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Kinetics of protein-ligand 

unbinding via smoothed potential 

molecular dynamics simulations
Luca Mollica1,*, Sergio Decherchi2,3,*, Syeda Rehana Zia2, Roberto Gaspari2, Andrea Cavalli1,4 

& Walter Rocchia2

Drug discovery is expensive and high-risk. Its main reasons of failure are lack of efficacy and toxicity 
of a drug candidate. Binding affinity for the biological target has been usually considered one of the 
most relevant figures of merit to judge a drug candidate along with bioavailability, selectivity and 
metabolic properties, which could depend on off-target interactions. Nevertheless, affinity does not 
always satisfactorily correlate with in vivo drug efficacy. It is indeed becoming increasingly evident 
that the time a drug spends in contact with its target (aka residence time) can be a more reliable 
figure of merit. Experimental kinetic measurements are operatively limited by the cost and the time 
needed to synthesize compounds to be tested, to express and purify the target, and to setup the 

assays. We present here a simple and efficient molecular-dynamics-based computational approach 
to prioritize compounds according to their residence time. We devised a multiple-replica scaled 

molecular dynamics protocol with suitably defined harmonic restraints to accelerate the unbinding 
events while preserving the native fold. Ligands are ranked according to the mean observed scaled 
unbinding time. The approach, trivially parallel and easily implementable, was validated against 
experimental information available on biological systems of pharmacological relevance.

In vivo drug-target interactions may occur far from the thermodynamic equilibrium, and therefore 
steady drug concentration cannot always be reached or maintained. Binding and unbinding kinetics 
are thus emerging as being even more relevant than binding thermodynamics for predicting drug e�-
cacy in living organisms1,2. �is observation led to an increasing interest from both pharmaceutical 
companies and institutional funding agencies, as testi�ed by the K4DD Innovative Medicines Initiative 
of 2012 (http://www.imi.europa.eu/content/k4dd). Despite several experimental techniques (e.g., SPR, 
stopped-�ow CD, �uorescence spectroscopy, etc.) for studying (un)binding kinetics exist, e�cient com-
putational approaches to the prediction of kinetic parameters are presently missing. �ere are a few 
attempts reported in the literature, based on brute-force molecular dynamics (MD) simulations, that 
are however very highly demanding in terms of time and computational power, and unsuitable for the 
industrial use, where dozens of compounds need to be prioritized in the hit-to-lead and the lead opti-
mization phases3–5. Importantly, (un)binding rates cannot be directly computable in pharmacologically 
relevant systems – even considering the most advanced and specialized computational architectures6 – as 
the residence time (tr) of molecules can be of the order of seconds, minutes or even hours. �is una-
voidably calls for smarter algorithms and e�ective practical solutions for tackling the problem of kinetic 
rate estimation. Very recently, a detailed computational study of the protein-ligand dissociation process 
was reported7, demonstrating the possibility of studying the mechanisms governing unbinding events, 
and of disclosing the pathways, the rates and the rate-limiting steps of the process. However, despite 
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the useful information it provides, the practical e�ectiveness of this methodology is limited by the high 
amount of computational resources (i.e. many weeks on a huge computational infrastructure), which are 
required to evaluate every single binding and unbinding kinetic constant pair (kon and ko�). Moreover, 
while the prediction of the kon was pretty close to the experimental data, the value of the ko� turned out 
to be one order of magnitude smaller than the experimental value, pointing to the intrinsic di�culties 
in estimating ko� from theory and simulation. A possible alternative could be the combination of the kon 
obtained from unbiased simulations with the binding free energy estimated using free energy methods5; 
despite being promising, this method is not yet mature and still too computationally demanding for any 
high-throughput screening purpose.

Here, we report on a novel computational method that addresses the challenge of unbinding kinetics 
usually optimized in the hit-to-lead and lead optimization phases of the drug discovery process. Rather 
than trying to predict the absolute o�-rate value, ko� =  tr

−1, on individual complexes, we aim at an e�-
cient procedure to identify the correct ko�-based ordering relationship among congeneric compounds, 
which bind to a given target using possibly limited computational resources. Our solution is rooted in the 
enhancement of the transition probability between di�erent free energy minima during MD simulations 
by means of scaled potentials8–10. We use this methodology in a statistical framework that combines a 
regressive predictive model and a bootstrap-based analysis for establishing the con�dence of the predic-
tions. �e underlying rationale is that simulating a protein-ligand complex under scaled potential energy 
conditions facilitates the rupture of the key physical interactions that confer stability to the complex, 
leading to unbinding in much shorter simulation timescales. �e scaling has however some unavoidable 
consequences, mainly related to the loss of detail on the actual energetic landscape that is explored, 
and to the fact that other interactions are weakened, besides those between the protein and the ligand. 
Among them are the forces that contribute to the overall structure of the protein system. While the for-
mer aspect is intrinsic to the scaling, a countermeasure to the latter issue can be taken; here we do this 
by applying proper harmonic restraints that preserve the overall correct fold, while leaving unrestrained 
the regions involved in the binding process.

Basically, the overall protocol consists of the following phases: i) an initial model for each 
protein-ligand complex is built, starting from available crystallographic information; ii) multiple replicas 
of scaled molecular dynamics of the partially restrained system are performed and stopped when the 
ligand unbinds; iii) the ratios of the simulated unbinding times of the congeneric ligands with respect 
to a reference complex are converted to the “unscaled” domain via an Arrhenius-like11 exponential rela-
tionship; iv) a bootstrap analysis on the simulated unbinding times per target is done in order to assess 
the statistical signi�cance of the observations and to possibly decide whether to increase the number of 
replicas per complex. �is protocol is used to analyze the structure kinetics relationships (SKRs) of three 
systems of pharmacological interest.

Results
Our goal was to assess the ability of the approach to correctly rank and estimate ko� ratios with respect 
to a reference complex in a series. �e capability to estimate ko� ratios was evaluated via the correlation 
coe�cient of a linear regression. �e method was applied to three systems of pharmacological inter-
est (Fig.  1), for which consistent experimental data were available in the literature. �e scaling factor 
was λ  =  0.4 and the number of replicas were set to a minimum of 20 (see the Methods section for further 
details). In all of the cases, the ranking provided by the mean simulated unbinding times per complex 
was in agreement with the experimental data. Finally, the bootstrap analysis was used to quantify the 
e�ects of the small sample regime. In this respect, a few more simulations were performed in the HSP90 
case to explore the dependence on the sample size.

Heat Shock Protein 90. First, we focused on the HSP90 protein in complex with pyrazole-derived 
ligands, exempli�ed by NVP-AUY92225, currently in phase I and II of clinical trials for hematologic 
malignancies and solid tumors12 (Fig.  1a,d). �e fastest unbinders BS1 and BS3 were clearly separated 
from the slowest ones (BSM and BS2), with the longest and the shortest simulated unbinding times of 
about 30 ns and 20 ns, respectively. �e correlation between experimental and calculated residence times 
was quite good with a Pearson’s coe�cient r of 0.95 (see Fig. 2a). From a chemical standpoint, an ethyl to 
methyl substitution in the �rst series (compare BS2 to BS1; see also Fig. 1a) could generate an enthalpic 
penalty (see Supplementary Table 1) leading to the observed faster unbinding. Conversely, the replace-
ment of the methyl (BS3) with the ethanol-amide (BSM) allowed the formation of a new hydrogen bond, 
resulting in a much slower unbinding.

78 kDa Glucose-Regulated Protein. �en, we focused on the Grp78 protein in complex with 
purine-based inhibitors13 (Fig. 1b,e). From a chemical standpoint, this series is much less homogenous 
than that of the HSP90 inhibitors. Signi�cant variations can be observed both in the molecular volume 
and in the net charge, which amounts to –3 e.s.u. in L01, while the other compounds are globally neutral. 
Moreover, calorimetric data13 (Table  1) suggest that the four ligands can be grouped in two categories 
based on their thermodynamic behavior. As reported in the literature, binding of L01 has a particularly 
high entropic contribution and the rest of the series shows rather uniform enthalpic contributions13. 
Also in this case, the correlation between calculated and experimental residence times was fairly good 
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Figure 1. HSP90, Grp78, and A2A binding sites and ligands. Molecular systems investigated in this work: 
both ligands (1a for HSP90, 1b for Grp78, 1c for A2A) and binding sites (1d for HSP90, 1e for Grp78, 1f for 
A2A) are reported. �e red colored regions of the protein structures correspond to the unrestrained residues, 
as described in the main text and in the Methods. Residues represented in sticks are the ones that are reported 
as relevant for the physiological function of the protein: G97 is fundamental for the HSP90 binding to the 
investigated ligands13; Y39 and I71 are highly conserved residues in the binding sites of proteins belonging to 
the Grp78 family14; H278 is considered to be one of the most fundamental residues in harboring interactions 
between the A2A binding site and the most favorable ligands belonging to the triazine series15. Together with the 
ligands’ sca�olds and their substituents, simulated residence times (expressed in ns) and experimental ko� from 
the literature13–15 have been reported. As explained in the main text, these times are not a direct estimate of 
their experimental counterpart but just a �gure that is used for the ranking and to build the regressive model.
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(r =  0.85, see Fig. 2b), allowing a clear separation between slow and fast binders. As it could be expected 
from the peculiarities of the L01 ligand with respect to the rest of the series, the correlation obtained 
excluding it from the series improves and becomes similar to that observed in HSP90.

Adenosine A2A receptor. Finally, the new method was challenged with a representative of a large 
family of pharmaceutical targets, the adenosine A2A G-protein-coupled receptor (GPCR) in complex with 
a series of congeneric triazine-based antagonists14(Fig. 1c,f). �e A2A receptor is widely investigated for 
di�erent pathological conditions (e.g., Parkinson’s disease15). As reported in Table  1, here too we were 
able to correctly rank the ligands, and to achieve a correlation coe�cient of 0.95 (see Figs 1c, 1f and 2c).

Figure 2. Estimated vs. experimental residence times. Estimated vs. experimentally measured residence 
times for HSP90 (2a), Grp78 (2b) and A2A (2c). For sake of clarity, unbinding kinetic rates have been 
normalized with respect to the corresponding �gure of reference ligands, i.e. BSM, L01 and 4e, respectively. 
Estimation was done by exponential scaling of simulated unbinding rates (see SI for more details) according 
to the potential smoothing factor adopted for SMD simulations (i.e., λ  =  0.4). Linear regression correlation 
coe�cients are 0.95 (2a), 0.85 (2b), and 0.95 (2c).
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Statistical significance of the results. We then investigated whether the approach could pro-
vide useful information in the context of limited amount of computation, due to either computational 
resources or time constraints. In order to accomplish this task, we processed our data by means of 
the bootstrap analysis16, which does not require further simulations and is quite inexpensive from the 
computational standpoint. In the bootstrap technique, the observed unbinding times are extracted, with 
replacement, until convergence of the estimate is reached. �is technique was used to estimate both the 
deviation of the mean unbinding times (Table 1) and the probability of every single ranking for di�erent 
number of replicas (Fig. 3 and Supplementary Movies 1, 2 and 3). �is analysis, based on all of our obser-
vations, is con�rming that 20 replicas per complex can provide the correct ranking, but, as expected, 
the con�dence of this result is system dependent. In the series studied here, for instance, the analysis 
showed that the outcome on the GRP78 system was statistically the most reliable, while for HSP90 and, 
especially, A2A alternative rankings could not be completely ruled out. In this regard, a few more replicas 
per complex have been run for the HSP90 target, con�rming that the probability of the experimentally 
validated ranking increases with the size of the samples.

Discussion and Conclusions
We presented here a computational method for estimating the unbinding kinetics of protein-ligand com-
plexes, which represents a compromise between the complete information that would be achieved by the 
full exploration of the phase space (i.e. Boltzmann sampling) related to the unbinding process and the 
computational feasibility in a drug discovery context. �e major strengths of the method are the relatively 
low computational cost, the easiness of implementation, and the fact that accuracy scales linearly with 
the availability of computational resources. Indeed, the method is trivially parallel with respect to the 
number of simulated replicas, and, in addition, each individual simulation can bene�t of the availability 
and the performance of GPU-based MD engines17–19. A further key value lays in its simplicity and in the 
fact that it does not require any speci�c a priori knowledge of the reaction coordinate(s) associated with 
the process under investigation. A choice has however to be made, namely the portion of the protein 
that should be restrained. �is is an important step for the success of the protocol, but the exact knowl-
edge of the degrees of freedom involved in unbinding is however not essential, since a superset of them 

HSP90 BS2 BSM BS1 BS3

Exp. tr [s] 163.9 144.9 90.9 45.5

∆ H [kcal mol−1]13 − 2.7 − 3.7 − 3.8 − 1.5

T∆ S [kcal mol−1]13 − 7.6 − 6.7 − 6.4 − 7.5

Comp. Avg. tr ±  σ  [ns] 32.8 ±  17.5 30.7 ±  24.7 21.5 ±  13.8 19.1 ±  11.4

Comp. Avg. tr ±  σ e [ns] 32.8 ±  1.8 30.7 ±  2.5 21.5 ±  1.4 19.1 ±  1.1

Comp. Avg. tr ±  σ BS [ns] 32.3 ±  3.5 30.7 ±  4.5 21.5 ±  2.6 18.9 ±  2.2

Estimated ko� [s−1] 6.6 ×  10−3 reference 9.9 ×  10−3 1.1 ×  10−2

Grp78 L01 L14 L10 L02

Exp. tr [s] 200.0 25.0 2.5 1.0

∆ H [kcal mol−1]14 − 1.3 − 17.5 n.a. − 13.2

T∆ S [kcal mol-1]14 0.5 − 0.6 n.a. − 0.7

Comp. Avg. tr ±  σ  [ns] 11.3 ±  9.0 8.4 ±  6.7 5.9 ±  3.8 2.8 ±  1.6

Comp. Avg. tr ±  σ e [ns] 11.3 ±  1.0 8.4 ±  0.8 5.9 ±  0.4 2.8 ±  0.2

Comp. Avg. tr ±  σ BS [ns] 12.0 ±  2.2 8.4 ±  1.4 5.8 ±  0.8 2.8 ±  0.4

Estimated ko� [s−1] reference 7.1 ×  10−3 1.0 ×  10−2 2.1 ×  10−2

A2A 4e 4g 4h 4a

Exp. tr [s] 990.1 90.0 8.7 ~ 1

Comp. Avg. tr ±  σ  [ns] 37.8 ±  25.5 31.8 ±  20.2 26.5 ±  22.6 25.3 ±  18.9

Comp. Avg. tr ±  σ e [ns] 37.8 ±  5.7 31.8 ±  4.5 26.5 ±  5.1 25.3 ±  4.1

Comp. Avg. tr ±  σ BS [ns] 37.2 ±  5.1 30.4 ±  4.4 26.6 ±  4.2 25.2 ±  4.1

Estimated ko� [s−1] reference 1.2 ×  10−3 1.4 ×  10−3 1.4 ×  10−2

Table 1.  Summary of computed residence times and experimental kinetic/thermodynamic data for 

HSP90, Grp78, and A2A. Experimental residence times (Exp. tr) were obtained by inversion of the reported 
ko� values and are reported in seconds, whereas computational residence times (Comp. Avg. tr) averaged 
over replicas are reported in nanoseconds; ∆ H and T∆ S are expressed in kcal mol−1. Residence times are 
reported together with standard deviation, σ , and standard error of the mean over n samples27, σ = σ

e n
. 

Moreover, data statistics analyzed by means of the bootstrapping (BS) method is also reported.
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Figure 3. Ranking probability estimates obtained via the bootstrap procedure. Ranking probability 
estimates are presented for the three systems. In the abscissae, all the 24 possible rankings have been coded 
with an alphabet letter (Table 2), where the �rst, ‘A’, position corresponds to the experimentally validated 
ranking. �e horizontal dashed lines correspond to 1/24, i.e. the probability or randomly drawing one out 
of the 24 possible rankings. a) HSP90 ranking probabilities with 20 replicas. b) HSP90 ranking probabilities 
with 27 replicas. c) Grp78 ranking probabilities with 20 replicas. d) A2A ranking probabilities with 20 
replicas. As expected, increasing the number of replicas, as done for the HSP90 case, corresponded to an 
increment of the probability of the ‘A’ ranking at the expense of its competitors ‘B’,’G’, and ‘H’. Data for 
di�erent values of number of replicas are shown in the Supplementary movies 1, 2 and 3 for HSP90, GRP78 
and A2A, respectively.

A 1 2 3 4 I 2 3 1 4 Q 3 4 1 2

B 1 2 4 3 J 2 3 4 1 R 3 4 2 1

C 1 3 2 4 K 2 4 1 3 S 4 1 2 3

D 1 3 4 2 L 2 4 3 1 T 4 1 3 2

E 1 4 2 3 M 3 1 2 4 U 4 2 1 3

F 1 4 3 2 N 3 1 4 2 V 4 2 3 1

G 2 1 3 4 O 3 2 1 4 W 4 3 1 2

H 2 1 4 3 P 3 2 4 1 Z 4 3 2 1

Table 2.  Alphabetical letter coding for all the possible rankings. �e 4 di�erent ligands here are named 
‘1’, ‘2’,‘3’ and ‘4’ according to their experimental residence time, in increasing order. �erefore, the ‘A’ ranking 
is the experimentally validated one.
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can be used, provided that it is the same for all the simulations performed within a series of congeneric 
compounds. In the test cases presented here, our method proved able to predict ko� ratios with respect to 
a reference complex with remarkable accuracy (r ranging between 0.85 and 0.95). Since no dramatic con-
formational changes are expected to occur upon ligand unbinding, the choice of letting unrestrained all 
the residues within a given distance from the ligand in the bound conformation seemed to be a natural 
choice, systematically applicable to many other cases. Another important aspect is the initial structure, 
the crystal of the complex is evidently the best choice, but in the case of congeneric series, as those dis-
cussed here and o�en considered in the hit-to-lead campaigns, one crystal per series may be enough to 
be used as a reliable structural model. Alternatively, molecular docking tools can be used.

Due to the loss of detail in the explored energetic landscape induced by the scaling, the presented 
method is not best suited for investigating the unbinding path at the atomic level. However, in the vicin-
ity of the energetic minimum corresponding to the bound state it is still a valid tool for determining the 
mechanistic features of the protein-ligand complex dissociation.

�e distributions of unbinding times for the 12 complexes present much larger standard deviations 
(see Table 1 and Supplementary Note) relative to those coming from a series of repeated experimental 
measures. �is aspect requires considering that an experimental measurement is a macroscopic obser-
vation over an Avogadro-like number of microscopic events, each of them potentially following di�er-
ent underlying routes with di�erent kinetic rates, which mix in a non-separable way. In contrast, each 
MD run represents, with some approximation, a single microscopic event, and inherently distinguishes 
between di�erent possible mechanisms with di�erent kinetics. �is remarkably reduces the homogene-
ity of the outcome, leading to larger deviations, but with the advantage of providing detailed atomistic 
information, which is missing at a macroscopic level. Along the same line, smoothing the potentials also 
results in a broadening of the energetic basins width and therefore in larger thermal variations. �erefore, 
the variance of computational estimations of residence time should not be considered as a mere �gure 
of error, and it is not expected to go to zero even by remarkably increasing the number of replicas. For 
example, if a multi-path unbinding is observed, then a multi-modal distribution is expected.

In this framework, we propose that the quantities that should be most reasonably compared are rather 
the experimental and estimated rankings. In particular, to assess the repeatability and robustness of our 
estimation procedure, we adopted a bootstrap-based approach. �is analysis, which provides the proba-
bility estimate of each ranking and therefore also the con�dence of the most likely ranking obtained by 
averaging simulated unbinding times, has shown that the estimates on the three considered systems had 
di�erent degrees of con�dence. �is can be due to di�erent factors, namely the number of replicas per 
complex, which still resides in the small sample regime, the possible restraining of degrees of freedom 
involved in the unbinding, or the fact that the di�erent series exhibit a di�erent proximity of the resi-
dence times, and therefore a di�erent level of discrimination is achievable. �is information supports the 
user in setting the desired threshold between accuracy and computational demand.

In conclusion, to the best of our knowledge, this is the �rst viable method for predicting the unbinding 
kinetics of protein-ligand complexes for a set of congeneric lead candidates, thus leading to a signi�cant 
progress in the computationally driven discovery of both small organic molecules and biological com-
pounds, improving early-stage predictions of drug e�cacy and toxicity in academic and industrial set-
tings. �e next step could be combining the present approach with other theoretical and computational 
methods (e.g. those using Markov State models, Milestoning, Metadynamics, Transition State �eory, 
String method) that aim at a more quantitative description of the dynamical properties of protein-ligand 
interactions and related thermodynamic and kinetic factors.

Methods
Choice of the test systems. �e developed method has been applied to three recently published 
targets, chosen because of the availability of crystal structures and experimental ko� values (by surface 
plasmon resonance) (Fig. 1):

1. HSP90 complexes with ligands belonging to the resorcinol series (exempli�ed by NVP-AUY92225, 
currently in phase I and II of clinical trial for hematologic malignancies and solid tumors)

2. Grp78 complexes with adenosine-derived inhibitors of its glucose related catalytic activity, a vital 
process for tumor metabolism the control of which is of paramount importance for the development 
of new anticancer drugs;

3. adenosine A2A receptor complexes with antagonists that result to be e�ective in animal models of 
Parkinson’s disease, ranging from the reversal of haloperidol-induced catalepsy to e�cacy in more 
disease-relevant models such as 6-hydroxydopamine lesioned rats and MPTP-lesioned primates and 
now successfully used in on-going phase II clinical trials.

�e choice of such systems was driven by several reasons. For the �rst case, four compounds were 
investigated starting from the structure of HSP90 in complex with one member of the series (VER49009; 
PDB ID: 2BSM, hence the usage of the ligand name BSM in this work) and editing the ligand substitu-
ents R1 and R2 accordingly. �e four chosen ligands display a common sca�old with only minor steric 
and chemical modi�cations that preserve the charge of the system: moreover, the ko� (Table  1) values 
are very close to each other, hence representing a perfect test set for understanding the “resolution” of 
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the methodology in terms of ko� based ranking of ligands. On the other hand, the Grp78 case presents 
four ligands (PDB IDs: 3LDN (ADPnP), 3LDP (L10)) that o�er the opportunity to test the robustness of 
the method when the ligands belong to the same chemical family (i.e., purines) but the substituents are 
varied from small groups or even single atoms to larger groups (such as heterocyclic aromatic rings), also 
varying the ligand net charge according to the nature of the substitution. Finally, the third system, the 
A2A GPCR, (PDB ID: 3UZC) was chosen because it o�ers the opportunity to test the method against a 
system that belongs to a di�erent and very relevant protein family (as well as a third new class of ligands), 
GPCR, which represents more than 20% of pharmaceutical targets.

Computational setup. Each compound was geometrically optimized via a quantum mechanical 
approach: electron density calculations were performed in Gaussian 09 [Frisch, M.J., et al. Gaussian 
09, Revision D01, Gaussian, Inc, Wallingford CT, 2009] using the basis sets 6-31G* or 6-31g+ +  at the 
Hartree-Fock level of theory. Partial charges were derived using RESP method20 in Antechamber, leading 
via a GAFF parameterization to a complete topological description of each ligand to be used for classical 
simulations. When the experimental complex structure was not available, the ligand was placed in the 
binding site according to the best superimposition of its sca�old with the experimental structure of the 
corresponding moiety.

�e protein-ligand complexes were then used as a starting point for molecular dynamics simulations 
performed in a customized GROMACS 4.6.1 version that was made able to perform scaled molecular 
dynamics (SMD)9 implemented as recently described10.

�e HSP90 and GRP78 complexes were placed in the geometrical center of parallelepiped-shaped 
boxes of volume equal to 400 nm3 and 650 nm3, respectively. For the A2A system an 850 nm3 triclinic 
(dodecahedral) unit cell was used. �e simulation boxes were then solvated using teLeap, with a number 
of TIP3P water molecules21 comprised between 27,000 (A2A) and 60,000 (Grp78). Some water molecules 
were replaced with sodium ions in order to preserve the electro-neutrality of the system according to 
the need (8 Na+ ions for all the HSP90 simulations; 3 Na+ for all the Grp78 simulations with uncharged 
ligands and 6 Na+ ions for the simulations of ADP-Grp78 complex; 10 Na+ ions for all the A2A sim-
ulations). �e system was minimized with the steepest descent method, followed by equilibration of 
the restrained protein (isotropic 1000 kJ mol−1 nm−1 force applied to each heavy atom of the protein 
backbone) in NPT (up to 400 ps, pressure =  1 atm) and NVT (up to 400 ps) ensembles at 300 K via a 
standard MD procedure. Electrostatics was treated with the cuto� method for short-range interactions 
and with the Particle Mesh Ewald method for the long-range ones (rlist =  1 nm, cuto� distance =  0.9 nm, 
VdW distance =  0.9 nm, PME order =  4)22. �e constant temperature conditions were provided by using 
V-rescale thermostat23, which is a modi�cation from Berendsen’s coupling algorithm.

A series of partially unrestrained (see further) SMD production runs were performed for each com-
plex until the occurrence of the unbinding event, de�ned as the situation where no longer interac-
tions between the ligand and the binding site are present (i.e., no hydrogen bonds; negligible interaction 
energy, corresponding, approximately, to a distance between the ligand-site centers of mass of 30 Å for 
the HSP90 and Grp78 systems and of 25 Å for A2A). A total number of 108 simulations were performed 
for HSP90, 84 for Grp78 and 80 for A2A.

All the HSP90 and Grp78 simulations were performed on a couple of in-house machines equipped 
with two esacore Intel Xeon processors and 2 NVIDIA GTX 780 GPUs, for a total of 1120 CPU days, 
whereas test simulations were performed on Fermi CINECA supercomputer (IBM-BlueGene /Q; IBM 
PowerA2, 1.6 GHz) using the hours allocated for the grant Pra07_1565. A2A simulations have been all 
performed in Eurora CINECA supercomputer (Linux In�niband Cluster; Intel Xeon processors +  64 
NVIDIA K20 GPUs).

Choice of the scaling parameter. All the simulations were performed with a smoothing coe�-
cient λ  =  0.4. �is value was chosen as the best compromise between a reasonable computing CPU time 
(see also the table reported in the Supplementary Information) and unbinding times ranging from few 
nanoseconds to tens of nanoseconds. In order to tune the exact λ  value, we performed for the fastest and 
slowest ligands of each system a series of simulations with decreasing λ  value between 0.7 and 0.3 and 
therea�er decided to adopt the value reported in the present work.

Application of the restraints. �e overall method must preserve the protein fold and, at the same 
time, allow the complex dissociation in a reasonable time, considering also the need of achieving good 
statistics via a number of simulations. In order to prevent the protein unfolding, we adopted a set of weak 
restraints (50 kJ mol−1 nm−1) on the whole backbone heavy atoms with the exception of the ones of the 
residues having at least one atom (either of the backbone or of the side chain) composing the binding 
site and being within 6 Å of distance from the surface of the ligand computed on the starting crystal 
structure (without hydrogen atoms). �is distance value in particular has been chosen considering the 
sum of: a. the maximal length of hydrogen bonds (4 Å in the case of weak hydrogen bonds24), b. the 
C-H bond length (1 Å), c. the error associated to the experimental determination of crystallographic 
structures, that as a “rule of thumb”25 is considered to be one sixth of the crystal resolution (i.e., in our 
cases between 2.012 and 3.3 Å14, leading to an average error of 0.5 Å for the atomic positions and of 1 Å 
for a heavy atoms distance).
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�e set of unrestrained residues was expanded including also residues adjacent to those directly in 
contact with the ligand in order to allow longer-range motions. Moreover, this limits numerical instabil-
ities of the restraining algorithm (in our case LINCS26) during the simulations. In this way, the overall 
protein secondary and tertiary structure are preserved while the binding site is allowed to sample the 
rearrangements that allow the unbinding of the ligand and that would naturally occur at much longer 
timescales.

�e list of the unrestrained residues for the three systems follows:
HSP90: L48-A55, I91-D93, G95-I99, D102-L107, G135-F138, K185-I187;
Grp78: G36-S40, L225-G228, G254-D259, E293-S301, G363-I368, P390-E392;
A2A: V84, L85, F168, E169, M174, M177, N181, W246, L249, H250, N253, H264, M270, I274, S277, 

H278.

Simulation stability check. �e RMSD of the protein backbone was monitored in each simulation 
in order to check the overall system stability and the impact of the enhanced mobility of the ligand bind-
ing site on the protein structure: the backbone RMSD of the bound system is always below or equal to 
1.5 Å and it displays a sudden increase up to 3-4 Å during the transition toward the unbound state (see 
Supplementary Figure 2). As a positive check of the course of the simulation, we veri�ed that the RMSD 
of the protein a�er the unbinding goes back to the original values.

References
1. Copeland, R. A., Pompliano, D. L. & Meek, T. D. Drug–target residence time and its implications for lead optimization, Nat. Rev. 

Drug Disc. 5, 730–739 (2006).
2. Swinney, D. C. Biochemical mechanisms of drug action: what does it take for success?, Nat. Rev. Drug Discov. 3, 801–808 (2004).
3. Buch, I., Giorgino, T. & De Fabritiis, G. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics 

simulations, PNAS 108, 10184–10189 (2011).
4. Y. Shan et al., How does a drug molecule �nd its target binding site?, JACS 133, 9181–9183 (2011).
5. Decherchi, S., Berteotti, A., Bottegoni, G., Rocchia, W. & Cavalli, A. �e ligand binding mechanism to purine nucleoside 

phosphorylase elucidated via molecular dynamics and machine learning, Nat. Comm. 6, 6155 (2015).
6. Dror, R. O., Young, C. & Shaw, D. E. Anton, a Special-Purpose Molecular Simulation Machine, in Encyclopedia of Parallel 

Computing, (eds Padua, D. et al.) 60–71 (Springer US, 2011).
7. Tiwarya, P., Limongelli, V., Salvalaglio, M. & Parrinello, M. Kinetics of protein–ligand unbinding: Predicting pathways, rates, and 

rate-limiting steps, PNAS 112, E386–E391 (2015).
8. Mark, A. E., Van Gunsteren, W. F. & Berendsen, H. J. Calculation of Relative Free-Energy via Indirect Pathways, J. Chem. Phys. 

94, 3808− 3816 (1991).
9. Tsujishita, H, Moriguchi, I. & Hirono, S. Potential-Scaled Molecular Dynamics and Potential Annealing: E�ective Conformational 

Search Techniques for Biomolecules, J. Phys. Chem. 97, 4416− 4420 (1993).
10. Sinko, W., Miao, Y., de Oliveira, C. A. F. & McCammon, J. A. Population Based Reweighting of Scaled Molecular Dynamics, J. 

Phys. Chem. B, 117, 12759–12768 (2013).
11. Arrhenius, S. A. Über die Dissociationswärme und den Ein�usß der Temperatur auf den Dissociationsgrad der Elektrolyte, Z. 

Physik. Chem. 4, 96–116 (1889).
12. Schmidtke, P., Luque, F. J., Murray, J. B. & Barril, X. Shielded hydrogen bonds as structural determinants of binding kinetics: 

application in drug design, J. Am. Chem. Soc. 133, 18903–18910 (2011).
13. Macias, A. T., et al. Adenosine-derived inhibitors of 78 kDa glucose regulated protein (Grp78) ATPase: insights into isoform 

selectivity, J. Med.Chem. 54, 4034–4041 (2011).
14. Congreve, M., et al., Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design, 

J. Med. Chem. 55, 1898–903 (2012).
15. Shah, U. & Hodgson, R. Recent progress in the discovery of adenosine A2A receptor antagonists for the treatment of Parkinson’s 

disease, Curr. Opin. Drug Discovery Dev. 13, 466− 480 (2010).
16. Efron, B., Bootstrap methods: Another look at the jackknife, Ann. Statist., 7, 1–26 (1979).
17. Harvey, M., Giupponi, G. & De Fabritiis, G. ACEMD: Accelerated molecular dynamics simulations in the microseconds 

timescale, J. Chem. �eory and Comput. 5, 1632 (2009)
18. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A., Development and Testing of a General Amber Force Field, 

J. Comp. Chem., 25, 1157–1174 (2004).
19. Pronk, S., et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics 

29, 845–54 (2013).
20. Bayly, C. I., Cieplak, P., Cornell, W. D. & Kollman, P. A. A well-behaved electrostatic potential based method using charge 

restraints for deriving atomic charges: the RESP model, J. Phys. Chem. 97, 10269–10280 (1993).
21. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for 

simulating liquid water, J. Chem. Phys. 79, 926–935 (1983).
22. Darden, T., Perera, L., Li, L. & Pedersen L. New tricks for modelers from the crystallography toolkit: the particle mesh Ewald 

algorithm and its use in nucleic acid simulations, Structure 7, R55–R60 (1999).
23. Bussi G et al. Canonical sampling through velocity rescaling, J. Chem. Phys. 126, 014101 (2007).
24. Je�rey, G. A. An introduction to hydrogen bonding (Oxford University Press, 1997)
25. Silverman, R. B. & Hollada, M. W. �e Organic Chemistry of Drug Design and Drug Action (Academic Press, 2014)
26. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations, J. 

Comput. Chem. 18, 1463–1472 (1997).

Acknowledgments
We acknowledge PRACE for awarding us access to the computational resource FERMI based in Italy at 
CINECA. We also thank the Italian Institute of Technology and the CompuNet for �nancial support.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:11539 | DOi: 10.1038/srep11539

Author Contributions
L.M. contributed to the development of the method, performed the calculations on Grp78 and HSP90 
systems, contributed to the statistical analysis method of the residence times and to the writing of the 
article; S.D. contributed to the development of the method, implemented the potential energy scaling 
in the GROMACS code, originally conceived the statistical analysis method of the residence times, 
contributed to the writing of the article; R.G. and S.R.Z. performed the calculations on the A2A system; 
A.C. contributed to the design of the research, and to the writing of the article; WR originally conceived 
the method, designed the research, contributed to the statistical analysis method of residence times and 
to the writing of the article.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing �nancial interests: SD, WR and AC are among the owners of BiKi Technologies s.r.l., a 
high-tech start-up company which sells so�ware supporting drug design and discovery for Biotech and 
Pharma industries.

How to cite this article: Mollica, L. et al. Kinetics of protein-ligand unbinding via smoothed potential 
molecular dynamics simulations. Sci. Rep. 5, 11539; doi: 10.1038/srep11539 (2015).

�is work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 
4.0 International License. �e images or other third party material in this article are included 

in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is 
not included under the Creative Commons license, users will need to obtain permission from the license 
holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nc-sa/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


1Scientific RepoRts | 6:25299 | DOI: 10.1038/srep25299

www.nature.com/scientificreports

Corrigendum: Kinetics of protein-
ligand unbinding via smoothed 
potential molecular dynamics 
simulations
Luca Mollica, Sergio Decherchi, Syeda Rehana Zia, Roberto Gaspari, Andrea Cavalli & 

Walter Rocchia

Scienti�c Reports 5:11539; doi: 10.1038/srep11539; published online 23 June 2015; updated on 06 May 2016

�is Article contains an error in Fig. 1: in panel C groups R2 of compounds 4g and 4h were incorrectly stated as 
OH. �e correct Fig. 1 appears below.
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