Kinetic vs. thermodynamic control in hydrozirconation reactions

Peter Wipf,* Hidenori Takahashi, and Nian Zhuang

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract - Most synthetic applications of organo(chloro)zirconocenes involve the use of *terminal* zirconocenes derived from hydrozirconation of monosubstituted or symmetrical triple or double bonds. In our studies to effect stereoselective hydrozirconations of internal alkynes and alkenes, we have explored the alkoxy-directed hydrozirconation of homoallylic and bis-homoallylic alcohols. The discovery of a new method to prepare zirconocene hydrides *in situ* from readily available, air-stable zirconocene dihydride has allowed us to demonstrate for the first time that kinetic hydrozirconation products of internal, non-functionalized alkenes can be formed in preference over isomerized, thermodynamic products.

Hydrozirconation of alkynes and alkenes generates synthetically useful alkenyl- and alkylzirconocene reagents (ref. 1). In addition to stereocontrolled transmetalation reactions of organozirconocenes, we have applied zirconium complexes for cationic cascade reactions (ref. 2). Our most recent synthetic protocols include the use of alkylzirconocenes in the asymmetric Cu(I)-assisted conjugate addition (eq. 1, ref. 3), the asymmetric synthesis of allylic alcohols via $Zr \rightarrow Zn$ transmetalation (eq. 2, ref. 4), and oxidative couplings (eq. 3, ref. 5).

Almost exclusively, these processes involve the use of *terminal* zirconocenes derived from monosubstituted or symmetrical triple or double bonds. A key problem remains the stereoselective hydrozirconation of *internal*, unsymmetrical alkynes and alkenes. Since isomerization of organozirconocenes is generally faster than hydrozirconation, the thermodynamically most stable, e.g. least sterically crowded isomer is rapidly formed. For 2-octene, for example, this results in the exclusive formation of 1-metalated compound (ref. 6). The use of alkylzirconocenes could be considerably expanded if the thermodynamically favored isomerization to the terminus of an alkyl chain could be suppressed.

The problem of rapid chain-migrations of secondary or tertiary organometallics is not unique to zirconocenes. Organoboranes isomerize at temperatures from 70 to 200 $^{\circ}$ C (ref. 7), and, in the presence of transition metal catalysts, hydroalumination of internal alkenes provides only terminal organoalanes at 70 $^{\circ}$ C (ref. 8). The temperature cutoff for zirconocene migration is not known, and no clear mechanistic understanding has emerged.

Since, in general, only starting alkene and terminal zirconocene are observed in NMR, the initial hydrozirconation with the sparingly soluble Cp₂Zr(H)Cl must be considerably faster than subsequent β -elimination and further hydrozirconation. It is unlikely that zirconocene hydrochloride diffuses away from the alkene into solution, even though the π -complexes 9 and 11 offer very little stabilization due to a lack of back-bonding from d° -zirconium to the alkene. However, the isolation of a mixture of alkenes in the hydrozirconation of (Z)-5decene with sub-stoichiometric amounts of zirconocene hydrochloride as well as the isotope composition observed in decane after deuteriozirconation provide evidence that a participation by pathway b cannot be excluded (ref. 9).

At least for functionalized alkenes, there is encouraging literature evidence for the existence of internal zirconocene products (ref. 1). Styrenes give both secondary benzyl alcohols and primary alcohols upon hydrozirconation/oxidation (ref. 10), and heteroatoms present in oxazoline **17** and homoallylic alcohol **19** can stabilize internal zirconocenes through complexation (refs. 11, 12).

In our own work, we have observed that hydrozirconation of silyl ether **21** followed by copper(I)assisted acylation with benzoyl chloride provided the *trans*-cyclohexyl ketone **22** as the major isomer (ref. 13). Presumably, axial attack *anti* to the bulky silyl ether is favored due to steric hindrance, and subsequent isomerizations might be disfavored by the inductive effect of the oxygen substituent. We were interested to determine if related neighboring group participations were effective in suppressing zirconocene isomerization in acyclic alcohols.

Hydrozirconation/deuteration of homoallylic ether 27 provided terminally labeled 28 as the sole detectable isomer. The deprotected homoallylic alcohol 29 exerted a more interesting neighboring group effect. The ratio of terminal to internal deuterides was highly depended on solvent and concentration (ref. 14). In THF, a 10 : 1 ratio of terminal deuteride 32 and secondary deuteride 33, possibly derived from the biszirconocenes 30 and 31, was isolated from a standard 0.2 M reaction mixture. At a higher concentration, the relative amount of terminal to internal zirconocene was decreased to 3.5 : 1. A similar ratio was obtained in CH₂Cl₂ at room temperature. Lowering the reaction temperature is likely to decrease the solubility of Schwartz reagent and thus its concentration in the reaction mixture, and at 0 °C the ratio of 32 to 33 increased to 5.8 : 1. The ratio observed after 25 min in CH₂Cl₂ was largely unchanged after 18 h, and since toluene provided a >25 : 1 ratio of products after the same reaction time, we conclude that the kinetic barrier toward isomerization is unusually high due to the coordinating alkoxide ligand. No combination of solvent, reaction time, and temperature provided the internal deuteride 33 as the major product.

Since the *in situ* prepared zirconocene alkoxide failed to shift the regioselectivity of the intermolecular hydrozirconation of the homoallylic alcohol in favor of the secondary zirconocene, we investigated the use of zirconocene dihydride to induce an intramolecular metalation pathway. In CH_2Cl_2 and THF we obtained indeed a 1 : 1 mixture of deuterides 32 and 33, presumably formed via the cyclic zirconocenes 34 and 35, respectively. Longer reaction times in THF and toluene provided ca. 2 : 1 mixtures.

Hydrozirconation of the potassium alkoxide did not provide any further improvements in the formation of the internal deuteride; the ratio of 32 to 33 ranged from 3:1 in THF to 8:1 in CH₂Cl₂. Generation of the lithium alkoxide by deprotonation of 29 with BuLi at -78 °C, followed by addition of zirconocene hydrochloride and warming to room temperature, provided for the first time the internal deuteride as the major isomer. Comparable results were obtained in the hydrozirconation of the tertiary homoallylic alcohol 36. Use of 2 equivalents of zirconocene hydrochloride provided the terminal deuteride 37 in >25:1 selectivity. In contrast, this regioselectivity was shifted in favor of the internal deuteride 38 with the *in situ* prepared lithium alkoxide.

The modest levels of regioselectivity for the internal secondary zirconocene obtained in the directed hydrozirconation of homoallylic alcohols 29 and 36 could not be extended to the disubstituted alkene 39 and the bis-homoallylic alcohols 41, 43 and 45. Only terminal deuterides were obtained under a range of reaction conditions.

Our early attempts to control the regioselectivity of the hydrozirconation of internal, unfunctionalized alkenes were unsuccessful. Hydrozirconation-acylation of cyclopentene 47 led to a mixture of five isomeric ketones (ref. 13). The isolation of the methylene ketone 54 implies that at the reaction temperature necessary to effect hydrozirconation of the trisubstituted alkene even the tertiary zirconocene 50 is formed transiently.

A decrease in the temperature necessary for hydrozirconation would likely inhibit any undesired thermodynamic equilibration and allow the isolation of kinetic products. However, the insolubility of zirconocene hydrochloride in organic solvents effectively limits the lower temperature range for hydrozirconation of alkynes and terminal alkenes at 0 °C to room temperature. Internal alkenes are less reactive and require higher temperatures such as refluxing THF for reasonable reaction rates. Since chloride is an excellent bridging ligand and thus facilitates zirconocene oligomerization, we investigated next the rate of hydrozirconation of alkenes with derivatives $Cp_2Zr(H)X$, where X=Br, I, and OTf. These studies were greatly facilitated by our discovery that treatment of the readily available, highly polymeric and air-stable Cp_2ZrH_2 with halogen sources such as CH_2Br_2 , MEM-I, and others, converts the dihydride *in situ* into the desired monohydrides, which are much more effective hydrozirconating agents than Cp_2ZrH_2 (ref. 15). In spite of the heterogeneous nature of this reaction, only stoichiometric amounts of halogen sources are required. Trapping of the terminal zirconocene derived from 1-octene with Br₂ or I₂ led to high yields of 1-halooctanes. Methylene bromide and TMS-triflate were among the most effective reagents in this process. In the absence of an electrophilic partial quenching of the zirconocene dihydride, no monohalogenated product was isolated.

Application of these new preparations for modified Schwartz reagents to (E)-2-octene provided, for the first time, the kinetic, internal trapping products. In the presence of 0.5 equiv of CH₂Br₂, trapping of a mixture of 1.0 equiv of Cp₂ZrH₂ and 0.83 equiv of 2-octene in THF with Br₂ provided only traces of terminal bromide in addition to the major compound, dibromide **60**, which was formed from unreacted 2octene. A slightly better ratio was obtained with 1 equiv of CH₂I₂, however, the use of 0.5 equiv of TMStriflate resulted in the formation of the internal trapping product 2-bromooctane as the major isomer. With (E)-4-octene, *in situ* prepared zirconocene hydrotriflate led to a 1 : 1.8 ratio of 1-bromo- to 4-bromooctane. Interestingly, independently prepared $Cp_2Zr(H)OTf$ (ref. 16) did not provide any kinetically controlled internal trapping product, and no 2- or 3-brominated octanes were detected in any reaction mixture.

In conclusion, lithium alkoxide-directed hydrozirconation or *in situ* prepared zirconocene hydrotriflate allow for the formation of internal, secondary zirconocenes in preference over the primary isomers obtained by migration along the carbon chain. With unfunctionalized internal alkenes, the thermodynamically preferred isomerization to the terminal position can be partially suppressed at 0 °C by the use of zirconocene dihydride and TMS-triflate, and electrophilic trapping of kinetically formed internal zirconocenes has been achieved. Further studies will be directed at low-temperature (-78 °C) hydrozirconation protocols that should allow for the exclusive formation of kinetic hydrozirconation products.

ACKNOWLEDGMENT: This work was supported by grants from the National Science Foundation and the National Institutes of Health.

REFERENCES

- 1. P. Wipf and H. Jahn. Tetrahedron 52, 12853 (1996).
- 2. P. Wipf, W. Xu, H. Takahashi, H. Jahn and P. D. G. Coish. Pure Appl. Chem. 69, 639 (1997).
- 3. P. Wipf and H. Takahashi. J. Chem. Soc. Chem. Commun. 2675 (1996).
- 4. P. Wipf and S. Ribe, manuscript in preparation.
- 5. P. Wipf and W. Xu, manuscript in preparation.
- 6. D. W. Hart and J. Schwartz. J. Am. Chem. Soc. 96, 8115 (1974).
- 7. (a) H. C. Brown and G. Zweifel, J. Am. Chem. Soc. 1967, 89, 561. (b) H. C. Brown. Hydroboration, pp.136-149. W. A. Benjamin, New York (1962).
- 8. E. C. Ashby and S. A. Noding. J. Org. Chem. 44, 4364 (1979).
- 9. U. Annby, S. Karlsson, S. Gronowitz, A. Hallberg, J. Alvhäll and R. Svenson. Acta Chem. Scand. 47, 425 (1993).
- 10. T. Gibson. Organometallics 6, 918 (1987).
- 11. J. Alvhäll, S. Gronowitz and A. Hallberg. Chem. Scr. 25, 393 (1985).
- 12. H. Takaya, M. Yamakawa and K. Mashima, K. J. Chem. Soc. Chem. Commun. 1283 (1983).
- 13. P. Wipf and W. Xu. Synlett 718 (1992)
- 14. In this and all subsequent deuteration experiments, the internal deuteride **33** was isolated as a 1 : 1 to 1 : 10 mixture of diastereomers. No attempts to assign the relative stereochemistry of the major isomers were made.
- Precedence for the use of Cp₂ZrH₂ as a precursor for zirconocene monohydrides was found in the conversion of Cp₂ZrH₂ in CH₂Cl₂, reported to form Cp₂ZrHCl which is slowly transformed further into Cp₂ZrCl₂: P. C. Wailes and H. Weigold. J. Organomet. Chem. 24, 405 (1970).
- 16. G. A. Luinstra, U. Rief and M. H. Prosenc. Organometallics 14, 1551 (1995). In the solid state, this compound has been shown to be a hydride-bridged dimer.