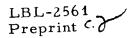
Lawrence Berkeley National Laboratory

Recent Work

Title

KINETICS OP THE GAS-PHASE REACTION BETWEEN OZONE AND NITROGEN DIOXIDE

Permalink


https://escholarship.org/uc/item/5f52z3pc

Authors

Graham, R.A. Johnston, H.S.

Publication Date

1974

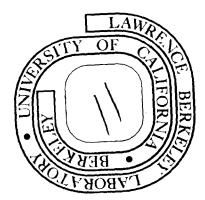
Submitted to Journal of Chemical Physics (as a Note)

KINETICS OF THE GAS-PHASE REACTION BETWEEN OZONE AND NITROGEN DIOXIDE

RECEIVED

R. A. Graham and H. S. Johnston RADIATION LABORATORY

FEB 4 1974


January 1974

LIBRARY AND DOCUMENTS SECTION

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

LBL-2561

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Kinetics of the Gas-Phase Reaction between Ozone and Nitrogen Dioxide*

R. A. Graham and H. S. Johnston

Department of Chemistry University of California, and Inorganic Materials Research Division, Lawrence Berkeley Laboratory, Berkeley, California The first measurement of the rate constant for the reaction of nitrogen dioxide and ozone

$$NO_2 + O_3 \rightarrow NO_3 + O_2 \tag{1}$$

net:
$$\frac{NO_2 + NO_3 \stackrel{M}{+} N_2O_5}{2 NO_2 + O_3 \rightarrow N_2O_5 + O_2}$$
 (fast) (2)
(3)

was reported in 1949 by Johnston and Yost¹, who covered a narrow range of temperature, 286 to 302°K. Several other room temperature studies have been made; a summary of the work of various investigators was recently given by Wu, Morris, and Niki². This reaction may be important in stratospheric photochemistry³; the present study reports measurements from 231 to 298°K.

This reaction was studied in a 45-liter gas cell equipped with multiple reflection mirrors. The cell consisted of a quartz tube 15 cm in diameter and 2 meters long, which was equipped with nickel-plated stainless-steel end-caps. The cell was enclosed in a thickly insulated box and cooled by circulated cold methanol; temperature was controlled by electrical heating wires, and the air space was stirred by a fan. Temperature was measured by thermocouples at 6 locations in the exterior air space and at one position in a thermocouple well inserted into the reaction vessel, and the temperature was uniform to $\pm 0.1^{\circ}$ C. The preparation and purification of nitrogen dioxide has been described previously⁴. Oxygen was purified by passing through a silica tube containing copper turnings at 900°K, a bed of 5% palladium on alumina at 650°K, and columns of ascarite and phosphoric pentoxide. Ozone, prepared by passing the purified oxygen through a silent electric discharge, was trapped on silica gel at 194°K and degassed as needed.

Gas pressures were measured with a Texas Instrument Model 145 quartz spiral manometer. The concentrations of nitrogen dioxide or ozone in the cell were followed by absorption spectrometry, using a chopped (400 hz) split beam from a Sylvania deuterium arc, a 1-meter McPherson 2051 monochromator, a photomultiplier and lock-in amplifier. Kinetic data were recorded and evaluated by a PDP-8/E computer interfaced with a Preston digital voltmeter. Both NO₂ and O₃ were calibrated at the temperatures used.

During experimental runs, the ratio of NO_2 to O_3 was varied from approximately 3 to 1/3 when NO_2 was followed and from 3 to 1 when O_3 was followed. Reaction times were from 200 to 1000 seconds with 1000 data points taken per reaction. The differential rate of change of reactants was calculated point-by-point, and the data were interpreted primarily in terms of differential rates between 20 and 60 per cent completion of reaction. Reaction stoichiometry was measured by switching back and forth between 255 nm (to measure O_3) and 390 nm (to measure NO_2).

From the balanced chemical equation, the stoichiometric ratio $(\Delta NO_2/\Delta O_3)$ is expected to be two, but the observed values were substantially \sim less than two: 1.89 ±0.08 (standard deviation), independent of temperature, on the basis of 25 measurements. Rate constants were evaluated on the basis of the observed stoichiometry, and the results are given in

-2-

Table 1. A linear least squares fit gives the rate constant for reaction (1)

$$k_1 = (1.34 \pm 0.11) \times 10^{-13} \exp(-4900 \pm 60/RT)$$
 (4)

where units are cm³ molecules⁻¹ sec⁻¹ and the uncertainties are the standard deviation. This activation energy is substantially less than the value of 7 kcal reported by Johnston and Yost¹, and the pre-exponential factor is also less.

The reason for the low stoichiometry is not apparent. Wu, Morris, and Niki² found values between 1.65 and 2.00, and suggested that the low value came from the side reaction $NO_2 + NO_3 \rightarrow NO + O_2 + NO_2$ with loss of ozone as it reacts with nitric oxide. The reaction of NO with O_3 is chemiluminescent^{5,6}, and this mechanism was tested by looking for this chemiluminiscence. The system was calibrated with 2 microns of NO, 20 microns of O_3 , and 100 microns of argon. A strong chemiluminescent signal was observed. Nitrogen dioxide was substituted for the nitric oxide and no chemiluminescence was seen. From the sensitivity of the method, it appears that less than 0.2 percent of the NO_3 reacted to give NO.

				2 5
T	No. of	Ozone range, 1	2	10 ¹⁷ k (cm ³ molecule ⁻¹)
°K	runs	(in units of 10 ⁻¹	10^{14} molecules cm ⁻³)	
298.2	10	1.5-4.0	2.9-12.6	3.49
288.2	4	3.1-4.9	2.2-12.0	2.51
278.2	8	3.8-11.9	3.1-12.7	1.80
268.2	12	1.4-13.1	2.2-14.9	1.38
258.2	13	1.8-12.0	3.9-11.6	0.905
248.2	12	1.2-8.7	2.5-10.6	0.621
238.2	16	1.4-8.6	2.2-15.2	0.433
231.4	6	3.8-7.1	3.4-11.0	0.314

Table 1. Rate constants for the reaction $NO_2 + O_3$.

-4-

References

*This work was supported by the Climatic Impact Assessment Program by means of an interagency agreement between the Department of U.S. Transportation and the Atomic Energy Commission. H. S. Johnston and D. M. Yost, J. Chem. Phys. 17, 386 (1949). 1. 2. C. H. Wu, E. D. Morris, Jr., and H. Niki, J. Phys. Chem. 77, 2507 (1973). H. S. Johnston, Science 173, 517 (1971). 3. 4. H. S. Johnston and R. A. Graham, J. Phys. Chem. 77, 62 (1973). 5. J. C. Greaves and D. Garvin, J. Chem. Phys. 30, 348 (1959). M.A.A. Clyne, B. A. Thrush and R. P. Wayne, Trans. Faraday Soc. 60, 6. 359 (1964).

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. TECHNICAL INFORMATION DIVISION LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720 . . .

0