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ABSTRACT: The OH radical is the most important radical in combustion and in the 

atmosphere, and methanol is a fuel and antifreeze additive, model biofuel, and trace 

atmospheric constituent. These reagents are also present in interstellar space. Here we 

calculate the rate constants, branching ratios, and kinetic isotope effects (KIEs) of the 

hydrogen abstraction reaction of methanol by OH radical in a broad temperature range of 30–

2000 K, covering interstellar space, the atmosphere, and combustion by using the competitive 

canonical unified statistical (CCUS) model in both the low-pressure and high-pressure limits 

and, for comparison, the pre-equilibrium model. Coupled cluster CCSD(T)-F12a theory and 

multireference CASPT2 theory were used to carry out benchmark calculations of the 

stationary points on the potential energy surface to select the most appropriate density 

functional method for direct dynamics calculations of rate constants. We find a significant 

effect of the anharmonicity of high-frequency modes of transition states on the low-

temperature rate constant, and we show how tunneling leads to an unusual negative 

temperature dependence of the rate constants in the range 200 K > T > 100 K. The 

calculations also demonstrate the importance of the extent of stabilization of the pre-reactive 

complex. The capture rate for the formation of the complex is the dominant dynamical 

bottleneck for T < 100 K, and it leads to weak temperature dependence of the rate below 100 

K in the high-pressure-limit of the CCUS model. We also report the pressure dependence of 

branching ratios (which are hard to measure so theory is essential) and the KIEs, and we 

report an unusual nonmonotonic variation of the KIE in the high-pressure limit at low 

temperatures.  
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1. INTRODUCTION 

The use of clean-burning oxygenated fuels, for example, alcohol biofuels, for ground 

transportation provides a way to mitigate the increasingly serious problem of air pollution. As 

the simplest alcohol, methanol is an inexpensive fuel additive for internal combustion 

engines. In addition, methanol is usually present in small amounts in the atmospheric 

environment, where it plays a role in atmospheric chemistry. There is a large amount of 

kinetics research on elementary reactions involving methanol;1 and the reaction of methanol 

with OH radical has been of special interest because OH radical is one of the main oxidizing 

reactive species in both combustion and the atmosphere.2,3,4,5,6,7,8,9,10 Methanol is also one of 

the most abundant organic molecules in interstellar space, and the reaction of methanol with 

OH to produce methoxy also occurs in the ultracold environment of interstellar space,11 

where its observation is one of the more stunning examples of quantum mechanical 

tunneling. 

The reaction has two products; the OH radical can abstract an H atom from either the 

methyl (reaction R1) or the hydroxyl (reaction R2) group of methanol. We will consider the 

following two-step model of the reaction: 

     OH + CH3OH  [OH···CH3OH]   

Step a is the complexation reaction, which is the same for R1 and R2. The reverse of the 

complexation reaction is called step -a; the rate constants for these steps are called ka and k-a, 

and the equilibrium constant is  

 Ka = ka/k-a (1) 

The rate constant for step b is called kb,1 for R1 and kb,2 for R2.  

In the pre-equilibrium model (PEM), the complex is fully equilibrated and thermalized, 

and we may write the overall rate constants as  

  = Ka kb,1 (2) 

and 

  = Ka kb,2 (3) 

This is the high-pressure limit of the two-step model in the hypothetical case where reaction 

is slow compared to the collisional equilibration of the complex so that the complex is fully 

equilibrated. This limit, although interesting as a model, is not expected to be achieved in 

practice when the second step is fast. Therefore, we will consider two other models, in 
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particular the low-pressure and high-pressure limits of the competitive canonical unified 

statistical (CCUS) model.12  

In the low-pressure limit (LPL), the complex is never formed and the mechanism 

involves only a single step: 

 OH + CH3OH   

where 

  = kc,1 (4) 

and 

  = kc,2  (5) 

In practice, the low-pressure limit of the CCUS can be quite different from the pre-

equilibrium model because the pre-equilibrium model involves the possibility of tunneling to 

the product from low-energy states of the complex produced by energy-transfer collisions with 

a high-pressure bath gas, whereas the single-step model involves no states of the system with 

energy below the ground-state energy of the reactants (note that production of the complex and 

the product are both exoergic, but in a single collision, the total energy is constant and cannot 

be lower than the lowest energy state of the reactants, which is reactants in their zero-point 

level and zero translational energy). At intermediate pressures, the complex is present but 

unequilibrated, which makes the situation more complicated, and the rate constant is in the so-

called falloff region, where it is somewhere between these two limits. We will see that at low 

temperature even the high-pressure limit of the CCUS is quite different from the PEM; in this 

case, the difference is because the first dynamical bottleneck becomes rate limiting at low 

temperature. 

Early study of the CH3OH + OH kinetics only involved temperatures above 210 K 

because both of the possible reactions R1 and R2 have a barrier to form products, and 

reactions with a barrier are considered less important in low-temperature chemistry. Recently 

though, Shannon et al.,11 by using a pulsed Laval-nozzle apparatus with flash photolysis, 

measured a surprisingly large rate coefficient at 82 and 63 K, an unexpectedly large negative 

dependence of the rate constant on temperature below 200 K, and an unexpectedly higher 

branching fraction of R2 at lower temperatures, despite this reaction having a larger barrier 

than R1. Their discovery revealed the potential importance of the CH3OH + OH reaction in 

cold interstellar space and motivated further investigations at the ultra-low temperatures of 

interest for understanding interstellar chemistry.13,14,15,16 These follow-up studies all 
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confirmed the observations of Shannon et al., although there are important discrepancies 

about the interpretation of those observations.16 By interpreting their experiments with a 

master equation incorporating quantum-mechanical tunneling, Shannon et al. attributed the 

mechanism behind the unexpected negative temperature dependence of the rate coefficient 

for this reaction to tunneling through the barrier via a long-lived hydrogen-bonded pre-

reactive complex at low temperatures. 

 Previously a negative temperature dependence of the total reaction rate at low 

temperatures was also observed in other alcohol reactions with OH, for example, isobutanol 

+ OH17 and 2-butanol + OH,18 for both of which the negative temperature dependence of the 

rate constant was observed up to higher temperatures, about 400 K, than for methanol, and it 

was shown that the anharmonicity of high-frequency vibrational modes in the transition-state 

(TS) structures is important for predicting the quantitative rate constants at low temperatures.  

Questions arise. Does the anharmonicity of the TS structure also play an important role in 

the methanol + OH reaction, and if yes, what is the combined effect of tunneling and 

anharmonicity on the rate constant at ultracold temperatures? Is a necessary condition for 

negative temperature dependence that the system tunnels from pre-reactive complex states at 

lower energy than the reactant state, as previous works11,16 suggested? What is the 

temperature dependence of the product branching fractions, which are not observed in typical 

rate constant measurements where only the sums of the reaction rates for R1 and R2 are 

measured? To answer these questions, and also to provide a unified treatment of this reaction 

that spans the broad temperature range encompassing the interstellar, atmospheric, and 

combustion regimes, the present article employs the CCUS model, in which the individual 

dynamical bottlenecks are treated by multistructural variational transition-state theory19 with 

multistructural torsional anharmonicity based on a coupled torsional potential,20,21,22,23 and 

with the small-curvature tunneling approximation24 (MS-CVT/SCT). The CCUS model is a 

straightforward extension of the canonical unified statistical model.25,26,27,28 We use the low-

pressure and high-pressure limits of the CCUS to calculate the rate constants of the two 

methanol + OH reactions (R1 and R2) over the temperature range 30 to 2000 K.  

In the present calculations, specific-reaction-parameter (SRP) scaling factors optimized 

for individual complexes and transition states,17 have been used for vibrational frequencies of 

transition states and the complexes to take into account more accurately the anharmonicity of 

zero-point energies (ZPEs). 

The work will be presented as follows: the pre-dynamics computational details and 

methods are given in sections 2 and 3; and the dynamics methods and low-pressure and high-
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pressure limits of the CCUS are described in section 4. In section 5, the calculated rate 

constants of the two reactions are compared with representative kinetic data from the 

literature, and the product branching fractions and kinetic isotope effects are presented. A 

summary is given in section 6. 

 

2. ENERGIES AND STRUCTURES 

2.1 Selection of Model Chemistry for Calculations of Potential Energy Surfaces 

Our first task was to choose the most appropriate model chemistry for potential energy 

surface (PES) calculations of each reaction. To do this, we tested the performance of a variety 

of Kohn-Sham (KS) model chemistries by calculations of the classical reaction energies and 

barrier heights of the two reactions by comparing their results to the best estimates we could 

obtain. 

The tested KS model chemistries are selected combinations of the M08-HX29, M08-SO29, 

MN1530, M06-2X31, MN15-L32,ωB97X-D33, B3LYP34, MPW1K35, and M05-2X31 exchange-

correlation functionals with the aug-cc-pVTZ36, jun-cc-pVTZ37, jul-cc-pVTZ37, MG3S38, and 

6-31+G(d,p)39,40 basis sets. (Note that for the system considered here, MG3S is the same as 

6-311+G(2df,2p).) Using these methods, the geometries of the reactants, pre-reaction 

complex, transition structures, and products were optimized, and were confirmed to be the 

desired stationary points by frequency calculations. Then the classical reaction energies and 

forward and reverse barrier heights were calculated.  

 

2.2 Best Estimates for Classical Reaction Energies and Barrier Heights 

The classical reaction energy, ∆V, is defined as the difference between the equilibrium 

potential energies of the products and the reactants; the classical barrier height, V≠, is the 

potential energy difference between the transition structure (saddle point) and the reactants. 

An accurate ∆V may be inferred from experiments, but V≠ is not available from experiment. 

We therefore chose a highly accurate theoretical method to compute a benchmark for V≠. 

Based on our experience, the CCSD(T)41 coupled cluster method with the F12a42 method to 

include explicitly correlated basis functions can give a realistic estimate for a system that is 

well described by a single configuration state function, but when one or more species with 

inherently multiconfigurational character are involved in the reaction, a multireference 

method, for example, complete active space second-order perturbation theory (CASPT2), 

may be needed for accurate calculations. Therefore, we calculated the T1 diagnostic43 (which 

is an indication of multireference character) for all species to estimate their extent of multi-
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reference character using the structures optimized by M08-HX/MG3S. The T1 values are 

shown in Table 1, and they may be interpreted in light of the experience that a T1 value larger 

than 0.02 for a closed-shell system or 0.045 for an open-shell system means that a multi-

reference method might be needed.44 Based on these criteria, the single-reference CCSD(T)-

F12a method should be accurate enough for the calculations of the classical reaction energy 

of the two reactions R1 and R2 and the barrier height of the reaction R1, but the multi-

reference CASPT2 method with an appropriate active space is needed for calculating the 

barrier height of reaction R2 because its transition state TS2 has a T1 value of 0.055. We also 

calculated M diagnositics48 and these too indicate that TS2 has the largest multireference 

nature; the calculated M values are given in the Supporting Information.  

 

2.2.1 Benchmark for R1: CCSD(T)-F12a 

A best estimate of ∆V can be obtained from experimental enthalpies of reaction ∆#𝐻%& 

at 0 K by subtracting the change in vibrational zero point energy (ZPE): 

 ∆𝑉 = ∆#𝐻%& − ∆(ZPE)  (6) 

where the quantities on the right-hand side can be obtained from the experimental enthalpies 

of formation ∆/𝐻%&  at 0 K of the reagents45 and from previous estimates1e,46 of ZPEs: 

 ∆#H%& = ∑∆/H%& (P)- ∑ ∆/H%& (R)  (7) 

 ∆(ZPE) = ∑ZPE (P)- ∑ ZPE (R)  (8) 

The data used in the present work are listed in Table 2, and these data yield our best estimate 

of ∆V as -21.81 ± 0.60 kcal/mol for reaction R1 and -12.42 ± 0.76 kcal/mol for reaction R2.  

We know from previous work that M08-HX/MG3S gives accurate internuclear distances 

at transition states,47 and so it is a good choice for obtaining geometries for benchmark 

calculations. Tables 3 and 4 show the classical reaction energies calculated by CCSD(T)-

F12a/jun-cc-pVTZ//M08-HX/MG3S are -21.88 and -12.32 kcal/mol for R1 and R2 reactions, 

respectively; these values agree within the experimental error bars with the best estimates. In 

light of this agreement and the diagnostics of Table 1, we use CCSD(T)-F12a/jun-cc-

pVTZ//M08-HX/MG3S results as benchmarks of the R1 reaction. The calculated forward and 

reverse barrier heights of R1 by this method are listed in Table 3, and they are 1.46 kcal/mol 

and 23.34 kcal/mol, respectively. 
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2.2.2 Benchmark for R2: CASPT2 

Reaction R2 needs a multi-reference treatment, and for this case, we calculated the 

classical reaction energy and barrier heights using the CASPT2 method with the MG3S basis 

set based on the structures optimized by M08-HX/MG3S. We used the correlated 

participating orbitals (CPO) scheme.48,49 In the CPO scheme, the orbitals chosen in active 

spaces are those including important static correlation effects on chemical reactions, for 

example, those participating strongly in bond breaking and bond forming, plus correlating 

orbitals. We examined several CPO active spaces; the detailed compositions of various active 

spaces are listed in Table S3 (the prefix S indicates that a table or figure is in Supporting 

Information), and the corresponding orbitals of TS2, reactants and products are shown in 

Figures S1-S3. Table S4 provides the calculated classical forward barrier heights and energies 

of reaction for R2 using CASPT2 method with different active spaces. The largest active 

space examined is of size (11,11), which includes the bond orbitals that break or form during 

the H transfer reaction and the electrons in these bonds plus four p orbitals geminal to bonds 

that are broken or formed and, for each of them, a correlating orbital (occupying 

approximately in the same space as the orbital it correlates); this is the moderate CPO (mod-

CPO) scheme. This calculation yields a classical energy of reaction of -12.45 kcal/mol, in 

good agreement with the experimentally based best estimate, and we chose the 

CASPT2(11,11) results as the benchmark of the reaction R2. This yields a classical forward 

barrier height of 3.06 kcal/mol. 

 

2.3 Conformers 

The reactants (CH3OH and OH), complex, and products (CH2OH, CH3O, and H2O) of the 

methanol + OH reaction are all simple molecules with only one conformer, but the transition 

state of each reaction has more than one conformer due to the presence of the two torsional 

degrees of freedom associated with internal rotation around the two half-bonds involving the 

transferred hydrogen atom. After an exhaustive conformational search carried out with the 

MSTor program,50 four distinguishable structures of transition state were found for each 

reaction. They consist of two pairs of mirror images for the transition state TS1 of R1 and 

one pair of mirror images and two Cs symmetric structures for the transition state TS2 of R2; 

these structures are given in Figure 2. Their relative energies are also listed in Figure 2, as 

obtained by the methods selected above.  
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2.4 Performance of Various KS Model Chemistries in Electronic Structure Calculations 

The calculated classical energy of reaction (∆𝑉) and the forward ( ) and reverse ( ) 

barrier heights using selected KS model chemistries for both R1 and R2 reactions are listed in 

Tables 3 and 4, respectively, as well as the best estimates; results for a larger set of model 

chemistries (see references in section 2.1) are given in the Supporting Information. The 

barrier heights given in Tables 3 and 4 were obtained using the lowest-energy structure of 

each transition state. The performance of various KS model chemistries for the current 

systems was evaluated by calculating their individual mean unsigned percentage deviation 

(MUPD) of the forward and reverse barrier heights and energy of reaction. The calculated 

MUPDs for selected model chemistries are listed in Tables 3 and 4. 

As shown in the two tables, among the tested KS model chemistries, the M08-HX/jun-cc-

pVTZ model performs best for R1 with a MUPD of 3.7%, and the M08-SO/jun-cc-pVTZ 

model performs best for R2 with a MUDP of 8%; so we chose these two model chemistries 

for the potential energy surface calculations in the dynamics study for the two reactions. In 

particular, we used these model chemistries to generate direct dynamics calculations of the 

temperature-dependent reaction rate constants. The lowest-energy structures of all species 

obtained using these two methods are given in the Supporting Information. 

 

3. ANHARMONICITY 

We consider two kinds of anharmonicity, anharmonicity in the high-frequency modes that 

dominates the zero-point energy and anharmonicity in the low-frequency torsional modes that 

makes a significant contribution to the entropies and hence the free energies of reactants and 

transition states, especially at higher temperatures. These two kinds of anharmonicity are 

treated in sections 3.1 and 3.2, respectively. 

 

3.1 Specific-Reaction-Parameter Scaling Factor 

The anharmonicity of high-frequency vibrational modes affects the rate constants 

especially at low temperatures. Usually we scale calculated harmonic vibrational frequencies 

by an empirical scaling factor for a given model chemistry; using the harmonic oscillator 

formulas with scaled vibrational frequencies is called the quasiharmonic approximation. The 

generic scaling factors are parameterized to obtain accurate zero point energies (ZPEs) by 

correcting for anharmonicity and also for systematic errors in the electronic structure model 

chemistry.51  
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Recently, it has been found that although these parametrized scaling factors work well for 

stable molecules, they can be unsuitable for transition states of some reactions. For example, 

for the isobutanol + OH reactions, which are a similar reaction to the reactions studied here, 

the transition states were found to have stronger anharmonicity than the reactants, and a 

specific-reaction-parameter (SRP) scaling factor for each specific transition state had to be 

used to get the accurate rate constants.17 Therefore, in the present study, we determined an 

SRP scaling factor  λ567  for each transition state of the two reactions in a similar way. We 

also determined and used an SRP scaling factor for calculating the zero point energy and 

partition functions of the weakly bound complex. For each of these species (TS or complex), 

λ567  is factored as:51 

  (9) 

where λ89: denotes the correction for anharmonicity, and λ; is the correction for the 

inexactness of the model chemistry.  

The λ89: scaling factor is computed as the ratio of anharmonic ZPE to the ZPE 

computed in the harmonic approximation. Anharmonic ZPEs were calculated by hybrid,52 

degeneracy-corrected,53 second-order55,56,57 vibrational perturbation theory (HDCVPT2). We 

chose MPW1K/MG3S to calculate λ89: because the higher-order force constants converge 

better (with respect to grid size) with this kind of hybrid GGAs than with hybrid meta GGAs. 

The calculated anharmonic and harmonic ZPEs and the ratio of anharmonic ZPE to harmonic 

ZPE, i.e., λ89:, are given in Table 5. Table 5 also lists the λ; for M08-HX/jun-cc-pVTZ and 

M08-SO/jun-cc-pVTZ model chemistries, determined by parametrization to reproduce the 

accurate harmonic frequencies in the F38/10 database,51 and the corresponding specific-

reaction-parametrized scaling factor λ567  generated as the product of λ89:  and λ;.  

Table 5 shows that the calculated SRP values of λ567  for the lowest-energy structures of 

the transition states of R1 and R2 reactions are both 0.964; these values are much smaller 

than the standard λ567  values 0.974 for M08-HX/jun-cc-pVTZ and 0.984 for M08-SO/jun-

cc-pVTZ. The calculated SRP values of λ567  for the pre-reactive complex are 0.969 and 

0.980 for M08-HX/jun-cc-pVTZ and M08-SO/jun-cc-pVTZ levels, and these are relatively 

closer to the standard ones than are those for the transition states. The standard λ567  has 

been confirmed to be reasonable for stable CH3OH molecule in a previous study,1e and so the 

present results indicate greater anharmonicity of high-frequency modes of the transition 

states than the reactants for the present systems. (Previous work also found that the standard 

scaling factors were adequate for other stable molecules, notably isobutanol,17 2-butanol,18 

HAnhZPE
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and toluene.58) We use the individual SRP values of λ567  for the calculations of zero-point 

energies, partition functions, and enthalpies. Table 6 gives the resulting enthalpies for 

complex formation and enthalpies of activation for the lowest-energy conformers of the 

transition state. 

 

3.2 Multi-Structural Torsional Anharmonicity 

For each species a (where a = R for methanol, C for complex, and TS1 or TS2 for the 

transition states), the multi-structural anharmonicity factor is calculated as 

 FMS-T,a   = <con-rovib
=>-?,A
<rovib,1

SS-HO,α  (10) 

where 𝑄con-rovib
CDEF,G

 
is the conformational-rotational-vibrational partition function of species a 

evaluated by multistructural torsional anharmonicity approximation with coupled torsional 

potential22 (MS-T), and  is the single-structure quasiharmonic oscillator 

approximation rotational-vibrational partition function of the global minimum structure for 

species a. In general 𝑄con-rovib
CDEF,G

 contains the contributions from all the distinguishable 

conformers of the reactants and the transition states, and it includes both the effect of 

multiple structures and the effect of torsional potential anharmonicity; however, since 

methanol and the complex have only one distinguishable structure each, in those cases 

𝑄con-rovib
CDEF,G

 contains only torsional potential anharmonicity. 

 

4. DYNAMICS METHODS 

As introduced in section 1, there are two potential dynamical bottlenecks to each 

reaction: a free energy bottleneck (TSa) to the barrierless formation of the pre-reactive 

complex in the entrance region and a free energy bottleneck (TS1 for R1 or TS2 for R2) in 

the vicinity of potential energy barrier. Thus, both possible bottlenecks should be considered 

in calculating rate constants for a given reaction. A correct treatment of the pressure 

dependence at intermediate pressures would require a master equation59,60,61,62,63,64,65 with 

accurate rate constants for the energy relaxation of the complex, and we will not pursue an 

accurate treatment of the energy transfer in the present work. Instead we evaluate one low-

pressure model and two high-pressure models. In the high-pressure models, the two 

bottlenecks are passed in separate dynamical steps, but in the low-pressure limit they are 

passed in a single collision; to account for the occurrence of two bottlenecks separated by an 
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intermediate, we apply the CCUS model in the high-pressure limit, and we compare it to the 

pre-equilibrium model. 

 

4.1 Low-Pressure-Limit CCUS Rate Constants 

In the low-pressure limit, the generalized free energy of activation as a function of the 

reaction coordinate has a local maximum between reactants and the complex, a local 

minimum in the complex region, and a local maximum near the barrier for reaction R1 or R2. 

The generalized transition state theory rate constants calculated at these four positions (with 

the reactants being OH + CH3OH for the calculation of all four rate constants) are labeled 

respectively as , , , and . Note that  is the same as defined in the 

introduction, and  is the rate constant computed for passage through TS1 or TS2 as if the 

first dynamical bottleneck were not present, and is calculated in the same way as a 

transition-state rate constant but at the local minimum (it is the location of the complex) 

between the variational transition states rather than at a saddle point.25,26 The rate constant 

expression for the CCUS model is 

 ,   j = 1 or 2 (11) 

We make the working assumption that because the complex has a lower 

energy than the transition states TS1 and TS2. Then this expression reduces to 

 ,   j = 1 or 2 (12) 

where  is the same as defined in the introduction. In the current study, we estimate the 

capture rate constant  using the hard-sphere collision rate constant formula: 

 𝑘I = πKLMNOLPQRSTUVW
X YXZ[\]F

^_  (13) 

where µ is the reduced mass of OH and methanol, and dOH and dmethanol are vdW diameters. 

We use multi-structural canonical variational transition state theory (MS-CVT) with 

multidimensional tunneling to calculate . The choice of which multidimensional 

tunneling approximation to use has been discussed elsewhere.66,67 We performed some test 

calculations with both small-curvature tunneling (SCT) and large-curvature tunneling (LCT) 

and obtained larger transmission coefficients with SCT; therefore, we use SCT for all the 

tunneling calculations in this paper. 
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In the low-pressure limit, the pre-reactive complex of CH3OH and OH cannot be 

stabilized by collision with a third body so we do not need to consider the pre-reaction 

complex.68 Thus the lowest energy at which tunneling can occur is the ground-state energy 

of separated reactants in the limit where the relative kinetic energy goes to zero, and this is 

used as the lower limit of the integral over energies when calculating the tunneling 

transmission coefficients in the MS-CVT/SCT calculations of , and . Rate 

constants calculated by eqs 12 and 13 with this lower limit on the tunneling energy will be 

called the low-pressure limit of the CCUS model (abbreviated LPL-CCUS). 

 

4.2 High-Pressure-Limit CCUS Rate Constants 

In the high-pressure limit, we again evaluate the rate constant by eqs 12 and 13. However, 

now the complex is assumed to be completely equilibrated by third-body collisions before the 

second dynamical bottleneck is crossed. Therefore tunneling can occur at all energies greater 

than or equal to the ground-state energy of the complex, which is lower than the ground-state 

energy or reactants, so the calculated rate constant is larger. Because we calculate the rate 

constants down to very low temperatures and down to the lowest energy state of the complex, 

the SCT tunneling calculations are carried out with the quantized-reactant-state tunneling 

(QRST) approximation, which is explained elsewhere.69 Rate constants calculated by eqs 12 

and 13 with this treatment of the tunneling energy will be called the high-pressure limit of the 

CCUS model (abbreviated HPL-CCUS).  

In the pre-equilibrium model, the pre-reactive complex is formed, stabilized, and 

completely equilibrated. Thus the rate constants are given by eqs 2 and 3. Notice that if we 

neglect the TS,1 and TS,2 rate constants in the fractional prefactor of eq 12 and calculate the 

tunneling in the high-pressure limit, the result becomes equivalent to the PEM of eqs 2 and 3 

because the properties of the complex cancel out in eqs 2 and 3 except for the ground-state 

energy of the complex providing the lower limit for the tunneling calculation. Thus, the PEM 

is computed as an approximation to the HPL-CCUS where we make the further assumption 

that the second bottleneck completely dominates the rate process. 

 

4.3 MS-VTST/SCT 

The MS-CVT/SCT method used to calculate the rate constants for passage through the 

second dynamical bottleneck in the above models is explained elsewhere,19,22,24,68 and here 

we simply present a few details that will be useful for the discussion.  

1TS,
k

2TS,
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The first detail is to remind the reader that the effective barrier for tunneling is the 

ground-state vibrationally adiabatic potential curve given by24,70 

  (14) 

where  is the potential energy along the isoinertial minimum energy path (MEP), s is 

distance along the MEP, and  is the zero point energy along the MEP. 

The second detail is that we factorize the rate constants as follows: 

  (15) 

where  is the SCT tunneling transmission coefficient,  is the CVT recrossing 

transmission coefficient, and 

  (16) 

where  is the multi-structural torsional anharmonicity factor for TS,1 or TS,2 given by 

  ,  j = 1 or 2  (17) 

and  is the single-structure conventional transition state theory rate constant. Note that 

eq 15 writes the rate constant as a product of the multistructural conventional transition state 

rate constant  and an overall transmission coefficient that is itself factored into 

a tunneling transmission coefficient and a recrossing transmission coefficient. The 

multistructural conventional transition state rate constant is a quasiclassical one (which 

simply means that the reactive flux is calculated with classical reaction coordinate motion but 

other degrees of freedom quantized) computed with the transition state dividing surface 

passing through the saddle points of all conformations of the transition state. The recrossing 

transmission coefficient accounts for quasiclassical trajectories that recross the conventional 

transition state, and we estimate it using variational transition state theory to find the least 

recrossed transition state (within the flexibility allowed by our variational search, which is 

limited to dividing surfaces orthogonal to the minimum energy path). In MS-CVT/SCT,  

and  are computed using the minimum-energy path (i.e., the one through the lowest-

energy conformer of the transition state);  measures the decrease in the rate constant when 
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one calculates the reactive flux at the maximum of the free energy of activation profile rather 

than at conventional transition state (which passes though the saddle point), and  measures 

the increase in reaction rate due to quantum mechanical tunneling. Note that  is often 

called the variational effect. 

 

5. RESULTS  

5.1 Torsional anharmonicity factors 

Figure 3a shows the multi-structural torsional anharmonicity factors FMS-T,a for methanol 

and the two transition structures. Figure 3b shows  for the CCUS model as calculated 

with eq 17. Note, the low-pressure limit and high-pressure limit of the CCUS model have the 

same  (as does the PEM). We can see in fig. 2 that the two pairs of mirror images of 

R1 are very close to each other in energy with a small energy gap of 0.83 kcal/mol, while 

there is a large energy difference (more than 7 kcal/mol) between the lowest-energy 

structures (the mutually mirror structures) and the two Cs symmetric structures of R2. 

Therefore, the factor  is smaller than FCD-F,FDa for T > 300 K; at temperatures 

lower than 300 K, the two factors are similar to each other. The reactant methanol has only 

one distinguishable structure, so for it, the torsional anharmonicity is only from torsion of 

methyl group. Figure 3b shows that the multi-structural torsional anharmonicity factors of the 

overall reactions are in the range 1.4–2.  

 

5.2 Transmission Coefficients 

Figure 4 shows the tunneling transmission coefficients κSCT as functions of temperature 

for both reaction R1 and R2 in both low-pressure and high-pressure limits. All of the 

tunneling transmission coefficients are approximately unity above 500 K, but they are huge at 

low temperature, for example, at 50 K, for the R2 reaction, the transmission coefficient is 

2.7´104 and 1.1´1016 in the low-pressure limit and high-pressure limit, respectively. The 

larger tunneling effect in the high-pressure limit is because the stabilized pre-reactive 

complex is populated at low energies, and hydrogen can tunnel from more energy levels than 

in the low-pressure limit, where tunneling only occurs at energies above the ZPE of reactants.  

Figure 4 also shows that the two reactions have almost the same tunneling transmission 

coefficients in the low-pressure limit. But in the high-pressure limit, the R2 reaction has an 

larger tunneling transmission coefficient than R1 at the same T, for example, at temperatures 
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lower than 200 K, we find that κSCT of reaction R2 is 1–3 orders of magnitude larger than that 

of R1. This is due to the wider barrier on the ground-state vibrationally adiabatic potential 

curve (Vbc) of R1 than on that of R2, as shown in Figure 5. 

Figure 6 shows the calculated recrossing transmission coefficients Г as functions of 

temperature. Note that the recrossing transmission coefficients are independent of pressure. 

The figure shows variational effect is significant, especially for the low temperatures. 

Reaction R1 has a larger variational effect than R2. Remarkably large variational effects were 

also reported in previous work17,68 for the hydrogen abstraction reactions of other alcohols by 

OH. This indicates that it is imperative to use variational transition state theory (rather than 

conventional transition state theory) to calculate the rate constants for this kind of reaction.   

 

5.3 Preliminary Considerations About Rate Constants 

First we consider the nonphysical rate constants that we have called ; these are the 

rate constants computed for passage through TS1 or TS2 as if the first dynamical bottleneck 

(related to the association reaction) were not present. Note that the TS, j rate constants have 

the same transition states as the step b ones (b1 and b2), but the step b rate constants treat the 

complex as the reactant, whereas the TS, j rate constants treat the bimolecular reagents as the 

reactant. We use MS-CVT/SCT to calculate the TS, j rate constants in both the low-pressure 

limit and the high-pressure limit; these two limits of the MS-CVT/SCT rate constants differ 

only in the low-energy limit for tunneling, which is the zero-point level of separated OH + 

CH3OH in the low-pressure limit, but is the zero-point level of OH···CH3OH for the high-

pressure limit.) As shown in Figure 7a, the MS-CVT/SCT reaction rate constants calculated 

using the SRP and generic scaling factors for frequency have gradually increasing differences 

as the temperature decreases, and the difference is up to a factor of 4 in the low-pressure 

limit, and up to ~3 orders of magnitudes in the high-pressure limit.  

In Figure 8, we take the TS,1 treatment of reaction R1 in the low-pressure limit as an 

example to show in detail how the vibrational-frequency scaling factor affects the results. We 

can see that if the generic scaling factor is used, as opposed to the SRP scaling factor, the 

CVT rate constants will be underestimated significantly at ultra-low temperatures, while the 

tunneling will be overestimated. For example, at 50 K, the TS,1 MS-CVT rate constants in 

the low-pressure limit are 4.9 ́  10-18 cm3
 molecule-1

 s-1 and 8.4 ́  10-20 cm3
 molecule-1

 s-1 as 

obtained using respectively SRP and generic scaling factors, while the tunneling transmission 

coefficients are 3.5 ́  104 and 5.6 ́  105. The main reason for these large effects is that the 

jk
TS,
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barriers including ZPE differ significantly when use the different scaling factors; the barrier 

on the effective potential for tunnelling is 1.36 kcal/mol with SRP and 1.76 kcal/mol with the 

generic scaling factor, respectively. (Note that these values do not match the 0 K results in 

Table 6 because Table 6 is for the conventional transition state, and the values quoted here are 

for the maximum of the ground-state vibrationally adiabatic barrier, which is more relevant 

for tunneling.) With the standard scaling factor, the vibrationally adiabatic barrier is higher, 

the MS-CVT rate constants are smaller, and the tunneling effect is larger. 

Figure 7a shows the effect of neglecting the first dynamical bottleneck, which is 

equivalent in the high-pressure limit to using the pre-equilibrium approximation. The pre-

equilibrium rate constants (HPL TS,j results) at ultra-low temperatures are unphysically high 

because the actual rate at low T is limited by the capture rate constant, which is ignored in 

this treatment. 

 Although the results in Figure 7a are nonphysical, we note that the MS-CVT/SCT 

reaction rate constants obtained using SRP scaling factor in the two limits both agree well 

with the experimental results at T > 200 K; at lower T, the experimental data are located 

between the calculated LPL and HPL TS, j results.  

Now we include the presence of the first dynamical bottleneck by using the CCUS model. 

The phenomenological free energies of activation71 of the two bottlenecks are listed in Table 

7. These were obtained as follows: 

       (18) 

and 

     (19) 

where the latter is the free energy of the composite bottleneck obtained by joining the 

transition state dividing surfaces of the two products into a single dividing surface separating 

reactants from both products, and Cº is the concentration (in molecules cc-1) corresponding to 

the standard state of 1 bar. We can see that the composite bottleneck in the barrier region is 

always dominant in the low-pressure limit, while the bottleneck, TSa, to formation of the pre-

reactive complex in the entrance region becomes dominant at low temperatures in the high-

pressure limit. Thus it is necessary to consider both bottlenecks, and therefore our final rate 

constants are based on the CCUS model. 
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5.4 Final Calculated Rate Constants 

The calculated rate constants in the low-pressure limit of the CCUS model (LPL-CCUS) 

and the high-pressure limit of the CCUS model (HPL-CCUS) are plotted as functions of 

temperature in Figure 7b, along with the experimental data and one set of calculated rates 

from the literature for comparison. The high-pressure-limit CCUS rate constants at low 

temperatures approach the capture rate constants. The final low-pressure-limit and high-

pressure-limit CCUS rate constants (labeled with SRP) are in good agreement with the 

experiments and with those computed by Xu and Lin8 for T ≥	200 K; at lower temperatures 

than 200 K, the experimental results are all between the HPL-CCUS and LPL-CCUS results, 

but much closer to those high-pressure-limit CCUS results.  

The SRP calculations in Figure 7b (which are given in tabular form in Table S8 of the 

supporting information, along with the breakdown into the separate R1 and R2 rate constants) 

may be compared to three previous sets of calculations. Jodkowski et al.9 calculated the rate 

constant in the low-pressure limit; their calculated rate constant increases from 7.6 ́  10-13 (all 

rate constants in cm3 molecule-1 s-1) at 300 K to 4.4 ́  10-11 at 1500 K, which is a factor of 1.2 

larger than our low-pressure limit at 300 K, increasing to a factor of 2.8 larger at 1500 K. 

Galano et al.10 calculated the rate constant in the high-pressure limit; their calculated rate 

constant increases from 6.8 ́  10-13 at 298.15 K to 8.7 ́  10-13 at 500 K, which is 18% lower 

than our high-pressure limit at 298.15 K and 44% lower at 500 K. The results of Xu and Lin 

are shown in the figure; they calculated the tunneling with the Eckart model in the high-

pressure limit.  

The final comparison is to the work of Siebrand and coworkers, including one of the 

present authors.16 They included pressure effects using a kinetic Monte Carlo algorithm. 

Their results indicated that there is a very weak pressure effect due to the bath gas and that 

under the conditions of the experiment the calculated rate constants are far from the 

experimental observations and close to the low-pressure limit obtained in this work. Siebrand 

et al. pointed out that the presence of methanol dimers in a small amount may provide the 

required third body to partially stabilize the complex. Within that model, at 50 K the complex 

is stabilized by about 2 kcal/mol regarding to the energy of reactants and the calculated rate 

constants show a very good agreement with experiment. 

The experiments at 82–88 K by both Martin et al.13 and Shannon et al.11 were performed 

at a pressure of ~0.4–1.2 torr. Our results indicate that at these pressures the pre-reactive 

complex should be formed because the experimental rate constants are much higher than the 
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LPL results obtained without considering its role. We conclude, to answer one of the 

questions in the introduction, that the experimental rate constants do include tunneling at 

energies below the energy of the bimolecular reactants. Our results also indicate that the 

complex is not completely stabilized under the experimental conditions because the high-

pressure-limit CCUS model gives a higher rate than experiment. Hence, only intermediate 

degrees of stabilization of the pre-reactive complex can produce experimental rate constants 

between the two pressure limits. This is partly consistent with the conclusions11,13 of Shannon 

et al., who, although they observed that the total rate constants were independent of pressure 

under their conditions, also concluded that the pre-reaction complex would be partially 

stabilized collisionally under the experimental conditions. They proposed that the reaction is 

dominated by the barrier of step b at room T but that “at very low temperatures ... the reaction 

is complete once the complex is formed," i.e., that the rate is dominated by the bottleneck of 

step a. However they also proposed that the reaction rate is determined by tunneling from 

partially stabilized energy levels of the complex at low T. They calculated a rate constant 

(~3´10-12 cm3 molecule-1s-1) at 82 K (see the Figure 2 in their paper) by using a master 

equation method. However, their results are about one order of magnitude smaller than their 

experimental values, which is the issue that led to Siebrand et al. to search for an alternative 

explanation to the experimental observations. It would be very interesting to recalculate the 

pressure-dependent rate constants at ultra-low temperatures. 

Figure 7b shows that the rate constants calculated in the low-pressure limit of the CCUS 

model exhibit negative T dependence at low T. The high-pressure limit of the CCUS model 

shows negative temperature dependence only for 100 K < T < 200 K, and the high-pressure-

limit CCUS rate constants show a weak dependence on temperature for T < 100 K; this is 

similar to the experimental observations.  

 

5.5 Branching Fractions 

Figure 9 plots the branching fractions of reactions R1 and R2 as functions of temperature 

in the high- and low-pressure limits of the CCUS model. The R1 reaction with its lower 

barrier height is dominant at higher temperatures, where this product constitutes up to 71% of 

the reaction. As the temperature decreases, the branching fraction to R2 increases, and the R2 

reaction becomes dominant below 150 K at low pressure and at around 300 K at high 

pressure. In the high-pressure limit, the R2 branching fraction is close to 1 below ~ 80 K. The 

predicted branching ratios in the high-pressure limit of the CCUS model are close to those 

obtained by Shannon et al.;11 using a master equation, they predicted the turnover 
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temperature to be ~250 K at the experimental pressure. A previous theoretical study by Xu 

and Lin8 did not predict a turnover; they predicted the branching ratio of R1 to be 96-89% 

over the whole 200-3000 K temperature range.  

 

5.6 Temperature Dependence of KIEs 

We also calculated the rate constants of the perdeuterated reaction CD3OD + OD using 

the CCUS model. As usual, the kinetic isotope effect is defined as the ratio of the light-

species rate constant (CH3OH + OH) to the heavy-species one (CD3OD + OD). The 

calculated LPL-CCUS and HPL-CCUS KIEs are plotted as functions of temperature in 

Figure 10, where the rate constants are the sums of those for R1 and R2, i.e., the rate 

constants for loss of OH or OD. The tunneling effect is much larger for the undeuterated 

reaction than for the deuterated reaction, so the KIEs are larger than or close to unity at 

temperatures of interest in the present study. One sees the expected negative temperature 

dependence of the KIE in the low-pressure limit, but there is a nonmonotonic KIE variation 

with temperature in the high-pressure limit of the CCUS model. This is due to the 

competition of kinetic bottlenecks. 

At ultracold temperatures T < 70 K the bottleneck for the formation of the entrance 

complex is rate determining and the KIE, h, is close to the unity 

𝜂 = iH
iD = ikH

ikD ≈ 1        (20) 

because the rate constants of both the undeuterated and the deuterated reactions become 

equal to the capture rate constants, which are almost the same. At temperatures between 70 

and 100 K the bottleneck for perdeuterated reaction starts to shift to the abstraction reaction 

(step b), whereas for the undeuterated compound is still the complex formation, and the KIE 

increases drastically. At temperatures above 100 K the bottleneck for reaction is the 

abstraction reaction for both the undeuterated and the deuterated compounds and so the KIEs 

are given by 

𝜂 = iTS,pH OiTS,qH
iTS,pD OiTS,qD       (21) 

As temperature increases the HPL KIEs, although always larger than the LPL KIEs, because 

of the tunneling contribution in the former, become almost identical above 600 K. 
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6. SUMMARY 

In this work, we calculated the forward rate constants of the reaction between methanol 

and OH over the temperature range 30-2000 K by employing the competitive canonical 

unified statistical (CCUS) model for both low-pressure and high-pressure limits, with the 

MS-CVT/SCT method to treat the barrier crossings. The CCSD(T)-F12a and CASPT2 

methods were employed for validating various DFT model chemistries. Based on the 

validation studies, we selected M08-HX/jun-cc-pVTZ for potential energy surface direct 

dynamic calculations of reaction R1 and M08-SO/jun-cc-pVTZ for reaction R2. Similarly to 

what was found for other reactions of alcohols with OH, we found that the transition states 

had stronger anharmonicity of high-frequency vibrational modes than the reactants, so we 

used the specific-reaction-parametrized (SRP) scaling factors to take the anharmonicity of the 

zero-point energies and partition functions into account during the rate calculations. 

We found that the negative temperature dependence of rate constants at low temperatures 

is caused mainly by the significant tunneling effect. At high temperatures, where there is no 

tunneling effect, the high-pressure-limit and low-pressure-limit results coincide with each 

other and agree well with the experimental results. At low temperatures, since the tunneling 

contribution depends on the degree of stabilization of the complex formed at various 

pressures, the rate constants become pressure-dependent. In the low-pressure limit, the 

stabilized complex cannot be formed collisionally, so the tunneling occurs at energies higher 

than the ZPE of the reactants; this leads to rate constants much lower than the experimental 

values measured at a low pressure. In the high-pressure limit, the complex is completely 

stabilized, and the energy range over which tunneling occurs is greatly extended; this leads to 

larger tunneling effects and strongly increased rate constants at low temperatures. When the 

reaction rate passing through the barrier region is comparable to the capture rate for the 

formation of the pre-reactive complex, the pre-equilibrium hypothesis will not hold, so that 

the pre-equilibrium model predicts unphysically high rate constants at ultracold temperatures.  

In the CCUS model, which accounts for early and late dynamical bottlenecks, the high-

pressure-limit rate constants for T < 100 K is dominated by the capture rate for the formation 

of the pre-reactive complex; the experimental data are found to be between the current high-

pressure-limit and low-pressure-limit CCUS rate constants.  

The anharmonicity of high-frequency modes of transition states is a very significant issue 

for calculating rate constants; this anharmonicity increases the rate constants at low 

temperatures by a factor of 4 to 11. 
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 We also calculated the pressure-dependent branching fractions. In both the high-pressure 

and low-pressure limits, reaction R1 is dominant (with a branching fraction up to ~71%) at 

high temperatures due to the lower energy barrier as compared to R2. For T < ~300 K in the 

high-pressure limit and T < ~150 K in the low-pressure limit, reaction R2 becomes the 

dominant reaction because of its larger tunneling transmission coefficients and smaller 

variational effect.  

We also studied the kinetic isotope effects, and we found that the calculated KIEs show a 

negative temperature dependence in the low-pressure limit and a dramatic nonmonotonic 

temperature dependence in the high-pressure limit due to the competition of early and late 

dynamical bottlenecks. 
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Fig. 1 Lowest-energy structures of all species and transition states obtained by M08-HX/MG3S. 
Bond distances are given in Å. 
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Fig. 2 Conformers of transition states for reaction R1 (TS1) and R2 (TS2). Only one structure 
is shown for each pair of mirror images. The values in parentheses denote the relative energies 
(in kcal/mol) of the conformers with respective to the lowest-energy transition structure in each 
reaction. Energies for transition structures of reaction R1 are obtained by CCSD(T)-F12a/jun-
cc-pVTZ//M08-HX/MG3S; energies for transition structures of reaction R2 are calculated by 
CASPT2(11,11)/MG3S//M08-HX/MG3S. 
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(a) 

 
(b) 

 

Fig. 3 (a) Multi-structural anharmonicity factors FMS-T,a for methanol and two transition states 

as computed for equilibrium structures and transition structures. Notice that the two methanol 
curves (which differ only because we use different electronic structure methods for R1 and R2) 

are almost identical. (b) Multi-structural anharmonicity factors  for reactions R1 and 

R2 in the CCUS model. Straight and dash–dot lines represent results for R1 by M08-HX/jun-
cc-pVTZ and R2 by M08-SO/jun-cc-pVTZ. 
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Fig. 4 Small-curvature tunneling transmission coefficients κSCT for reactions R1 and R2 in the 
low-pressure limit of the CCUS model (labeled as Rj-LPL) and in the high-pressure limit of 
the CCUS model and the pre-equilibrium model (labeled as Rj-PEM). The solid black line is 
hard to see because it is almost hidden under the solid red one. 
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Fig. 5 Calculated ground-state vibrationally adiabatic potential curves (Vbc) of reactions R1 and 
R2 as functions of the reaction coordinates s, where the reaction coordinates are scaled to a 
reduced mass of 1 amu. The zero of energy for this plot (and for all figures and tables in this 
paper) is the potential energy of the equilibrium geometry of the bimolecular reactants. In the 
low-pressure limit, the complex is not populated so there are no species with energy below the 
indicated zero point energy of bimolecular reactants (and therefore there is no tunneling below 
this energy). In the high-pressure limit, tunneling can occur at lower energies. For this figure 
(and for every place in the article where it is not explicitly stated otherwise), the calculations 
are based on the SRP vibrational scale factors.  
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Fig. 6 Recrossing transmission coefficients for reactions R1 and R2. 
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(a) 

 

(b) 

 

Fig. 7 Present theoretical results compared to one set of calculations from the literature and to 

experimental data; all results are total rate constants (sum of rate constants for R1 and R2). 

Previous theoretical results are from Xu and Lin.8 Experimental data are from: (▲) Martin et al. 

(2014)11; (△) Shannon et al. (2013)10; (○) Atkinson et al. (1997)72; (■) Dillon et al. (2005)7; 

(◇) Antiñolo et al. ( 2016)12; (▼) Srinivasan et al. (2007)73. The present theoretical results are 

shown as dash–dot lines when obtained using the standard scaling factor for frequencies and as 

solid lines when obtained using SRP scaling factors and are as follows: (a) MS-CVT/SCT rate 

constant (  + ) based on the tight transition state in the low-pressure limit (LPL) and in 

the high-pressure limit; the latter is the same as the total rate constant in the pre-equilibrium 

model and is labeled as PEM here. (b) Rate constants in the low-pressure-limit (LPL-CCUS) and 

the high-pressure-limit (HPL-CCUS) of the CCUS model.  
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Fig. 8 Comparisons for reaction R1 of using the SRP scaling factor for frequencies vs. using 
the standard scaling factor for the MS-CVT approximation for the TS,1 rate constant. The 
subscript SRP denotes that the rate constant or tunneling transmission coefficient is obtained 
using the SRP scaling factor; while the others are obtained using the standard scaling factor; y 
is the ratio of results obtained using SRP and standard scaling factors. 
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Fig. 9 Branching fractions of the OH + CH3OH reactions calculated in the CCUS model. The 
dash–dot lines are for the high-pressure limit, and the solid lines are for the low-pressure limit. 
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Fig. 10 Calculated KIEs in both low-pressure and high-pressure limits of the CCUS model. 
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Table 1. T1 Diagnostic Values 

OH CH3OH CH2OH...OH2 TS1 CH3O...HOH TS2 H2O CH2OH CH3O 

0.008 0.010 0.015 0.028 0.018 0.055 0.009 0.018 0.024 

 

 

Table 2. Experimental Enthalpies of Formation at 0 K and Zero-Point Energies (in 

kcal/mol) for Reactants and Products  

species CH3OH OH CH2OH CH3O H2O 

∆/𝐻%&a
 -45.44 ± 0.14 8.87 ± 0.07 -2.56 ± 0.17 6.79 ± 0.50 -57.10 ± 0.01 

ZPE 31.85 ± 0.51b 5.29 ± 0.01c 22.59 ± 0.02b 22.60 ± 0.22b 13.26 ± 0.03c 
aXu and Lin8  bMeana-Pañeda et al1e  cIrikura et al.46  
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Table 3. Forward and Reverse Barrier Heights, Energies of Reaction, and Mean 

Unsigned Percentage Deviations from Best Estimates (in kcal/mol) for R1a 

Method    MUPD (%) 

M06-2X/aug-cc-pVTZ 0.57 22.29 -21.72 22 

M06-2X/jul-cc-pVTZ 0.60 22.28 -21.68 21 

M08-SO/aug-cc-pVTZ 0.60 22.96 -22.36 21 

M06-2X/jun-cc-pVTZ 0.63 22.31 -21.68 21 

M06-2X/MG3S 0.68 22.12 -21.43 20 

M08-SO/jul-cc-pVTZ 0.64 22.97 -22.33 20 

M08-SO/jun-cc-pVTZ 0.68 23.02 -22.34 19 

M05-2X/6-31+G(d,p) 0.88 21.31 -20.43 18 

MPW1K/jul-cc-pVTZ 1.75 21.29 -19.55 13 

MPW1K/jun-cc-pVTZ 1.74 21.31 -19.57 13 

MPW1K/aug-cc-pVTZ 1.71 21.30 -19.58 12 

MPW1K/MG3S 1.56 21.08 -19.52 9.1 

M08-HX/MG3S 1.25 24.12 -22.87 7.4 

M08-HX/aug-cc-pVTZ 1.38 24.37 -22.99 4.9 

M08-HX/jul-cc-pVTZ 1.42 24.40 -22.97 4.0 

M08-HX/jun-cc-pVTZ 1.48 24.47 -23.00 3.7 

CCSD(T)-F12a/jun-cc-pVTZb 1.46 23.34 -21.88 0.0 

Exp.   -21.8± 0.6  
a All energies are relative to the energies of reactants (in kcal/mol) with ZPE excluded.  
b Best estimate. The geometries are optimized at M08-HX/MG3S level. 
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Table 4. Forward and Reverse Barrier Heights, Energies of Reaction, and Mean 

Unsigned Percentage Deviations from Best Estimates (in kcal/mol) for R2a 

Method    
MUPD 

(%) 

MN15/jun-cc-pVTZ 1.27 14.87 -13.60 24 

MPW1K/MG3S 4.66 17.73 -13.06 24 

M05-2X/6-31+G(d,p) 1.47 14.42 -12.95 21 

M08-HX/jun-cc-pVTZ 4.08 17.53 -13.45 18 

M08-HX/jul-cc-pVTZ 4.05 17.47 -13.42 18 

M08-HX/aug-cc-pVTZ 3.99 17.44 -13.45 17 

M06-2X/MG3S 1.85 14.93 -13.08 16 

M08-HX/MG3S 3.87 17.37 -13.49 16 

M06-2X/jun-cc-pVTZ 1.94 14.90 -12.95 15 

M08-SO/MG3S 2.15 15.57 -13.42 13 

CCSD(T)-F12a/jun-cc-pVTZb 3.98 16.30 -12.32 12 

M08-SO/aug-cc-pVTZ 2.54 15.85 -13.30 8.6 

M08-SO/jul-cc-pVTZ 2.58 15.86 -13.27 8.1 

M08-SO/jun-cc-pVTZ 2.61 15.90 -13.29 8.0 

CASPT2(11,11)/MG3Sb 3.06 15.51 -12.45 0.0 
Exp.   -12.4 ± 0.8  

a All energies are relative to the energies of reactants (in kcal/mol) with ZPE excluded. 
b Best estimate. The geometries are optimized at M08-HX/MG3S level. 

 

 

Table 5. Zero-Point Energies (in kcal/mol) and SRP Scaling Factors for TS1, TS2 and 

complex 

 ZPE(Harm)a ZPE(Anh)a   SRP λ567 

TS1 38.25 37.38 0.977 0.986b 0.964 

TS2 37.13 35.87 0.966 0.998c 0.964 

Complex 40.50 39.80 0.983 0.986b 0.969 

Complex 40.50 39.80 0.983 0.998c 0.980 

a Calculated by MPW1K/MG3S.  
b For M08-HX/jun-cc-pVTZ model chemistry 
c For M08-SO/jun-cc-pVTZ model chemistry. 
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Table 6. Energetics (kcal/mol) for key stationary pointsa 

Reactionb  Quantityc  Reactant complex Transition structure 

R1 DV 0.00 -6.53 1.48 
R2 DV 0.00 -6.55 2.61 

   standard l SRP standard l SRP 

R1 DH0 0.00 -4.72  -4.91  0.93  0.54  
R2 DH0 0.00 -4.91  -5.04  1.50  0.78  
R1 DH298.15 0.00 -5.17  -5.36  0.05  -0.32  
R2 DH298.15 0.00 -5.25  -5.37  0.55  -0.14  
R1 DH1000 0.00 -3.47  -3.62  0.89  0.61  
R2 DH1000 0.00 -3.53  -3.63  1.23  0.71  

aAll values are for lowest-energy structure of the given species and are relative to reactants. 
bCalculated by M08-HX/jun-cc-pVTZ for R1 and by M08-SO/jun-cc-pVTZ for R2 
cDV is classical potential energy;  DHT is enthalpy at temperature T.  
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Table 7. Standard-state free energy of activation (in kcal/mol) for the association 

reaction and the total rate constant for barrier crossing 

T(K)  
 

HPL LPL 

30 0.19 -2.98  0.48  
50 0.39 -1.65  0.96  
100 0.99 0.80  2.27  
150 1.66 2.82  3.63  
200 2.39 4.56  5.00  

298.15 3.92 7.48  7.69  
400 5.60 10.27  10.35  
600 9.13 15.57  15.60  

1000 16.74 25.87  25.86  
1400 24.84 35.96  35.93  
2000 37.61 50.93  50.89  
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