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Mathematical equations governing kinetics of desorption from heterogeneous surfaces

are derived from a master equation with the assumption that only nearest-neighbor ad-

atoms interact. A number of cases are analyzed: random, periodical, and patchwise distri-

butions of sites characterized by different activation energies. In general, the kinetic equa-

tions obtained must be solved numerically. We have performed numerical calculations for
several specific cases and analyzed the influence exerted by heterogeneity and lateral in-

teraction between adatoms on the desorption rate d8/dT. The results obtained make it
clear that, due to lateral interaction, the desorption curves are very sensitive to the way in

which heterogeneities are distributed on the surface (periodically, patches with different

sizes, etc.).

I. INTRODUCTION

In general, thermal desorption of a gas from a
heterogeneous surface gives rise to very different
desorption curves from those resulting for desorp-
tion from a homogeneous surface. Heterogeneity
can be caused by the adsorbent surface or by lateral
interaction between adsorbed particles. Fractional,
zero, or very high-order desorption kinetics can re-
sult from a first-order desorption mechanism with
an activation energy and a preexponential factor
that depend on the kind of lattice site where the
adatom desorption occurs, or from the above men-

tioned lateral interaction. The simplest method in
dealing with heterogeneity is to assume an activa-
tion energy which is a function of coverage. A
variety of empirical functions have been used'

and they have been useful in many cases. However,
this method does not allow us to gain insight into
the various mechanisms that make activation ener-

gy dependent on coverage.
Our purpose in this paper is to study the way in

which substrate heterogeneity and lateral interac-
tion between adatoms influence the desorption pro-
cess. We start from a master equation, where tran-
sition probabilities are taken in the Arrhenius form.
We consider two contributions to activation energy,
namely, the energy due to the substrate and that due
to lateral interaction between nearest-neighbor ada-
toms on the surface.

We have carried out an analysis of the desorption
process for a variety of conditions. First we consid-
er a linear chain where there are sites characterized
with different activation energies due to the sub-

strate and governed by a random distribution. The

lateral interaction energy is a given constant and the
Bragg-William approximation is used. Then we
extend the formulation to treat lattices with any
coordination number c. Later we study the case
where the sites with the same activation energy are
distributed periodically (periodical heterogeneous
chain) and, subsequently, we consider a random
patchwise model. Finally, we discuss our results
and summarize our conclusions.

II. RANDOM SITE DISTRIBUTION

Firstly, we consider a linear chain with E sites
(N —+ oo ) where each site can be empty or occupied
by one adatom. We associate a variable s& with
each chain site, which takes the values 1 (filled site)
or —1 (empty site). A state of the chain can be
described by a set Isj I (j=1, . . . , N) and we
denote P(s~, . . . , sN, t) the probability that the sys-

tem is found in configuration Is~, . . . ,'s~j at time
t. Two terms contribute to the activation energy,
namely, a nearest-neighbor interaction energy ho,
given as constant, and an energy due to the sub-

strate causing the heterogeneity. For simplicity we
develop the model according to the case in which
there are two types of sites, called 1 and 2, which
contribute to the activation energy with energies h

~

and h2, respectively. Such a model is similar to a
"heterogeneous" Ising model.

We assume that only the desorption mechanism
is operative, and readsorption onto the chain and
migration of adatoms from site to site on the chain
are inhibited. When a particle is desorbed from the
jth site, the value of sj changes from 1 to —1. The
time dependence of P(s~, . . . , sz, t) can be described

by the master equation
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dP($ ], . . . & sp. . . , $N', t )

dt
W(sj ]&sj psj+]) P(s], . . . , sp. . . , Sh]', t)

j

+ g [F(sj ]p sj &sj+] )P($]p & Sj&, , p $]v&t)]
j

where W(sj ],sj,sj+]), which depends on sj ], sj, and st+] because of nearest- eighbor interaction, is the
transition probability per unit time from state sj to state —sj, while the other sk (kQj) variables remain tem-

porarily fixed. These transition probabilities are taken in the Arrhenius form. There are three different pro-
babilities, as shown in Fig. 1,

W'++ ——A;exp[ —(h +2hp)/k]] T],
W'+ ——W' + ——A;exp[ —(h;+hp)/k]]T],
W' =A;exp( h; /kj—]T),

(2)

where superscript i (i =1,2) indicates whether the central site is of type 1 or of type 2, A; is the pre-
exponential factor, k]] is the Boltzmann constant, and T is the temperature.

We define the following correlation functions:

m

z,„=—ys, ,),
J

1 k m
Skm = g sj —]sj

j
1 k nr,.„= y*, ;,"„),—m

mn
Ukmn + ~Sj ~Sj Sj

J

where

(f(sk) }= g f(sk)P(Isj J;t)
Is

and the sum gj (i =1,2) extends over all chain sites of type i Also, w. hen suitable for clarity, we have writ-

ten sj (i =1,2) instead of sj to indicate that the jth site is of type i
From Eqs. (1) and (2) we obtain the kinetic equations

dQ =——,[ n;a'] +a']Q;+2a 2(R ];+R2;)+2a2(S];+S2;)

+a3(T];]+2T];i+T2;2)+a3(U];]+2U]]2+U2;2)], i =1,2

where n; indicates the fraction of sites of type i in
the chain (n]+n2 ——1) and

r
A;

h; Ik]]T( hplk]] T— —

i A
h(lk]]T( 2hplksT 1—)—

l

' =A
—h; Ik]] T(

hplkgT—
l

The adsorption degree on sites of type i is

n;+Q;
l 2

and the total adsorption degree is

e=ge, .

Because Eqs. (5) involve correlation functions
comprising more than one chain site, we need to ap-
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I+I+I+I = I+I-I+I

'Ny-
I+I+I-I = I+I-I-I

I-I+I+I = I-I-I+IW

Now it is very easy to extend the above equations
for the case of n different types of sites and for a
continuous distribution of types of sites (see the Ap-

pendix).
When the chain is homogeneous, we find

W——
I-I+I-I = I-I-I-I

FIG. 1. Schematic diagram of the removal probabili-

ties.

= —Ae [1+(e ' —1}8]
dt

(13)

ply some method of approximation to solve these

equations. The simplest method is the Bragg-
William approximation. More refined approxima-
tions can be carried out, but then calculations
become more cumbersome. Here we shall apply the
Bragg-William approximation.

If i,j,k denote the plus or minus sign (plus and
minus signs indicate filled and empty sites, respec-
tively) and m, n,p take the values 1 and 2 (1 indi-

cates site of type 1; 2 indicates site of type 2), let
NJ" be the fraction of nearest site pairs, the first
being a site m in a state i and the second a site n in
a state j (for example, N' + denotes the fraction of
site pairs, the first being an empty site of type 1 and

the second a filled site of type 2), and let NgP be
the fraction of triplets of sites of types m, n,p in

states i,j,k, respectively. We assume that

From Eqs. (11)—(13) it is apparent that the effect
of nearest-neighbor interaction is involved only in

the factor

exp( h /kit T—)8 ))1 —8
(strongly repulsive interaction), we can write Eq.
(13}as

d6 3

dt
=—A exp[ —(h +2h0)/kz T]8 (14)

(third-order kinetics), which is an equation similar
to the Arrhenius equation with

E„,=h+2ho —2k~ T ln9 .

[1 (
' —1)8]

If ho ——0, this factor equals 1 and Eq. (13) becomes
the standard Arrhenius equation.

If

Ntjk" =NI NJ"Nf, (10)
If exp( —ho/k&T) «1 (strongly attractive interac-
tion), Eq. (13) becomes

)& [I+(e ' —1)8], i =1,2 .

For the total adsorption degree the result is

a8
(A

—h~/keT8
A

h2/keT8-
dt

X[1+(e ' ' —1)8]'. (12)

¹ being the fraction of sites of type m in state i
With this assumption, and by means of a

straightforward but tedious calculation, Eqs. (5) be-

come

de,

d8 2

dt
= —A exp( —h/k T)8(1—8) (15)

~r
exP( g/ke T)—

(16)

where r =A 2/A i and g =h2 —h i. Then the adsorp-
tion degree must verify the following equations:

Note that while in Eq. (14) d 8/dt is proportional to
(N+/N) (i.e., to N+++/N in the Br'agg-William

approximation), in Eq. (15) it is proportional to
(N+/N)(N /N) (i.e., to N + /N in the Bragg-
William approximation}.

Turning now to the general problem, let us con-
sider the heterogeneous case. By means of a
straightforward calculation we obtain

8=8,+n (8,/n )

dt
(18)
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The time evolution of 8 can be found from Eqs.
(17) and (18), at least formally, by elimination of
81. In general, these equations require a numerical
solution.

If we consider now that adatoms are desorbed
from a lattice with coordination number c and we

apply the Bragg-William approximation, we obtain

de) I
g
gk~T'= —Ae ' 'e

dt

X[1+(e ' —1)8]', i=1,2.

(19)

Equations (19) and (11) are similar, except for the
exponent of the factor due to interaction between
nearest neighbors.

III. PERIODICAL AND PATCHWISE
HETEROGENEOUS SURFACES

The above analysis is valid for the case where the
distribution of different types of sites is purely ran-

dom. We consider now the case where this distribu-
tion is not purely random, but where we have addi-
tional information about it. The simplest case is
that of a periodical heterogeneous lattice, i.e., there
are different types of sites but they are distributed
in a periodical form.

Let two types of sites, 1 and 2, lie in a linear
chain. We assume that the densities of each type of
site n, and n2, those of duplets n;J (i,j =1,2), and
those of triplets n,jk (ij,k=1,2) are known. In
Fig. 2, two perodical heterogeneous linear chains

1

are shown. For case (a) n& n2 ———,, nt~ ——n22 ———0—,
1 1

~12 21 2 n121 212 2 ~111 ~112 211
2

=n22~ ——n ~22 ——n222 ——0. For case (b) n, = —, ,
I 1

~2 3 ~22 0 ~11 n12 ~21 ~112 ~121
1

~211 n 111 ~212 ~221 122 ~222

When all sites 1 are clustered on one part and all
sites 2 on another, n11 ——n1, n22 ——n2, n12 ——n21 ——0.
For the case of random distribution previously con-

2 2sldered, n11 ——n 1, n22
——n 2, n 12

——n21 ——51n2,
3

n111 ——n1, and so on.
Approximation given by Eqs. (9) and (10) may be

expressed as
grim l m

&&ig =&tm%qj

~rlmn l m n' i)k = lmn%9J' 9'k

(20)

(21)

where qk denotes the relative fraction of sites of
type n (n =1,2) which are in the state k
(k —++,—). Then Eqs. (5) and (6), jointly with
Eqs. (20) and (21), lead to

d8i h;IksT-= —A;e ' e;
dt

2z e, z'
X 1+—gn;, +—gn;;k

Pl~ Elk

i,j,k=1,2 (22)

where z =exp( iI p/ks —T ) 1. —
Finally, we treat the case where there are dif-

ferent types of sites with a patchwise distribution.
For the sake of simplicity we consider again two

types of sites, 1 and 2, with densities n1 and n2,
respectively, on a linear chain with N sites. Patches
of type 1 and of type 2 must be alternatively placed
on this chain, d denoting the number of patches of
type 1 (or of type 2). Let F~(m) and F2(m) be the
respective distribution functions of the patch sizes,
i.e., F;(m) is the probability of finding a patch
formed by m consecutive sites of type i. Functions
F;(m) verify

and

gF;(m)=1 (23)

Pf1

M1

7l2

M2 N
' (24)

where

M~ ——Q F~(m)m, Mq ——Q F2(m)m, (25)

M2
2 M M N 2 (26)

M; being the average size of type i patches in the
chain.

Densities of site groups involved in Eqs. (22), n;,
n,j, n Jk (ij,k = 1,2) can be written as

M1

M1+M

I112I112I1I2I1I2 I1 I2 I1 f2 I1 I2 I1 I (a)

J 1J1I2 I1 I1 f 2 I1 I1 I2 fl I1 f2 f1 I1 I2 f (b)

FIG. 2. Periodical heterogeneous linear chains: (a) al-
ternating sites; (b) alternating pairs 1-1 and sites 2.

n ~~
———g (m —1)F~(m)

N

d=n, ——QF~(m)=n&—
M1
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and so on. Substituting Eqs. (26) into Eqs. (22), one

gets the kinetic equations governing the desorption
process.

Extension of the above formulation to two-
dimensional lattices is difficult because in order to
characterize patches one must specify not only their
size, but also their form, and then the problem be-
comes impracticable because the number of possi-
bilities is enormous. However, if one introduces re-
strictions on the patch forms or knows the distribu-
tion of clusters involving a site and its nearest
neighbors, for instance, the cluster

for square lattices, it is possible to treat the problem
in the same way as for the linear chain, although
calculations become cumbersome.

IV. RESULTS AND DISCUSSION

To analyze the way in which lateral interaction
and substrate heterogeneity influence the rate
desorption, we have carried out numerical calcula-
tions for several specific cases. 'We have assumed a
temperature-programmed desorption and a linear
relationship between temperature T and time t, i.e.,
T= Tp+ut where u is a constant. We have taken
A/a=5&(10 K

Firstly, we consider a homogeneous chain [Eq.
(13)] with attractive, zero, and repulsive lateral in-

teraction energy. The results are shown in Fig. 3.
The effect of lateral interaction on the curve
dB/dT vs T is clear. Repulsive interaction energy
results in the desorption starting at a lower tern-

0.04

perature while occurring more smoothly (i.e., the
curve dB/dT vs T exhibits a less sharp maximum)

than when interaction does not exist. On the con-

trary, attractive interaction energy results in the
desorption starting at a higher temperature while

occurring in a temperature range more narrow than
in the above cases, and the curve d 8/dT vs T exhi-

bits a very sharp maximum. Similar results are
again shown in Fig. 4, where we present the curve
dB/dT vs T for a heterogeneous chain, where two

types of sites 1 and 2 are considered, with

n~ =nz ——0.5, and distributed randomly (n,z n;nz-—,
nj~ n;nj——n~) Het. erogeneity yields two maxima in

the curve dB/dT vs T, the maximum at low tem-

perature being the sharpest.
Results more interesting than the above ones are

obtained when we analyze the influence that the
heterogeneity distribution on the chain exerts on the
curve de/dT vs T. In Figs. 5 and 6 we show re-
sults obtained for a chain with two types of sites,
with n~ n2 ——0—.—5, for four different site distribu-

tions: (a) Regular or periodical chain, like the chain
shown in Fig. 2 (a); (b) random site distribution,
with n;J =n;n, and n;Jq n;n~nq,

' (——c) patchwise site
distribution, where we assume that the patch size is
governed by a Poisson distribution with average size
fixed (for the calculations this average size has been

taken as equal to ten sites); (d) distribution in two
domains, each domain comprising the sites of type
1 or of type 2, respectively. In Fig. 5 results for at-
tractive lateral interaction are shown. The curve
dB/dT vs T exhibits only one maximum for case
(a) and two maxima for the others. The difference
between the temperatures corresponding to maxima
of dB/dT and the sharpness of these maxima in-

creases as the number of pairs 1 —2, n ~2, decreases,
case (d) being the extreme case. In Fig. 6 results for
repulsive lateral interaction are plotted. Now the

0.0 2

0.02

0.04
h~=h2=70kJ rnoI

——(K &)

(IT

0.01

O.P 2

300 400
T(K)

400

T(K)

FIG. 3. Desorption rate vs temperature for a homo-

geneous chain: (a) hp ———5 kJmol; (b) hp=0 (c) hp=5
kJ mol

FIG. 4. Desorption rate vs temperature for a random
heterogeneous linear chain, with nj ——n2 ——0.5, h~ ——60
kJmol ', h2 ——70 kJmol ', and: (a) hp ———5 kJmol
(b) h =0; (c) h =5kJmol
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0.02

(K 1)
~e

dT

0.01

&00 500
T(K)

FIG. 5. Desorption rate vs temperature for a hetero-

geneous linear chain with n1 ——n2 ——0.5 and h] ——60
kJmol ', h2 ——70 kJmol ', h0 ——5 kJmol '. (a) periodi-
cal chain; (b) random chain; (c) patches with average size
equal to ten sites; (d) distribution in two domains, each
domain comprising the sites of type 1 or of type 2,
respectively.

toms coexist, the desorption curve d8ldT vs T de-
pends strongly on the type and fraction of adsor-
bent sites and also on the distribution of these sites
on the chain (periodically, patches with different
sizes, etc.). This fact makes it clear that lateral in-
teraction can soften or strengthen substrate hetero-
geneities and accordingly, in order to clarify
adsorption-desorption mechanisms, we recognize
the need for characterizing the substrate hetero-
geneity distribution in the most accurate way possi-
ble, independently of lateral interaction between
adatoms.

APPENDIX

We can extend the equations in Sec. II to the case
of n different types of sites, n; being the fraction of
sites of type i on the chain. Equations (11) and (12)
become

results are inverted with regard to the above ones.
In fact, the maxima are the sharpest and the most
distant for case (a) and succesively sharp and dis-
tant for case (b). For cases (c) and (d) the difference
between the values of the maxima is small and the
central part of the curve d8/dT is very smooth and
nearly flat. For case (d) the maximum at high tem-

perature is slightly higher than the maximum at
low temperature. By comparison of Fig. 5 and 6, it
can also be seen that for repulsive lateral interaction
desorption occurs within a larger temperature range
with maxima less sharp than for attractive lateral
interactions, as we have indicated above.

In conclusion, we can remark that when substrate
heterogeneity and lateral interaction between ada-

= —A;e ' 6;
dt

x[1+(e ' ' —l)8]',

l=1, . . . , n

d6 " —h,./k T

dt

X [1+(e ' —1)8]

and then

)riexp( gilkiiT)

(Al)

(A2)

(A3)

(A4)

0.02

(l6
d=l (K "1)

0.01

d6
dt

—
hg /k~ T&Ane

E l

)riexp( —g,./k& T)

300 400
T(K)

x[1+(e ' ' —1)8]', (AS)

FIG. 6. Desorption rate vs temperature for a hetero-
geneous linear chain with n ~

——n2 ——0.5 and h 1
——60

kJmol ', h2 ——70 kJmol ', h0 ———5 kJmol ': (a)
Periodical chain; (b) random chain; (c) patches with aver-
age size equal to ten sites; (d) distribution in two domains,
each domain comprising the sites of type 1 or of type 2,
respectively.

where r; =A;/A~ and g;=h; —h~.
If instead of a discrete distribution of types of

sites, we consider a continuous distribution so that
f(h)dh is the fraction of sites with energy
comprised between h&+h and h &+h+dh, the sums
on the right-hand side of Eqs. (A4) and (AS) must
be substituted by the corresponding integrals
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(A6) In this case, we obtain

de A(h)e
—(h i+h)/kBT —nM/k~ T

kgT ~ (e —1)ln"(8i/n i )8=1-
M nn!

X[1+(e ' —1)8]' . (A7)

To solve Eqs. (A6) and (A7) one needs to know

A(h) and f(h). So in the case described by Eqs.
(A4) and (AS} as in the case described by Eqs. (A6)
and (A7), it is not possible to find an exact solution.
Indeed, even for the most simplified cases, the re-

sulting equations require a numerical solution. To
illustrate the difficulties appearing in this problem,
we consider the following continuous cases:
A(h)=A =const, i.e., r =1, and

0, h(0
f(h}= M ', 0&h &M

0, h)M.

(A8)

de
dt

Ae
hi/kg T

B

M ln(8i/n i )

n)

X[1+(e ' ' —l)8]'. (A9)

Because e~/n~ cannot be eliminated between Eq.
(AS) and Eq. (A9}, we must start from

d(8i/n i ) — h kire8Ti holkeT-= —Ae ' 1+(e —1) 1—
dt n~

—nM/k~ T
AT ~ e ln "(8i/ni)
M nn!

In"(8 i /n i )

nn!

(A10)

Then we obtain the value of 8i/n i at time t, truncating the series involved in Eq. (A10) in an order depending
on the required accuracy. After we have found 8i/n i, we can substitute it into Eq. (A8) and get the value of
8 at time t.
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