# Kinetics of Glucose Decomposition during Dilute Acid Hydrolysis of Lignocellulosic Biomass

#### **Qian Xiang**

**Energy Research Center, UTPB 4901 E. University Blvd., TX 79762** 

Y.Y. Lee

Department of Chemical Engineering Auburn University, AL 36849

Robert W. Torget

National Bioenergy Center, NREL Golden, CO 80401

#### Introduction

- Recent advancement on dilute acid hydrolysis of biomass:
  - 1. development of various reactor configurations;
  - 2. development in kinetic investigation, especially from exploration of a broader range of reaction conditions
- Extremely low concentration of acid (e.g. 0.05-0.2 wt% sulfuric acid) and high temperature (e.g. 200 - 230oC) is a range of reaction conditions to effectively hydrolyze biomass. But the kinetic data are not currently available
- Objectives of this study:
  - 1. investigate glucose decomposition kinetics
  - 2. provide kinetic parameters for mathematical calculation
  - 3. explain the discrepancy of glucose yield predicted by conventional hydrolysis kinetics for percolation reactors

### **Decomposition Profile and Products**



Profile of glucose decomposition and formation of decomposition products (0.125 M Glucose, 200 oC, pH 1.8, and glass ampoule reactor)

- Experiments conducted under various pH and temperature conditions
- First order kinetics is applicable
- Trend line does not trace back to origin
- Other Products include:
  - Fructose
  - Cellubiose
  - Acetic Acid
  - Humic Solid (Solid Precipitate)
  - Gaseous Products

## pH vs. Decomposition Rate



Profiles and trend lines of glucose decomposition under different pH medium and 200°C temperature conditions.

- Reaction rate under pH2.2 is almost identical as pH 7 and rate constant does not change much within pH 2.2-7
- Conventional kinetic theory cannot explain the observations
- Solvent factor are the dominant effect within pH2.2-7, and both acid factor and base factor play secondary role.

#### **Kinetic Model and Parameters**

■ Arrhenius equation and acid-base catalysis general rules can be applied to glucose decomposition:

$$K_v = [K_{H_2O} + K_{H^+}(H^+) + K_{OH^-}(OH^-)] \exp[-E/(RT)]$$
 (1)

■ Use SAS regression and ignore the OH- item under acidic condition:

$$k^{Glu} = [2.132 \times 10^{13} + 2.148 \times 10^{15} \times (10^{-pH})] \times \exp[-139000/(RT)]$$
 (2)

- ☐ This kinetic model can accurately predict the first order rate constant under acidic conditions, especially in the range of extremely low acid (ELA) concentration (e.g. 1.5-2.2 of pH)
- ☐ Conventional kinetic model cannot predict the rate constant under ELA conditions due to its ignorance of solvent factor.

## **Comparison of Modeling Results**



#### **Medium Effect on Glucose Degradation**



Glucose decomposition under different medium and condition of pH=2.0 and temperature=200°C. Pre-hydrolysate liquor contains acid soluble lignin.

#### **Metal Effect on Glucose Degradation**



Glucose decomposition in presence of different metals and under pH=2.0 and temperature=200°C. This study simulates the actual glucose decomposition under acid hydrolysis process

#### **Observations of above Medium Effects**

- Glucose decomposition rate may change dramatically in the medium of actual acid hydrolysis process
- Glucose undergoes faster dissapearance in prehydrolyzed liquor than in pure acidic medium because of possible ligninglucose re-combination:

Glucose/Oligomer + ASL -> ASL-Glucose or ASL-Oligomer

- Metal presence in prehydrolyzed medium will further affect the rate of glucose disappearance:
  - Copper (Gu) has very little effect
  - Stainless Steal (S.S.) has large effect on glucose and disappearance rate is obviously fasten
    - \* The S.S. cap on a Hastelloy bomb reactor can cause 30% more degradation than glass ampoule reactor
  - Iron (Fe) has strongest impact on glucose decomposition.

#### **Additional Proof for Lignin recombination**



UP: Comparison between batch and flowthrough reactor (R. Torget, 1998). Pretreated yellow poplar (with lignin and xylan free) hydrolysis kinetics at 225 oC, pH 2.2.

Down: Comparison between batch and flowthrough reactor (This work). Hydrolysis Kinetics at 205oC, pH 2.2 with a-cellulose (no lignin content)..

- Hydrolysis rates are identical for batch and flow-through reactors with no lignin but 2-3 times different when acid-soluble lignin (ASL) presence.
- ASL may slow down the hydrolysis rate due to the recombination with cellulose or oligomers at reducing end.

# **Conclusions (I)**

- For acid concentration less than 0.1% (pH>2.0) and at temperatures above 200°C, the rate of glucose decomposition is relatively constant.
- The kinetic pattern for glucose decomposition are affected by pH, temperature and reaction medium. Acid-base catalysis general rules are applicable and the general mathematical model is obtained to predict the glucose degradation under acidic conditions
- Glucose decomposition is faster in mediums containing pre-hydrolysate liquor, but slower if the presence of ethanol in this liquor.

# **Conclusions (II)**

- Glucose in lignocellulosic hydrolysates with lignin also decomposes faster than glucose in  $\alpha$ -cellulose hydrolyzates
- Above findings plus the fact that ethanol has higher affinity with lignin than glucose collectively indicate that glucose reacts with ASL.
- Further proof is the comparison of biomass hydrolysis rate between batch and flow-through reactors with or without presence of lignin. Flow-through mode can improve hydrolysis rate by prompt removal of lignin-contained hydrolysate, but will not affect the hydrolysis rate where non lignin is presented.

# **Acknowledgments**

We gratefully acknowledge the Financial support provided by:

- DOE (DE-FC36-01GO11072)
- NREL (Subcontract-ACO-1-31003-01).