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The excess proton mobility in water has attracted scientific attention for more than a century. Detailed theoretical
concepts and models are also presently in strong focus in efforts toward understanding this ubiquitous
phenomenon. In the present report, we discuss a theoretical framework for rationalizing the excess proton
mobility, based on computer simulations, theory of proton transfer (PT) in condensed media, and analysis of
classical proton conductivity experiments over broad temperature ranges. The mechanistic options involved
are (i) classical hydrodynamic motion of the hydronium ion (H3O+), (ii) proton transfer from hydronium to
a neighboring water molecule, and (iii) structural diffusion of the Zundel complex (H5O2

+), the processes all
controlled by orientational fluctuations or hydrogen bond breaking in neighboring hydration shells. Spontaneous
conversion of excess proton states between Zundel and hydrated hydronium states and between hydrated and
bare hydronium states are the crucial parts of the scheme. A comparison between experimental data and
molecular dynamics (MD) simulations shows that prototropic structural diffusion is determined by comparable
contributions of the Zundel and hydrated hydronium states. The temperature dependent mobility is, moreover,
determined not only by activation free energies of the three different acts of charge transfer, but also by
labile equilibria between the different PT clusters. The proton conduction mechanisms of the three clusters
are brought into the framework of quantum mechanical PT theory in condensed media. Both the nature of the
elementary act and the reaction coordinates are, however, different for the two types of PT clusters. The
corresponding rate constants are calculated and compared with MD simulations. Within the framework of PT
theory we can also identify the nature of the kinetic deuterium isotope effect in the strongly interacting proton
donor and acceptor groups in the clusters. The views and models introduced may carry over to PT in more
composite, heterogeneous, and confined environments such as in polymer electrolyte membrane systems.

I. Introduction

Water is an excellent conductor for excess protons. The
conductance of distilled water was never an issue, per se,
because the number of free protons is very small (10-7 mol/L).
However, the proton mobility in water is approximately five
times higher than the mobility of an alkali cation (e.g., Na+) of
similar size as the hydronium (H3O+) ion.1 Excess protons in
aqueous phases are thus highly mobile. This happens, e.g., in
acid solutions or in hydrated polymer-electrolyte membranes
or proteins. In solutions of strong acids, both the protons and
counteranions are mobile. The counteranions in membranes and
proteins are mostly part of an immobile skeleton, with protons
moving through water-filled channels in the skeleton.

Experimental studies of temperature-dependent proton mobil-
ity have a long history. In a modern sense, they date back to
work by Johnston2 and Noyes.3 This work was extended,
including studies of the pressure dependence and kinetic
deuterium isotope effects by Eucken,4 Gierer and Wirtz,5

Gierer,6 and Franck, Hartmann, and Hensel.7 Reference 8 gives
a comprehensive overview of aqueous proton conductivity and
the early experimental data. The discussion in these works is
based on the so-called excess mobility (see below). It is of
importance for the following discusion that the excess mobility
vs temperature curve was found to exhibit a maximum at
temperatures near 150° C, at elevated pressure. The net value
of the proton mobility in pure water was not addressed in those
studies, although attempts to determine it were made by
Kohlrausch at the end of the 19th century.9 Focus was instead
on the conductance of strong acids such as HCl in the limit of
infinite dilution. The difference of the measured conductance
and the limiting conductance of a salt of a cation with similar
size as H3O+ was attributed to excess proton mobility, based
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on the assumption that the hydrodynamic radius of both ions
would be similar. The excess mobility was taken to represent
nonclassical proton hops in addition to classical hydrodynamic
motion of the H3O+ ion.

Proton conductivity in bulk aqueous solution can be con-
trasted with proton conductance in water-saturated polymer
electrolyte membranes, such as perfluorinated sulfonic ac-
ids.10,11,12 These materials are important from a fundamental
point of view because they have only single charge carrier
species, namely, protons, the conductance of which can therefore
be measured directly by impedance spectroscopy.11,12 Polymer
electrolyte membranes (PEMs) based on perfluorinated sulfonic
acids are in fact systems of crucial value for clean energy
generation. PEMs are the key components of polymer electrolyte
fuel cells, consuming hydrogen, the promising systems for
mobile, portable, and residential applications.13

The PEM volume density can be determined through the
polymer equivalent weight (the number of SO3

- groups per gram
of dry polymer) and the measured water uptake. Hence, values
of single-proton mobility can be extracted, albeit not for the
bulk aqueous phase but for the complex confined membrane
environment. These results are of obvious interest for membrane
science and technology, but they do not apply straightforwardly
to proton mobility in pure water. Membrane proton mobility
for high water uptake can, however, approach that of bulk water.
It can be speculated that this is because most of the proton
transport is then in the interior of the pores and because the
protons have only limited ability to move along the surfaces of
the water filled channels.14

Membrane proton conductance data have been obtained at
ambient pressures in a temperature range from 170 to 310 K.
The data of Cappadonia et al.11,12 reveal two conductance
regimes, with a change in activation energy between 225 and
260 K. Straight Arrhenius plots were obtained above 273 K.
The apparent activation energy decreases significantly on water
uptake, reaching 0.1 eV in water-saturated membranes. This is
the value usually attributed to proton mobility in bulk water.
Mean field theory14 explains this readily, but other explanations
are needed if protons are localized more strongly near pore
surfaces. All in all, the proton mobility in water should therefore
not be assessed solely on the basis of membrane conductance
even in a highly saturated state. There are other caveats with
the simplest notion of excess proton mobility and the comparison
with membrane proton conductance at water saturation. First,
by taking the difference between the limiting conductance of,
say, HCl and NaCl, the anion contribution is canceled. The
limiting conductance of Na+ is also subtracted entirely, because
this ion can move only by the classical mechanism. The limiting
classical conductance of H3O+ is, however, only partially

canceled. Anticipating the discussion below, this is because
H3O+ exhibits classical motion only for part of the time. Such
a difference is thus a direct measure of nonclassical proton
conductance only when the classical, hydrodynamic mobility
of hydrated H3O+ is considerably smaller than the total proton
mobility. A second observation relates to the contrasting
temperature variation of the excess proton mobility in water
(Figure 1) and proton mobility in saturated polymer electrolyte
membranes. The former variation is strong and nonmonotonic
in the high-temperature region. The latter is not only monotonic
but also Arrhenius-like, at least above the freezing point of bulk
water. At first glance, a plausible assumption would be that
classical H3O+ diffusion compensates for the decrease of the

excess mobility at high temperatures. This is, however, incon-
sistent with the assumption that the classical H3O+ contribution
is small.

Theoretical attention to proton mobility in water began with
Grotthus,15 at a time when the existence of the proton was not
known, the chemical formula of water not settled, the notion
of molecules was new, and little was known about stationary
electricity. Modern landmarks were set by Bernal and Fowler,16

Eigen and de Mayer,17 Conway et al.,18 and Zundel and
Metzger.19 This was followed by more detailed molecular
mechanisms and by analytical and computational models, for
an overview, see ref 20.

The fundamental importance of proton transfer (PT) in
biology,21,22 and in the development of fuel cells,13,23,24 continues
to press for a deeper understanding of PT mechanisms in
hydrogen bonded systems. Recent molecular dynamics (MD)
computer simulations have highlighted the nature of the
elementary act of PT in water.28,30,31,25 They have provided new
evidence for the crucial effect of the dynamics of solvation water
molecules of the PT clusters.32

In one suggested mechanism, PT is initiated by the breaking
of a hydrogen bond between the acceptor water molecule and
a water molecule in its solvation shell. Hydrogen bond breaking
ushers the acceptor molecule to a favorable configuration for
accepting the proton, while the donor molecule forms a new
hydrogen bond with a water molecule in its solvation shell.
Regardless of details, together with classical hydronium ion
motion, this mechanism will be denoted as the translocation of

hydronium, or “mechanism I” in the following.
In this picture, the proton transport is viewed as occurring in

a stepwise fashion: one PT after another, triggered by favorable
nearest molecular environment and slow medium polarization
fluctuations (involving hydrogen bond breaking and making).
This mechanism in small hydration clusters was explored by
Ando and Hynes26,27 via a combination of ab initio electronic
structure calculations and Monte Carlo simulations. It was found
that H2O plays a key role in the rearrangements of the first
solvation shell water molecules around the H+ donor and
acceptor. These findings have provided relatively simple mo-
lecular patterns for solvent reorganization and outlined the role
played by hydrogen bonds in PT.

Fully quantum Carr-Parinello MD simulations in larger
aggregates of water molecules28 and infrared spectroscopy29

have shown, however, that the hydronium ion is not the only
and possibly not even the most stable excess proton state. The
proton probably spends equal or more time in the Zundel cluster

Figure 1. Experimental data for excess proton mobility. Taken from
refs 2, 6, and 8.
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H5O2
+. The excess proton in this state is located approximately

symmetrically between the oxygen atoms of two enclosing water
molecules. The equilibrium O-O distance is significantly
shorter than the average O-O distance in bulk water. As the
proton potential energy profile depends crucially on the O-O
distance this profile reduces to a single or a shallow double-
well potential. This PT mechanism is different from hydronium
translocation. The rate-determining step is likely to be trans-
formation of a given H5O2

+ cluster into an adjacent cluster, a
mechanism denoted as structural diffusion, according to

Unlike hydronium translocation, structural Zundel complex
diffusion, denoted in the following as mechanism II, involves
displacement of either two or three protons. Mutual transforma-
tion between hydronium ions and Zundel complexes involves
little charge transfer. The transformations can be characterized
by forward and reverse rate constants, and both complexes can
mediate PT.

Recent computer simulations of proton mobility in water have
reached a powerful level.28 Importantly, simulations extend to
quantum-mechanical proton dynamic features, where proton
motion can be coupled to details of the molecular environmental
dynamics. In view of the broad importance of PT and the need
for facile comparison with experimental data, it would be
interesting to have also a theoretical framework which rational-
izes computational results and could be a handy tool for
experimental data analysis. The present report focuses on such
a framework, supported by new MD simulations. As in other
recent MD simulations, these reduce the molecular proton
conductivity mechanisms largely to single- and double-PT
events in aqueous PT clusters with well-defined average
structures. The computational results can therefore be interfaced
both with classical views of dynamic water cluster structures
and with contemporary theories of elementary charge-transfer
processes in condensed media.33,34,35 The latter is by no means
confined to views based on displaced harmonic modes and
weakly interacting donor and acceptor molecular entities. These
theories extend in conceptually straightforward ways, for
example, to anharmonic local mode dynamics and strong
donor-acceptor interactions prevailing in the closely tied PT
clusters in aqueous proton conduction.

There are several merits of such an approach. The powerful
framework of contemporary charge transfer theories including
proton tunneling, diabatic and adiabatic limits, kinetic deuterium
isotope effects, etc.,34,35 are integrated naturally in the analytical
frames, and the resulting formalism is easy to use. The
parameters of the elementary PT rate constants such as local
and environmental reorganization Gibbs free energies are
brought to rest firmly on the computational results. Their status
is thus clearly beyond that of fitting parameters. By mutual
thermal equilibrium among the clusters, the results extend
naturally to the views of Agmon20 and the classical studies of
Eucken and of Gierer and Wirtz.4,5,6,8 The models introduced
phenomenologically in ref 8 and based on comprehensive
experimental data are thus brought to rest on new and more
sophisticated levels of computer simulations and PT rate
formalism. Broad temperature ranges and nonmonotonic tem-
perature variation of the proton conductivity can thus be included
straightforwardly. All this offer, finally, a basis for future
approaches to PT in composite heterogeneous environments such
as proteins and proton conducting membranes.

2. Diffusion Coefficient in a Three State Approximation

The overall proton conductivity mechanism is regarded as
being composed of hydrodynamic diffusion of bare or hydrated
hydronium ion, single PT in a hydrated hydronium ion (“mech-
anism I”, cf. above), and double or triple PT in a Zundel
complex (“mechanism II”). All of the PT entities are dynamic
entities and engaged in mutual labile equilibria. One approach
to the stationary proton mobility or diffusion coefficient rests
on evaluation of the quantity36

where x is the displacement of the center of the excess charge
from its position at the time origin. The long-time displace-
ment does not depend on the type of the proton transferring
entity (“bare” hydronium, hydrated hydronium, or Zundel
complex) in the starting configuration because of the prevalence
of mutual interconversions. The diffusion coefficient can be
written as

where Pk are the weights (relative concentrations) of the
different PT clusters, while Wk and ak are the corresponding
transition probabilities per unit time and elementary PT distances
of the clusters. k ) 1, 2, and 3 stands for bare hydronium,
hydrated hydronium, and Zundel complex, respectively. Pk can
be estimated from the equilibria between the charge transferring
entities: 1 S 2, 2 S 3 assuming no direct transformation
between states 1 and 3. Introducing the rate constants k12, k23,
k21, and k32 for the allowed transformations, we can write the
equations of balance between the three states

Their solutions read

where K12 ) k12/k21, K32 ) k32/k23, and K23 ) k23/k32 are the
corresponding equilibrium constants

with the enthalpies E and entropy factors A. Inserting eq 6 into
eq 5 we obtain

(H2O‚‚‚H+
‚‚‚H2O)‚‚‚H2Of H2O‚‚‚(H2O‚‚‚H+

‚‚‚H2O) (1) D ) lim
〈x2(t)〉
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tf∞
(2)
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2
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2
+ P3W3a3

2 (3)
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-1
) A23e

E23/kBT (6)

P1 )
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1 +
1
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Equations 3 and 7 give a general expression for the diffusion
coefficient involving the transition probabilities, lengths of the
hops, and equilibrium constants. The transition probabilities,
Wk, are calculated for each mechanism separately. For each of
the three mechanisms, Wk can be written in the general form34,35

with appropriate subscripts of N, ωeff, κ, and G*. N is a structural
factor which depends on the number of possible PT directions,
ωeff is the effective vibrational frequency of all classical nuclear
modes, κ is the quantum mechanical transmission coefficient
for the transferring proton, and G* is the activation Gibbs free
energy.

Equation 8 incorporates all of the features of each of the three
charge-transfer mechanisms. ωeff is thus a weighted frequency
average of all of the nuclear modes displaced by thermally
activated motion. In most cases ωeff is close to kBT/p where kB

is Boltzmann’s constant, T is the temperature, and 2πp is
Planck’s constant. These modes are librational and translational
motion of individual or clusters of water molecules and
collective bulk polarization modes. G* is the activation Gibbs
free energy determined by the dynamics and structural reorga-
nization of these modes. The proton dynamics is represented
by the transmission coefficient κ, which reflects the quantum

mechanical (tunneling) nature of the proton transition.
In the adiabatic limit of strong proton donor-acceptor

interaction, κf 1.34,35,37,38 This limit prevails for excess aqueous
proton conductivity. In the opposite, diabatic limit (with respect
to proton/solvent mode separation), κ , 1. This limit prevails
for weakly interacting proton donor and acceptor fragments.34,35

In the adiabatic limit, proton tunneling is still reflected in G*

as a lower activation Gibbs free energy caused by the strong
splitting of the Gibbs free energy surfaces in the crossing region
between the reactant and product states. The splitting is also
important for the kinetic deuterium isotope effect of excess
proton conductivity in aqueous solution (section 7.4).

From the Debye-Einstein relationship, µ ) eD/kBT, the
proton mobility, µ, reads

The excess mobility8 is then, finally

In the following three sections, we consider the most important
features of proton conduction in aqueous solution based on the
molecular properties of the three “elementary” charge-transfer
mechanisms. Direct support of the mechanisms by computer
simulation will be addressed in section 6.

3. Classical Diffusion of the H3O+ Ion

The first PT mechanism in the proton conduction frame is
diffusion of bare or hydrated H3O+ as a whole. Computer
simulations show that there is no such motion in pure form at
room temperature, but if the excess proton were fixed on a given
water molecule, H3O+ motion would resemble that of a light
cation.25

Microscopic mechanisms of ion motion in polar liquids are,
however, not unambiguously determined. At large time scales,
the ion (with its solvation shell depending on the strength of
solvation) moves as a Stokes sphere, whereas at short time
scales, its motion is strongly correlated with orientational dipolar
solvent fluctuations. The latter resemble hopping type motion
between neighboring localizations upon reorientational fluctua-
tion of the dipolar environment.39 This determines the Arrhenius
form of the temperature dependence of the diffusion coefficient.

Classical (hydrated) H3O+ diffusion can therefore still be
regarded as a considerable contribution, provided that H3O+ is
viewed as a dynamic molecular entity. This contribution is more
prominent at higher temperatures where the highly organized
molecular cluster structures which control the PT mechanisms
are increasingly dissipated. Equation 8 is appropriate for
parametrization of the transition probability based on this
transfer mechanism, with κ ) 1, N ) 1/3, ωeff ≈ 1013 s-1. The
activation free energy, according to simulations, is in the region
0.05-0.09 eV.

4. Proton Hops between Two Water Molecules

4.1. Model. PT from a hydronium ion to the nearest water
molecule can be viewed as intramolecular chemical PT in a
reaction complex consisting of two water molecules and the
excess proton (Figure 2). In the initial state, the proton is
chemically bound to the donor molecule (H2O)D forming the
hydronium ion H3O+ hydrogen bonded to the acceptor molecule
(H2O)A. Two other neighboring molecules (H2O)w1 and (H2O)w2

are crucial. In the initial state (H2O)w2 forms a hydrogen bond
with the acceptor molecule (H2O)A, whereas (H2O)w1 is close
to the hydronium ion but without establishing a hydrogen bond.

The mechanism consists of synchronous motion of (H2O)w1

toward the donor molecule (H2O)D and of (H2O)w2 away from
the acceptor molecule (H2O)A. This leads to a shift of the
proton from (H2O)D to (H2O)A, formation of the hydrogen
bond (H2O)w1‚‚‚(H2O)D, and breaking of the hydrogen bond

W ) N
ωeff

2π
κ exp(- G

*

kBT) (8)

µ )
e

kBT
[P1W1a1

2
+ P2W2a2

2
+ P3W3a3

2] (9)

µexcess )
e

kBT
[(P1 - 1)W1a1

2
+ P2W2a2

2
+ P3W3a3

2] )

e

kBT
[P2(W2a2

2
- W1a1

2) + P3(W3a3
2
- W1a1

2)] (10)

Figure 2. Structural diffusion of the hydronium ion. A scheme of
proton transfer via proton hopping between two water molecules (only
the key molecules in the process are shown; their hydrogen bonds with
other water molecules are not displayed for clarity). In the initial state,
an excess proton is bonded to the “donor” molecule WD within the H3O+

ion (black). The acceptor molecule, WA, forms hydrogen bonds with
H3O+ and W2. In the final state, an excess proton is bonded to the
“acceptor” molecule WA within the new H3O+ ion (black); the molecule
WD forms hydrogen bonds with the new H3O+ and W2.
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(H2O)A‚‚‚(H2O)w2 (Figure 2). PT is facilitated also by a
fluctuational decrease of the distance between the oxygen atoms
of the donor and acceptor molecules. The formal scheme reads

with dots denoting hydrogen bonds. All other water dipoles
affect the transition mainly through electrostatic interactions with
the charge distribution of the reaction complex and assume the
role of an effective medium.

4.2. “Reactive Modes” and Free Energy Surfaces. The
general form in eq 8 remains valid for the single-PT model in
Figure 2, but attention to more kinematic details than for
hydrodynamic H3O+ diffusion is required. Chemical PT theory34,35

is the most suitable and convenient frame for this consideration,
starting with the potential Gibbs free energy surfaces of the
system in the reactants’ and products’ states. The Gibbs free
energy surfaces can be constructed either from the diabatic
reactants’ and products’ surfaces or from the unified system
potential surface in the ground state of all electronic and
vibrational high-frequency (proton) system parts.

The notion of potential Gibbs free energy surfaces is rooted
in two observations. One is that the kinetic parameters of
analytical rate theory of condensed phase chemical processes,
particularly the activation free energy, are determined by thermal
fluctuations along central reactive modes. This notion implies
that the contributions of all other nuclear modes, for example
bulk bath modes, are statistically averaged. Motion along the
reactive modes therefore becomes determined by the system
free energy and the potential surfaces by the reactive modes,
free energy surfaces. An implication of this concept is that the
parameters of suitable model potentials chosen to represent the
reactive modes have a temperature coefficient. The second
observation is that the environmental components of the
potential surfaces are represented by the inertial polarization
fluctuations. These are macroscopic quantities and determined
by the associated polarization free energy. In dielectric con-
tinuum theory, the latter involves, for example, the dielectric
permittivity of the solvent, which clearly depends on the
temperature.

The potential surfaces are the basis for calculation of the
activation Gibbs free energy and are spanned by all the reactiVe

nuclear coordinates (“modes”), i.e., those displaced or distorted
in the PT event.

In the model shown in Figure 2, the reactive nuclear modes
include (1) the distance between the oxygen atoms, R, in the
donor and acceptor molecules (H2O)D and (H2O)A, (2) the
coordinate of the transferable proton rp along the straight line
connecting the two oxygen atoms of (H2O)D and (H2O)A, (3)
the distance x between (H2O)w1 and (H2O)D, (4) the distance y

between (H2O)w2 and (H2O)A, and (5) the set of coordinates
{ qk} of the effective oscillators describing the bulk polarization
of the medium outside the reaction complex.

It is assumed that the other protons in the (H2O)D and (H2O)A

molecules as well as the electrons follow adiabatically the instant
reactive mode configurations. Their coordinates therefore do
not appear explicitly. It is most convenient to start from diabatic

free energy surfaces describing the separate initial (Ui) and final
(Uf) states. These represent, respectively, the separate reactants’
and products’ states exclusiVe of the “exchange” interaction
between (H2O)D and (H2O)A. The separate reactants’ and
products’ states are subsequently used to construct the lower

adiabatic Gibbs free energy surface, obtained after inclusion
of the exchange interaction.34,35

The interaction between the donor and acceptor molecules
is strong, i.e., a considerable fraction of an eV (e.g., refs 37,
38, and 40-44). From available criteria,33-35 the PT process
is therefore well within the fully adiabatic limit. The preexpo-
nential form in eq 8 therefore accords with the parameter values
N ) 1, κ ) 1, and ωeff ≈ kBT/p ≈ 1013 s-1. The motion
along all reactive nuclear coordinates (x, y, R, and { qk} ) except
those of the protons (rp) is, moreover, classical. The motion of
the protons can be separated from the motion of other nuclei
with the use of the Born-Oppenheimer approximation.45 The
transition path crosses the saddle point on the reduced adiabatic
free energy surface for the proton vibrational ground state, i.e.,
the surface spanned solely by the coordinates of heavy
nuclei.34,35 In the Born-Oppenheimer approximation, the proton
energies, Epi(x,y,R,{ qk} ) and Epf(x,y,R,{ qk} ), and wave functions,
øi(rp;x,y,R,{ qk} ) and øf(rp;x,y,R,{ qk} ) of the initial (i) and final
(f) states are calculated from the Schrödinger equation at fixed
values of the classical coordinates.

The reduced free energy surface of the initial, or reactant,
state Ui

r(x,y,R,{ qk} ) is

Epi is the proton ground-state eigenvalue in the hydronium ion,
counted from the minimum energy of the proton potential well,
which is included in the other potential terms in eq 12, see
below. W i

s is the free energy of the outer-sphere water
polarization.33-35 Vi couples the three modes x, y, and R, a
broadly valid form being

The first term in eq 13 includes the interaction free energy of
the water molecule (H2O)w1 with the oxygen atom of the
donor molecule and the O-O interaction between (H2O)D and
(H2O)A at equilibrium, y ) y0i(x,R), of the water molecule
(H2O)w2. The second term describes the vibrational potential
of (H2O)w2.

The free energy surface of the final, or product, state is,
similarly

The ground-state adiabatic free energy surface is constructed
from Ui

r and Uf
r 34,35

where ∆Eh(x,y,R) is the quantum mechanical splitting of the
proton energy levels in the proton double-well potential between
(H2O)D and (H2O)A.34,35,45

4.3. Activation Free Energy. The adiabatic transition from
the reactants’ to the products’ equilibrium configurations is along
the modes x, y, R, and { qk} on the proton vibrational ground-

(H2O)w1 + (H2O)D - H +
‚‚‚(H2O)A‚‚‚(H2O)w2w

(H2O)w1‚‚‚(H2O)D‚‚‚H
+
- (H2O)A + (H2O)w2 (11)

Ui
r(x,y,R,{ qk} ) ) Epi(x,y,{ qk} ; R) + W i

s({ qk} ; x,y) + Vi(x,y,R)

(12)

Vi(x,y,R) ≈ V
i(x,R) + u2(y - y0i(x,R)) (13)

Uf
r(x,y,R,{ qk} ) ) Vf(x,y,R) + Epf(x,y,{ qk} ;R) + W f

s({ qk} ;x,y)

(14)

Vf(x,y,R) ≈ V
f(y,R) + u1(x - x0f(y,R)) (15)

U )
1
2

[Ui
r
+ Uf

r
- x(Ui

r
- Uf

r)2
+ [∆Eh(x,y,R)]2] (16)
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state adiabatic free energy surface. The activation Gibbs free
energy is determined by the saddle point on this surface

where the subscript s denotes the coordinate values at the
saddle point. The equations for the saddle point are given in
Appendix A. Er is the solvent reorganization energy.

Equation 17 is general for the mechanism in Figure 2. To
utilize it, we need to specify the potential terms in this equation.
This involves two approximations. One is the decoupling of x

and R in the potential Vi(x,R). This term can be separated into
a sum of the interaction of the nonbonded water molecule with
the hydronium ion and the O-O interaction between the donor
and acceptor molecules:

The second approximation concerns the particular form of u2

and Vw1-O
i (x). The potential of the hydrogen bond, u2, can be

approximated by a Morse function, and the repulsive branch of
the interaction of the nonbonded water molecule with the
hydronium ion, Vw1-O

i (x), can be approximated by an expo-
nential function (Appendix B). A minimized parameter set
(Appendix B) then gives for the activation barrier

where DHB is the dissociation energy of the hydrogen bond.

5. Proton Mobility via Zundel-Like Complexes

5.1. Model and Reactive Modes. Zundel complexes con-
stitute the initial (reactants’) and final (products’) PT states in
mechanism II. In each complex, the proton is located ap-
proximately in the middle between two water molecules with
considerably shorter O-O distance than the O-O distances in
bulk water. In the PT scenario, a water molecular configurational
fluctuation first increases the O-O distance, R12, in the initial
Zundel complex, whereas the distance R23 between one of the
oxygen atoms of this complex and the oxygen atom of the
nearest neighbor molecule decreases (Figure 3). This results in
a synchronous shift of two protons, leading to the disappearance
of the initial Zundel complex and formation of a new one. Water
molecules of the second solvation shell of the Zundel complex
are also important in the transition, but we restrict ourselves to
two reactive modes R12 and R23 and include all other modes in
the “outer-sphere” medium polarization. This view is the basis
for construction of the potential Gibbs free energy surfaces and
rate constants.

5.2. Gibbs Free Energy Surfaces. We denote the oxygen
atoms of the three water molecules directly involved in the
transition as O1, O2, and O3 (Figure 3). The reduced free energy
surface of the initial (reactants’) state is

The first term represents the interaction of the Zundel complex
with the nearest water molecule of the solvation shell, the second
term represents the O1-O2 vibrational potential in the Zundel
complex, and the last term represents the free energy of the
inertial bulk medium polarization.

The reduced free energy surface of the final (products’) state
has a similar form

The first term is again the interaction with the nearest water
molecule of the solvation shell and the second term the O2-O3

potential, in the new Zundel complex.
The adiabatic free energy surface is obtained from an equation

similar to eq 16

where ∆EZ(R12, R23) is the resonance splitting of the two proton
vibrational energy levels in the two-dimensional potential
spanned by the coordinates of both protons.

5.3. Activation Gibbs Free Energy. The preexponential
factor accords with N ) 4/3, κ ) 1, and ωeff ≈ kBT/p ≈ 1013

s-1. The activation barrier is calculated from

“s” refers again to the saddle point of the ground-state adiabatic
free energy surface.

Morse-exponential potentials for the reactive modes and a
factorial exponential dependence of the resonance energy
splitting on the reactive mode coordinates (Appendix C) are

Figure 3. Structural diffusion of the Zundel complex. A scheme of
proton transfer via the transition of two protons in a molecular triad.
(Only the key molecules in the process are shown; their hydrogen bonds
with other molecules are not displayed). The excess proton is initially
localized in the initial Zundel complex (black). The nearest neighbor
water molecule which forms a hydrogen bond with oxygen (2) is shown.
In the final state, this proton is bonded to oxygen (2), while another
proton is now located inside the new Zundel complex (black).
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appropriate specific approximations. A minimized parameter set
(Appendix C) gives for the activation barrier

where DZ is the dissociation energy of the Zundel complex and
∆E0 is the resonance energy splitting at equilibrium of the
reactive coordinates.

We note that the saddle point is also determined by the
coordinate dependence of the resonance energy splitting. This
affects in turn the activation free energy (see Appendix C).

6. MD Simulations

We have illuminated the views above by extending and
reanalyzing molecular dynamics (MD) simulations. This analysis
provides, first and foremost, an insight into the mechanistic
details of the diffusion process. The MD data provide, moreover,
a basis for the interpretation of the experiments of Eucken4 and
the analysis of Gierer and Wiertz,8 and identifies the nature of
the dominating clusters that constitute the environment of
intramolecular single- and double-PT.

A simple electronically polarizable two-state extended valence
bond (EVB) model developed in ref 25 was used. This is
currently the only model that allows the simulation of proton
mobility in a large water “bath” at high proton concentrations.
The price paid for that is the essential simplification of the PT
algorithm. The essential elements of this simplification are as
follows.

(i) The charge switching function which designates when PT
takes place does not depend explicitly on the solvent environ-
ment. This may not be a serious limitation, because the
conditions of transfer are entirely and self-consistently deter-
mined by the short- and long-range medium fluctuations, which
may still somewhat affect the preexponential factor in proton
mobility.

(ii) One proton is transferred at a time; that is, concerted
pathways involving more than one proton are ignored from the
outset, although the stepwise PTs may succeed each other so
fast (as seen in computer animations of the simulation trajec-
tories) that they would look almost like concerted. Eliminating
this drawback could considerably affect the preexponential factor
of proton mobility. Indeed, even if concerted pathways were
rare, they could contribute nonnegligibly to mobility, because
of the square of the distance factor in eq 3. These shortcomings
may become more substantial if the model is applied to proton
transport in very narrow pores of proton conducting membranes,
where the expected single-pile effects46 rest exactly on concerted
proton-proton motion.

(iii) The “quantum” proton motion is simulated by classical
mechanics. This shortcoming may not be serious, because we
do not envisage under-barrier tunneling for the proton in the
strongly adiabatic mechanism of PT, but this effect could be
reflected in the KIE (see the discussion in section 7.4)

In ref 25, the temperature dependence of the proton diffusion
coefficient was found to be Arrhenius-like with an activation
energy of 0.11 eV, close to the experimental estimates. However,
there are presumably, the caveats of the model just listed that
make the preexponential factor of proton mobility two times
lower than it should be and the water diffusion too lively.
Changing the model in such a way that the water diffusion is

reduced to the experimentally observed value would thus also
decrease the prexponential factor of the proton diffusion
coefficient.

There is, however, hardly any choice. At low proton
concentrations and smaller number of water molecules and also
for shorter simulation time, several other more sophisticated
choices, involving a larger number of Valence bond states, are
possible.47-49 However, to evaluate proton mobility (via the
excess charge diffusion coefficient), we need longer simulations
and larger systems. We therefore, here adopt the model of ref
25 with the expectation that it might be as suitable for a
comparative analysis as the more sophisticated models. This is
a strong conjecture, which needs verification in future large-
scale simulations.

We performed constant volume simulations of the transport
of a single proton dissolved in 100 water molecules at
temperatures of 300, 330, 360, 400, 500, and 600 K. The density
in all runs is the density of bulk water at 298 K and ambient
pressure. All interaction parameters and simulation conditions
are identical to those in ref 25. Below, we analyze the dynamics
in terms of the simple overall jump pattern discussed in section
2. To this end, we study the temperature dependence of the
distribution of proton states and then proceed to the calculation
of the jump rates as a function of temperature. Finally, we relate
the diffusion and jump activation barriers to structural properties.

6.1. Distribution of Proton-Transfer Coordinate. Following
ref 25, we define the proton-transfer coordinate q as the
difference between the shorter and the longer OH distance in a
Zundel complex. q ) 0 corresponds to the symmetric Zundel
ion, and large negative values correspond to free or hydrated
hydronium ions which we denote as Eigen complexes. Figure
4 shows the distribution of this coordinate at 300 and 500 K.
At room temperature, the model displays preference for the
symmetric Zundel ion. This is supported by more general EVB
models30,31 and by ab initio MD simulations.28 Although a
distinction between Eigen and Zundel species is ambiguous
because of the width of the distribution, it is clear that the
equilibrium is shifted toward the Eigen complex with increasing
temperature. This accords with the findings of Gierer and Wirtz,
and of Eucken.

6.2. Proton Jumps. The Walbran and Kornyshev25 model
describes proton transport through a sequence of interconver-
sions between Zundel and Eigen complexes. The MD analysis
shows that these interconversions are frequent. This can also
be inferred from the shallow proton coordinate distribution in
Figure 4 which shows no pronounced minima. Consequently,
interconversions between Zundel and Eigen complexes with one
of the two oxygens of the Zundel ion at the center of the Eigen
complex look more like equilibrium fluctuations than quasi-

Figure 4. Distribution of the proton-transfer coordinate q. Calculated
from simulations of one proton dissolved in 100 water molecules at
300 K (full line) and at 500 K (dashed). q is the defined as the difference
between the shorter and the longer of the two bridging OH distances
in a Zundel complex. The q-regions corresponding to Zundel and Eigen
complexes are indicated.
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chemical jump processes. Other definitions for a PT step involve
the transformation from a given Eigen complex to a neighboring
one (with a different oxygen atom at the center) or the
conversion of a given Zundel complex to another Zundel
complex, where the second complex may or may not share an
oxygen atom with the first one.

Four different PT scenarios involving short and long PT
jumps are summarized in Figure 5. In the short Eigen-Eigen
jumps, the center of the Eigen complex moves from the initial
oxygen to one of its neighbors. In the long jump, the final Eigen
complex is centered around an oxygen atom which was not part
of the initial Eigen complex. This oxygen atom is most likely
a second neighbor of the initial center. In a similar way we can
define Zundel-Zundel jumps: a short jump corresponds to the
transformation of the initial to the final Zundel ion, which still
contains one of the two oxygen atoms of the initial Zundel ion.
In the long jump, none of the two oxygen atoms of the initial
Zundel complex are part of the final Zundel complex. We
analyze the MD trajectories separately for each of the scenarios.

We define the time of formation of a particular Eigen ion as
follows. That will be the first time when the proton-transfer

coordinate q becomes smaller than -0.45 Å with a particular
oxygen at the center of the complex. We then wait, until another
Eigen ion is formed (again with q < -0.45 Å). This is called
the transition time for the short or the long Eigen-Eigen jump,
depending on whether the new Eigen center was part of the
initial Eigen complex.

Similarly, we define the time of formation of a particular
Zundel ion as the first time that the two particular oxygen atoms
in a Zundel complex assume a value of q larger than -0.05 Å.
Again we wait until a new Zundel complex (containing at least
one new oxygen atom) is formed (with q > -0.05 Å). We call
this the transition time for the short or the long Zundel-Zundel
jump, depending on whether the final Zundel complex does or
does not share an oxygen atom with the initial one.

We collect the statistics over these events (typically several
hundred or thousand for a simulation lasting three to four
nanoseconds) and calculate the average transition rate. Figure
6 shows the average rates in an Arrhenius plot as a function of
reciprocal temperature. The full symbols are for the long jump
scenarios, and the open symbols are for the short jump scenarios.
The two lines give the approximate activation energies of 0.04

Figure 5. Sketches of various proton-transfer scenarios. The top half shows possible proton jumps between two Eigen complexes (or hydronium
ions). The bottom half shows possible proton jumps between two Zundel complexes. Short jumps are on the left, long jumps on the right.
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eV for the short jumps and 0.07 eV for the long jumps. For
comparison, the diffusion activation energy calculated in ref
25 is 0.11 eV. The data suggest that proton jumps involving
only nearest neighbors are not rate-determining. Instead proton
jumps to second nearest neighbors show a temperature depen-
dence significantly closer to the one observed for the diffusion
coefficient, indicating that they are related to the rate determin-
ing step for proton transport.

We also note that depending on temperature the number of
short jumps in a given time is two to four times higher than the
number of long jumps. Although the shorter jumps thus occur
more frequently and with lower activation energy, their suc-
cessive directions are anti-correlated in such a way that the
probability for the next jump to be in the opposite direction of
the previous one is significantly enhanced. (The non-Marcovian,
anticorrelated character of the sequence of short jumps may,
however, be an exagerration of the Walbran-Kornyshev model,
which essentially results in a lowered preexponential factor of
proton mobility.)

6.3. Structural Correlation Functions. In a symmetrical
Zundel ion, the average oxygen-oxygen separation is about
2.4 Å; in an Eigen complex, the average oxygen-oxygen
separation between the central oxygen atom and the others is
2.56 Å. The nearest-neighbor distance between two water
molecules in the bulk is ≈ 2.85 Å. A proton jump between two
positions in the liquid is thus associated with the relaxation of
oxygen-oxygen distances. To relate the proton jump dynamics
to such structural features, we have calculated distribution
functions for the joint occurrence of two oxygen-oxygen
distances. The oxygen-oxygen distance within the central
Zundel complex (or, if the state of the proton is Eigen-like, the
distance between the central water and its closest neighbor in
the Eigen complex) is called r12. The distances between any of
these two oxygen atoms and the oxygen atoms of their nearest
neighbors are called r23. Finally, the distances between the
nearest neighbors and their nearest neighbors (excluding the
original two oxygen atoms) are termed r34 (see Figure 7).

We calculate the probabilities p(r12,r23) and p(r12,r34) by
monitoring the appropriate distance pairs during the simula-
tion. The distributions have been symmetrized according to
p̃(r12,r23) ) max [p(r12,r23),p(r23,r12)] and p̃(r12,r34) ) max
[p(r12,r34),p(r34,r12)]. Figures 8 and 9 show these symmetrized
distributions at room temperature. Symmetrizing the distribution

in such a way is equivalent to taking, at every point, the
minimum of the two free energy landscapes corresponding to
the proton in the initial and final state. This procedure is
motivated by the symmetry of the PT reaction. The saddle points
of the distributions can be identified as transition states for the
respective PT reactions in coordinate space, whereas the maxima
correspond to the equilibrium states. With this interpretation,
the free energy barrier for the PT reaction becomes: ∆A )

-kT ln p(barrier)/p(maximum).
For PT to the nearest neighbor (Figure 8), we find A ) 0.05

eV, and for PT to the second nearest neighbor (Figure 9), ∆A

) 0.08 eV. This suggests, once more, that the rate-determining
step is likely to be associated with the PT to a second nearest
neighbor rather than to a nearest neighbor.

Figure 6. Arrhenius plot of the temperature dependence of the mean
hopping times for the four different proton jumps sketched in Figure
5. Full symbols are for long jumps, and open symbols are for short
jumps. Triangles are for Eigen-Eigen jumps, and squares are for
Zundel-Zundel jumps. The lines correspond to activation energies of
0.04 (dashed) and 0.07 eV, respectively. Average times are calculated
as the inverse of the average hopping rate. The activation energy for
the long jumps is closer to the activation energy for the calculated
diffusion step, thus making proton jumps between second-nearest
neighbors more likely to be rate-determining for proton diffusion than
the shorter jumps.

Figure 7. Distance definitions. r12 is the oxygen-oxygen distance of
the Zundel complex which contains the proton. r23 and r34 are nearest
and second-nearest neighbors.

Figure 8. Probability distribution p̃(r12, r23), which is the probability
of finding two oxygen-oxygen distances. r12 is the distance between
the two oxygen atoms closest to the free proton, and r23 is the oxygen-
oxygen distance between one of these oxygen atoms and a nearest
neighbor.

Figure 9. Probability distribution p̃(r12, r34), which is the probability
of finding two oxygen-oxygen distances. r12 is the distance between
the two oxygen atoms closest to the free proton, and r34 is the oxygen-
oxygen distance between the first and second nearest neighbors.
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7. Structural and Kinetic Properties, Integrated in Proton
Mobility

7.1. PT Cluster Weights Distributions Pk. As noted,
aqueous proton mobility data over broad ranges of temperature
recorded early by Eucken4 were analyzed by Gierer and Wirtz.8

They invoked a four-state model based on variable-size PT
aqueous clusters in labile thermal equilibria. Three of the clusters
correspond roughly to bare hydronium, the Eigen cluster, and
the Zundel cluster and dominate proton conduction in most of
the temperature range. The fourth cluster in their analysis is
larger and contributes about 18% to the total at room temperature
but disappears rapidly as the temperature rises. Inclusion of this
component in our analysis would be straightforward but
increases the number of a priori unknown parameters unwar-
rantedly.

Figure 10 shows the temperature variation of the three
dominating cluster populations, P1, P2, and P3,8 and Figure 11
shows similar variations based on eq 7. The trend in Figure 11
accords broadly with the data for suitable parameters, i.e., small
reaction enthalpies and entropies. Particularly, the Eigen and
Zundel clusters dominate entirely around room temperature. As
the temperature increases, the more composite Zundel clusters
decay and are converted to the Eigen clusters, the population
of which therefore first rises. This pattern is supported by the
MD simulations (see Figure 4). On further temperature increase,
the Eigen clusters also decay, and the bare hydronium ion
gradually comes to dominate.

7.2. Mobility. The temperature-dependent cluster distribution,
substantiated by the MD simulations, provides the mechanistic
basis for the earlier estimates.8 The clusters and the MD
calculations thus provide the structural and dynamic details
needed for application of quantum mechanical PT theory toward
a description of the proton mobility. A summary of the PT
formalism for all the scenarios considered in section 6 and
shown in Figure 5 is given in Appendices A-C. The formalism
is given in a form which is straightforward to use, even
analytically, at different levels of sophistication as warranted
by the focus and detail needed. A complete description of the
proton mobility by a combination of the MD-supported cluster
populations and the PT formalism, however, still requires a
considerable number of parameters. We show instead in a
simpler way how this combination can both be brought to
reproduce the observed temperature-dependent mobility and lead
to insight and determination of some of the central parameters,
which are difficult to access in other ways.

The use of comprehensive PT theory is first illuminated below
in a general but still accurate form. In the next two subsections,
we show how specific structural parameters of importance for
the apparent activation energy and kinetic deuterium isotope
effect can be obtained.

Figure 12 shows the total mobility, the measurable excess
mobility, and the mobility caused only by proton hopping,
calculated from eqs 7-10 using a set of parameter values chosen
to reveal similar trends as in the experimental data. It is noted
first that the excess mobility passes through a maximum at high
temperature. This follows the data in refs 6-8, which were
obtained at elevated pressures. Although numerically different,
the proton conductances of the three PT channels are, second,
still broadly similar. The excess proton mobility therefore
follows closely the temperature variation of the populations of
the three molecular entities, i.e., the bare hydronium ion, the
Eigen cluster, and the Zundel cluster. As noted, the Zundel
cluster population decays rapidly with increasing temperature.
The decay is, however, via the Eigen clusters. The excess

mobility thus first rises with increasing temperature and then
begins to decline at still higher temperatures, when also the
Eigen clusters decay into bare hydronium ions. The lower
conductivity of the latter is partly compensated by the activated

Figure 10. Cluster weights evaluated by Gierer and Wirtz.8 Figure 11. Typical cluster weights of a three-state model. Calculation
via eq 7 with A12 ) 0.22, A23 ) 0.1, E12 ) 2.5 kBT, E23 ) 2 kBT with
T ) 298.15 K.

Figure 12. Typical theoretical plots of the measurable excess mobility,
total mobility, and the contribution to mobility due to proton hopping
between the charge-transfer clusters. Calculation via eqs 7-10. bi )

ai
2Ni(ωi)/(4π)κi, (i ) 1, 2, and 3). Parameters: A12 ) 0.22, A23 ) 0.1,

E12 ) 2.5kBT, E23 ) 2kBT, w1 ) 1.25, w2 ) 2.5, w3 ) 4, (b1)/(b2) )
0.15, (b3)/(b2) ) 4, T/ ) 298.15 K.
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nature of all of the processes, but the maximum in the
temperature variation shows that the variation of the population
distribution clearly seems to dominate. Note, however, that the
extremum in the total mobility is a result of a subtle interplay
between a number of structural and kinetic factors. One cannot
insist that it must be observed in reality.

7.3. Activation Gibbs Free Energies and Proton-Transfer
Distances. As noted, there is no single activation (Gibbs free)
energy, because the proton mobility is mediated by different
clusters, see eq 3. PT theory can, however, rationalize the
activation (free) energy of the different channels. We shall
illustrate this for the Eigen and Zundel clusters

The complete activation free energy formalism is given in
Appendices A-C. The activation free energies for the symmetric
processes in question (zero driving force) are composed of two

contributions. One is the total nuclear reorganization energy of
the intramolecular solvation water clusters of the hydronium
or Zundel ions including the bulk water solvent. The other one
is the variation of the resonance splitting of the ground-state
proton vibrational levels via motion along the intermolecular
O-O stretching mode in the potential VO-O(R), cf. eq 19. This
effect can be important for the kinetic deuterium isotope effect,
addressed below. We can disentangle these effects by the simple
consideration below. In this way, we can estimate the activation
Gibbs free energy, the contribution of each of the intramolecular
terms, and the distance, Rs, between the two neighboring oxygen
atoms in the transition state in the Eigen or Zundel cluster.

The equation which determines Rs is, approximately

where VO-O is the interaction potential describing the hydrogen
bond and ∆Eh is the resonance splitting of the ground state
proton energy levels in the potential which determines the proton
motion between two oxygen atoms. This motion is the anti-
symmetric translation of the proton donor and acceptor moieties
and is fully classical. ∆Eh depends approximately exponentially
on R

where RHB is the equilibrium hydrogen bonded O-O distance
in the initial (reactant) state. γ (in Å-1) is a decay factor, which
represents the proton localization at a given site. The Lennard
Jones potential is, by and large, used for the bare interaction of
two oxygen atoms

VO-O(R) incorporates the effect of the proton between the two
oxygen atoms on their mutual interaction. We shall still use
the Lennard Jones potential form but take those values of the
parameters C12 and C6 that reproduce the value of RHB, as
obtained from the condition ∂VO-O/∂R ) 0. With C6 ) 27.13
eV Å,6 the value of the simulation water model,25 we obtain
C12 ) 13.56RHB

6 eV Å12.
Appropriate values of RHB range from 2.8 Å for free water

to about 2.4 Å in the Zundel ion, whereas γ ranges from 2 to
5 Å-1. For ∆Eh

0 ≈ 0.1 eV, this gives the values of Rs in Table
1. Substituting Rs into eq 28

(cf. eq 19) and neglecting D (D ) DHB, DZ), which is small,
we obtain the activation free energy values collected in Table
1. In comparison, the experimental value of G* is 0.11 eV.6,8

The PT parameters in Table 1 prompt the following observa-
tions:

(a) γ ) 4.5-4.9 Å-1 accords with the experimental activation
(Gibbs free) energy. This γ range is suitable for proton tunneling
between shallow hydron double wells.

(b) The resulting PT distance ranges from ≈0.30 Å when
RHB ) 2.8 Å in “free” water to less than 0.1 Å in the strongly
hydrogen bonded Zundel complex. Significant thermal deforma-
tion along the O-O stretching mode thus occurs prior to proton
tunneling, which is subjected to much smaller displacements
than corresponding to equilibrium displacement along the proton
translational coordinate.

(c) The distances in Table 1 and the conclusion in (b) are
based on eq 28 and thermal activation dominated by the O-O
gating mode. Significant activation in other nuclear modes would
leave less need for gating mode stretching in order to reproduce
the experimental activation free energy. The PT distance at the
saddle point with respect to the local and environmental nuclear
modes would therefore also be longer.

(d) The small tunneling distance accords with facile PT, gated

by the O-O stretching mode. This also leads to a small KIE,
cf. below.

Altogether, the estimates in Table 1, based on eqs 25-28
point to the consistency of the microscopic PT picture presented
above and accordance with the structural information about the
Eigen and Zundel complexes.

7.4. Kinetic Deuterium Isotope Effect of Aqueous Proton
Mobility. The kinetic deuterium and tritium isotope effect (KIE)
in chemical proton, deuteron, and triton (overall hydron)
tunneling has been recognized for decades as a crucial mecha-
nistic approach to chemical hydron and hydrogen atom reaction
dynamics.50,51,52 KIE perspectives also emerge from the formal-
ism and models in previous sections. There are only few data
for excess deuteron mobility. These give a small value close to
x2,8,53-55 close to the value for water molecular rotation. This
suggests that different ωeff in proton and deuteron transfer, eq
8, constitutes a significant contribution, but we wish to address
more closely the overall physical nature of the KIE in strongly
interacting proton donor-acceptor systems such as the Eigen
and Zundel complexes.

It is useful first to note briefly the KIE behavior in the weak-
coupling diabatic limit (with respect to the proton-environmental
separation). The origin of the KIE in PT is conspicuous and
conceptually straightforward in this limit. The dominating KIE

TABLE 1: Donor-Acceptor O-O Distances at the
Transition State, Rs (Å), at Different Equilibrium Distances,
RHB (Å), and Decay Factors γ (Å-1), eq 26a

RHB ) 2.8 Å
γ 2 3 3.5 3.7 4
Rs - RHB 0.24 0.38 0.48 0.53 0.61
Gq ≈0 0.02 0.08 0.13 0.27

RHB ) 2.6 Å
γ 2 3 4 4.2 4.5
Rs - RHB 0.15 0.24 0.32 0.40 0.47
Gq ≈0 ≈ 0 0.003 0.03 0.15

RHB ) 2.5 Å
γ 3 4 4.5 4.9 5.0
Rs - RHB (Å) 0.08 0.20 0.34 0.42 0.44
Gq ≈0 ≈0 0.03 0.12 0.16

a Gq (eV) is the activation free energy calculated from eq 28 by
neglecting D (see text).
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feature here is the isotope dependence of the transmission
coefficient, κ, eq 8, which directly reflects the hydron tunneling

behavior. The following κP form applies (P ) H and D), eq 26

As γH < γD, proton tunneling is more favorable than heavier
deuteron tunneling i.e., κH . κD. As deuteron tunneling is
significantly disfavored relative to proton tunneling, additional
O-O mode activation energy in deuteron tunneling is also
energetically affordable as this decreases the tunneling distance.
The diabatic hydron tunneling distance is therefore in general
smaller for the heavier than for the lighter isotope.

However, we do not deal with the diabatic limit in the case
of proton conductivity in water. MD and electronic structure
computations (e.g., refs 28, 30, 31, 37, 38, and 25, 40-44) show
instead that the interaction between the hydron donor and
acceptor entities in the Eigen and Zundel clusters is strong.
Hydron transfer is therefore well within the fully adiabatic limit
of strong donor-acceptor interaction. In this limit, proton
tunneling is not directly conspicuous, because by optimal
fluctuations the environment prepares a minimal barrier (almost
no barrier) for the proton. This has a cost in free energy which
determines the activation free energy, whereas the under-barrier
tunneling prefactors κH, κD f 1. All in all, the KIE no longer
originates from the transmission coefficient. The origin of the
KIE in the adiabatic limit is more subtle and two other
contributions instead determine the KIE.

One is the isotope dependence of ωeff, rooted in hindered
translational and rotational mode frequencies. (This effect is
unimportant in the diabatic limit). The translational modes
involve motion of a solvent water molecule as a whole, with
an isotope effect of ωeff

H /ωeff
D of ≈ 18/16. Thus, if the PT was

provided only by the vehicle mechanism, i.e, motion of H3O+

as a whole, KIE would have been ≈1.1. The Grotthus elements
of PT are rather determined by the rotational modes. The latter
rest largely on hydron motion around a stationary oxygen atom
with a frequency ωeff following roughly the square root of the
hydron mass dependence, i.e., ωeff

H /ωeff
D ≈ x2. This is close to

the experimental value. Hindered molecular water rotation
therefore constitutes a competitive contribution to the KIE of
adiabatic PT in the Eigen and Zundel clusters (in accordance
with conclusions derived by Hynes from the analysis of PT in
small water clusters around an Eigen ion26,27).

The second important factor contributing to the KIE is the
isotope dependent resonance splitting of the reduced potential
surfaces spanned by the intramolecular and solvent coordinates,
∆Eh(xs,ys,Rs), eqs 16, 17, and 19. This contribution is only
important in the adiabatic limit and generally a competitiVe

contribution to the KIE. Resonance splitting is caused by hydron
tunneling in the double-well potential spanned by the proton

coordinate q (Figure 13). Less favorable deuteron transfer
implies that the ground and first excited deuteron vibrational
level splitting is smaller than for the proton levels. The reduced
potential surface splitting is thus smaller for deuteron than for
proton transfer. Hence, the activation free energy as determined
by the intramolecular and solvent nuclear modes is larger for
deuteron than for proton transfer, however, with a negligible
effect on the under-barrier tunneling factor, because the proton
barrier is very low.

This view is illustrated in Figure 13. The top figure shows
the hydron stretching mode splitting for the two isotopes along
the hydron coordinate, at the transition state with respect to the

heavy nuclear coordinates, xs, ys, Rs, cf. eqs 16, 17, and 19.
The bottom figure shows how this carries over to the isotope
dependence of the activation (free) energy along the intramo-

lecular and solVent coordinates. The resonance splitting con-
tribution to the KIE is then rooted in hydron tunneling as in
the diabatic limit, but tunneling appears quite differently,
namely, in the activation free energy and not in the preexpo-
nential tunneling factor as in the diabatic limit. The view of
quantum mechanical PT in the adiabatic limit has an apparent
resemblance to classical views of chemical KIE’s as the loss of
zero-point vibrational energy when the hydron is displaced from
equilibrium to the transition state.50-52 The KIE is reflected in
isotope dependence of the activation (free) energy in both cases,
but the origin of the activation Gibbs free energy difference is
different. In the classical view, the isotope dependence is entirely
determined by proton and deuteron motion, whereas the
enVironmental nuclear motion is largely disregarded. In the
adiabatic limit of quantum mechanical PT, the activation (free)
energies of proton and deuteron transfer are viewed as deter-
mined by the environmental nuclear motion modified by isotope
dependent resonance splitting, caused by quantum mechanical
hydron tunneling behavior.

Eucken4 reported small, temperature-dependent deuterium
isotope effects in the cluster populations, P1, P2, and P3, eq
3-5. The isotope effects in P1 and P2 are larger than unity but
smaller than unity for P3, i.e., Pk

H/Pk
D
> 1 for k ) 1, 2 and P3

H/
P3

D
< 1. This could reflect a more stable hydrogen bond

network for the heavier isotope. These isotope effects are smaller
than x2 and x2-1 and will be disregarded in the following.

The KIE of adiabatic symmetric PT processes such as in the
Eigen and Zundel clusters takes the form, eq 8

Figure 13. Kinetic deuterium isotope effect (schematic). (A) Splitting
of the ground-state proton and deuteron vibrational energies in the
hydrogen potential at fixed heavy nuclear coordinates. The deuteron
level is the lower because of the lower vibrational energy. The deuteron
splitting is also the smallest because of the heavier tunneling mass.
(B) Lowering of the activation Gibbs free energy along the heavy
nuclear coordinates by the hydron splitting. The activation energy
lowering is larger for proton than for deuteron transfer because of the
larger tunnel splitting and more facile tunneling.

κP ) κP
0 exp[-2γP(Rs

P
- RHB)] (29)

KIE ≡
WH

WD
)

ωeff
H

ωeff
D

exp(GD
*
- GH

*

kBT ) (30)
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where “H” refers to proton and “D” to deuteron transfer. The
explicit isotope dependence of the activation Gibbs free energy
difference in eq 30 is (eq 26)

where Rs is the value of R in the transition state with respect to

the O-O stretching motion, cf. above. RHB
H and RHB

D are the
equilibrium hydrogen bonded O-O distances in the proton and
deuteron bonded complex. ∆Eh

0P, P ) H and D, refers to the
resonance splitting at the saddle point with respect to the
intramolecular and environmental coordinates, xs and ys, at the
equilibrium value of the O-O stretching coordinate R (eqs 18
and 20). Equations 30 and 31 reflect again the environmentally
“gated” nature of the PT process. The hydron transfer distance
is far too long, i.e., 0.5-0.6 Å, when tunneling is over the
equilibrium displacement, but fluctuational motion along the
O-O stretching mode precedes, or “gates”, PT over a much
shorter and more favorable distance. This is at the expense of
additional activation (free) energy from the O-O mode
deformation.

The isotope dependence of the activation Gibbs free energy,
eqs 30 and 31, is determined by the mass dependence of ∆Eh

P

and γP

where the superscripts of Rs and RHB have been omitted.
∆Eh

P, ∆Eh
0P (eq 20), and γP are available for specific hydron

potentials.35,56 Disregarding, further, the isotope dependence of
∆Eh

0P, eq 32 then reduces to

Equations 32 and 33 hold an intriguing implication, namely,
that the adiabatic KIE decreases with increasing hydron transfer
distance. (This is opposite to diabatic KIE, which is dominated
by the preexponential hydron tunneling factor.) This “inverse”
distance dependence of the KIE is caused by the decreasing
resonance splitting of the potential surfaces with increasing
transfer distance. The isotope dependence of the splitting
therefore also decreases with increasing distance. This is the
determining factor in the adiabatic limit (but quite unimportant
in the diabatic limit). The overall distance dependence of the
KIE is therefore nonmonotonic. At long distances, where the
diabatic limit of weak interaction would have prevailed, the KIE
decreases with decreasing distance, as the hydron donor and
acceptor fragments are brought closer to each other. When the
distance is small enough (as is commonly assumed and resulting
from MD simulations for PT mobility in water), and the
adiabatic limit of strong interaction takes over, the KIE behavior
changes, and the KIE now increases with decreasing distance.
A minimum in the distance dependence of the KIE is thus
expected in the transition region between the diabatic and
adiabatic limits. This minimum is not reached in PT acts of
proton mobility, which accord with the adiabatic limit. The
KIEis therefore expected to increase with decreasing transfer

distance up to the intermolecular donor-acceptor distance where
the hydron barrier vanishes altogether.

Equations 30-33 offer both an additional clue to the small
KIE (≈1.4) in aqueous proton conductivity and kinematic insight
into the PT mechanism. As aqueous nonclassical proton
conductivity in the Eigen and Zundel complexes follows the
strongly adiabatic limit, proton tunneling can only be reflected
in the isotope dependent resonance splitting and activation (free)
energy and not in the preexponential tunneling factor. The values
of Rs - RHB from the analysis summarized in Table 1 leave PT
distances of about 0.1 Å, based on equilibrium values of RHB

≈ 2.5-2.6 Å, which accord with the Eigen and Zundel ion
structures. Insignificant KIEs then emerge from eqs 32 and 33.
Larger PT distances, say 0.2 Å, emerge when nuclear modes
other than the O-O gating mode contribute to the activation
free energy. The resulting KIE is, however, smaller than 1.5-
1.6, i.e., close to the observed values for the proton conductivity
and the water molecular librational frequency.

All in all, the KIE therefore also testifies that aqueous proton
mobility is dominated by plain inertial mass effects, perhaps
supplemented by subtle hydron tunneling features. The former
appears in the mass dependence of the classical hydron transfer
“attempt frequency”, and the latter in hydron tunneling-
controlled resonance splitting and activation Gibbs free energy.
The KIE analysis also supports that aqueous proton conduction
is dominated by reorganization in the O-O gating mode and
other local solvent modes. Reorganization and gating thus
precedes the hydron transfer event along the proton translational
coordinate, which itself follows in an almost barrierless fashion
after the heavy nuclear mode preorganization and gating.

8. Concluding Remarks

Microscopic views of proton conduction in bulk water and
confined heterogeneous environments, such as polymer elec-
trolytes, should ultimately be resolved by MD simulations. As
the molecular actors in these scenarios are engaged in the
exchange of protons as quantum particles, the simulations should
be at a level which includes the quantum mechanical nature of
the proton, such as in Carr-Parinello simulations for bulk proton
conductivity. We have shown that the most important elements
of the proton dynamics can also be rationalized systematically
and in a transparent fashion on the basis of contemporary
concepts and formalism of the theory of charge-transfer
processes in condensed media, supported by MD simulations
of the environmental nuclear configurational dynamics. Charge
transfer theory rests on the notion of transfer of charged particles
such as electrons and protons between well-defined molecular
donor and acceptor entities. Proton conduction in bulk aqueous
solution and in confined membrane environments is carried out
by rapidly interconverting proton transferring clusters subjected
to fast mutual equilibrium fluctuations. PT within and between
the clusters involves strong donor-acceptor interactions and
shallow PT barriers in preorganized proton double-wells. These
are significantly distorted from the proton double-well configu-
rations at the equilibrium environmental nuclear configurations.

Properties of the proton transferring clusters were identified
phenomenologically in impressive detail in classical works,
when neither modern charge transfer theory nor powerful
computational tools such as MD simulations existed. Composi-
tion and properties of proton transferring clusters have been
largely supported by modern MD approaches at different levels.
Thus, the notion of proton exchanging molecular entities, which
interconvert rapidly, remains of considerable value and warrants
the use of modern condensed-matter PT theory. With such

GD
*
- GH

* ≈ ∆Eh
0H exp[-γH(Rs

H
- RHB

H )] -

∆Eh
0D exp[-γD(Rs

D
- RHB

D )] (31)

GD
*
- GH

* ≈ ∆Eh
0H exp[-γH(Rs - RHB)] ×

{ 1 -
∆Eh

0D

∆Eh
0H

exp[-(γD - γH)(Rs - RHB)]} (32)

GD
*
- GH

* ≈ ∆Eh
0 exp[-γH(Rs - RHB)] ×

{ 1 - exp[-(γD - γH)(Rs - RHB)]} (33)
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views, we have shown that the powerful frames of PT theory
carry over to and help to rationalize bulk aqueous proton
mobility. The PT processes in the Eigen and Zundel clusters
have been identified and found to accord with the adiabatic

limit of strongly interacting donor and acceptor clusters. MD
simulations have, further, identified the most important local
nuclear reactive modes that have been the basis for the
construction of potential free energy surfaces and the calculation
of the activation free energy. The experimental value of the latter
(0.11 eV) can be reproduced by a class of models dominated
by deformation of the intermolecular O-O gating mode of the
proton donor and acceptor. This offers a view of the fundamental
PT process in clusters where major preorganization in the O-O
gating mode leads the proton to pass a shallow or negligible
proton mode barrier. These views also open a rationale for the
kinetic deuterium isotope effect. The KIE appears to be
dominated by the preexponential librational frequency, ωeff, but
may hold a small contribution from the isotope-dependent
lowering of the activation free energy in the crossing region of
the reduced potential free energy surfaces spanned solely by
the heavy nuclear coordinates.

Disclosure of the nature of the PT elementary act in bulk
proton conducting clusters, and development of bulk proton
conductivity models hold, finally, perspectives for addressing
the changes in the proton conductivity patterns when the water
solvent is embedded in heterogeneous polymer electrolyte
membranes or biological trans-membrane proton conducting
channels. The pores in Nafion polymer electrolyte membranes
are, for instance, formed by water uptake with subsequent
dissociation of the -SO3H groups immobilized on the polymer
side-chains and hydration of the resulting -SO3

- groups. Water
confined in such environments possesses orientational dynamics
different from the bulk. The dynamics is impeded close to the
pore surface in wide pores and almost frozen in narrow pores.
This affects immediately the proton conducting performance
of pores of different size and internal structure. Information
about the pore hydration structure in proton conducting protein
channels would undoubtedly assist to rationalize different
aspects of the proton conducting properties, as the structure of
such channels is mostly better known than the Nafion membrane
structures. In all these exciting areas of proton conductivity,
the models of water and solvated proton and their further
development remain at the heart of the matter. Bulk water and
solvated proton models must not, so to speak, be “undrinkable”
before let into the relevant complex membrane or protein
environments.
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Appendix A

Equations for the Saddle Point for the Hopping Mecha-
nism I. The activation barrier is determined by the saddle point

of the lower adiabatic free energy surface. The system of
equations for the saddle point is34,35

The value of R satisfying these equations is the symmetry factor,
which characterizes the symmetry of the transition configuration
and the dependence of activation (free) energy on the driving
force. For the transition between identical states, hereafter called
symmetric transitions, the driving force is zero. In the transition
configuration, Ui

r
) Uf

r, and eq A4 gives R ) 0.5. In the
absence of conspicuous external electric field effects, the
elementary transitions of the proton in the Eigen and Zundel
clusters are between symmetric states, and only the case R )

0.5 is of interest.

Appendix B

Model Potentials for the Hopping Mechanism I. The
molecular potentials must be known for the calculation of the
activation barrier. Morse and exponential functions are often
used as model potentials:57-60

In general, the parameters of all of the potentials are different.
However, because the transition is symmetric

Hereafter, for simplicity, we set the dimensionless coefficients
ú ) F ) 1. The equations for the saddle point for the x and y

modes then yield X ) Y ) 1/2, where

Rs is determined from the equation

The use of these quantities in eq 17 leads to eq 19.

(1 -R)
∂Ui

r

∂x
+ R

∂Uf
r

∂x
)

∂∆Eh

∂x
[R(1 - R)]1/2 (A1)

(1 -R)
∂Ui

r

∂y
+ R

∂Uf
r

∂y
)

∂∆Eh

∂y
[R(1 - R)]1/2 (A2)

(1 -R)
∂Ui

r

∂R
+ R

∂Uf
r

∂R
)

∂∆Eh

∂R
[R(1 - R)]1/2 (A3)

Ui
r
- Uf

r
)

(2R - 1)∆Eh

2[R(1 - R)]1/2
(A4)

R )

∂Ui
r

∂qk

∂Ui
r

∂qk

-
∂Uf

r

∂qk

(A5)

u1 ) Dx[1 - e-γx(x - x0)]2 (B1)

u2 ) Dy[1 - e-γy(y - y0)]2 (B2)

Vw1-O
i (x) ) úxDxe

-2γxFx(x - x0) (B3)

Vw2-O
f (y) ) úyDye

-2γyFy(y - y0) (B4)

Dx ) Dy ) DHB; úx ) úy ) ú (B5)

γx ) γy ) γ; Fx ) Fy ) F (B6)

X ) e-γ(x - x0); Y ) e-γ(y - y0) (B7)

∂VO-O

∂R
≈

1
2

∂∆EI

∂R
(B8)
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Appendix C

Equations for the Saddle Point for the Mechanism II.
Using eqs 18-20 for the free energy surfaces and eqs A1-A5,
we write the equations for the saddle point for R12 and R23 as

The equation for the saddle point values of qk is the same as eq
A.5 with R ) 0.5.

If we use Morse/exponential functions for the molecular
potentials similar to those in Appendix B with D ) DZ and
exponential dependence of the resonance energy splitting on
the coordinates of the reactive modes, then

The solution of the equations for the saddle point is

where

Equations for the Saddle Point and Activation Gibbs Free
Energy for PT from a Given Zundel Ion to a Different
Zundel Ion. From the potentials

we obtain

with

For

the equation for X is

A solution exists if

At ∆, δ , 1 the approximate solution has the form

and the activation barrier is

Appendix D

List of the Key Symbols

ai ) PT transfer distance
Aij ) entropy factors
D ) self-diffusion coefficient
e ) charge of proton
Eij ) activation enthalpies
Ep ) proton energy
EHB ) dissociation energy of hydrogen bond
DZ ) dissociation energy of the Zundel complex
∆E0 ) resonance splitting at equilibrium of reactive coor-

dinates
∆Eh and ∆EZ ) quantum mechanical splitting of proton

energy levels for the mechanisms I and II, respectively
G* ) activation Gibbs free energy
γ ) decay factor
h ) Planck’s constant, p ) h/2π
κ ) transmission coefficient for transferring proton
kB ) Boltzmann’s constant
kij ) rate constants
Kij ) equilibrium constants

∂u12

∂R12
+

∂V12
f

∂R12
+

∂u23

∂R12
)

∂∆EZ

∂R12
(C1)

∂u12

∂R23
+

∂V23
i

∂R23
+

∂u23

∂R23
)

∂∆EZ

∂R23
(C2)

∆EZ ≈ ∆E0 exp[-γ(R12 - R12
0i )] exp[-γ(R23 - R23

0f )] (C3)

X ) Y )
DZ

2DZ - ∆E0
(C4)

X ) e-γ(R12-R 12
0 i); Y ) e-γ(R23-R 23

0 f ) (C5)

Ui ≈ u12
i (r12) + V23

i (r23) + V34
i (r34)

Uf ≈ V12
f (r12) + V23

f (r23) + u34
f (r34)

V23
i (r23) ≡ V23

f (r23) (C6)

u12 ) u34 ) D(1 - e-γ(r-r0))2

V12 ) V34 ) De-2γ(r-r0)

∆E ) ∆E0e
-γ(r12-r 12

0 )e-γ(r34-r 34
0 )e-γ(r23-r 23

0 )

V23 ) D(1 - e-γ(r23-r 23
0 ))2 (C7)

∂u12
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∂r12
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∂V12
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∂∆E
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∂V23

i

∂r23
)
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∂r23

∂u34
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∂r34
+

∂V34
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∂r34
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∂∆E

∂r34
(C8)

D
∂

∂X
(1 - X)2

- 2DX
2
) - 2∆E0XYR

D(1 - X)2X - 2DX
2
) - 2∆E0XYR

D(1 - Y)2Y - 2DY
2
) - 2∆E0XYR

4D23(1 - R)R ) - 2∆E0XYR (C9)

DX(1 - 2X) ) -∆E0XYR

DY(1 - 2Y) ) -∆E0XYR

2D23R(1 - R) ) -∆E0XYR (C10)

X ) e-γ(r12-ro12); Y ) e-γ(r34-ro34) (C11)

(1 - 2X) ) -∆YR

(1 - 2Y) ) -∆XR

(1 - R) ) -δYXY (C12)

∆ ) ∆E0/D; δ ) ∆E0/2D23 (C13)

X ) Y

(1 - 2X) ) -∆XR

(1 - R) ) -δX
2 (C14)

∆δX
3
+ (∆ - 2)X + 1 ) 0 (C15)

2 - ∆ > 3∆δ (C16)

X ≈
1
2
+ x

x )
∆

4

R ≈ 1 +
δ

4
(C17)

G
* ≈

1
Er

+
DZ

2
+

DZ∆
2

8
+ D23

δ2

16
-

∆E
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µ ) mobility
Pi ) relative concentration of clusters
{ qk} ) reactive outer-sphere coordinates
q ) proton coordinate
R12 ) O-O distance between the two oxygen atoms within

the Zundel complex
R13 ) O-O distance between any one oxygen atom of the

Zundel complex and a neareast neighbor
R14 ) O-O distance between a nearest and second nearest

neighbor of a Zundel complex
RHB ) hydrogen bond distance
RS ) O-O distance at the transition state
t ) time
T ) temperature
W i

s
) free energy of outer sphere water polarization

U i
r
) reduced free energy

ωeff ) effective vibrational frequency
Wi ) transition probability per unit time
〈x2(t)〉 ) mean square displacement
R ) symmetry factor
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