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ABSTRACT

Motivation: Protein motions play an essential role in many

biochemical processes. Lab studies often quantify these motions

in terms of their kinetics such as the speed at which a protein folds or

the population of certain interesting states like the native state.

Kinetic metrics give quantifiable measurements of the folding

process that can be compared across a group of proteins such as

a wild-type protein and its mutants.

Results: We present two new techniques, map-based master

equation solution and map-based Monte Carlo simulation, to study

protein kinetics through folding rates and population kinetics from

approximate folding landscapes, models called maps. From these

two new techniques, interesting metrics that describe the folding

process, such as reaction coordinates, can also be studied. In this

article we focus on two metrics, formation of helices and structure

formation around tryptophan residues. These two metrics are

often studied in the lab through circular dichroism (CD) spectra

analysis and tryptophan fluorescence experiments, respectively.

The approximated landscape models we use here are the maps of

protein conformations and their associated transitions that we have

presented and validated previously.

In contrast to other methods such as the traditional master

equation and Monte Carlo simulation, our techniques are both fast

and can easily be computed for full-length detailed protein models.

We validate our map-based kinetics techniques by comparing

folding rates to known experimental results. We also look in depth

at the population kinetics, helix formation and structure near

tryptophan residues for a variety of proteins.

Availability: We invite the community to help us enrich our publicly

available database of motions and kinetics analysis by submitting to

our server: http://parasol.tamu.edu/foldingserver/

Contact: amato@cs.tamu.edu

1 INTRODUCTION

As proteins fold to their native, functional state, they undergo

critical conformational changes that effect their functionality.

Some conformational changes are detrimental. For example,

diseases such as Mad Cow disease and Alzheimer’s disease are

caused by misfolded proteins (Chiti and Dobson, 2006).

Insight into the kinetics and detailed mechanics of the folding

process will help explain critical information about the protein

such as its function and why it misfolds.
In lab experiments, kinetic measurements are used frequently

to quantify the folding process. Numerous lab experimental

methods such as circular dichroism (CD spectra), fluorescence

studies, hydrogen–deuterium exchange and pulse labeling give

time-scale based views of the folding process (Roder et al.,

2006). These measurements can be used to compare the kinetics

of a group of proteins. For example, often the effects of

mutations can be studied in detail through the comparison of

kinetic metrics.

Simulating protein folding kinetics has been a difficult

task performed on small structures through computationally

expensive methods such as molecular dynamics or

Monte Carlo simulations. Studies on larger proteins have

recently been accomplished, but these simulations have

only been done on limited proteins represented with coarse

models.
In our previous work (Amato et al., 2003; Thomas et al.,

2007), we studied protein folding through the application of a

method that builds an approximate map of a protein’s potential

energy landscape. This map contains thousands of feasible

folding pathways to the known native state enabling the

study of global landscape properties. We obtained promising

results for several proteins (Thomas et al., 2007). The pathways

were validated by comparing secondary structure formation

order with known experimental results. Our technique is not

meant as a replacement to other simulation methods that

may provide more detailed information about the folding

process. Rather, it is a complementary technique to existing

simulation methods.
This work introduces new methodologies for studying the

kinetics of protein folding: map-based master equation

(MME) and map-based Monte Carlo (MMC). These new

techniques, MME and MMC, provide quantitative kinetic

measurements such as relative folding rates and population

kinetics that we could not obtain before from our maps.

In contrast to other methods such as the traditional master

equation and Monte Carlo simulation, our techniques are both

fast and can easily be computed for full length and detailed

protein models. We also show that these two new techniques

facilitate the study of interesting metrics that describe the

folding process, reaction coordinates. In this article we focus on

two metrics: formation of helices and structure formation

around tryptophan residues. These two metrics are often

studied in the lab through CD spectra analysis and tryptophan

fluorescence studies, respectively. We validate our techniques

by comparing folding rates to known experimental results.

We also look in depth at the population kinetics and the

reaction coordinates for a variety of proteins in order to

correlate our simulation results with the trends seen in

experiment.*To whom correspondence should be addressed.
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1.1 Related work

There are many different methods for studying protein folding

kinetics. In this section we briefly introduce some of the
methods, give insight into their strengths and weaknesses, and
discuss the kinetics that each method provides.

1.1.1 Molecular dynamics Molecular dynamics (MD) simu-
lates the dynamics of the folding process using Newton’s
classical equations of motion. The forces applied are usually

approximations computed using the first derivative of an
empirical potential function. MD studies are highly realistic

and help give insight into how proteins fold in nature. They also
facilitate study of the underlying folding mechanism, provide
folding pathways and identify intermediate folding states.

While they give physically realistic simulations, these simula-
tions come at a large computational cost. For example, it has

taken months of supercomputer time to simulate a microsecond
of a very small (36 residues) protein folding using molecular
dynamics (Duan and Kollman, 1998)! Researchers are identify-

ing ways to counteract the cost of MD simulations. For
example, the Folding@Home distributed computing project
computes MD simulations with a cluster of over 30 000

computers worldwide (Shirts and Oande, 2000).

1.1.2 Monte Carlo simulation Monte Carlo simulation finds

a single folding trajectory (Covell, 1992; Kolinski and Skolnick,
1994a). However, each run is computationally expensive
because at each point in the conformation space search,

complex kinetics and thermodynamics are simulated. Multiple
runs are often done because the search is stochastic. Like
molecular dynamics, Monte Carlo simulations provide highly

realistic insight into the folding process.

1.1.3 Master equation kinetics Folding kinetics have also

been studied through a computation across the folding
landscape. One way this has been done is through the use of
lattice models that have enumerated the folding landscape, and

then the master equation is computed for this landscape
(Cieplak et al., 1998; Ozkan et al., 2002, 2003). One advantage
of these approaches is that the transition state emerges from the

dominate modes of the master equation solution. However,
these models are very simplistic and do not represent real

structures or sequences. Recent applications of the master
equation have been able to study proteins with full structures
(Weikl et al., 2004). However, the enumeration of the folding

landscape is limited to the formation of contact clusters, which
are groupings of nearby contacts as derived from the native

state contact map.

1.1.4 Statistical mechanical methods Statistical mechanical
methods have also been successful in studying protein folding

kinetics. These methods have provided estimates of the
transition state ensemble, folding rates and �-values
(Alm and Baker, 1999; Muñoz and Eaton, 1999). Only recently

has this method been applied to larger protein structures of up
to 349 residues (Das et al., 2005). However, these models use a
very simplified energy function that depends only on the

topology of the protein’s native state and hence are not as
accurate as the distance from the native state increases (as the

protein unfolds).

1.1.5 SRS and Pfold Stochastic roadmap simulation (SRS)
samples motions and studies kinetics by modeling the folding

energy landscape as a network of conformations where the

connection between two conformations in the network reflects

the transition probability between them. In early SRS work

(Apaydin et al., 2001), the protein structure was modeled as a

sequence of rigid secondary structure pieces, and the packing

order of these elements was studied.

In recent work (Chiang et al., 2006), SRS was shown

to identify the transition state ensemble, and it was used to

compute folding rates and �-values. In order to identify the

transition state ensemble, the conformation is modeled as

a binary vector where each bit represents a sequence of five

residues. The bit is set to 0 if the subsequence is non-native or

1 if it is native-like. All possible conformations and transitions

(i.e. a single bit change) were enumerated in the model.

To compute Pfold, the probability of folding, they perform

random walks from every conformation until it reaches either

the folded state or the unfolded state. Pfold for a given

conformation is then the percentage of times a random walk

from that conformation reaches the folded state before the

unfolded state.Transitions are not allowed out of either the

folded or the unfolded state.
In this model, Pfold helps identify the transition state

ensemble. They use this ensemble to calculate relative folding

rates and �-values. However, their model only contains a single

unfolded state. Thus each conformation in their model does not

represent the same volume of the energy landscape. In a more

realistic model, it is unlikely that there will be a single, unique

unstructured (‘unfolded’) state, thus making the Pfold calcula-

tion more difficult for use with more structurally accurate

models.

1.1.6 Our contribution The techniques introduced in this

article, MME and MMC, provide quantitative kinetic measure-

ments such as relative folding rates and population kinetics.

Also, interesting reaction coordinates such as helix formation

and structure around tryptophan residues can be monitored

during the simulated folding process. In our previous work, we

provided methods for building an approximate map of a

protein’s potential energy landscape (Amato et al., 2003;

Thomas et al., 2007) and an RNA’s folding landscape

(Tang et al., 2007). We have published results from our

approximate maps for proteins up to 148 residues easily built

on a desktop PC (Thomas et al., 2007). These maps provide a

framework for the MME and MMC techniques.
In contrast to other methods such as the traditional master

equation and Monte Carlo simulation, MME calculation and

MMC simulation are both fast and can easily be computed for

full length and detailed protein models. The MME calculation

gives insight into the folding rate, equilibrium distribution and

transition states. The MMC simulation gives a stochastic view

of the folding process and allows the computation

of population kinetics.

2 Methods

Our roadmaps give an approximate view of the protein folding

landscape. In the past, we have successfully extracted
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low-energy pathways, validated secondary structure formation

order, and seen general and consistent trends in reaction

coordinates such as native contacts present and RMSD.

However, we had not been able to extract important kinetic

measures such as folding rates and population kinetics. In this

section, we begin with a summary of roadmap construction.

After this, we introduce two new techniques that enable us to

extract this information from our roadmaps: MME and MMC.

Unlike traditional master equation calculation and Monte

Carlo simulation, these techniques run very fast and can be

applied to full-length detailed protein models.

The application of the MMC technique to the approximated

landscape reduces the roadmap to a set of stochastic confor-

mations and pathways. The benefit of this reduction is the

ability to measure reaction coordinates, metrics that describe

events during the time evolution of the folding process.

In this section, we also present methods for using the MMC

pathways to calculate two such reaction coordinates: helix

formation and formation of structure around tryptophan

residues.

2.1 Roadmaps for protein folding

In previous work (Amato et al., 2003), we introduced an

approach to protein folding that is based on the probabilistic

roadmap approach for motion planning (Kavraki et al., 1996).

We applied our method to a large number of structures

and were able to identify subtle differences in the known

experimental secondary structure formation order for

proteins with very similar structures (Song et al., 2003;

Thomas et al., 2007).
Our method is simple and consists of two main steps:

(1) sampling conformations in the landscape and (2) making

transitions between sampled conformations. In the first step,

conformations (nodes) are sampled on the folding landscape,

with a bias to increase density near the known native state.

In the second step, connections (edges) are made between

sampled conformations with similar structure. Weights are

assigned to directed edges to reflect the energetic feasibility of

transitioning between the two endpoint conformations.

This combination of nodes and weighted edges forms a

roadmap that approximates the energy landscape. This road-

map encodes thousands of folding pathways. The most

energetically feasible pathways in the roadmap can be extracted

using these weights.

Connections between two nodes, q1 and q2, are labeled with

edge weights that reflect the energetic feasibility of transitioning

between them. This is done by first identifying all the

intermediate nodes, q1 ¼ c0, c1, ::: , cn�1, cn ¼ q2, that connect

q1 to q2. For each pair of consecutive conformations ci and ciþ1,

the probability Pi of transitioning from ci to ciþ1 depends

on the difference between their potential energies

�Ei ¼ Eðciþ1Þ � EðciÞ:

Pi ¼
e
��Ei
kT if �Ei > 0

1 if �Ei � 0
:

(
ð1Þ

This keeps the detailed balance between two adjacent states and

enables the edge weight to be computed by summing the

negative logarithms of the probabilities for all pairs of
consecutive conformations in the sequence. With this edge

weight definition, we can use simple graph search algorithms to
extract the most energetically feasible pathways in the roadmap

between two given states (e.g. from the unfolded state to the

folded state).
Maps can be constructed incrementally through rounds of

conformation generation and connection (Xie et al., 2006).
We can stop the growth of the map when the features of the

map become consistent (e.g. secondary structure formation
order).

2.1.1 Protein model We model the protein as an articulated

linkage. Using a standard modeling assumption for proteins
that bond angles and bond lengths are fixed (Sternberg, 1996),

the only degrees of freedom in our model are the backbone’s

phi and psi torsional angles which are modeled as revolute
joints with values in the range ½0, 2�Þ.

2.1.2 Potential energy calculation. Our method is
flexible and allows any potential function to be used.

In this article, we use a coarse potential function similar to

Levitt (1983). We use a step function approximation of
the van der Waals potential component and model side

chains as spheres with zero dof. If any two spheres are too
close (i.e. <2.4 Å during sampling and <1.0 Å during

connection), a very high potential is returned. Otherwise, the

potential is:

Utot ¼
X

restraints

Kdf½ðdi � d0Þ
2
þ d2c �

1=2 � dcg þ Ehp ð2Þ

where Kd is 100 kJ/mol and d0 ¼ dc ¼ 2 Å as in Levitt (1983).

The first term represents constraints favoring known secondary

structure through main-chain hydrogen bonds and disulfde
bonds, and the second term is the hydrophobic effect.

The hydrophobic effect is computed as follows: if two
hydrophobic residues are within 6 Å of each other, then

the potential is decreased by 20 kJ/mol.

2.2 Map-based master equation (MME)

The master equation calculation gives insight into the folding

rate, the equilibrium distribution and transition states.
However, it requires a detailed model of the possible

conformations and their associated transitions. In the

past, this has been done by enumerating landscapes—feasible
only for small protein models or segments.

In this work, we develop a strategy for applying the master
equation to the approximation of the folding landscape

provided by our roadmaps. As we will show, our roadmaps
provide a suitable framework to apply the master equation

without requiring an enumeration of the conformation space.

A major benefit of this is that the MME technique enables us
to apply the master equation to much larger proteins than

was possible before.
Master equation formalism has been developed for

folding kinetics in a number of earlier studies (Kampen,
1992; Weikl et al., 2004). The stochastic process of

folding is represented as a set of transitions among all n

conformations (states). The time evolution of the population of
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each state, Pi (t), can be described by the following master

equation:

dPiðtÞ=dt ¼
Xn
i 6¼j

ðkjiPjðtÞ � kijPiðtÞÞ ð3Þ

where kij denotes the transition rate from state i to state j. Thus,

the change in population Pi (t) is the difference between

transitions to state i and transitions from state i.
If we use an n-dimensional column vector p(t)¼ ðP1ðtÞ,

P2ðtÞ, . . . ,PnðtÞÞ
0 to denote the population of n conformational

states, then we can construct an n� nmatrix M to represent the

transitions, where

Mij ¼ kji i 6¼ j:

Mii ¼ �
P

i 6¼j kij

(
ð4Þ

The master equation can be represented in matrix form:

dpðtÞ=dt ¼ MpðtÞ: ð5Þ

The solution to the master equation is:

PiðtÞ ¼
X
k

X
j

Nike
�ktN�1

kj Pjð0Þ ð6Þ

where N is the matrix of eigenvectors Ni for the matrix M in

Equation (4) and � is the diagonal matrix of its eigenvalues �i.
Pj (0) is the initial population of conformation j.

From Equation (6), we see that the eigenvalue spectrum is

composed of n modes. If sorted by magnitude in ascending

order, the eigenvalues include �0 ¼ 0 and several small

magnitude eigenvalues. Since all the eigenvalues are negative,

the population kinetics will stabilize over time. The population

distribution pðtÞ will converge to the equilibrium Boltzmann

distribution, and no mode other than the mode with the zero

eigenvalue will contribute to the equilibrium. Thus the

eigenmode with eigenvalue �0 ¼ 0 corresponds to the stable

distribution, and its eigenvector corresponds to the Boltzmann

distribution of all conformations in equilibrium.

Similarly, we see that the large magnitude eigenvalues

correspond to the fast folding modes, i.e. those modes which

fold in a burst. Their contribution to the population will die

away quickly. Similarly, the smaller the magnitude of the

eigenvalue is, the more influence its corresponding eigenvector

has on the global folding process. Thus, the global folding rates

are determined by the slow modes.
For some folders (2-state folders), their folding rate

is dominated by only one non-zero slowest mode. If we sort

the eigen spectrum by ascending magnitude, there will be one

other eigenvalue �1 in addition to eigenvalue �0 that

is significantly smaller in magnitude than all other eigenvalues.

This �1 corresponds to the folding mode that determines the

global folding rate. We will refer to it as the master folding

mode. Its corresponding eigenvector denotes its contribution to

the population of each state. Hence, the large magnitude

components of the eigenvector correspond to the states whose

populations are most impacted by the master folding mode.

These states are the transition states (Ozkan et al., 2002, 2003).
We apply the master equation formalism to our roadmaps by

assigning each node in our roadmap to a row (and column)

in the matrix M. The transition rates are computed directly

from the edge weight: Kij ¼ K0e
�Wij . K0 is the constant

coefficient adjusted according to experimental results. We will

use MME to compute the relative folding rates for several

proteins with known kinetics.

2.3 Map-based Monte Carlo (MMC)

Population kinetics provides information about the time

evolution of different conformational populations. In

our earlier work, we simply extracted the most energetically

feasible paths in the roadmap to study the folding process.

However, this does not mirror the stochastic folding process

and cannot be used to determine the type of kinetic information

that we are interested in here. In this article, we show how we

can adapt Monte Carlo simulation and apply it directly to our

roadmaps. Because the roadmap approximates the energy

landscape, we can use the pathways computed by the MMC

simulation to compute population kinetics.
Applying Monte Carlo simulation to our approximated

landscape allows for the study of large protein structures with

only a small computational cost. Previously, the size of the

protein’s conformational space limited the application of

Monte Carlo techniques to small proteins [e.g. all-atom 56

residue protein (Shimada and Shakhnovich, 2002)]. However,

our roadmap provides a pre-computed framework for this walk

and greatly simplifies the computation required by Monte

Carlo analysis.

In order to apply the Monte Carlo technique to our

roadmap, we must ensure that the likelihood of transitioning

from one neighbor to another is probabilistically biased by their

Boltzmann transition probabilities. During roadmap construc-

tion, we compute edge weights that reflect the energetic

feasibility to transition from one neighbor to another.

We turn these edge weights into transition probabilities

to perform the Monte Carlo simulation. One way to do this

is to cluster the edge weights into disjoint buckets that reflect a

grouping of edge weight qualities. After all edge weights are

assigned a bucket, edge weights within a bucket are assigned

a probability Qij reflecting their quality within the bucket. In

doing so, the probability of each edge weight is assigned

in a biased Gaussian fashion that favors clear discrimination of

low edge weights, yet still can differentiate between edges of all

weights. Then the probability to transition between two states,

Pij can be calculated as:

Pij ¼

Qij

1þ
Pn�1

j¼0
Qij

if j 6¼ i

1

1þ
Pn�1

j¼0
Qij

if j ¼ i

8><
>: ð7Þ

where n is the number of outgoing edges from node i. This

ensures the sum of all probabilities (including the self-transition

probability) out of node i is one. Note that the transition

probability is dependent on the number of outgoing edges from

a node. Since during roadmap construction we only attempt

connections between the k closest neighbors according to some

distance metric, the out-degree for all nodes is roughly similar.

Thus, this transition probability calculation is fair to all nodes

in the roadmap and maintains the detailed balance.
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2.3.1 Helix formation The protein folding process can be
monitored in the lab through the formation of local portions of

the 3D structure of the protein. These local segments,
commonly helices and strands, are the secondary structure of

the protein. In the lab, the average formation of secondary

structure can be measured through the technique of far-UV

CD spectroscopy. At far-UV wavelengths (190–250 nm)

the chromophore is the peptide bond and the resulting signal

from CD spectroscopy appears when the peptide bond is
located in a regular folded environment. It is common to

monitor the formation of a specific type of secondary structure

during the folding process by performing CD spectroscopy at a

certain wavelength. One of the most common measurements is

done at the wavelength of 220 nm where the formation of
helices can be monitored.

There are many ways to measure helix formation in silico.

In statistical mechanical simulations, the protein backbone is
modeled by a sequence of dihedral angles, one angle between

each pair of residues (Das et al., 2005). Helix formation has

been measured from these simulations by summing the

individual angle change between conformations. Unlike

the single angle per residue model, our model consists of two
angles that can be independently similar or dissimilar. Given

this independence and a more complex protein model, we

explored alternative ways of defining the formation of helices.

Also unlike the statistical mechanical model, our pathways and

conformations are extracted stochastically through the MMC
technique.

In the results presented in this article, we used a measurement

of helix formation that calculates the native contact formation
in helices, H(t), as a function of time step, t, from the MMC

simulation:

HðtÞ ¼

X
ij

Hij ðtÞ

HðnativeÞ
where i, j 2 helix: ð8Þ

The contribution of a single contact, HijðtÞ, is equal to 1 if the

residue pair (i, j) forms a native contact in the conformation at
time step t. In order to compare results across proteins,

the values of H(t) are normalized by the number of contacts

at helices measured at the protein’s native state, H(native).

Thus, 1 represents the full formation of the helix structures in

a conformation and 0 represents no helix structure formed.

2.3.2 Tryptophan structure formation The protein folding

process can also be studied in the lab by monitoring the
fluorescence of certain amino acids. The fluorescence yield of

these amino acids is determined by their local environment

given the conformation of the protein. While all aromatic

amino acids are known to fluoresce under certain conditions,

the tryptophan residue is often favored for experiments because

of its high fluorescence yield.
Even though tryptophan rarely occurs in proteins, it

is common to mutate a protein to make fluorescence studies
possible. Tryptophan can be introduced into the structure

where fluorescence yield is optimized through site-directed

mutagenesis. For example, they are often placed in the core of

the protein and away from polar amino acids that detract from

their yield.

In order to monitor the local environment of the tryptophan

residues, we explore the effect of native contacts.
As tryptophans are involved in native contacts, their local

environment becomes more similar to the environment in the

native state. At that native structure, we expect their

fluorescence to be maximized. A similar approach was used

in Das et al. (2005). However, unlike their method, our

pathways and conformations are extracted stochastically

through MMC.

In the results presented in this article, we use a measurement

of tryptophan structure formation that calculates the native

contact formation tryptophan residues, Trp(t), as a function of
time step, t, from the MMC simulation:

Trp ðtÞ ¼

X
ij

TrpijðtÞ

TrpðnativeÞ
where i, j 2 tryptophan: ð9Þ

The contribution of a single contact, TrpijðtÞ, is equal to

1 if the residue pair (i, j) forms a native contact in the

conformation at time step t and either i or j is a tryptophan.

This is a simple measure and could be modified for more

complex local environments impacting fluorescence yield. In

order to compare results across proteins, the values of Trp(t)

are normalized by the number of contacts in the native state

involving tryptophans, Trp(native). Thus, a value of 1 represents

the full formation of the structure involving the tryptophan

residues, and a value of 0 represents no tryptophan structure

formed.

3 RESULTS

In this section, we present results demonstrating how we can

extract kinetics information from our roadmaps. We show that

our MME can accurately compute the relative folding rates of

protein G and two of its variants. Then we use our MMC

simulation to investigate the folding population kinetics of the

native state for several small proteins studied in our previous

work (Thomas et al., 2007). When available, the helix

formation and tryptophan contact formation calculated

during the folding process of these proteins is also shown.

It would be computationally prohibitive to apply the traditional

Monte Carlo simulation or master equation calculation to these

proteins and detailed protein model, hence we cannot compare

to them.

3.1 Relative folding rates

One interesting protein to study is protein G [Fig. 1(c–inset)].

Protein G is a small two-state folder composed of a central

�-helix and two �-hairpins. Nauli et al. (2001) created two

mutants of protein G to alter its folding behavior to switch

the hairpin formation order while maintaining the same

secondary and tertiary structure, NuG1 [Fig. 1(d–inset)] and

NuG2 [Fig. 1(e–inset)]. They also show that these two mutants

fold 100 times faster than protein G.
We used our new MME to compute the relative folding rates

of these two proteins on roadmaps that reached stable

secondary structure formation order. In the results shown

here, the potential values were normalized to fall between 0 and

Kinetics analysis methods

i543

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i539/231562 by U
.S. D

epartm
ent of Justice user on 17 August 2022



1 for the fastest computation of the master equation solution.

Fig. 1a shows the magnitudes of the five smallest eigenvalues.

Recall that the smallest non-zero eigenvalues represent the rate-

limiting barrier in the folding process. Therefore, they have the

largest impact on the global folding rate. As seen in the

magnitude of the second eigenvalue in Fig. 1a, protein G folds

much slower than the two mutants, NuG1 and NuG2. Also,

NuG1 and NuG2 fold at very similar rates. This matches what

has been seen in lab experiments. While in previous work

(Thomas et al., 2007) we were able to accurately identify the

hairpin formation order of protein G and mutants NuG1 and

NuG2, we were unable to study the change in folding rate.
We also studied the folding rate differences using population

kinetics by MMC. Fig. 1c–e shows the population kinetics for

the unfolded states and folded states for protein G, NuG1 and

NuG2. As seen in Fig. 1d and e, the population of the native

state of NuG1 and NuG2 rise very quickly. For example, the

population of the native state is just under 60% by timestep

100. However, at the same timestep, the native state of protein

G is only 20% populated (Fig. 1c). This contrast in

the population of the native state between protein G and

mutants NuG1 and NuG2 correlates with the faster folding rate

of the mutants compared to the wild-type.

Fig. 1b shows the performance of MME for roadmaps

ranging in size from 2000 to 15 000 nodes. The running time of

MME scales linearly with roadmap size (i.e. the size of

the landscape model). Thus, MME has an advantage over the

traditional master equation solution. While the traditional

master equation solution is usually applied to a fully

enumerated landscape, MME is only computationally limited

by the size of the approximated landscape model. Here we have

shown that this approximated model can be a subset of the

entire conformation space. This enables us to study larger

proteins with more detailed models than can be handled by

traditional techniques.

3.2 Structural folding kinetics

Here we study the folding process by computing the population

kinetics of the native state with our new MMC simulation for

several different proteins. Recall that a single roadmap encodes

thousands of folding pathways. Previously, we extracted

folding pathways by finding the most energetically feasible

pathways in the roadmap. While this provided useful informa-

tion about high level folding events such as the temporal

ordering of secondary structure which we could validate against
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experiment, we could not use the deterministically extracted

pathways to infer kinetic information. By instead extracting

pathways stochastically using MMC, we can now compute

population kinetics for different states. For example, we

can compare the population kinetics of the unfolded state

and the folded state.
We computed the population kinetics of several two-state

folders studied in our previous work (Thomas et al., 2007) (see

Table 1). In that work, we were able to produce roadmaps

whose secondary structure formation order matched native

state out-exchange experiments and pulse labeling experiments

when available (Li and Woodward, 1999). We use the same

roadmaps here, but are able to supplement our previous results

by using MMC to compute the population kinetics of the

folded state and the unfolded state. Table 1 also displays the

MMC analysis time. In all cases, the analysis took <1h on a

2.4 GHz desktop PC with 512 MB RAM.

Figure 2 displays the results for several proteins studied.

MMC was run for 500 iterations and 50 000 time steps. Our

experience shows that this provided population kinetics with

small variance. These proteins are similar in size (ranging from

53 to 86 residues) and varying secondary structure makeup.

We study all � proteins, all � proteins, and mixed � and �

proteins.
Notice that the population kinetics of the native state for the

all � proteins (Fig. 2a and b) shows a gradual growth at a

constant rate. The all � proteins (Fig. 2c) and mixed proteins

(Fig. 2d and e), however, display a steep climb in their

population kinetics and then plateau. We believe this is due to

nucleation effects (e.g. that each native contact does not have

the same probability of forming) present in structures contain-

ing �-sheets. For example, a contact near the turn of a

�-hairpin (i.e. with lower effective contact order) has a greater

probability to form early while more non-local native contacts

Table 1. Proteins studied and MMC analysis time. (*tail, residues 1-8, of structure removed)

Protein name PDB ID Length SS Nodes Edges MMC time (m) MME time (s)

Dv Rubredoxin (RdDv) 1rdv 52 2� þ3� 4000 206440 20.83 n/a

Murine Epidermal GF (mEGF) 1egf 53 3� 4000 199600 19.94 n/a

Cp Rubredoxin (RdCp) 1smu 54 3� þ3� 6000 200072 22.19 n/a

Protein G, domain B1 (Protein G) 1gb1 56 1� þ4� 4000 198588 20.71 21.19

NuG1, mutant 1 of protein G 1mhx* 57 1� þ4� 4000 215648 22.53 29.05

NuG2, mutant 2 of protein G 1mi0* 57 1� þ4� 4000 219874 23.46 24.82

Protein A, domain B (Protein A) 1bdd 60 3� 6000 276342 23.12 n/a

Acyl-coenzyme A Binding Protein (ACBP) 2abd 86 5� 18000 953900 35.94 n/a

(a) Protein A: Population Kinetics (b) ACBP: Population Kinetics (c) mEGF: Population Kinetics

(d) RdCp: Population Kinetics (e) RdDv: Population Kinetics

Fig. 2. Population kinetics from MMC simulations for proteins in Table 1 of varying structure: (a, b) �, (c) �, (d, e) mixed.
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such as those at the end of the hairpin have a lower probability
to form early. Their formation probability increases as the

protein folds/nucleates. This is commonly referred to as

a ‘zipping’ process (Fiebig and Dill, 1993). Conversely, most
contacts in an �-helix are local (i.e. have a low effective contact

order) thus their formation probabilities are all similar and

constant throughout the folding process.
In order to contrast the population kinetics of the folded

state, we also studied the population kinetics of the unfolded
ensemble (Fig. 2). For this study, we defined the unfolded

ensemble as those states with few native contacts (relative to the

number of contacts in the native state). There is a clear

relationship between the kinetics of the unfolded state to that of
the folded state. For example, in protein A (Fig. 2a), the

population of the native state increases slowly as the population

of the unfolded state ensemble decreases slowly. On the other
hand, folding processes that reach folded equilibrium quickly

also see a quick decrease in the population of the unfolded state

ensemble.
A nice feature of the MMC technique is that it allows us to

study stochastic events during the protein folding process.

For the proteins studied above through population kinetics,

we also examined the structural metrics of helix formation

and formation of structure around tryptophan residues

(see Fig. 3). From the combined information in these three

plots, we can deduce characteristics of the folding process.

In rest of this section, we compare the individual kinetic results

produced by MMC to previous lab and simulation studies for

each protein.

3.2.1 Protein A The B domain of protein A, containing
three �-helices, has been the focus of many experimental

studies. It does not contain a tryptophan naturally, but

has been mutated so that tryptophan fluorescence can be

studied (Dimitriadis et al., 2005). It has also been studied by a

lattice-based Monte Carlo technique (Kolinski and Skolnick,

1994b). However, this lattice model only used a coarse

representation of the backbone carbon-�s to model the

structure. In lab and simulation studies, protein A has

demonstrated formation of helix structure followed by the

packing of the helices in the final folded structure (Li and

Woodward, 1999). Our population kinetics (Fig. 2a) and

(a) Protein A: Helix Formation (b) ACBP: Helix Formation (c) ACBP: Tryptophan Contact Formation

(d) Protein G: Helix Formation (e) RdCp: Helix Formation (f) RdDv: Helix Formation

(g) Protein G: Tryptophan Contact Formation (h) RdCp: Tryptophan Contact Formation (i) RdDv: Tryptophan Contact Formation

Fig. 3. Reaction coordinates calculated from MMC simulations for proteins in Table 1 of varying structure: (a–c) � and (d–i) mixed. Tryptophan

contact formation is not displayed for protein A because it does not contain any tryptophan residues. Note that mEGF (all �) is not displayed

because it lacks �-helices and does not contain any tryptophan residues in the folding core.
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helix formation (Fig. 3a) plots show similar trends. While the
folding process begins early on (as indicated by continual

growth in helix formation beginning at time step 1), it takes at

least 100 time steps for any conformation to reach the native
state. This suggests that helices are formed before any

conformation reaches a shape close to the native state, as

seen in experiment.

3.2.2 ACBP A similar process is observed in the other all
� protein, acyl-coenzyme A binding protein (ACBP). This

protein has five helices and two tryptophans in the core of the

protein. The folding of ACBP has been studied in the lab
through tryptophan fluorescence, and it has been shown that it

is a fast, two-state folder (Kragelund et al., 1996). From our

MMC kinetics, we see that ACBP exhibits similar properties as
the other all � protein, protein A: continual formation of helix

contacts (Fig. 3(b)) and reaching the native state after the

formation of many helix contacts (Fig. 2b). However, since
ACBP has two tryptophans in the core of the protein, we see a

quick increase in the formation of these contacts (Fig. 3c)

around the same time we see the native state beginning to
be populated, around time step 100. This could correspond

to the packing of the structure and the formation of long-range

interactions in the core of the protein.

3.2.3 mEGF Since the protein murine epidermal growth
factor (mEGF) has no helical structure, we do not plot its helix

formation. While it does have two tryptophans, they are on the

tail of the protein and do not make substantial contacts with
the rest of the protein.

3.2.4 Protein G The B1 domain of protein G has been the
focus of many lab studies from CD spectra analysis and

tryptophan fluorescence (Nauli et al., 2001) to hydrogen
exchange and pulse labeling experiments (Li and Woodward,

1999). Much of the focus on the folding process of protein G

has been on the folding order of its two sets of strands.
However, it is known that the helix forms before the final stages

of the folding process (Li and Woodward, 1999). It is never the

last secondary structure element to form. In our MMC results,
we see a similar ordering. Figure 3d shows that the helix

forms quickly and is 80% formed by time step 100. By this time

step, <20% of the protein has reached a native like
conformation (Fig. 1c). The tryptophan contact formation

(Figure 3g) continues through the folding process with

continual packing around the protein core (where the
tryptophan is located).

3.2.5 RdCp and RdDv Cp Rubredoxin (RdCp) and Dv
Rubredoxin (RdDv) are two Rubredoxins from

mesophilic organisms. While their population kinetics are
similar (Fig. 2d and e), some small details can be

elucidated from the reaction coordinates studied. For RdDv,

that has been studied by high-temperature MD simulations
(Lazaridis et al., 1997), we see two jumps in the population

kinetics (�50% then 90% native-like). This could be due to the

early packing of protein around the hydrophobic core, as seen
in the continually increasing tryptophan structure formation

(Fig. 3i). The single tryptophan is in the core of the protein.

After the core is formed, the helix finishes making a final set

of contacts (Fig. 3f). This corresponds with the second jump in

the population kinetics to 90% native-like (Fig. 2e). The

behavior of opening the helix loop and then unfolding the core

was also seen in MD simulation (Lazaridis et al., 1997). RdCp

was shown through tryptophan fluorescence and far-UV CD

experiments to have a simple two-state kinetic and no known

intermediate (Cavagnero et al., 1998). We also see this in our

simulations. The helix formation (Fig. 3e) and tryptophan

contact formation (Fig. 3h) show cooperative and continual

growth until the native state is fully populated.

4 DISCUSSION

We proposed and explored new analysis tools to study protein

folding kinetics: map-based master equation solution (MME)

and map-based Monte Carlo simulation (MMC). With these

new methods, we can compute folding rates and extract

population kinetics of various states. We validated our folding

rates against known experimental data. The MME approach

was able to produce relative folding rates for three proteins,

matching what has been seen in lab experiments.

Our population kinetics were also able to identify clear kinetic

differences in proteins of different structure. Through the

combination of population kinetics and helix and tryptophan

structure formation information, we are able to elucidate

important characteristics in the folding process. For example,

our results on Protein A show that helix structure forms early,

before packing of core of the protein. This is also what has

been seen in lab experiment. In another case, DvRD,

the hydrophobic core is formed before the helices. This

behavior was also seen in MD simulations.

An important benefit of these approaches is that it enables

us to study the kinetics of much larger proteins than can

be handled by traditional master equation methods or

Monte Carlo simulation. We believe these new techniques are

valuable tools for discovering important features of protein

folding kinetics.
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