

Figure 8b shows the code for the Kinetic program that

implements the simple intrusion detection example from

Section 3. Each host (i.e., source IP address) can have

a distinct state, so we need an LPEC FSM per source IP

address; lines 18–19 define the LPEC. To define an FSM

that is amenable to model checking, we must separate the

infected variable and the corresponding policy vari-

able into two separate states, as shown in Figure 8a. Exoge-

nous events trigger transitions between the infected

variable states; a change in this variable’s value in turn

triggers an endogenous transition of the policy variable,

which ultimately causes the Pyretic runtime to recompile

A0:Authenticated

A1:Unauthenticated

I0:Infected

I1:Clean
C0:Capped

C1:Uncapped

>> >> 

(a) Without composition (b) With composition

Figure 9: Composing independent tasks in sequence.

W
0
:Web-Authenticated     X

0
: 802.1X-Authenticated

W
1
:Web-Unauthenticated X

1
: 802.1X-Unauthenticated

+

(a) Without composition (b) With composition

Figure 10: Composing multiple authentication tasks in parallel.

Any successful authentication would result in allowing the host’s

traffic.

flow-table entries for the network switches. Lines 1–3 in

Figure 8b define the exogenous transition for infected;

lines 5–8 defined the endogenous transition for policy

(note that the value of policy is defined in terms of the

value of infected). Finally, lines 10–16 define the FSM

itself, in terms of the two variables; the FSM definition is

simply a set of FSM variables, each of which has a type,

an initial value, and a transition function.

4.2.3 FSM Composition

In Section 3, we showed an example of a campus network

policy that composed FSMs for independent network tasks

to control state explosion. Without FSM composition, a

programmer would need to define FSMs for Π
N
i=1ai pos-

sible states, where ai is the number of possible states for

task i and N is the total number of tasks. Decomposing the

product automaton reduces state complexity from expo-

nential to linear in the number of independent tasks. For

example, given ten tasks, each with two states, a mono-

lithic program would require 1,024 states, as opposed to

just 20.

Pyretic allows policies to be composed either in parallel

(i.e., on independent copies of the same packet) or in

sequence (i.e., where the second policy is applied to the

output from the first). It turns out that these operators

are also useful for reducing state explosion. Figure 9

illustrates how sequential composition can reduce state



66 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

complexity by decomposing a larger product automaton.

Consider a simple control program that puts the host into

a walled-garden until it has authenticated, quarantines the

host if an infection has been detected, and rate limits a

host if it has exceeded a usage cap. Each of these tasks

has two possible states: authenticated or not, quarantined

or not, capped or not, resulting in 23 possible states. By

applying auth >> IDS >> cap, the same network

control program requires only 2 ·3 states.

Figure 10 shows how parallel composition reduces state

complexity. A Kinetic program might specify that either a

network flow should be authenticated by a Web authentica-

tion mechanism or 802.1X. If either of these tasks places

the host in an authenticated state, the host should be al-

lowed to send traffic. Without composition, the network

state machine would need a second set of states, requiring

2N states, where N is the number of authentication tasks

(in this case, N = 2). (Clearly, even more states would

be needed if any independent task could assume more

than two states.) As before, decomposition reduces this to

ΣN
i=1ai states, where ai is the number of possible states for

task i, and N is the number of tasks.

4.3 Runtime

We now explain optimizations to the Kinetic runtime to

support the efficient compilation of the large finite state

machines that might result from networks with many hosts

and policies and high event rates. The Kinetic runtime’s

main challenge is storing and processing the joint state of

all LPEC FSMs to produce a single set of forwarding table

entries in the network switch. To accomplish this goal, the

runtime first decomposes the FSMs with combinators to

achieve a representation of the network state that is linear

in the number of hosts and policies. Second, Kinetic opti-

mizes the compilation process itself by recognizing that

the LPEC FSMs typically operate on disjoint flow space,

which allows for optimizations that dramatically speed up

parallel composition. Finally, Kinetic only expands the

LPEC FSMs for which a transition has actually occurred.

We describe each of these optimizations below.

Decomposing the product automata. A Kinetic

FSMPolicy encodes the complete FSM as the product

automaton [10] of the individual LPEC FSMs. We can

represent the Pyretic policy for the entire network, given a

global network state s as the following product automata:

policy =
N

∑
i=1

(lpeci >> lfsmi(s))

where the summation operator represents parallel com-

position of the corresponding policies, and each LPEC

H_1 FSM H_M FSM 

allow 

drop 

allow 

drop 

+ + 

Total # of states: 2M Total # of transitions: 2M # of hosts: N 
# of infected hosts: M 

  

Default state 

aa

Current state 

d

Figure 11: Expanding only M LPEC FSMs that have changed.

generator produces the appropriate packets that are pro-

cessed by the corresponding LPEC FSM in state s.

Fast compilation of disjoint LPECs. Compilation of

policies that are composed in parallel is computationally

expensive, as it requires producing the cross-product of

all match and action rules: it involves computing the inter-

section of match statements and the union of actions, for

every pair of match and action pairs between the two poli-

cies. If LPECs are disjoint, however, the resulting policies

can simply be combined without explicitly computing the

intersection of the match statements: the rules from each

LPEC FSM can simply be inserted into the flow tables.

Default policies and on-demand LPEC FSM expan-

sion. Even a linear-sized representation may not scale.

For example, the LPEC generator shown in Section 4.2.2

would generate 232 LPECs if it were fully expanded, while

a generator for each pair of hosts (based on hardware ad-

dress) would produce 296 LPECs. Fortunately, because all

LPEC FSMs are generated from the same FSM specifica-

tion, they start with the same initial state and, hence, the

same default policy. Thus, Kinetic does not need to ex-

pand the FSM for an LPEC unless and until it experiences

a state transition; until that point, the Kinetic runtime can

simply apply whatever default policy is defined for that

FSM. Figure 11 highlights this on-demand expansion.

Kinetic’s runtime optimizations reduce the computa-

tional complexity of compilation from exponential in the

number of LPECs (Figure 7a), to linear in the number

of LPECs (Figure 7b), and finally to linear in the (much

smaller) number of LPECs that have actually experienced

a transition (Figure 11). Kinetic additionally employs

additional optimizations, such as memoizing previously

compiled policies, as other applications have used [15].

4.4 Verification

When the programmer executes a Kinetic program, Ki-

netic automatically creates an FSM model for the NuSMV

model checker. Kinetic obtains information about each

state variable (e.g., type, initial value, and transition rela-

tionship) by parsing the fsm def data structure; Kinetic
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1 MODULE main

2 VAR

3 p o l i c y : { i d e n t i t y , d rop } ;

4 i n f e c t e d : b o o l e a n ;

5 ASSIGN

6 i n i t ( p o l i c y ) := i d e n t i t y ;

7 i n i t ( i n f e c t e d ) := FALSE ;

8 n e x t ( i n f e c t e d ) :=

9 c a s e

10 TRUE : {FALSE , TRUE} ;

11 e s a c ;

12 n e x t ( p o l i c y ) :=

13 c a s e

14 i n f e c t e d : drop ;

15 TRUE : i d e n t i t y ;

16 e s a c ;

Figure 12: NuSMV FSM model for IDS policy from Figure 8b.

parses the transition function for additional information

about transitions, which often depend on other variables.

Kinetic then uses NuSMV to test CTL specifications

that the programmer writes against the FSM model. Ki-

netic outputs the CTL specifications that passed; for any

failed specifications, Kinetic produces a counterexample,

showing the sequence of events and variable changes

that violated the specification. In addition to single

FSMPolicy objects, Kinetic can convert composed poli-

cies into a single model that can be verified. For example,

although the programmer specifies a composed policy as

in Figure 9b and Figure 10b, verification will execute on a

combined FSM model as in Figure 9a and Figure 10a.

Figure 12 shows the NuSMV FSM model correspond-

ing to the IDS policy from Figure 8b. The model definition

has two parts. The first is VAR, which declares the names

and types of each variable (lines 2–4). The second is

ASSIGN, where current and future variable values are as-

signed, using two functions for each variable: an init

function that determines the variable’s initial value (line

5–7), and a next function that specifies what value or

values the variable may take, as a function of the current

values of other variables in the model (line 8–16).

Within the case clause of each next function, the

left-hand side shows the condition, while the right-hand

side shows the variable’s next value if the condition holds.

TRUE on the left-hand side refers to a default transition.

Lines 8–11 indicate that the infected variable can

change between FALSE and TRUE, independent of any

other state variable (in reality, the value changes based on

external event of the same name). The policy variable

in lines 12–16 shows that the value transitions to drop

if infected is True, while the default is identity.

Thus, it shows that policy’s next value depends on the

infected variable. Table 3 shows examples of the types

of temporal properties that Kinetic can verify.

5 Evaluation

In this section, we evaluate two aspects of Kinetic:

(1) Does Kinetic make it easier for network operators

to configure realistic network policies? (Section 5.1); and

(2) How does Kinetic’s performance scale with the number

of flows, users, and policies? (Section 5.2).

5.1 Programming in Kinetic: User Study

Evaluating whether a new network configuration paradigm

such as Kinetic makes it easier for network operators to

write network policies is challenging. Network operators

already know how to use existing tools and infrastructure,

and deploying a new control framework requires over-

coming both the inertia of network infrastructure that is

already deployed and the knowledge base of network op-

erators, many of whom are not programmers by training.

We needed to find a way to ask many network operators

to evaluate Kinetic in light of these obstacles. Fortunately,

the Coursera course on software-defined networking that

we teach [8] offers precisely this captive audience, as the

course’s demographic includes many network operators

who are both educated about SDN and willing to exper-

iment with cutting-edge tools. (Section 2 and Table 1

explained the initial survey and described the demograph-

ics of the participants.) We obtained approval from our

institutional review board (IRB) to ask students to use

Kinetic and other SDN controllers to complete a simple

network management task and subsequently survey them.

We asked the students in the course to write a “walled

garden” controller program that is inspired from real en-

terprise network management task that we have learned

about in our discussions with network operators [9]. In

summary, the students were asked to write a program that

permitted all traffic to and from the Internet unless a host

was deemed to be infected (e.g., as determined from an

intrusion detection system alert) and not a host that was

exempt from the policy (one might imagine that certain

classes of users, such as high-ranking administrators or

executives would get different treatment than strict in-

terruption of service). In the assignment, we asked the

students to: (1) Write a Kinetic program that implements

the policy; (2) Choose either Pyretic or POX to implement

the same policy; (3) Optionally implement the policy in

the remaining controller; (4) Answer survey questions

about their experiences with each controller.

The course devoted one week each to each of the three

controller platforms, and students had already completed

assignments in both POX and Pyretic, so if anything, stu-

dents should have found those platforms at least as familiar

as Kinetic. In fact, there were three programming assign-

ments in Pyretic while there was only one for Kinetic.

Kinetic was discussed in only one lecture out of eight
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Program CTL Description

Mac learner

AG (topo change → AX policy=flood) Always resets to flooding when topology changes.

AG (policy=flood → AG EF (port>0)) Can always go from flooding to unicasting a learned port.

! AG (port=1 → EX port=2) It is impossible to update the learned port without first flooding.

AG (port>0 → A [port>0 U topo change]) Port will stay learned until there is a topology change.

Stateful firewall

AG (outgoing & !timeout → AX policy=identity)
If first packet originated from internal host and timeout did not

occur, the system should allow traffic.

AG (outgoing & timeout → AX pol-

icy=matchFilter)

If first packet originated from internal host, but timeout occurred,

the system should shut down traffic (apply match filter).

AG (!outgoing → AX policy=matchFilter) If first packet is not from internal host, the system should not allow

traffic (apply match filter).

Composed policy

AG (infected → AX policy=drop) If host is infected, drop packets.

AG ( (authenticated web | authenticated 1x) & !in-

fected → AX policy!=drop )

If host is authenticated either by Web or 802.1X, and is not infected,

packets should never be dropped.

AG (authenticated web & !infected & rate=2 →
AX policy=delay200)

If host is authenticated by Web, not infected, and the rate is 2,

delay packets by 200ms.

Table 3: NuSMV CTL rules for different Kinetic programs.

Figure 13: The lines of code required to implement the walled-

garden program in different controller languages.

Programs FL Pox Pyretic Kinetic

ids/firewall 416 22 46 17

mac learner 314 73 17 33

server load balancer 951 145 34 37

stateful firewall – – 25 41

usage-based rate limiter – – – 30

Table 4: Lines of code to implement programs in each controller.

lectures in the course, and was not treated specially. To

further minimize the bias in favor of Kinetic, students were

instructed to complete the assignment in Kinetic first, as

the first attempt is usually the hardest. With better under-

standing of the assignment, it is likely that programming

in Pyretic or POX would have been easier.

Of the students who completed the survey from Sec-

tion 2, 667 attempted the assignment, and 631 successfully

completed it (a 95% completion rate), and 70% of those

students completed the programming assignment in less

than three hours. We asked students who did not complete

the assignment why they did not complete it; most refer-

enced external factors such as time constraints, as opposed

to anything pertinent to Kinetic.

To compare the complexity of the different control pro-

grams, we compare the lines of code in programs im-

plemented with different controllers; we then conduct

qualitative measurements by surveying the students of the

course. Although the lines of code for a program depends

on the language, programmer, and implementation style, a

high-level comparison can nevertheless yield a rough but

meaningful sense for the relative simplicity of a Kinetic

program. Figure 13 shows the distribution of the lines of

code that students needed to implement the walled-garden

program in different controller languages. About 80%

of the implementations using Kinetic required about 22

lines of code; in contrast, more than half of the Pyretic

implementations required more than 50 lines, and half of

the assignments written in POX required more than 75

lines of code. The fact that Kinetic requires fewer lines

of code to implement this program highlights the utility

of the abstractions that Pyretic provides. In addition to

the experiment from the Coursera course, where we could

find publicly available implementations on the Web, we

compared the number of lines of code for several different

programs to our own implementations of the same pro-

grams in Kinetic. (Blank entries in the table indicate that

no implementation was available.) Table 4 shows these

results, for four different controllers: Floodlight, POX,

Pyretic, and Kinetic. The public Pyretic programs are oc-

casionally slightly shorter than the corresponding Kinetic

programs because they only handle built-in events such as

packet arrivals and topology changes. Programs that need

to handle arbitrary events would likely always be shorter

in Kinetic.

In addition to analyzing quantitative measures such as

lines of code, we asked students more qualitative questions

about their experiences using Kinetic to implement the

walled-garden assignment, relative to their experiences

with Pyretic and POX. We asked students to rank the con-

trollers based on ease of use, as well as which platform

they preferred. Figure 14 shows some highlights from this

part of the survey. Of the three controllers, more than half

of the students preferred writing the assignment in Kinetic
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Figure 14: Number of students who preferred each controller.

versus either Pyretic or POX. We asked students whether

Kinetic could make it easier to configure and verify poli-

cies in their networks. About 79% of students thought that

configuring the network with Kinetic would be easier than

current approaches, and about 84% agreed that Kinetic

would make it easier to verify network policies.

Students who chose Kinetic as the language that they

preferred best cited its abstractions, FSM-based structure,

and support for intuition (e.g., “Kinetic is more intuitive:

the only thing I need to do is to define the FSM variable.”,

“intuitive and easy to understand”, “reduces the number of

lines of code”, “programming state transitions in FSMs

makes much more sense”, “the logic is more concise”).

Some students still preferred Kinetic, despite the fact that

the syntax had a steeper learning curve: “Kinetic took

less time and was actually more understandable using

the templates even though the structure was very ’cryp-

tic’... I thought the Pyretic would be the easiest...[but]

I spent a lot more time chasing down weird bugs I had

because of things I left out or perhaps didn’t understand.”

Interestingly, many of the students actually preferred the

lower-level trappings of POX to Pyretic (e.g., “Pyretic was

friendly, but the logic more intricate”). The results of this

experiment and survey highlight both the advantages and

disadvantages of Kinetic’s design, as well as the difficulty

of designing “northbound” languages for SDN controllers:

without intuitive abstractions, operators may even prefer

the lower-level APIs to higher-level abstractions.

5.2 Performance and Scalability

We evaluate Kinetic’s performance and scalability when

handling incoming events, as well as the performance and

scalability of verification, as those are the two main contri-

butions of our work. We evaluated the Kinetic controller

on a machine with an Intel Xeon CPU E5-1620 3.60 GHz

processor and 32 GB of memory. We measured raw packet

forwarding performance but do not focus those numbers,

as the forwarding performance is not the focus of our work

and is equivalent to what can be achieved with POX and

Pyretic, in any case. Similarly, the rate at which updated

Statistic # per day

Total Unique Authenticated Users 22,586

Total Unique Devices Authenticated 41,937

Number of WPA authentication Events 1,330,220

Number of WEB authentication Events 1,850

Table 5: The frequency of network events on a primary campus

network, which we use for a trace-driven evaluation of Kinetic.

Figure 15: Time to handle a batch of incoming events and re-

compile policies in Kinetic, for different event arrival rates and

policies.

rules can be installed depends on lower layers (e.g., POX).

Optimizing the number of rule updates [32] and applying

them consistently [28] have been studied in previous work,

so we do not focus on those aspects here.

Event handling and policy recompilation. Because Ki-

netic recompiles the policy whenever an event causes a

state transition, we must evaluate how fast Kinetic can

react to events and recompile the policy for realistic net-

work scenarios. We used the wireless network from a large

university campus with more than 4,300 access points de-

ployed across 200 buildings; the network authenticates

nearly 42,000 unique devices for more than 22,000 users

every day. Table 5 summarizes these statistics. On such a

network, Kinetic would have to keep track of an equivalent

number of devices, and each authentication event (about

1.3 million per day) would require Kinetic to recompile

policy, resulting in an average of 15 events per second

(though certainly higher during peak periods). We evalu-

ate Kinetic for event arrival rates for up to 1,000 events

per second, for both a single-FSM policy and a policy

involving the composition of multiple FSMs, based on the

example in Section 3.3. We create a Kinetic program that

results in 42,000 LPEC FSMs and randomly distribute

authentication events across these FSMs (i.e., devices).

Figure 15 presents the results of this experiment. Re-

compilation time is longer for the program with multiple

FSMs composed together as it embeds a more complex

policy than the program with a single FSM. For both pro-

grams, event handling time increases as event arrival rate

increases. Even for event arrival rates that are several or-

ders of magnitude more frequent than an actual campus
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Figure 16: Verification time as a function of the number of CTL

properties that Kinetic checks, for a policy with a single FSM

and a policy with a composition of multiple FSMs.

network, Kinetic’s event handling and recompilation times

are around (or less than) a few hundred milliseconds.

Verification. The speed of verification depends on the

performance of NuSMV, which in turn depends on three

factors: (1) the size of the given FSM (i.e., number of

states and transitions), (2) the number of properties to

verify, and (3) the kinds of properties to verify. To ob-

serve whether Kinetic’s verification time is reasonable,

we evaluate Kinetic’s verification performance with the

same programs that we used to evaluate Kinetic’s event

handling and recompilation performance. The single-FSM

authentication program produces an FSM with four states,

and the program with multiple FSMs produces a combined

FSM with 384 states. To test Kinetic with more than the

handful of CTL specifications we manually created, we

generate over one hundred specifications using random

combinations of CTL operators. They are all syntactically

correct (i.e., NuSMV will not complain about the syntax),

but are generated regardless of whether they will be true

or false when each goes through the model checker, as our

goal is merely to measure verification time.

Figure 16 shows the time to complete verification for

different Kinetic programs with different numbers of prop-

erties. Each experiment had 1,000 independent trials; the

variance across experiments was small, so we do not show

the error bars. As expected, a Kinetic program with a

larger FSM model takes longer to finish. The figure also

shows that the number of properties affects verification

time, but all verification finishes within 35 milliseconds.

Kinetic performs verification before the Kinetic program

ever runs, so this process has no effect on performance.

6 Related Work

We discuss SDN controllers with verifiable properties,

approaches for formally verifying data-plane behavior,

and other high-level SDN control languages.

Formal verification of SDN control programs.

FlowLog [26] provides a database-like programming

model that unifies the control-plane logic with data-plane

state and controller state. Aspects of FlowLog programs

can be verified, but because the language does not natu-

rally capture state transitions and temporal relationships,

it cannot verify arbitrary temporal relationships, such as

those that can be verified with CTL in Kinetic. FlowLog

uses Alloy to perform bounded verification, so its analysis

is not complete, and certain aspects of verification are

manual. FlowLog has not been evaluated for realistic

network policies or for large networks. It requires storing

multiple database entries for each network state variable

and handles certain aspects of control logic by sending

data packets to the controller, so it is unlikely to scale.

VeriCon [1] verifies that a program written in its language

(CSDN) is correct for all topology and packet events

(e.g., packet arrivals, switch joins). It does not handle

arbitrary network events, and there is no OpenFlow-based

implementation, so its practicality is unclear.

Formal verification of data-plane behavior. Recent

work in network verification has focused on verify-

ing static properties of the data-plane state [19, 28, 29].

Anteater [23] and HSA [17, 18] can verify properties of

a static snapshot of a network’s data-plane state. These

systems can determine whether a static snapshot of data-

plane state violates some invariant, but they do not verify

the logic of the control program that generated the state in

the first place, making it difficult to identify which aspect

of the network’s control-plane logic caused the incorrect

data-plane state. In contrast, Kinetic helps operators ver-

ify control logic, such as “if an intrusion detection system

determines that a host is infected, the host’s traffic should

be dropped”. This capability helps operators both reason

about future data-plane states that a control program could

install and troubleshoot incorrect behavior when it does

arise. Because Kinetic’s verifies the static programs them-

selves, it can detect logic errors before the control program

is ever run on a live network. NICE [2] can test control-

plane properties that might result from arbitrary sequences

of standard OpenFlow events; it is not a controller, but

rather a test harness for control programs written in exist-

ing low-level controllers (e.g., NOX) and hence does not

permit reasoning about arbitrary events.

Other SDN control languages. Many languages raise the

level of abstraction for writing network control programs,

yet these languages do not offer constructs for concisely

encoding policies that capture network dynamics, nor do

they incorporate formal verification of control-plane be-

havior. FML [16] allows network operators to write and

maintain policies in a declarative style. Nettle [30] is a

domain specific language in Haskell. Procera [31] applies

functional reactive programming to help operators express

policies. Frenetic [12] is a family of languages that share

fundamental constructs and techniques for efficient com-

pilation to OpenFlow switches.
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7 Conclusion

One of the reasons that network configuration is so chal-

lenging is that network conditions are continually chang-

ing, and network operators must adapt the network con-

figuration whenever these conditions change. Network

operators need means not only to automate these configu-

ration changes but also to verify that the changes will be

correct. Existing general-purpose SDN controllers lack in-

tuitive constructs for expressing dynamic policy and ways

to efficiently verify that the control programs conform to

expected behavior.

To address these problems, we designed and developed

Kinetic, a domain specific language and SDN controller

for implementing dynamic network policies in a concise,

verifiable language. Kinetic exposes a language that al-

lows operators to express network policy in an intuitive

language that maps directly to a CTL-based model checker.

We evaluated Kinetic’s usability and performance through

both a large-scale user study and trace-driven performance

evaluation on realistic policies and found that network

operators find Kinetic easy to use for expressing dynamic

policies and that Kinetic can scale to a large number of

policies, hosts, and network events.

Kinetic sits squarely in the realm of ongoing work on

network verification and complements the growing body

of work on data-plane verification, such as Veriflow [19]

and NetPlumber [17]. As these tools can help network op-

erators ask questions about snapshots of data-plane state,

and Kinetic can help network operators reason about the

dynamics of network policies (which ultimately compile

to the corresponding data-plane state), the approaches are

complementary. Similarly, Kinetic needs the path guar-

antees that consistent updates [28] provide to guarantee

that the properties it verifies are preserved during state

transitions; conversely, consistent updates could be ex-

tended to reason about temporal properties such as those

that Kinetic can express. One natural next step would be

to combine these approaches.
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