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The kinetic model for change of phases developed by M. Avrami at the end of the thirties
has been used to describe the temporal behavior of phase changes. Until today this model is
studied and adapted to include broader hypotheses. However, the mathematical format pre-
sented by M. Avrami is difficult to be understood by beginners. The purpose of this work is to
clarify the mathematical treatment of Avrami’s work, going straightforward to the arguments
that led to his main results.
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1. Introduction

Sixty years has passed since a theory about the kinetic
of the phase change was proposed by Melvin Avrami at the
end of the thirties1,2. Despite of all this elapsed time, it is
still used to describe the nucleation and growth of new
phases3-8 and new improvements have been suggested to
make its hypothesis as broad and flexible as possible9-13.

Avrami’s model assumes that the system subjected to
the phase change is composed by germs of the new phase.
These germs are transitory molecule arranges randomly
distributed that are similar to those existent in the new
forming phase. According to the statistical fluctuation,
these arrangements form and disappear, but some remain
in latent state without growing. When, for some reason, the
phase change begins, some of these primordial germs start
growing, reaching a critical size and become stable. From
this point on, they are called grains of the new phase. They
will suffer an expansion process, at which the number of
essential germs decreases with time. This decrease occurs
by two mechanisms: germ transforms into grains, or grow-
ing grains swallow some of the existent germs. Avrami
developed his theory making these physical assumptions
and doing a mathematical treatment, which considers the
functional relation between the number of germs and the
volume of the new growing phase.

The goal of this work is to clarify the mathematical
arguments used by Avrami in his original papers, going

directly to the arguments that lead us into the main results
of his theory.

2. Germs, Grains and Transformed Volume

In this section the notation and the basic principles of
Avrami’s model will be established.

Consider a metastable material that starts changing
phase at some moment. Let N0 be the number of essential
germs of the new phase per unit volume at the beginning of
the phase change process. Germs form and disappear but it
can be supposed that their density remains constant during
the phase change process.

Two mechanisms can be considered to explain the
temporal variation of the number of germs. In the first one,
germs start growing and become grains of the new phase.
In the second one, germs are swallowed by the growing
grains, which occupy the places before occupied by the
swallowed germs. In the following paragraphs the kinetic
of these two mechanisms will be described.

For the first mechanism, let N = N(t) be the number of
germs for the new phase per unit volume at the instant t
Suppose uniform distribution of the germs in the entire
volume of the previous phase. At the initial time, N(0) = N0.
Let N’ = N’(T) be the number of grains of the new phase,
at the instant t per unit volume. The probability n of a germ
to transform into grain, per unit of time, is given by the
equation14-19
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n = n(T) = Ke
−

[Q + A(T)]
RT

Here, Q is the activation energy per mol, T is the
absolute temperature, R is the universal constant of the
gases, and A(T) is the necessary work to form a mol of grain
at the temperature T. Therefore, the variation of the number
of germs that transform into grain per unit volume at the
time period dt is given by

dN’ = nN dt

For the second mechanism, the variation in the number
of germs is due to the new phase growth that, by expansion,
swallows the germs and occupies the places before occu-
pied by the swallowed germs. Let N” = N”(t) be the number
of swallowed germs per unit volume at the instant t. The
variation of the number of swallowed germs per unit vol-
ume at the time period dt is given by

dN’’ = N0 dV

here, dV is the volume variation per unit volume of the new
phase during the time period dt. However, this is an roughly
estimated relation, which is applied when the number of
grains is small in relation to the number of germs. In a future
section we will present the exact relation for the swallowed
germs.

The variation of the number of germs per unit volume
at the time period is given by

dN = − dN’ − dN’’

The negative sign is justified by the fact that an increase
of N’ and N” produces a decrease of N. Therefore, the
derivatives of N, N’ and N”, per unit volume at the instant
t are

dN
dt

= − dN’
dt

− dN’’
dt

(1)

dN’
dt

= nN (2)

dN’’
dt

= N0
dV
dt

(3)

One important particular case for the Eq. 1 happens
when n is so big that almost all germs transform into grains
before any ingestion has the chance to occur. In this case,
the term dN”/dt can be ignored in comparison with the term
dN’/dt and Eq. 1 reduces to

dN
dt

= − dN’
dt

= − nN (4)

If the temperature and the essential germ concentration
remain constant, n can be considered constant during the
entire process and, under these conditions, Eq. 4 becomes

a separable differential equation. Dividing (4) by N it
follows

1
N

dN
dt

= −n

or

d
dt

[lnN(t)] = −n

Integrating it from the initial time to the time t,

lnN(t) − lnN(0) = −nt

or

ln [
N(t)
N0

] = −nt

and, explicitting N(t),

N(t) = N0 e−nt (5)

Taking the above equation to Eq. (4), and integrating it,
follows

N’ = ∫ nN(t)
0

t

dt = ∫ nN0
0

t

e−nt dt = nN0 ∫
0

t

e−nt dt

or

N’ = N0 (1 − e−nt)

where N’ → N0 when t → ∞. Figure 1 shows the curves for

N’ = N0 (1 − e−nt)

with n = 1, 2, and 5 and N0 = 1.

3. Characteristic Time Scale

Going back to the general case, to simplify Eqs. 1, 2 and
3, another time scale τ = τ(t) defined by
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Figure 1. Curves for N’ = N0 (1 − e−nt), with n = 1, 2, and 5 and N0 = 1.

The continuous line corresponds to n = 5, the dashed line to n = 2 and the
dotted line to n = 1.



τ = ∫ n(t) dt
0

t

will be used. Its derivation in the variable t produces

dτ
dt

(t) = n(t) (6)

The relation between the time scale t and τ will be
uniform only if n is constant during the entire process. This
new time scale is called characteristic time scale. From this
point on, unless opposite mention, the characteristic time τ
will be used. As n > 0 the derivative dτ/dt = n will be
positive, assuring that τ = τ(t) is strictly increasing having,
in this way, an inverse t = t(τ) The derivative of this inverse
is

dt
dτ

= 1
n

Substituting Eqs.(2) and (3) in Eq. (1), the following is
obtained:

dN
dt

= − dN’
dt

− dN’’
dt

= − nN − N0
dV
dt

and, changing it to the variable τ,

n
dN
dτ

= − nN − N0
dV
dτ

or

dN
dτ

+ N + N0
dV
dτ

= 0

Integrating the above equation from 0 to τ, follows

N(τ) − N(0) + ∫ N(τ) dτ
0

τ
+ N0[ V(τ) − V(0) ] = 0

and, since N(0) = N0 and V(0) = 0,

N(τ) − N0 + ∫ N(τ) dτ
0

τ
+ N0V(τ) = 0 (7)

To solve this integral equation, it is necessary to obtain
the functional relation V(τ), which is a composite function
similar to ϕ(t(τ)) that can be rewritten as

ϕ (τ) = ϕ(t (τ)) = ϕ(t)

when t = t (τ). The chain rule applied to this function can
be written in the following way

dϕ
dt

=
dϕ
dτ

dτ
dt

=
dϕ
dτ

n = n
dϕ
dτ

(8)

Applying the Chain rule (8) to Eq. (2), follows

dN’
dτ

= N (9)

which can be integrated. As N’(0) = 0, this integration
results in

N’(τ) = ∫ N(τ) dτ
0

τ
(10)

Equation (7) is valid only during the time that there are
germs to be consumed or to be transformed into grains. Let
t = t or τ = τ be the instant in which all germs were
consumed. From this time on, the number of grains remain
constant. While the numbers N and N’ and remain constant,
the volume of the new phase keeps growing.

4. Exact Relationship for the Swallowed
Germs

In this section we will improve the description for the
N’(t) behavior.

We must observe that Eq. (3) is valid when the number
of grains is small in comparison with the number of germs.
Otherwise, the density found by the new phase progressive
front is N/(1 - V) where (1 - V) is the volume fraction per
unit volume that was not transformed. Thus, when the
number of grains is not small compared with the number of
germs, Eq. 3 must be substituted by

dN’’ = N
1 − V

dV (11)

which taken to Eq. (1) gives

dN
dt

= −nN − N
1 − V

dV
dt

or, in the τ variable

n
dN
dτ

= −nN − nN
1 − V

dV
dτ

Dividing the above equation by nN follows

1
N

dN
dτ

= −1 − 1
1 − V

dV
dτ

or

d
dτ

(lnN) = −1 + d
dτ

ln(1 − V)

whose integral from 0 to τ leads to

lnN − lnN0 = −τ + ln(1 − V)

that can be solved in the variable N producing

N = N0e−τ [1 − V(τ)] (12)
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Substituting Eq. (12) in (10) results into

N’(τ) = N0 ∫ e−z [1 − V(z)] dz
0

τ
(13)

According to Eq. (12), N decreases asymptotically to
zero but doesn’t vanish. However, experiments show that
at certain instant τ the germs exhaust. To describe this
experimental fact, it must be observed that Eq. (13) is valid
only until the instant τ. In order to have agreement between
experimental results and theory, it is necessary to attribute
a defined value to τ for small values of N. We can arbitrarily
make τ equal to the instant in which N = 1 and take this
value to Eq. (12), which follows

N = 1 = N0e−τ
_

[ 1 − V( τ
_

) ]

This is a transcendental equation defining τ
For τ bigger than τ, N is practically null, while N’

remains constant with values given by Eq. 13

N’(τ) = N’(τ
_
) = N0 ∫ e−z [1 − V(z)] dz

0

τ
_

5. Extended Volume

In this section, to obtain the functional relation V[N(τ)]
between the transformed volume and the number of grains,
it is developed the concepts of averaged radius and volume
of the grain. From these concepts the extended volume of
the new phase is obtained. This relation is necessary in
order to integrate Eq. (7).

Not all grains start growing at the same instant. When
a grain touches another one, there is an interruption in its
growth at the interface. The volume that a grain would have
if its growth were not interrupted by the contact with
another grain is called extended volume. The grain that was
born at instant z has, at the moment τ, an extended volume
represented by vex(τ, z). Both instants are referred to the
characteristic time scale.

Generally, the grains are not perfectly spherical. There-
fore, when one refers to the radius r of a grain, in fact, we
are referring to the averaged radius of the grains. The radius
that a grain would have if there were not contact among the
grains is called extended averaged radius. Let G(t) be the
averaged rate of growth of a grain. At an instant t the
extended averaged radius of a grain, which was born at the
instant t = y is given by

rex(t, y) = ∫ G(t’)
y

t

dt’

In the characteristic time scale, this extended radius of
the averaged grain is

rex(τ, z) = ∫ G(t’)
y

t

dt’ = ∫ G(
z

τ
τ’) dt’

dτ’
dτ’ = ∫ G(τ’)

n(τ’)z

τ
dτ’

or

rex(τ, z) = ∫ α
z

τ
(τ’) dτ’ (14)

where

α(τ’) =
G(τ’)
n(τ’)

Here, τ = z is the instant that a grain appeared. The
extended volume of the grain is

vex(τ, z) = σ r3 = σ[ ∫ α
0

τ
dτ’ ]3 (15)

where σ is a shape factor, equal to 4π/3 for spherical grains.
Let dN’(z) be the variation of the number of germs that

transform into grains between the instants τ = z and τ = z +
dz. According to Eq. 9, dN’(z) = N(z)dz. If the volume of
each grain were added, supposing that the growing of each
grain is not hinder by other grains, we obtain the total
extended volume per unit volume at the instant τ

Vex (τ) = ∫ v
0

τ
(τ, z) dN’

dz
(z) dz = ∫ v

0

τ
(τ, z) N (z) dz (16)

6. Characteristic Phenomena at the
Isokinetic Phase

The factors that control n must control G and it might
be expected similarities between the variation of these
parameters with the external conditions. Keeping this in
mind, one can infer that n and G are approximately propor-
tional at a large range of concentration and temperature.
This range will be called isokinetic range. If one admit that
the relation

α = G
n

is constant for a given substance at the isokinetic range,
from Eqs. (14) and (15) we obtain

r = α (τ − z) (17)

vex(τ, z) = σ α3 (τ − z)3 (18)

and from Eq. (16),

Vex = ∫ vex
0

τ
(τ, z) N(z) dz = ∫ σ

0

τ
α3 N(z) dz =

σ α3 ∫ (
0

τ
τ − z)3 N(z) dz (19)
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If α is independent of the temperature and concentration
at the isokinetic range, the transformation story and the
kinetic description of the process at the time scale τ will
also be independent of the temperature and concentration.
Therefore, for a given substance, there is an isokinetic range
of temperature and concentration, at which the charac-
teristic kinetic of a phase change remains unaltered at the
characteristic time scale. Thus, to establish the kinetics of
a reaction in a concentration and temperature range at the
isokinetic range, it is enough to solve just one problem at
the time scale τ.

Equations (15), (18) and (19) apply to pseudo-spherical
or polyhedral grain growth. If the grain grows along two or
one dimension (plate or needle like), Eq. (19) must be
substituted by

Vex = σ’ α2 ∫ (
0

τ
τ − z)2 N(z) dz (20)

and

Vex = σ’’ α ∫ (
0

r

τ − z) N(z) dz (21)

where σ’ = π and σ” = 1. Equation (19) applies only to
isokinetic domains, i.e., in the situations that α = G/n is
constant.

7. Evolution of the Extended Volume
In this section Avrami’s main argument is developed.
Let z be the instant in which the grain appears and τ the

actual time of the phase change, both in the characteristic
time scale. Consider a grain, selected arbitrarily, and let
v’ = v’(τ, z) be the volume part of this grain that is not
superimposed to other grains and vex = vex(τ, z) be the
extended volume of this grain, i.e., the volume that it would
have if its growth were not obstructed due to the contact
with other grains. If this grain were taken off from its place,
leaving behind the overlapped parts, v’ would be the frac-
tion matter not transformed, which during the phase change
contributed exclusively for this grain growth. Therefore,
v’/vex is equal to the volume fraction of matter that remains
in the old phase. Remembering that 1 - V(τ) is the volume
fraction that was not transformed, it follows that, on aver-
age,

v’
vex

= 1 − V (22)

Another way to justify this equation is the following: If,
for example, 30% of the initial volume is transformed, it
follows that (1 - V) = (1 - 0,3) = 0.7. Analyzing a grain in
this medium, on average, 30% of it will be superimposed
to other grains. Since vex is the extended volume of the

grain, the part v’ that is not superimposed to other grains
must be equal to 70% of the extended volume and v’/vex

must be equal to 0.7. Figure 2 depicts a grain with extended
volume vex and its part with volume v’.

Admitting grains randomly distributed, Eq. (22) can be
used as an average. However, the grains are randomly
distributed only in the region that was not transformed. In
the transformed region, there are only grains of the new
phase and all germs were swallowed. Therefore, the as-
sumption that the grains are randomly distributed is true
only for grains that, at the time z of its appearance, were
outside of the transformed volume V(z). There are two ways
to overcome this situation and obtain the same final result.

The first way to overcame the situation mentioned
above is to consider all germs, including those that, at the
instant z, are located inside of the grains, which will be
called ghost germs. The number of these germs, in the
characteristic time scale, is given by Eq. (5)

N(z) = N0 e−z

In this case, the random situation can be reestablished
if we associate ghost grains to those germs that would be
transformed into grains if they had not been absorbed by
the other grains that grew up. During the time interval from
z to (z + dz), the variation of the number of new grains per
unit volume, including the ghost grains, is dN’(z) = N(z)dz,

where N(z) = N0e-z. If vex(τ, z) is the extended volume of

one grain, at the instant τ



Vex(τ) = ∫ vex
0

τ
(τ, z) dN’ (z) = ∫ vex

0

τ
(τ, z) N (z) dz =

N0 ∫ e−z

0

τ
vex (τ , z) dz (23)

Consider the following property of real numbers: if

x1

y1
= x2

y2
= … = xk

yk
= L

then

x1 + x2 + … + xk

y1 + y2 + … + y3
= L

Taking into account this property, and adding the nu-
merators and denominators of Eq. (22) over all grains, we
obtain

V’
Vex

= 1 − V

where V’ is the overall grain addition of v’ while Vex is the
overall grain addition of vex

From the above equation and Eq. (23),

V’
1 − V

= Vex = N0∫ e−z vex (τ, z) dz
0

τ
(24)

The second way to arrive at the above result is to assume
random distribution of the germs only in the volume 1 - V(z)
that was not transformed at the instant z, and consider that
the number of germs in this region is expressed by Eq. (12)

N = N0 e−z [1 − V(z)]

In this case, when ghost grains are not considered, the
Vex value is still given by

∫ vex (τ, z) dN’ (z)
0

τ
= ∫ vex (τ, z) N (z) dz

0

τ

At the instant z, the volume that was not transformed is
1 - V(z) The germs that started growing at z were randomly
distributed in this volume. At the instant τ the volume in
the old phase is 1 - V(τ). The ratio

1 − V(τ)
1 − V(z)

is the fraction of volume that was not transformed at the
instant τ in relation to the volume that was not transformed
at the instant z. Since the ghost grains are not considered in
this case, one can consider that z is the initial instant of the
transformation and that the initial volume of the material
that did not suffer any change is 1 - V(z). Like before, in
average, the ratio between v’ and vex is equal to the

volumetric fraction of matter that was not transformed.
Now, this fraction is equal to [1 - V(τ)]/[1 - V(z)] and,
therefore,

v’
vex

=
1 − V(τ)
1 − V(z)

or

v’
1 − V(τ)

= vex

1 − V(z)

Multiplying both sides of this equation by the number
of grains dN’(z) = N(z)dz formed during the time interval
dz, follows

v’(τ, z) N(z) dz

1 − V(τ)
=

vex (τ, z) N(z) dz

1 − V(z)

or using Eq. (12)

v’(τ , z) N(z)
1 − V(τ)

dz =
vex(τ , z) N0e−z [1 − V(z)]

[1 − V(z)]
dz

which integrated from 0 to τ gives

1
1 − V(τ)

= ∫ v’
0

τ
(τ, z) N(z) dz = ∫ N0

0

τ
e−z vex(τ, z) dz

But, ∫ v’
0

τ
(τ, z) N(z) dz is exactly V’(τ) and hence,

V’(τ)
1 − V(τ)

= N0 ∫ e−z

0

τ
vex(τ, z) dz

which coincides precisely with Eq. (24).
When the new phase is composed of thin grains, the

grains superimpose very little and we can assume that
V(τ) = V’(τ) which combined with Eq. (24) gives

V(τ)
1 − V(τ)

Vex(τ) = N0 ∫ e−z

0

τ
vex(τ, z) dz (25)

Under isothermal conditions and uniform concentra-
tions, n can be considered constant. Considering polyhedral
growth, at the time scale t the extended radius rex of grains
that appeared at the instant y is proportional to t - y. That is
rex = G(t - y), where the constant of proportionality G is the
radial growth rate. In the characteristic time scale, τ = nt
and z = ny thus, rex = (G/n)(τ - z) = α(τ - z), with α = G/n.
Therefore,

vex (τ, z) = σα3(τ - z)3

where σ = 4π/3 for spherical grains. From Eq. (25),
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Vex = σ α3 N0 ∫ (
0

τ
τ − z)3 e−z dz =

6σG3 N0

n
[ e−τ − 1 + τ −

τ2

2!
+

τ3

3!
]

or

Vex = βE3(−τ) (26)

with

β = 8πN0 (G
n

)3 (27)

and

Em(−τ) = 1
m! ∫ (

0

τ
τ − z)m e−z dz =

(−1)m+1 [ e−τ − 1 + τ −
τ2

2!
+ … + (−1)m + 1 τm

m!
]

When τ << 1 one obtains

e−τ ~ 1 − τ + τ2

2!
− τ3

3!
+ … + (−1)m τm

m!
+

(−1)m+1 τm+1

(m+1)!

Thatway,

e−τ − 1 + τ −
τ2

2!
+

τ3

3!
− … − (−1)m τm

m!
~

(−1)m+1 τm+1

(m+1)!

and, therefore,

Em(−τ) ~ τm + 1

(m + 1)!
for τ << 1 (28)

When τ >> 1, the e-τ value becomes very small, i.e., this
value is much smaller than any entire power of τ. In this
case, who dictates the asymptotic behavior is the biggest τ
power and hence

Em(−τ) ~ τm

m!
for τ >> 1 (29)

Using the Eqs. (28) and (29) asymptotic developments
in Eq. (26), one obtain

Vex = β E3 (−τ) ≈ βτ4

4!
= (

π G3 N0 n
3

) t4

when τ << 1 and

Vex = β E3 (−τ) ~ βτ3

3!
= (

4 π G3 N0

3
) t3

when τ >> 1.
Both of the equations have the Btk format, with B and k

constants. Substituting these equations in Eq. (25), follows

V(t)
1 − V(t)

= Btk (30)

which is the empirical expression obtained by J.B. Austin
and R.L. Rickett20 for the isothermal transformation of
super-cooled austenite into bainite.

Equation (26) is valid until total germs consumption,
which occurs at the instant τ. From this instant on, the
superior limit of the integral must be substituted by τ. In
this case Eq. (26) transforms into

Vex =
β
3! ∫ (

0

τ
_

τ − z)3 e−z dz

Although germs do not exist anymore, the grains keep
growing. This explains the appearance of τ and τ in this

integral. Applying the property ∫
0

τ
_

= ∫
0

τ
− ∫

τ
_

τ
to the above

equation, one obtain

Vex =
β
3!

[ ∫ (
0

τ
τ − z)3 e−z dz − ∫ (

τ
_

τ
τ − z)3 e−z dz ]

and making x = z - τ,

Vex =
β
3!

[ ∫ (
0

τ
τ − z)3 e−z dz −

∫ (
0

τ − τ
_

τ − τ
_

− x)3 e−x − τ
_

dx ] =
β
3!

[ ∫ (
0

τ
τ − z)3 e−z dz −

e−τ
_

∫ (
0

τ − τ
_

τ − τ
_

− x)3 e−x dx ]

From the E3(-τ) definition, one can write

Vex = β [ E3(−τ) − e−τ
_

E3 (− (τ − τ
_
)) ]

In order to obtain the needle and planar growth expres-
sion, it is enough substitute E3 for E1 and E2 and β will be
now N0(G/n) and 2πN0(G/n)2, respectively. Defining

E3(-τ) for polyhedral growth

E (τ) = E2(-τ) for planar growth

E1(-τ) for linear growth

it is possible to unify the previous expressions and write,
for the three growth types,

Vex = β [ E(τ) − e−τ
_

E (τ − τ
_
) ] (31)
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8. Relation between Real and Extended
Volume

Applying the same logic used in the previous section to
the volume increment of only one grain in a small time
interval, one obtain for the averaged grain

dv’
dvex

= 1 − V

Figure 3 depicts the meaning of the differential volumes
dv’ and dvex. Here, as we are dealing with infinitesimal
increments, dv’ = dv. Multiplying and dividing the previous
ratio by the number of grains per volume, we obtain

dV
dVex

= 1 − V (32)

which is a separable differential equation. Rearranging this
equation and integrating it, it comes

ln(1 − V) − ln C = −Vex

or

1 − V = C e−Vex

where C is the integration constant. Considering that Vex =
0 when V = 0, we get C = 1 so that

V = 1 − e−Vex (33)

This is the fundamental relation, applicable to every
case in which there is a randomly thin grain distribution.
This deduction was made independently of isothermal or
isokinetic assumptions. Using Eq. (33) into Eqs. (12) and
(13), we obtain

N = N0 e− (τ + Vex) (34)

N’ = N0∫ e− z − Vex(z)

0

τ
dz (35)

9. Isokinetic domain transformation

The phase change kinetics is totally determined by Eqs.
(33), (34) and (35). For the isokinetic case, Vex is given by
Eq. (26), which applied to Eqs. (33), (34) and (35), produces

V(τ) = 1 − e−β E(τ) (36)

N(τ) = N0 e[− (τ + β E(τ)) ] (37)

N’(τ) = N0 ∫ e[−(z + β E(z))]

0

τ
dz (38)

remembering that E(τ) = Em(-τ).
Equation (37) shows that the number of germs de-

creases exponentially, but never vanishes. However, it is
observed experimentally that they become equal to zero at
some time τ. This time is considered the one when N = 1
This unit value is negligible in comparison with the initial
particles number and can be considered the actual zero
point. Assuming N(τ) = 1 in Eq. (37), it follows

τ
_

+ β E(τ
_
) = lnN0 (39)

When τ > τ, the number of germs are exhausted. Using
Eq. (31) in Eqs. (33) and (38), one obtain

V(τ) = 1 − e[ −β(E(τ) − e−τ
_

E(τ − τ
_

) ] (40)

N’(τ) = N0∫ e [ −(z + β E(z)) ]

0

τ
_

dz (41)

10. Beginning of the Transformation

For polyhedral growth and τ << 1 from Eqs. (28) and
(36), one obtain

V ~ 1 − exp(−βτ4

4!
) ~ 1 − 1 +

βτ4

4!

or

V ~ β
4!

τ4 (42)

where β = 8πG3N0/n3 and τ = nt.
Taking into account that

exp{-[z + βE(z)]} ~ 1

when τ << 1, Eq. (38) reduces to

N’(τ) = N0∫ e− [ z + β E(z) ]

0

τ
dz ~ N0 ∫

0

τ
dz = N0τ (43)
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Figure 3. Infinitesinal volume increment of a grain during the process of

phase change. The ring around de disk, with volume dvex, is the result of
the growth of the grain during a small time interval. The black parts, with

volume dv’, are the one that is not superimposed to any other grain.



Equation (43) shows that, at the initial instants of the
transformation, the number of grains present is proportional
to the time, while Eq. (42) shows that the transformed
volume is proportional to t4.

Equation (42) shows that the transformation “begins”
when βτ4/4! is significantly different from zero. For usual
values of β, this occurs when τ is around 1. Let t = tb be the
instant at which the transformation starts. As τ = nt, we
obtain ntb = τb ≅ 1 or tb = 1/n. This result was empirically
obtained by H. Krainer21 in his experiments for the decom-
position of austenite in steels.

11. Temporal Evolution of the
Transformation

In this section we will be concerned with obtaining
relations valid during almost the entire isokinetic transfor-
mation.

From the expressions (36) and (40), valid for τ < τ and
τ ≥ τ, respectively, which we reproduce again:

V(τ) = 1 − exp(−β E(τ))

and

V(τ) = 1 − exp(−β [ E(τ) − exp(−τ
_

E(τ − τ
_
)) ])

one obtain the following estimations:
1. If N0 >> 1 (situation in which the germs do not

vanish) and n << 1 (case in which τ << 1 during almost the
entire transformation), Eq. (42) will be a good approxima-
tion during the entire transformation, and one obtain the
situation studied by Mehl-Johson22.

2. If N0 >> 1 (situation in which the germs do not
vanish) and n >> 1 (case in which τ >> 1 during almost the
entire transformation), Equations (36) and (29), give us

V ~ 1 − e−σ G
3

N0 t
3

(44)

3. If N0 is small (the number of germs become equal to
zero at the beginning of the transformation, so that τ << 1),
Eq. (39) together with the asymptotic development Eq.
(28), give us

lnN0 = τ
_

+ β E(τ
_
) ~ τ

_
+ β τ

_
− m+1

(m + 1)!
~ τ

_
(45)

where m = 1, 2, or 3, respectively, for needle, planar and
volumetric growing. As τ is small, τ > τ during almost the
entire transformation. In this way, almost the entire
transformation can be described by Eq. (40). The
asymptotic relation Eq. 29, valid for τ >> 1, gives

β E3(−τ) ~ τ3

3!
β = β n3 t3

6
(46)

Taking the asymptotic relations (45) and (46) to (40),
andconsider ingthat(τ - τ) is almost equal to τ since τ can
be considered small, follows

V(τ) ~ 1 − exp(β [E(τ) − exp(−ln N 0 E(τ) ) ] ) =

1 − exp(−β E(τ) (1 − 1
N0

)) ~

1 − exp(−
6 σ G3 N0

n
3

n3t 3

6
(1 − 1

N0
))

Here, the identity exp(-ln N0) = 1/N0 was used. After
simplifications,

V(τ) ~ 1 − exp(−σG3(N0 − 1)t3) (47)

which is very similar to Eq. (44). The occurrence of N0 - 1
instead of N0 as in Eq. (44), is due to the fact that the
ultimate germ per unit volume was neglected to deduce this
last equation.

Similar deductions can be done for phase changes with
planar and needle growth.

For planar growth,

V = 1 − exp(−σ’⁄3G2N0nt3) (48)

valid when n << 1 and

V = 1 − exp(−σ’G2N0t2) (49)

valid when n >> 1.
For needle growth,

V = 1 − exp(−σ’’⁄2GN0nt2) (50)

valid when n << 1 and

V = 1 − exp(−σ’’GN0t) (51)

valid when n >> 1
All the above expressions have the same format of the

Austin-Rickett20 formula

V = 1 − exp(−Btk) (52)

The τ value for certain level of transformation, for
example 25%, or 50% or 75%, is always the same for a big
range of temperature, concentration, etc. Using Eq. (36),
one obtain the ratio

E (τ0.75)
E (τ0.25)

=
ln(1 − V0.75)
ln(1 − V0.25)

=
ln(1 − 0.75)
ln(1 − 0.25)

= 4.82

From the asymptotic relations (28) and (29), it follows

Em(−τ0.75)
Em(−τ0.25)

~ (τ0.75

τ0.25
)

m+1
for τ << 1
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and

Em(−τ0.75)
Em(−τ0.25)

~ (τ0.75

τ0.25
)

m
for τ >> 1

where m = 1, 2, or 3 for needle, planar or volumetric
growing, respectively. From these relations it comes for
τ << 1,

τ0.75

τ0.25
= ( Em(−τ0.75)

Em(−τ0.25)
)

1⁄m+1 ≈ 4.82
1⁄m+1 (53)

and, for τ >> 1,

τ0.75

τ0.25

~ (
Em(−τ0.75)
Em(−τ0.25)

)
1⁄m ~ 4.82

1⁄m (53)

The asymptotic relations (53) and (54) furnish the ex-
treme values between which τ0.75/τ0.25 is situated. Making
m = 3, 2, and 1, the extreme values between which the ratio
τ0.75/τ0.25 is located, for polyhedral, planar and needle
growth are, respectively,

1.48 ≤ t0.75

t0.25
=

τ0.75

τ0.25
≤ 1.69

1.69 ≤ t0.75

t0.25
=

τ0.75

τ0.25
≤ 2.2

2.2 ≤ t0.75

t0.25
=

τ0.75

τ0.25
≤ 4.82

Here, the approximations (4.82)1/4 = 1.48, (4.82)1/3 = 1.69
and (4.82)1/2 = 2.2 were used.

Several experimental results fall inside the above inter-
vals23. Some discrepancies were observed and need to be
analyzed to obtain better understanding of the factors that
provoked these deviations.

12. Conclusion

The analysis done in this work shows, step by step, the
kinetic model proposed by M. Avrami to describe the
kinetics of phase change.

A different model to visualize de most important part
of Avrami’s arguments is proposed (Evolution of the ex-
tended volume), which we consider easier to understand
than the ones proposed before.

The final result of the model is the fundamental relation:

V = 1 − exp(−B tk)

which is applicable to every isokinetic and isothermal phase
change transformation. Fitting experimental results with

this expression, one determine the values of B and k for the
kinetic law of a phase change.

The model also makes possible to determine the dimen-
sion of the grain. This can be done utilizing the ratio
between two growth time. For example, take the spent time
to 75% of a new phase grow in relation to the one necessary
to 25% of the new phase grow. After that, compare the value
for this ratio with the ones predictable by the asymptotic
relations (53) and (54), which furnish the extreme values
for τ0.75/τ0.25 for polyhedral, planar and linear growth,
respectively.
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