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Kinetostatic and Dynamic
Modeling of Flexure-Based
Compliant Mechanisms:
A Survey
Flexure-based compliant mechanisms are becoming increasingly promising in precision
engineering, robotics, and other applications due to the excellent advantages of no fric-
tion, no backlash, no wear, and minimal requirement of assembly. Because compliant
mechanisms have inherent coupling of kinematic-mechanical behaviors with large deflec-
tions and/or complex serial-parallel configurations, the kinetostatic and dynamic analy-
ses are challenging in comparison to their rigid-body counterparts. To address these
challenges, a variety of techniques have been reported in a growing stream of publica-
tions. This paper surveys and compares the conceptual ideas, key advances, and applica-
ble scopes, and open problems of the state-of-the-art kinetostatic and dynamic modeling
methods for compliant mechanisms in terms of small and large deflections. Future chal-
lenges are discussed and new opportunities for extended study are highlighted as well.
The presented review provides a guide on how to select suitable modeling approaches for
those engaged in the field of compliant mechanisms. [DOI: 10.1115/1.4045679]

1 Introduction

Flexure-based compliant mechanisms generally refer to
mechanical devices gaining some or all of their mobility through
elastic deformation of flexible members [1], which by nature pos-
sess the benefits of monolithic structure and variable stiffness
over their rigid-body counterparts, thereby reducing friction,
backlash, wear, no need for lubrication and assembly. Owing to
these uniqueness, compliant mechanisms have been widely
applied, including constant-force generation [2], multistable
switches [3], micro-electro mechanical systems (MEMS) [4], pre-
cision positioning stages and grippers [5–7], micro/nanomanipula-
tions [8], fast servotools in precision machining [9], servovalves
[10], energy harvesting [11], microvibration suppression [12],
alignment of optics, robotic actuation [13], and so forth.

During the last three decades, a variety of techniques and meth-
odologies have been developed for kinetostatic and dynamic mod-
eling of compliant mechanisms, such as the pseudo-rigid-body
model (PRBM) [14], Castigliano’s second theorem [15], compli-
ance matrix method [16], elastic beam theory [17], two-port
dynamic stiffness model [18], Ryu’s method [19], and beam con-
straint model [20]. These methodologies have enabled significant
advances in designing compliant mechanisms. However, the
kinetostatic and dynamic modeling of compliant mechanisms
remain challenging owing to their intrinsic coupling of kinematic
and elastomechanical behaviors. In addition, large-deflection anal-
ysis and complex serial-parallel configurations often encountered
in compliant mechanisms lead to intractable modeling procedures.
Although many solutions are now available for kinetostatic and
dynamic modeling of compliant mechanisms [14–20], there has
been less effort on clarifying and comparing the conceptual ideas,

advantages, disadvantages, discrepancies, and applicable scopes
among these modeling methods. It would be difficult for designers
with little experience in the field of compliant mechanisms to find
a starting point from where they can be guided toward the model-
ing issues [21] and to identify which method is most suitable for
their specific applications. As stated in Ref. [21], this problem
will be enlarged by the amount of knowledge that a designer
should possess, such as mechanics of materials, mechanical
dynamics, kinematics of mechanisms, and nonlinear mechanics.

A review has already focused on synthesis approaches to com-
pliant mechanisms including topology optimization and rigid-
body-replacement methods [21]. In this paper, key concepts and
recent advances on the state-of-the-art kinetostatic and dynamic
modeling approaches for compliant mechanisms involving small and
large deflections are surveyed, compared, and summarized. Details
of synthesis methods for compliant mechanisms, such as topology
optimization [22–30], building block approach [31,32], freedom and
constraint topology (FACT) method [33,34], are out of the scope of
this paper and will not be discussed in detail. Extensive studies can
be found in Refs. [21–34] and related references [35,36].

The remainder of this paper is organized as follows: Progress
on parametric modeling of compliant mechanisms is briefly over-
viewed in Sec. 2. Details of various modeling approaches, classi-
fied as (i) flexure hinges, (ii) kinetostatics of small deflection, (iii)
kinetostatics of large deflection and (iv) issues on the dynamics,
are, respectively, described from Secs. 3–6. Future challenges and
open research topics are discussed in Sec. 7 and followed by con-
clusions in Sec. 8.

2 Brief Overview: Modeling Advances in Compliant
Mechanisms

In this section, key advances on compliant mechanisms in terms
of kinetostatic and dynamic modeling during the past three
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decades are briefly described in chronological order. A detailed
survey of different types of modeling approaches involving small
and large deflections will be carried out from Secs. 3–6.

2.1 Overview of Key Advances. Since the proposal of Her
and Midha in 1980s [37], compliant mechanisms, in only the last
three decades, have drawn ever-increasing research interests due to
the inherent characteristics of precision motion without friction,
backlash and wear over their rigid-body counterparts. In such a
monolithic mechanism, flexible members such as flexure hinges
transmit force and movement by elastic deformation with a similar
function to gears and joints in traditional rigid-link mechanisms.

Compliant mechanisms can be classified into partially compli-
ant mechanisms and fully compliant mechanisms [1], and the lat-
ter can be further subdivided into lumped, distributed, and hybrid
compliant mechanisms (see Fig. 1). Partially compliant mecha-
nisms often bear large deflection widely applied in areas such as
statically balanced mechanisms [38–41], constant-force mecha-
nisms [42–44], and joint of robots [45]. Fully compliant mecha-
nisms are usually manufactured in monolithic structures, which
are widely applied in precision engineering with static and
dynamic applications. A majority of the present fully compliant
mechanisms are designed with small deflection but serial-parallel
configurations increase the kinetostatic and dynamic modeling
complexity. On the other hand, nonlinearities in modeling compli-
ant mechanisms with intermediate or large deflections pose design
challenges for some newly emerging dynamic applications with
large workspaces [46–50].

As an important element in compliant mechanisms, research on
the displacement–force relationship of flexure hinges and flexible
beams has been a popular topic [53]. The pioneer work can be
traced back to the investigations of Paros and Weisbord [54],
wherein the theoretical equations of compliance for circular flex-
ure hinges were derived. On the other hand, elliptic integral solu-
tions [55,56] and the chain algorithm [57] were two useful
techniques for the kinetostatic analysis of flexible beams with
large deflection prior to the ground-breaking PRBM proposed in
the 1990s [58–60]. Although the accuracy of elliptic integral solu-
tions is high, the modeling procedures of this method along with
the chain algorithm are relatively complicated. The disadvantage
was overcome by the PRBM wherein each flexure member

is treated as rigid links connected by a revolute joint attached with
a torsional spring. Consequently, analyzing compliant mecha-
nisms can be simplified as an issue of rigid-body mechanisms.
The pseudo-rigid-body model has been proven over time to be
an effective tool for analysis and synthesis of compliant mecha-
nisms involving both small and large deflections [61–65]. In
2001, the first book in the context of compliant mechanisms
appeared, in which the pseudo-rigid-body model was systemati-
cally introduced [1].

Before and after 2000, many efforts were devoted to the com-
pliance modeling of all kinds of notch flexure hinges with small
deflection, such as circular, hyperbolic, and elliptic flexure pivots
[66–69]. Afterward, many investigations focused on modeling the
kinetostatic force–deflection relationship of flexure hinges for
their design. A comparative review on the accuracy of compliance
equations for circular flexure hinges within a wide range of geo-
metric parameters was provided in 2008 [70]. These investigations
on the kinetostatics of flexure hinges provided powerful tools and
guidelines on designing multitudinous flexure hinges [71–75].

As to the modeling of compliant mechanisms with small defor-
mation, Castigliano’s second theorem was utilized to model the
kinetostatics of bridge-type flexure amplifiers in 2003 [76], while
elastic beam theory was employed for the kinetostatics of this
type of amplifier in 2006 [77]. These two methods are now widely
used to design compliant mechanisms with small deflections
[78–81]. However, inner-force analysis is required in these two
methods, resulting in great complexity in serial-parallel compliant
mechanisms. As a result, the compliance matrix method was devel-
oped for complex configurations [82–87]. Some theorized investi-
gations on the compliance matrix method for compliant
mechanisms were also conducted [87–89], in which the matrix
operation enabled easy analysis of complex compliant mechanisms.

Another aspect on the linear kinetostatic modeling of compliant
mechanisms was the finite element method. The theoretical com-
pliance matrix of circular flexure hinges was converted into the
elemental stiffness matrix in the framework of the finite element
method in 2008 [90]. With similar conversion formulas, the
kinetostatic and dynamic modeling of all kinds of flexure-hinge-
based compliant mechanisms were carried out based on the finite
element method without dealing with the complicated issue of
variable cross section in flexure hinges [91,92].

Fig. 1 Conceptual illustration of flexure-based compliant mechanisms and rigid-body mechanisms as well as application
examples of compliant mechanisms [2,5,51,52] (Reprinted with permission from Wang and Xu [2]. Copyright 2018 by Elsevier;
Reprinted with permission from Qin et al. [5]. Copyright 2014 by IEEE; Reprinted with permission from Teo et al. [51]. Copy-
right 2014 by Springer; Reprinted with permission from Song et al. [52] (Open Access)): (a) conceptual comparison between
rigid hinges and flexure hinges, (b) conceptual comparison between rigid-body mechanisms and complaint mechanisms, and
(c) exemplary engineering applications of complaint mechanisms.
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In addition to investigations on the linear modeling of compli-
ant mechanisms, much effort was also devoted to the large-
deflection issue. In 2006, the beam constraint model was proposed
to provide a kinetostatic solution for flexure mechanisms when
the deflection is within 10% of the beam length based on the con-
tinuum beam theory and Taylor series expansion [93–96]. The
characteristic of this method lies in the captured load-stiffening
effects. The beam constraint model was classified as an
intermediate-range kinetostatic method of compliant mechanisms
in “Handbook of Compliant Mechanisms” [97]. Afterward, this
method was further enhanced by including shear effects [98] and
extended for large-deflection analysis of flexure beams [99,100],
namely, the chained beam constraint model.

On the other hand, since the prediction accuracy of the pseudo-
rigid-body model is limited in estimating larger end slope of
flexible beams, efforts have been focused on improving the per-
formance of the pseudo-rigid-body model by including more
parameters, such as the 2R (R denotes a revolute pair), 3R, 5R,
and RPR (P denotes a prismatic pair) pseudo-rigid-body models
[101–104]. Moreover, some multi-axis flexure hinges with com-
plex configurations and large deflection, such as the Cartwheel
flexure hinge, were analyzed based on the pseudo-rigid-body
model [105–107]. Recent progress on the pseudo-rigid-body
model was to include mass factors for the dynamic analysis of
flexure mechanisms [108]. Moreover, the kinetostatics of large-
deflection compliant mechanisms has emerged as an optimizing
problem instead of the usual way of formulating the load equilib-
rium equations [109–112]. In these energy-based methods, the
kinetostatic analysis of compliant mechanisms was resolved in the
framework of the principle of elastic energy minimization.

During the past three decades, the dynamic issue has been also
an important aspect of designing compliant mechanisms. How-
ever, research on the dynamics of compliant mechanisms has not
been extensively studied. Two books in the field of compliant
mechanisms [1,97] mainly involve the kinetostatic issue. To sum
up, the previous dynamic modeling of compliant mechanisms was
mainly based on Lagrange’s method [113–130]. In recent years,
some newly dynamic modeling approaches, such as the pseudo-
rigid-body model with mass factors [108] and the dynamic stiffness
modeling method based on d’Alembert’s principle [18,131,132],
were developed for the dynamic analysis of compliant mechanisms.

The existing Lagrange-based dynamic modeling methods for
compliant mechanisms can be further generalized into three cate-
gories. When flexure hinges/flexible beams are modeled as elastic
joints connected to rigid links and the dynamic model is built by
simplifying compliant mechanisms as the rigid-link mechanisms,
this version is known as the PRBM-based method [113–118]. For
example, a PRBM-based dynamic model was built for parallel-
guided compliant mechanisms [114] based on Lagrange’s equa-
tion and the dynamic equivalence. In the second category, the
equivalent input/output stiffness of compliant mechanisms is first
modeled by using a variety of kinetostatic methods, the dynamic
model can be then formulated by calculating elastic and kinetic
energies based on Lagrange’s equation with motion degrees-of-
freedom (DOFs) as the variables, all these solutions can be classi-
fied as a lumped-parameter dynamic model [119–123]. The third
category is termed the distributed-parameter model with finite num-
ber of DOFs [124–132], in which compliant mechanisms are usu-
ally discretized into several submembers and the dynamic model is
established by calculating total elastic and kinetic energies. For
example, a method similar to the rigid-multibody dynamics
[19,126] was used to design flexure manipulators by several groups
[127–130]; moreover, various finite element dynamic models have
been developed in the last decades [92,124,125].

2.2 Distinction Between Two Sets of Terminologies. The
kinetostatic and dynamic modeling of compliant mechanisms
should be distinguished from the following two relevant
concepts:

(1) The first distinction is synthesis design of compliant mech-
anisms by employing the rigid-body-replacement method
[21,133], building block approach [31,32], screw theory
[134,135], FACT method [33,34] or topological optimiza-
tion technique [22–30]. In the case of the rigid-body-
replacement method, compliant mechanisms are designed
through creating the kinematic model of a basic rigid-link
mechanism and then replacing rigid joints with flexure
hinges, while the conceptual configuration is searched with-
out a priori knowledge in the topological optimization. The
challenge for synthesis design lies in identifying the best
configurations, while the target of kinetostatic and dynamic
modeling of compliant mechanisms mainly focuses on their
performance prediction, influence analysis, and parametric
optimization by virtue of mathematical formulating. It is
noted that the pseudo-rigid-body model was not only uti-
lized for the synthesis of compliant mechanisms [21] but
also widely applied to their kinetostatic and dynamic analy-
ses. Readers should distinguish these subtle differences for
clear understanding.

(2) The second concept is the term “kineto-elastodynamics”
and the term “flexible multibody dynamics” in the context
of mechanical dynamics and in the field of aerospace
[136,137]. The objectives of these two disciplines are both
on the dynamic analysis of rigid-body mechanisms or
mechanical systems considering negative elastic deforma-
tion and on how to eliminate the vibration at high speeds.
In contrast, compliant mechanisms make use of elastic
deformation to transmit motions and forces. Classical meth-
ods of relative, absolute, and hybrid coordinates in the flex-
ible multibody dynamics and kineto-elastodynamic model
[136,137] would not be directly applicable to the kineto-
static and dynamic modeling of compliant mechanisms due
to their distinguishing configurations and different charac-
teristics of deformation.

2.3 Modeling Challenges for Compliant Mechanisms.
Challenges associated with the kinetostatic and dynamic modeling
of flexure-based compliant mechanisms mainly arise from the fol-
lowing three inherent factors:

2.3.1 Coupling of Kinematic and Elastomechanical Behav-
iors. In rigid-link mechanisms, kinematics, statics, and dynamics
are usually analyzed in sequence and the kinematics is only
dependent on geometric parameters decoupling from the kinetic
behaviors. However, compliant mechanisms rely on the elastic
deformation to transmit forces and create desired motion DOFs.
Modeling of compliant mechanisms requires simultaneous solu-
tion of kinematic and elastomechanical behaviors.

2.3.2 Serial-Parallel Configurations. Serial-, parallel- and
their hybrid-kinematic configurations are frequently designed in
flexure-guided manipulators due to their own advantages and dis-
advantages in terms of stroke range, mechanical bandwidth and
output stiffness [5–9]. The over-constraint configuration in many
compliant mechanisms poses some complexity for their kineto-
static and dynamic formulating.

2.3.3 Nonlinear Large Deflections. In addition to hard and
time-consuming modeling procedures at the level of large-deflection
flexure beams, greater difficulty comes from modeling the whole
compliant mechanisms with large deflection. Although several model-
ing methods such as the pseudo-rigid-body-model and energy-based
methods [109–112] are available for modeling large-deflection com-
pliant mechanisms, more concise and accurate methods for dynamic
issues of complex compliant mechanisms are still intractable.

2.4 Classification of Modeling Methods for Compliant
Mechanisms. Although versatile finite element packages such as
ANSYS are widely available, these packages give less insight into
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the intrinsic deformation of compliant mechanisms from the per-
spective of designers. Moreover, their modeling step is somewhat
time-consuming and is not appropriate for the early stage of
design where conceptual ideas should be analyzed and evaluated
in an intuitive sense and in a short period of time. Therefore, con-
tinuous efforts have been devoted to developing parametric mod-
eling methods for the kinetostatic and dynamic analysis of
compliant mechanisms, as summarized in Fig. 2. Detailed surveys
for each category will be discussed in the following Secs. 3–6.

3 Modeling of Flexure Hinges

Flexure hinges undergo elastic deformation relative to adjacent
stiffer regions in compliant mechanisms. Normally, the difference
of compliance and stiffness is reached by geometric characteris-
tics of deformation regions. Depending on these characteristics,
flexure hinges are often designed with single or multiple axes.
Notch-type flexure hinges with single axis are often profiled as
rectangular section (also known as leaf spring), circular, corner-
filleted, elliptic, parabolic, hyperbolic or other conic profiles and
hybrid cross sections [15,138] (see Fig. 3). Each type of profiles
provides unique mechanical properties to suit different

requirements of design [67], such as discrepant motion accuracy,
out-of-plane stiffness, or different levels of stress concentration.
Generally, the target of kinetostatic modeling for flexure hinges is
to obtain their force–deflection relationship, namely, the compli-
ance matrix. A general form of the compliance matrix of flexure
hinges for planar problems can be expressed as follows [53,68]:

C ¼
Dx=Fx 0 0

0 Dy=Fy Dh=Fy

0 Dy=Mz Dh=Mz

2

4

3

5 ¼
cx 0 0

0 cy ca
0 ca ch

2

4

3

5

¼
kx 0 0

0 ky ka
0 ka kh

2

4

3

5

�1

(1)

where cx, cy, ca, ch and kx, ky, ka, kh are the compliance and stiff-
ness coefficients. Fx, Fy, andMz are the tensile, shear, and moment
loads with corresponding deflections Dx, Dy, and Dh.

Since the pioneer works on formulating circular flexure hinges
by Paros and Weisbord [54], plenty of methods have been pre-
sented to describe the kinetostatics of all kinds of flexure hinges.
In the literature, there are basically two categories for the compli-
ance modeling of flexure hinges, namely, analytical formulas and

Fig. 2 Category of the kinetostatic and dynamic modeling approaches for compliant mechanisms. (It is noticed that synthesis
methods for compliant mechanisms, such as the building block approach, topology optimization, FACT method, and screw
theory, are not included here and can refer to Refs. [21–35,133–135]).
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empirical equations; the former can be subdivided again into
Castigliano’s second theorem [139–145], unit load method in
mechanics of materials [69,146–149], and inverse conformal map-
ping [150]. Compliance coefficients of single-axis flexure hinges
in Eq. (1) can be further solved as the following unified integral
form based on analytical modeling methods [53,68]:

cx ¼
Dx

Fx

¼ 1

Ed

ðl

0

1

h xð Þ dx cy ¼
Dy

Fy

¼ 12

Ed

ðl

0

x2

h3 xð Þ dxþ
E

jG
� cx

ch ¼
Dh

Mz

¼ 12

Ed

ðl

0

1

h3 xð Þ dx ca ¼
Dh

Fy

¼ 12

Ed

ðl

0

x

h3 xð Þ dx

8

>

>

>

>

<

>

>

>

>

:

(2)

where E is the Young’s modulus, l and d are the length and out-
of-plane thickness of a flexure hinge, G is the shear modulus, j is
the shape factor, h(x) is the in-plane thickness of the profile. It is
noticed that the shear effect is included and Eq. (2) would be
slightly different from expressions in some literature due to the
different coordinate definitions.

3.1 Analytical Formulas. Usually, design of notch-type flex-
ure hinges is confined to small deformation but variable profiles
increase the modeling complexity. Smith et al. [66] extended the
compliance model in Ref. [54] for elliptic flexure hinges, but the
shear effect is not a part of these two studies. Castigliano’s second
theorem is a popular method for the compliance modeling of flex-
ure hinges due to its straightforward concept and easy operation.
For example, closed-form compliance equations for corner-
filleted, elliptic, and hyperbolic flexure hinges were derived by
Lobontiu and coworkers [67,68,139,140]; compliance equation
for V-shaped flexure hinges was built by Tian et al. [141]. Other
similar compliance modeling include hybrid flexure hinges by
Zhang et al. [142]; semicircular flexure hinges by Horacio et al.
[144], L-shape hinges considering high-order shear effects by
Nguyen et al. [145] and others [143]. In addition to Castigliano’s
second theorem, the unit load method is another useful technique
for deriving the compliance of flexure hinges [69]. Chen et al.
[146,147] unified the profiles of several conic flexure hinges and
obtained a generalized compliance model, while profiles of sev-
eral flexure hinges were fitted as the rational Bessel curve for gen-
eral formulating of compliance by Vallance et al. [148] and the
rational B-spline curve in Ref. [75]. Apparently, compliance mod-
els for the same flexure hinge in Refs. [68], [69], and [146] are
identical and can be summarized as solving the integrals in Eq.
(2) for different profiles of flexure hinges.

3.2 Empirical Equations. Empirical equations by finite ele-
ment analysis are favorable considering the fact that few of the

previous closed-form formulas can accurately predict the compli-
ance characteristics of flexure hinges in a large range of geometric
parameters. Smith et al. [151] developed empirical equations for
the compliance of circular flexure hinges. Schotborghet al. [152]
derived empirical equations for circular and corner-filleted flexure
hinges with dimensionless design graphs. Yong et al. [70] com-
pared the accuracy of several compliance models for circular flex-
ure hinges with the finite elemental results as the benchmark and
established empirical compliance models for use in a large range
of geometric parameters. Other empirical compliance models for
corner-filleted and multinotched flexure hinges can refer to those
in Refs. [153–155].

3.3 Other Works. Complex flexure hinges are combination
of simple flexures, which can act as revolute and prismatic joints
[138]. For the compliance modeling of multi-axis flexure hinges
such as the Cartwheel flexure hinge, some authors have suggested
the pseudo-rigid-body model [105,106], compliance matrix
method [156] and Ryu’s method [157]. Other contributions to the
compliance formulating of flexure hinges, among many, were
those investigated by Lobontiu et al. [158–161], wherein a general
model of compliance was established for segmentally symmetric
and curve-axis flexure hinges. Recently, the dynamic-PRBM and
a dynamic stiffness matrix were separately developed by Su et al.
[108] and Ling et al. [162] for the purpose of dynamic analysis of
large-deflection flexure hinges and notch flexure hinges with vary-
ing cross section.

3.4 Discussion on this Study. For notch-type flexure hinges,
the essence of compliance modeling is to solve similar integrals in
Eq. (2), while compliance formulating of complex multi-axis flex-
ure hinges can be regarded as a modeling issue of compliant
mechanisms. Castigliano’s second theorem and the unit load
method are two straightforward approaches for the compliance
modeling of notch flexure hinges. However, depending on the
geometric aspect ratio of flexure hinges, large deviation exists
among different compliance models and even in components of
the same model. Several compliance models for circular flexure
hinges have been compared in a phenomenological sense [70].
However, the influence factors should be further investigated. For
instance, even the shear effect has already been considered, the
prediction accuracy in some previous compliance models still
deteriorates with the increase of the minimum thickness of flexure
hinges meaning other factors would still exist limiting the model-
ing accuracy; for another example, different components in one
compliance matrix derived by the same method have discrepant
prediction errors [66,69,70]. Some researchers recommended tai-
loring accurate components from different compliance matrices
[163]. However, it relies on experience and is intractable for

Fig. 3 Exemplary flexure hinges and the coordinate definition: (a) typical notch flexure hinges, (b) multi-axis flexure hinges,
and (c) coordinate system of planar flexure hinges
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designing new flexure hinges. Empirical modeling is a reliable
way to analyze flexure hinges with high accuracy but it is time-
consuming, noninsightful and nonuniversal for a new type of flex-
ure hinges.

4 Kinetostatic Modeling of Compliant Mechanisms
With Small Deflection

There have been a considerable number of publications on the
kinetostatic modeling of small-deflection compliant mechanisms
[5–12,164]. The implementation complexity on this issue lies in
the difficulty to deal with serial-parallel configurations often exist-
ing in compliant mechanisms [5–7]. In general, the kinetostatic
modeling of compliant mechanisms within the regime of small
deflection falls into four categories: Castigliano’s second theorem,
elastic beam theory, compliance matrix method, and finite ele-
ment method (matrix displacement method).

4.1 Castigliano’s Second Theorem

4.1.1 Conceptual Idea. The key procedure of Castigliano’s
second theorem for the kinetostatic modeling of compliant mecha-
nisms is to solve the total strain energies of all flexure members in
compliant mechanisms, like the tensile, shear, and bending strain
energies. Input and output displacements of compliant mecha-
nisms can be calculated as the first-order differential of the total
strain energy with respect to their corresponding external force;
this procedure can be formulated as

U ¼
X

n

i¼1

ðli

0

N2
i xð Þ

2EAi xð Þ dxþ
ðli

0

S2i xð Þ
2jGAi xð Þ dxþ

ðli

0

M2
i xð Þ

2EIi xð Þ dx
 !

(3)

uin ¼
@U

@fin
¼ F1 fin; foutð Þ ; wout ¼

@U

@fout
¼ F2 fin; foutð Þ (4)

where Ai and Ii are the area and moment of inertia of the cross sec-
tion of the ith flexure member. n is the total number of flexure
members. F1 and F2 are the notation of functions. Ni(x), Si(x), and
Mi(x) are the inner tensile force, shear force, and bending moment
of the ith flexure member as shown in Fig. 4, which should be
solved in advance as the function of external loads based on force
equilibrium equations and other necessary displacement boundary
conditions. In some cases, there is no external output force excited
on compliant mechanisms; thus, a dummy force is often assumed
and setting it to zero later [76].

4.1.2 Key Advances. Castigliano’s second theorem was
employed to formulate the kinetostatics of bridge-type compliant
amplifying mechanisms by Lobontiu and Garcia [76] and was

later widely used in the field of compliant mechanisms [165,166].
From Ref. [76], one can observe that modeling procedures and the
resulting model are somewhat complicated even for such a simple
configuration. Even so, Castigliano’s second theorem is very use-
ful for some applications with the characteristics of guiding flex-
ure beams. For example, input/output stiffness of several XYZ
flexure-based manipulators were analyzed based on Castigliano’s
second theorem, respectively, by Yong and coworkers [167–169],
Kenton and Leang et al. [170] and Gu and coworkers [171]. More-
over, as stated in Sec. 3, Castigliano’s second theorem was fre-
quently employed for the compliance modeling of all kinds of
notch-type flexure hinges [139–145]. In the case of more compli-
cated design, Ueda et al. [172,173] derived the force–deflection
relationship of a flexure gripper to measure its tip force based on
Castigliano’s second theorem; they also employed this method to
build the two-port force–displacement model of a nested multistage
flexure amplifier [174,175]. Other applications of this method can be
found in the literature, such as Yeom et al. [176] for an elliptic-type
amplifier; Du et al. [177] for a 6DOFs flexure mechanism as well as
a vertical nanopositioner in Ref. [120].

4.1.3 Discussion on this Study. The key feature of Castigliano’s
second theorem is the concise form of strain energy, making it
particularly suitable for flexure-beam-guided compliant mecha-
nisms with simple configurations, such as plenty of XYZ flexure-
based manipulators in Refs. [167–171]. However, it becomes
somewhat complicated to implement inner-force analysis for com-
pliant mechanisms with complex configurations.

4.2 Elastic Beam Theory

4.2.1 Conceptual Idea. The key procedure of elastic beam
theory for the kinetostatic modeling of compliant mechanisms is
similar to Castigliano’s second theorem in terms of energy form.
The first step is normally to express the inner force of each flexi-
ble beam as the function of external loads. Constrained reactions
should be also calculated in advance as the function of external
loads by virtue of boundary conditions. Then, the deflection for-
mula and the principle of energy conservation or the principle of
virtual work [178] in mechanics of materials can be employed to
formulate the kinetostatics of compliant mechanisms [80]

MiðxÞ ¼ EI � y00i (5)

1

2
fin � xin �

1

2
fout � xout ¼

X

n

i¼1

ðli

0

N2
i xð Þ

2EAi xð Þ dxþ
ðli

0

S2i xð Þ
2jGAi xð Þ dx

 

þ
ðli

0

M2
i xð Þ

2EIi xð Þ dx
�

(6)

Fig. 4 Kinetostatic modeling based on Castigliano’s second theorem: (a) exemplary complaint mechanism
and (b) notation of force in local flexure element
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where yi is the deflection of the ith flexible beam. The prime
denotes the derivative with respect to spatial coordinate x. Other
variables in Eqs. (5) and (6) are denoted in Fig. 4. In Eq. (6), the
key idea of the principle of energy conservation is that work done
by the input force along its corresponding input displacement is
equal to the tensile, shear, and bending strain energies as well as
the opposite work by the output force.

4.2.2 Key Advances. Elastic beam theory was widely used for
bridge-type compliant mechanisms [179–182]. Ma et al. [77]
derived the analytical formula of the displacement amplification
ratio for bridge-type compliant mechanisms based on elastic beam
theory. Subsequently, plenty of similar analytical formulas sprung
up, such as those by Mottard and St-Amant [183], Hwang et al.
[184], Xu and Li [185], Chen et al. [79], Shao et al. [186], Liu and
Yan [187], and Higuchi and Higuchi [188]. In view of the low
prediction accuracy of some previous models, Qi et al. [78] and
Ling et al. [80] separately proposed enhanced analytical formulas
based on elastic beam theory. Moreover, other investigations were
dedicated to this problem by accounting for the compliance of all
members [81,189,190]. Wei and Shirinzadeh [191] proposed a
general model for kinetostatic analyzing of three kinds of bridge-
type flexure amplifiers. Ling [192] extended this general model
for simultaneously analyzing their kinetostatics and dynamics
with a concept of two-port dynamic stiffness model. The existing
kinetostatic formulas for bridge-type compliant mechanisms are
listed in Table 1. Detailed comparison on their prediction accu-
racy can be found in Ref. [192]. As another typical application,
the kinetostatics of parallel four-link flexure mechanisms was ana-
lyzed with elastic beam theory in Refs. [193] and [194]. Other
studies such as those in Refs. [195] and [196] can be also regarded
as a variation of elastic beam theory.

4.2.3 Discussion on this Study. Elegant analytical formulas
can be obtained with elastic beam theory that is insightful for
revealing the deformation characteristics of compliant mecha-
nisms. The major disadvantage of this method, however, lies in its
complicated inner-force analysis for complex configurations.
Hence, some members in compliant mechanisms, such as the
input port, are often assumed to be rigid for the conciseness of
modeling but with some loss of accuracy [77–81,192].

4.3 Compliance Matrix Method

4.3.1 Conceptual Idea. The basic idea of this method is to
transfer the compliance of each flexure member from the local
coordinate frame into an assigned reference coordinate system.
Kinetostatics of compliant mechanisms can be modeled based on
the principle of compliance summation in the serial chain and
stiffness summation in a parallel structure. As shown in Fig. 5, the
output compliance matrix with respect to the fixed end for serial,
parallel and hybrid chains can be formulized as [82,83]

C
o
j ¼

X

n

i¼1

T
j
iCiðTj

iÞT (7)

C
o
j ¼

X

n

i¼1

ðTj
iCiðTj

iÞTÞ�1

 !�1

(8)

C
o
A ¼ T

A
1C1ðTA

1 Þ
T þ

X

4

i¼2

T
A
i CiðTA

i Þ
T

 !�1
2

4

þ
X

8

i¼5

T
A
i CiðTA

i Þ
T

 !�1
3

5

�1

(9)

where Ci is the compliance matrix of the ith flexure member in
the local coordinate. The coordinate transformation matrix T

j
i can

be found in the literature such as Refs. [82] and [83].

4.3.2 Key Advances. The compliance matrix method can be
recognized as an efficient toolkit for a wide range of compliant
mechanisms with complex configurations [198–203]. Pham and
Chen [198] employed the compliance matrix method for parallel
compliant mechanisms, while this method was extensively used to
analyze flexure-based precision positioning stages by the groups
of Li, Xu [82–84,199] and other researchers [204,205]. However,
it is difficult to obtain the detailed displacements in compliant
mechanisms. To overcome this limitation, the effort has gone into
combining the compliance matrix method with the inverse-
kinematic model [202]. It is noted that the input/output

Table 1 Theoretical models of the displacement amplification ratio for bridge-type compliant mechanisms

Methods Refs. Analytical models of displacement amplification ratio Configurations

Simplified model [77] Ramp ¼ coth

[76] Ramp ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 sin2h� 2LDx cos h� Dx2
p

þ L sin hÞ=Dx
[197]

Ramp ¼
�

�

�

�

sin h� sinðh� DhÞ
cos h� cosðh� DhÞ

�

�

�

�

[78]

Ramp ¼

ðh

h�Dh

cotudu

Dh
¼ lnð sin h

sinðh� DhÞÞ
.

Dh

Elastic beam theory [48] Ramp ¼
KlL

2 sin h cos h

2Kh cos2hþ KlL2 sin
2h

Parallel
[77] Parallel
[188] Rhombic
[185]

Ramp ¼
KlL

2 sin h cos3h

2Kh þ KlL2 cos2h sin
2h

Parallel

[78]
Ramp ¼

KlLH

4Kh þ KlH2
ðH ¼ L tan hÞ Parallel

[80]
Ramp ¼

KlL
2 sin h cos h

12Kh cos2hþ KlL2 sin
2h

Rhombic

[80]
Ramp ¼

KlLH þ KlKhHL2=2K
0
h

ð4Kh þ KlH2Þ þ 2KlKhð1=K 0
l þH2=4K 0

hÞ
Parallel

[186]
Ramp ¼

L

2Khcoth=KlLþ L tan h

Rhombic

Others [81,189–192]
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displacements coincide with the points of actuation force in the
above investigations [198–205]. The modeling procedure will
become more complicated with multiple actuation forces, and
when the solved displacement is not coincident with the points of
actuation force. Lobontiu and coworkers [87,88] provided investi-
gations on the kinetostatic modeling of serial-parallel compliant
mechanisms with multiple forces and the case of displacements at
different points of actuation force. A general two-port kinetostatic
model of compliant mechanisms was also established based on
the compliance matrix method in Ref. [205].

4.3.3 Discussion on this Study. The compliance matrix
method has emerged as a versatile kinetostatic modeling tech-
nique for compliant mechanisms with complex configurations.
Compared to Castigliano’s second theorem and elastic beam
theory, there is no need for inner-force analysis, thus the compli-
ance matrix method by nature possesses some inherent advantages
in terms of conciseness. This merit is particularly useful for
serial-parallel compliant mechanisms. On the other hand, coupled
compliance between the shear force and bending moment is con-
sidered in the compliance matrix method. One challenge of this
method, however, lies in the fact that the output and input stiffness
are separately modeled with reduplicative procedures. In addition,
the modeling procedure becomes complicated with multiple
actuation forces and when the solved displacements are not coin-
cident with the points of actuation force [87,88].

4.4 Finite Element Method (Matrix
Displacement Method)

4.4.1 Conceptual Idea. The finite element method has been
employed in the field of compliant mechanisms for a long time

[206–208]. The underlying idea of this method is also based on
matrix transformation but is different from the compliance matrix
method (Fig. 6). It can be viewed from Fig. 6 that the number of
degrees-of-freedom for planar flexure beams is six in the finite
element method, while the flexure beam is usually considered to
be fixed at the end of the preceding rigid block in the compliance
matrix method.

4.4.2 Key Advances. Considering the varying cross section in
all kinds of notch flexure hinges, a mathematic formula transfer-
ring the theoretical compliance matrix into the elemental stiffness
matrix of flexure hinges was proposed by Wang and Zhang [90].
This formula is advantageous in the framework of the finite ele-
ment method and was later applied to all kinds of flexure-hinge-
based compliant mechanisms [91,209]. Li and Hao [210] derived
the elemental stiffness matrix of flexible beams based on screw
theory. Ling et al. [209] presented a straightforward kinetostatic
modeling approach for serial-parallel compliant mechanisms by
directly building the nodal force equilibrium equation without
extra procedures of assembling the global stiffness matrix. A tree-
structure method similar to the finite element method was pro-
posed in Ref. [211] to transfer the loads into the local flexure ele-
ment but not the common way of stiffness matrix assembling in
the finite element method. Some other modeling methods dis-
cussed in Ref. [212] can be also regarded as variants of the finite
element method.

4.4.3 Discussion on this Study. The obvious benefit of the
finite element method is that it can be applied to a wide class of
compliant mechanisms and has higher prediction accuracy over
other kinetostatic modeling approaches. Moreover, the inner dis-
placement information can be obtained with single or multiple

Fig. 5 Exemplary kinetostatic modeling with the compliance matrix method: (a) serial, (b) parallel, and (c) serial-parallel

Fig. 6 Comparison of coordinate frame between the compliance matrix method and the finite element
method (matrix displacement method): (a) compliance matrix method and (b) matrix displacement method
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actuation loads. However, degrees-of-freedom in the finite ele-
ment model are usually huge.

5 Kinetostatic Modeling of Compliant Mechanisms
With Large Deflection

Compliant mechanisms with large deflection have been popular
research topics [1,37,58,94]. In general, the present kinetostatic
modeling methods for large-deflection analysis of compliant
mechanisms can be summarized as six categories: (1) pseudo-
rigid-body model, (2) beam constraint model, (3) elliptic integral
solutions, (4) nonlinear finite element method, (5) chain algo-
rithm, and (6) energy-minimization-based solutions. Some of
these methods are aimed at single flexure beams while others can
deal with compliant mechanisms. It should be noticed that the
pseudo-rigid-body model, initially proposed for large-deflection
problems, has been also widely used for modeling small-
deflection compliant mechanisms.

Figure 7 provides the kinetostatic model of a large-deflection
beam subjected to the tip loads of tensile force N, shear force S
and bending moment M. The bending equation can be generally
formulated as

M xð Þ ¼ EI
dh

ds
¼ EI

d2y=dx2

1þ dy=dxð Þ2
h i3=2

(10)

Equation (10) can be simplified as a linear model if the term
“dy/dx” is ignored for small-deflection analysis. In addition, the
force balance equation of large-deflection flexure beams should be
described after deformation, i.e.,

MðxÞ¼MþS � ðL� xÞ ðsmalldeflectionÞ
MðxÞ¼MþS � ðL� xÞ�N � ðb�yÞ ðsecond�order theoryÞ
MðxÞ¼MþS � ða� xÞ�N � ðb�yÞ ðlarge deflectionÞ

8

>

>

<

>

>

:

(11)

Equation (10) together with Eq. (11) describes the kinetostatic
model of flexure beams under different levels of deflection. The
key problem associated with the kinetostatic analysis of large-
deflection beams is to solve the deflections fa, bg and the slope h
under the tip loads fN, S, Mg by solving Eqs. (10) and (11) as
well as necessary axial-deformation equations which are not
shown here. It is noticed that the constitutive relationship of mate-
rials in Eq. (10) are usually isotropic and homogeneous where the
conventional elastic beam theory is applicable. Nonconventional
materials such as plastic may be used in compliant mechanisms
and their constitutive relationship is different from Eq. (10).

5.1 Pseudo-Rigid-Body Model

5.1.1 Pseudo-Rigid-Body Model of Flexure Beams at the Ele-
ment Level. Previous research on the pseudo-rigid-body model was
mainly for three types of flexure members: Fixed-free beams, short
flexure pivots, and fixed-guided beams [58–60]. Figure 8 shows a
fixed-free flexure beam with its pseudo-rigid-body model. The beam
is decoupled into a joint with a torsional spring and two rigid-link
bars. Its deflection path is emulated by kinematic trajectory of rigid-
link mechanisms, while the force–deflection relationship is approxi-
mated by the spring that represents the pivot’s stiffness. The key
issue is to find the position of the characteristic pivot and the charac-
teristic stiffness of spring. The detailed procedure is to approximate
the tip trajectory fa, bg and slope h of the pseudo-rigid-body model
subjected to external loads fF, Mg with respect to the exact contin-
uummodel by means of optimization strategies [1,58].

Howell and coworkers [58–60] developed the pseudo-rigid-
body model and provided the characteristic parameters for several
kinds of flexure beams subject to different end-force loadings
based on the elliptic integral solutions [1]. Since one rotational
pivot is used in the original pseudo-rigid-body model, it is called
the 1Rmodel. The pseudo-rigid-body model with variable parame-
ters and the case of different types of beams were studied by Dado
[213], Lyon [214], and Kimball and Tsai [215]. In an attempt to
overcome the limitation of dependence of the 1R model on the
types of end-force loading, several variations of the pseudo-rigid-
body model were developed. For example, Su [101] presented a 3R
pseudo-rigid-body model with high accuracy for a larger range of
deflection and with load-independence coefficients, wherein the
flexure beam was divided into four rigid segments with three elas-
tic joints. A set of new characteristic parameters of the 3R pseudo-
rigid-body model was re-optimized by Chen et al. [216] based on a
new multi-objective optimization strategy.

Fig. 7 Conception of the pseudo-rigid-body model: (a) contin-
uum model of large-deflection beams and (b) corresponding
pseudo-rigid-body model

Fig. 8 Mechanical model of large-deflection flexure beams: (a) continuum model of large-deflection beams and (b) corre-
sponding pseudo-rigid-body model
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As reported, the 3R model [101,216] can predict the kinematic
behaviors of large-deflection beams subjected to multiple end
forces. However, the 3R model becomes more complicated owing
to the introduction of three pivots. Yu et al. [102] reduced the
joints and proposed a 2R pseudo-rigid-body model. In addition to
the 2R and 3R models, a RPR model considering tensile effects
and a 5R model for offsetting inflection points were also devel-
oped [103,104,217]. Besides, the pseudo-rigid-body model with
shear effects in short pivots for robotic joints [218], circular-shape
flexure beams [219] and a general matrix for all kinds of pseudo-
rigid-body models [220] were studied by Su and Venkiteswaran.
Saggere and Kota [221] introduced a finite element type of model
in which the beam was divided into more than three segments
joined by torsional springs. Other developments on the pseudo-
rigid-body model can be found in the works by �Salinić and
Nikolić [222] and Valentini and Pennestr�I [223].

5.1.2 Applying the Pseudo-Rigid-Body Model to Compliant
Mechanisms. The key idea of utilizing the pseudo-rigid-body
model for the analysis of compliant mechanisms is to substitute
the flexure pivots and flexible beams in compliant mechanisms
with the PRBM parameters, while other parts of compliant mecha-
nisms are assumed as rigid bodies. As a consequence, the pseudo-
rigid-body model can be considered as a bridge connecting
compliant mechanisms with rigid-link mechanisms. Modeling of
compliant mechanisms can thus be solved in the framework of the
traditional rigid-body mechanics.

Howell and Midha [224] presented in detail the pseudo-rigid-
body model for the kinetostatic analysis of compliant mechanisms
based on the loop closure theory and the principle of virtual work.
Lyon et al. [225] established the kinetostatic model of parallel-
guiding and slider-crank compliant mechanisms based on the
pseudo-rigid-body model, while Yu and coworkers [114,226] built
the PRBM-based dynamic model of large-deflection parallel-
guided compliant mechanisms. Other considerable investigations
include those such as partially compliant mechanisms by Tanik
et al. [227], bistable compliant mechanisms by Pucheta and
Cardona [228], constant-force mechanisms by Aten et al. [229],
Cartwheel flexure hinges by Pei and coworkers [105,106], to men-
tion a few. A computational design tool of compliant mechanisms
for personalized animatronics was also developed by Disney
Research with the pseudo-rigid-body model [230]. In addition to
compliant mechanisms, the pseudo-rigid-body model was also
applied to analyze the large deflection of carbon nanotubes
[231,232] and human spines to predict implant-induced changes
on motion [61].

Experiences in the last decades have also shown the pseudo-
rigid-body model can be a potentially efficient tool for some types
of small-deflection compliant mechanisms. For example, the
pseudo-rigid-body model has been widely used for the kinetostatic
and dynamic analyses of flexure grippers by modeling flexure
hinges as equivalent joints with a spring, such as several types of
flexure-based grippers designed by Chen and coworkers
[233,234], Wang et al. [235], Tian and coworkers [117,236,237],
and so on. Other pioneering works were applying the pseudo-
rigid-body model to the design and analysis of precision position-
ing stages by Li and coworkers [238,239], Wan and Xu [240],
Tian and coworkers [241–243], Liu et al. [244], and so forth.

5.1.3 Discussion on this Study. The benefit in the use of the
pseudo-rigid-body model comes from transmitting compliant
mechanisms into equivalent rigid-body mechanisms. This facili-
tates the use of the wealth of existing rigid-body mechanics
knowledge for the solution of compliant mechanisms. The use of
pseudo-rigid-body model provides a quick way to test concepts
and thus reduces the effort to obtain final concepts. Although the
2R, 3R, RPR and 5R pseudo-rigid-body models are more versatile,
the 1R model was widely used for compliant mechanisms owing
to its simplicity. However, the load dependency in the 1R model
makes it not well-suited for complex loads and complicated

configurations as well as for free vibration analysis of compliant
mechanisms. On the other hand, procedures of the pseudo-rigid-
body model for modeling compliant mechanisms is usually
performing the kinematic solution with loop closure theory or
kinematic approximation; then, carrying out the static analysis by
the virtual work principle and at last establishing the dynamic
model based on Lagrange’s equation. It shows some complicacy
for complex configurations. Therefore, kinematic approximations
and mass lumping are usually adopted with limited accuracy.
Moreover, characteristic parameters in the pseudo-rigid-body
model were optimized under kinematic conditions which may be
inaccurate for the dynamic analysis of compliant mechanisms,
especially for high-frequency solutions.

5.2 Other Methods

5.2.1 Beam Constraint Model. The beam constraint model
proposed by Awtar and coworkers [93–96] provides a closed-form
model based on the continuum beam theory and Taylor series
expansion. Since a linear form of Eq. (10) was used in the beam
constraint model, it is mainly suitable for flexure beams within an
intermediate deformation range (10% of the beam length). The
characteristics of this model lies in the captured load-stiffening
effects [94]. Furthermore, the constraint behavior of flexure beams
in terms of their stiffness and error motion is specified with this
method [245]. Zhao et al. [246] developed the analytical static
model for the Cartwheel flexure hinge while Malaeke and
Moeenfard [245] investigated the mixed flexure-rigid-link mecha-
nisms with the beam constraint model. Recently, Chen et al.
included the shear effect [98] and developed the beam constraint
model for large-deflection analysis of planar and spatial flexure
beams, namely, the chained beam constraint model [99,100], in
which a flexible beam was divided into a few elements and each
element was modeled by the beam constraint model. The second-
order Taylor series in the beam constraint model was expanded to
the third order [247]. Moreover, the beam constraint model was
used to analyze grippers and accelerometers [248,249]. The
(chained) beam constraint model formulates medium/large-deflec-
tions by capturing load-stiffening effects. Previous investigations
on this method were mainly focused on single beams or simple
compliant mechanisms. Further applying it for more complex
compliant mechanisms with intermediate/large deflections, such
as the increasingly used large-stroke flexure-based manipulators,
is still an open problem.

5.2.2 Nonlinear Finite Element Method and the Chain Algo-
rithm. The finite element method can deal with complex geomet-
ric shapes by discretizing the structure into small elements.
Kinetostatic and dynamic modeling of small-deflection compliant
mechanisms based on the finite element method is easy to be
implemented [92,125]. However, formulizing the global stiffness
matrix will become complicated with time-consuming iterative
computations for nonlinear large-deflection analysis. Thus, there
were limited parametric modeling cases of compliant mechanisms
by employing the nonlinear finite element method. In general, the
nonlinear finite element method is implanted into commercial
software packages such as ANSYS and ABAQUS. On the other hand,
the chain algorithm [57,250] also discretizes a structure into small
elements, but unlike the finite element method, elements in the
chain algorithm are treated in succession with no requirement of
the inversion of assembled stiffness matrix [251]. The shooting
method was often used to satisfy boundary conditions in the chain
algorithm [251]. However, accuracy of the chain algorithm still
depends on the resolution of discretization and the inserting inter-
val of loads. Salamon [252] utilized a graphical, user-driven itera-
tive technique for better convergence of the chain algorithm,
while Lan and Coulter [251,253] introduced an increment-loading
method into the chain algorithm to improve its accuracy. In addi-
tion, a chain algorithm element was created from pseudo-rigid-
body segments and used in a chain calculation to accurately
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predict the force–deflection relationship of flexure beams with
large deflection by Chase et al. [254]. It is noticed that investiga-
tions and applications on the chain algorithm were mainly focused
on single beams but less for compliant mechanisms [255,256].

5.2.3 Elliptic Integral Solutions. Owing to its high accuracy
and analytical form for the kinetostatic analysis of flexure beams,
the elliptic integral method is a robust solution in the field of com-
pliant mechanisms. The key idea is to express the solutions of
large-deflection bending equations, namely, Eqs. (10) and (11), as
the integral of trigonometric functions and the integral solutions
can be obtained by table look up [55,56]. The elliptic integral sol-
utions of fixed-fixed beams was provided by Lyon and Howell
[257], while Kimball and Tsai deduced the elliptic integral for
flexure beams with one inflection point [55]. Zhang and Chen
et al. [258] established a complete elliptic integral solution for
flexure beams with any number of inflection points. More
recently, kinetostatics of an XY micro positioning stage with the
negative stiffness mechanism was analyzed by Wang and
coworkers [44,259] based on the elliptic integral solutions. From
the previous advances, elliptic integral solutions were mainly lim-
ited to single beams. Research described in Refs. [44] and [259]
are examples for application in compliant mechanisms. In addi-
tion, elliptic integral solutions were frequently applied to optimize
the characteristic parameters in the pseudo-rigid-body model due
to its high accuracy [58,59,101,102,214].

5.2.4 Energy-Minimization-Based Kinetostatic Solutions. In
view of the difficulties associated with the kinetic solutions in pre-
vious mechanics-model-guided methods for large-deflection com-
pliant mechanisms, attention was devoted to the kinetostatic
modeling of compliant mechanisms in the presence of large
deflections by using energy-minimization-based approaches. For
example, an investigation by the group of Su was devoted to the
kinetostatic analysis of large-deflection compliant mechanisms
based on the principle of minimum potential energy and using
optimization strategies [109–111]. Chen and Ma [112] also pro-
vided a framework for the kinetostatic analysis of large-deflection
compliant mechanisms based on the principle of minimum poten-
tial energy. Other similar solutions can be found in Refs. [260]
and [261]. Energy-minimization-based methods are generally
kinetostatic solutions for large-deflection compliant mechanisms
without solving mechanical equations, but how to extend it to the
dynamic issues would be difficult and is still an interesting open
problem.

6 Dynamic Modeling of Compliant Mechanisms

Increasing applications of compliant mechanisms are extended
to high speeds and high frequencies [5–12,262], thus determining
their dynamic behavior is necessary and interesting. This can be
crucial for evaluating/optimizing natural frequencies and for
designing controllers. To sum up, many of the previous dynamic
modeling of compliant mechanisms was mainly based on
Lagrange’s method [113–130]. Some improved modeling
approaches [108,131,132] were recently developed for the
dynamic analysis of compliant mechanisms. In the following,
recent advances on the Lagrange-based modeling methods and
these newly emerging approaches will be discussed in detail.

6.1 Lagrange-Based Methods. Over the past three decades,
Lagrange-based dynamic modeling approaches have been devel-
oped for compliant mechanisms [113–130]. Generally speaking,
the reported approaches can be roughly classified into three cate-
gories, as shown in Fig. 9.

6.1.1 PRBM-Based Dynamic Model. In the case of pseudo-
rigid-body model, compliant mechanisms are first transmitted into
rigid-link mechanisms by substituting flexure pivots and flexible
beams with the pseudo-rigid-body model and its corresponding
characteristic parameters. The dynamic model can thus be

established by calculating the kinematics with the loop closure
theory, then performing the static analysis with the principle of
virtual work and at last calculating the elastic/kinetic energies in
sequence. The detailed procedure can be found in literatures such
as Refs. [113–118]. It is noticed that approximate kinematic rela-
tionships between inner members and the input/output motion
DOFs are often utilized to avoid the complicated solution of kine-
matics with the loop closure theory [263,264]. Since the input/out-
put motion DOFs of compliant mechanisms are usually taken as the
variables of the PRBM-based dynamic model, it can be generally
considered as a lumped-parameter model in such a sense.

6.1.2 Lumped-Parameter Dynamic Model. A popular and ele-
gant methodology for the dynamic modeling of small-deflection
compliant mechanisms is the so-called lumped-parameter
dynamic model with the input or output motion DOFs as the vari-
ables [119–123]. Indeed, the analytical formula of fundamental
frequency can be obtained with this method. As shown in Fig. 9,
the input or output stiffness of compliant mechanisms is first mod-
eled by a sort of kinetostatic methods, such as the compliance
matrix method or Castigliano’s second theorem. Afterward, elas-
tic and kinetic energies are calculated in the form of motion DOFs
as shown in Eq. (12). At last, the dynamic model of compliant
mechanisms can be further derived by employing Lagrange’s
equation

U ¼ 1

2
Kin � X2

in or U ¼ 1

2
Kout � X2

out

T ¼ 1

2

X

n

i¼1

Mi � _X
2

i þ
1

2

X

n

i¼1

Ji � _h
2

i ¼ F _X
2

in

� �

or T ¼ F _X
2

out

� �

8

>

>

>

>

<

>

>

>

>

:

(12)

where Kin and Kout are the input and output stiffness of compliant
mechanisms calculated by a sort of kinetostatic methods, respec-
tively. Xin and Xout are the input and output motion DOFs. The
superimposed dot indicates differentiation with respect to the
time.Mi is the lumped mass of the ith rigid link or flexure member
whose kinetics is prominent. Ji is the rotational moment of the ith
rigid link. F is the sign of a function.

In Eq. (12), the elastic energy can be easily calculated with the
prepared input or output stiffness at the stage of kinetostatic anal-
ysis, differing from the pseudo-rigid-body model wherein the elas-
tic energy is the summation of all characteristic springs [233–244]
and kinematic solutions are required for calculating the total elas-
tic energy. On the other hand, the kinetic energy in Eq. (12) is
dependent on the kinematics of compliant mechanisms and would
be intractable to obtain for complex serial-parallel configurations.
Therefore, some of the previous investigations employed approxi-
mately kinematic relationships to calculate the kinetic energy
[119–123,265].

Polit et al. [122] directly derived the dynamic model of a
flexure-based precision positioning stage based on Lagrange’
equation, while Ferrira and coworkers [263,264] derived the
dynamic model of a parallel flexure mechanism based on Jacobian
matrix and Lagrange’ equation. The dynamic model and analyti-
cal fundamental frequency of several flexure-beam-guided XY
and XYZ nanopositioners were directly established by using
Lagrange’s equation by Yong and coworkers [167–169]. Other
similar investigations can refer to the works by Tian and
coworkers [265–268] for several kinds of flexure mechanisms.
For some compliant mechanisms with complex configurations,
exact solutions of kinematics are difficult; thus, approximate kine-
matics was employed. For example, the dynamic model of bridge-
type amplifiers was built with elastic beam theory and approximate
kinematic solutions by Nabae et al. [192]. In addition, the kineto-
statics and dynamics of several XY precision manipulators were ana-
lyzed by combining the compliance matrix method and Lagrange’s
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equation with approximate kinematics by the groups of Li and
coworkers [82–84,199,269] as well as other researchers [270–272].

6.1.3 Distributed-Parameter Dynamic Model. In the
distributed-parameter model, the detailed DOFs of each flexure
member or rigid-body member are taken as the variables, in which
compliant mechanisms are usually discretized into several subele-
ments and the dynamic model is established by formulating the total
elastic and kinetic energies and combining them with Lagrange’s
equation [124–130]. In the literature, two different approaches can be
found for the distributed-parameter dynamic formulation of compliant
mechanisms, namely, the finite element method and a rigid-
multibody-similar dynamic model introduced by Ryu et al. [126].

The finite element method is versatile in handling complex con-
figurations, leading itself well to model the kinetostatics and
dynamics of compliant mechanisms. Lobontiu et al. [161] and
Zhang and Hou [273] derived three-node mass matrix of circular
flexure hinges for dynamic analysis of compliant mechanisms,
while a force-interpolation-based mass matrix of circular flexure
hinges was proposed in Ref. [125]. R€osner et al. [124] proposed
an improved finite element method with Krylov model reduction
scheme for the purpose of real-time control simulation of compli-
ant mechanisms, while the finite element method based on an ana-
lytical stiffness matrix formula was developed for the dynamic
modeling of flexure-hinge-based compliant mechanisms by Ling
et al. [92]. Other examples of using the finite element method for
the dynamic modeling of flexure manipulators can be found in
Refs. [274–276].

On the other hand, the use of rigid-multibody-similar dynamic
approach proposed by Ryu et al. [126] seems to be a useful way
because of its concise modeling procedure. This method was
applied to the dynamic modeling of lumped compliant mecha-
nisms or their composed flexure manipulators by several research
groups [127–130,277–279]. As shown in Fig. 9, the expression of
dynamic model in Ryu’s method is closely similar to that of the

finite element model at the first glance. However, they are differ-
ent especially in terms of the notation of variables (DOFs). The
variables in Ryu’s method are the motion DOFs of rigid links
while the variables in the finite element method are nodal dis-
placements between flexure members. This discrepancy leads to
distinguishing modeling procedures for these two approaches.

6.1.4 Discussion on this Study. It is pointed out that
Lagrange-based dynamic modeling method is a commonly used
technique in the field of compliant mechanisms with the concise
form of energy. However, the challenge of this method lies in the
required kinematic solutions. The coupling of kinematic and elas-
tomechanic behaviors in compliant mechanisms has led to compli-
cated kinetostatic modeling procedures, the whole modeling
complexity will be further enlarged when involving the dynamic
issues. In addition, the usual practice of kinematic approximation,
mass lumping, or even mass neglecting for flexure hinges and
flexible beams in some of the previous Lagrange-based dynamic
models often led to limited prediction accuracy.

6.2 Other Methods. In addition to the aforementioned
Lagrange-based dynamic models, some efforts have been contrib-
uted to the dynamic modeling of compliant mechanisms. For
example, the transfer matrix method was employed for the fre-
quency analysis of small-deflection compliant mechanisms in Ref.
[280], which has the characteristics of easy programming and low
matrix order. However, the transfer matrix method is advanta-
geous for serial configurations and the existing solutions are diffi-
cult for plenty of the serial-parallel substructures in compliant
mechanisms. Moreover, the dynamic modeling procedure in the
present transfer matrix method is mutually exclusive for the
simultaneous kinetostatic analysis and extra procedures are
required.

For the large-deflection analysis of compliant mechanisms, the
mass property was included into the pseudo-rigid-body model in

Fig. 9 Dynamic modeling of compliant mechanisms based on Lagrange’s method
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Ref. [108], which can be considered as a dynamic pseudo-rigid-
body model. The characteristic parameters of mass for large
deflection were optimized based on the linear continuum vibration
model in the framework of small deformation in Ref. [108]. Fur-
ther investigations would be interesting to compare the difference
between the linear continuum vibration model and nonlinear
large-deflection vibration model.

More recently, a dynamic stiffness modeling methodology
based on d’Alembert’s principle was proposed by Ling et al.
[18,131,281,282] to model the simultaneous kinetostatics and
dynamics of compliant mechanisms with small deflection in a
static manner. As shown in Fig. 10, two parallel distributed- and
lumped-parameter models were established based on the matrix
displacement method and an improved transfer matrix method.
Indeed, it is a frequency-domain modeling method by employing
some concepts in the spectral method [283]. The advantage of this
approach lies in the fact that the kinetostatics and dynamics of
compliant mechanisms can be simultaneously modeled where the
dynamic modeling is simplified as a static-similar problem with-
out the requirements of inner-force analysis and kinematic calcu-
lation. Moreover, kinematic approximation and mass lumping are
avoided. However, the resulting transcendental or polynomial
eigen-problem for the solution of natural frequencies and the diffi-
culty to formulate the dynamic stiffness matrix of some irregular
members in compliant mechanisms with lumped compliance are
main disadvantages of this method [131,132].

7 Discussion

Flexure-based compliant mechanisms have emerged as an
increasingly used technique in modern precision manipulation,
robotics, and other engineering applications. Despite the advanta-
geous properties of compliant mechanisms, it is still challenging
for researchers to perform accurate and concise modeling of com-
pliant mechanisms owing to their coupling of kinematic and elas-
tomechanical behaviors with large deflections and/or complex

serial-parallel configurations. Therefore, more innovative solu-
tions are still required to achieve this goal:

7.1 Accurate Modeling of Flexure Hinges With Variable
Cross Section. There have been numerous kinetostatic models for
all kinds of flexure hinges. However, large error exists among dif-
ferent analytical kinetostatic models and even in the components
by the same modeling method depending on the geometric aspect
ratio of flexure hinges [70]. Some other factors in addition to shear
effects would influence the modeling accuracy. Empirical model-
ing is a reliable way to analyze flexure hinges with high accuracy
but it is time-consuming and non-insightful for a new type of flex-
ure hinges. On the other hand, only the stiffness of flexure hinges
but not their mass was included in some previous dynamic model-
ing of flexure-hinge-based compliant mechanisms, which would
be inaccurate for compliant mechanisms with distributed/hybrid
compliance as well as for calculating high-order dynamic
responses. Further studies are still pending for clarifying the influ-
ence factors on the modeling accuracy of flexure hinges with a
wide range of geometric aspect ratio. Moreover, tailoring these
influence factors to accurately and concisely formulate the kineto-
statics and dynamics for all kinds of flexure hinges is of great
importance.

7.2 Efficient Kinetostatic/Dynamic Modeling of Complex
Serial-Parallel Compliant Mechanisms. The kinetostatic and
dynamic modeling of compliant mechanisms with small deflection
have been popular research topics for performance prediction and
geometric parameter optimization. Castigliano’s second theorem
and elastic beam theory are advantageous for relatively simple
configurations due to their requirement of inner-force analysis.
The compliance matrix method was widely used for the kineto-
static modeling of compliant mechanisms with complex configu-
rations. However, input and output stiffness are usually separately
modeled and it will become complicated for the solution of inner
displacement with multiple actuation forces [87,88]. As to the

Fig. 10 Dynamic modeling procedures for compliant mechanisms based on d’Alembert’s principle
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dynamic modeling of compliant mechanisms by combining the
aforementioned kinetostatic modeling methods with Lagrange’s
equation, kinematic solutions are usually necessary and it would
become intractable for complex configurations. The finite element
method is general and powerful but often with multiple DOFs.
The matrix displacement method together with a dynamic stiff-
ness model based on d’Alembert’s principle was developed in
Refs. [131] and [209] for simultaneously modeling the kineto-
statics and dynamics of compliant mechanisms. However, the ele-
mental dynamic stiffness matrix for irregular members in
compliant mechanisms is difficult to formulate. Therefore, con-
tinuing to explore concise and accurate approaches for modeling
kinetostatics and dynamics of compliant mechanisms with serial-
parallel configurations is still an ongoing problem.

7.3 Dynamic Modeling of Intermediate-Range and Large-
Deflection Compliant Mechanisms. There have been a consider-
able number of studies on the kinetostatic analysis of large-deflection
compliant mechanisms in the literature. However, these studies
are mainly focused on single flexure beams or mechanisms with
relatively simple configurations, e.g., parallel four-bar compliant
mechanisms. For the kinetostatics of large-deflection compliant
mechanisms, several solutions are available, such as the pseudo-
rigid-body model [1], (chained) beam constraint model [96], and
energy-based techniques [109–112]. However, the present investi-
gations on the dynamic modeling of compliant mechanisms with
large deflection are relatively rare except the techniques by com-
bining the pseudo-rigid-body model with Lagrange’s equation
[108,113–117]. In these PRBM-based dynamic models, kinematic
solutions in the elastic/kinetic energies are required and it will
become complicated for complex configurations. Moreover, the
modeling accuracy is also limited with some of the previous stud-
ies. In recent years, there are increasingly dynamic applications of
flexure-based manipulators with intermediate or even large deflec-
tion ranges, such as large-workspace precision grippers
[47–50,284]. To satisfy these emerging requirements, more effort
should be devoted to developing dynamic modeling methods for
compliant mechanisms with intermediate and large deflections as
well as revealing dynamic characteristics and new behaviors. The
implementation of such an issue still remains challenging.

7.4 New Techniques and Advanced Modeling Methodolo-
gies. Recently, dynamic modeling of complex systems was
powerfully implemented by using data-driven techniques such as
deep learning algorithm [285,286] for the purpose of control.
Improvements in the performance of data-driven techniques com-
pensate some disadvantages in physics-based models with funda-
mental laws in the discipline of mechanics. Two issues would be
interesting: (a) The first is to predict the kinetostatic and dynamic
performance of flexure-based mechanical systems including large
deflection and other nonlinearities based on data-driven techniques
or hybrid modeling principles; (b) The second possible topic would
be employing the powerful data-mining capability of artificial intel-
ligence for the optimization and synthesis of compliant mechanisms
with potentially new configurations and better performance.

8 Conclusions

This paper presents an overview of technologies and
approaches on the kinetostatic and dynamic modeling of compli-
ant mechanisms involving small- and large-deflections. The
conceptual ideas, key modeling procedures, advantages, disadvan-
tages, recent advances, and scope of different modeling methods
in the related literature are surveyed and summarized.
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